JP2010514932A - Sn-B plating solution and plating method using the same - Google Patents

Sn-B plating solution and plating method using the same Download PDF

Info

Publication number
JP2010514932A
JP2010514932A JP2009543955A JP2009543955A JP2010514932A JP 2010514932 A JP2010514932 A JP 2010514932A JP 2009543955 A JP2009543955 A JP 2009543955A JP 2009543955 A JP2009543955 A JP 2009543955A JP 2010514932 A JP2010514932 A JP 2010514932A
Authority
JP
Japan
Prior art keywords
plating
plating solution
experimental example
lead
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009543955A
Other languages
Japanese (ja)
Other versions
JP5033197B2 (en
Inventor
ドンニョン イ
サンボム キム
ギュシク カン
Original Assignee
イルジン カッパー ホイル カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イルジン カッパー ホイル カンパニー リミテッド filed Critical イルジン カッパー ホイル カンパニー リミテッド
Publication of JP2010514932A publication Critical patent/JP2010514932A/en
Application granted granted Critical
Publication of JP5033197B2 publication Critical patent/JP5033197B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/30Electrolytic production, recovery or refining of metals by electrolysis of melts of manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

【課題】鉛を含有しておらず、メッキ層でのウィスカ発生を抑制するためのSn−Bメッキ法を提供する。
【解決手段】Pbイオンを含まず、Snイオン供給源である硫酸スズと、Bイオン供給源であるジメチルアミンボランまたはトリメチルアミンボランとを含むSn−Bメッキ液及びこれを使用したSn−Bメッキ法。
【選択図】図1
Provided is a Sn-B plating method which does not contain lead and suppresses whisker generation in a plating layer.
An Sn-B plating solution that does not contain Pb ions and contains tin sulfate as a Sn ion source and dimethylamine borane or trimethylamine borane as a B ion source, and Sn-B plating method using the same .
[Selection] Figure 1

Description

本発明は、鉛成分の含まれていない(以下、「無鉛」という)Sn−Bメッキ液及びこれを使用したメッキ法に係り、さらに詳細には、ウィスカ(whisker)発生を抑制できる無鉛Sn−Bメッキ液及びこれを使用したメッキ法に関する。   The present invention relates to a Sn-B plating solution containing no lead component (hereinafter referred to as “lead-free”) and a plating method using the same, and more specifically, lead-free Sn— that can suppress whisker generation. The present invention relates to a B plating solution and a plating method using the same.

半導体リードフレームは、半導体チップの高密度化、高集積化及び基板実装の方法などによって、多様な形状を有する。 The semiconductor lead frame has various shapes depending on the method of increasing the density and integration of the semiconductor chip and mounting the substrate.

基本的に半導体リードフレームは、半導体記憶素子であるチップを搭載し、静的な状態を維持するパッド部、ワイヤ・ボンディングによって連結される内部リード部(inner lead)、及び外部回路との連結のための外部リード部(outer lead)から構成されている。かような構造を有する半導体リードフレームは、一般的に、スタンピング(stamping)方式、またはエッチング方式によって製造される。   Basically, a semiconductor lead frame is mounted with a chip which is a semiconductor memory element, and a pad portion for maintaining a static state, an inner lead portion connected by wire bonding, and a connection with an external circuit. It consists of an outer lead for the purpose. A semiconductor lead frame having such a structure is generally manufactured by a stamping method or an etching method.

半導体リードフレームは、記憶素子であるチップとの組み立て過程を経てパッケージングをなし、パッケージングの組み立て過程は、チップ付着工程、ワイヤ・ボンディング工程、モールディング工程、マーキング工程及び分離工程などを含む。   The semiconductor lead frame is packaged through an assembling process with a chip as a memory element, and the assembling process of the packaging includes a chip attaching process, a wire bonding process, a molding process, a marking process, a separating process, and the like.

かような半導体パッケージの製造過程のうち、チップと内部リード部とを連結するリードワイヤのボンディング性及びパッド部の良好な特性を維持するために、パッド部及び内部リード部の端部を、銀(Ag)のような金属素材を使用してメッキする。また、樹脂保護膜モールディング後に、基板実装のためのソルダリング性能の向上のために、外部リード部の所定領域に、ソルダ(solder)材を利用したメッキ、すなわちSn(tin)−Pb(lead)メッキを実施する。しかし、かようなメッキ方式の実施は難しく、メッキ過程で、リードフレームの表面とエポキシ・モールディングとの間にメッキ液が浸透し、半導体チップの不良を引き起こす場合が頻繁に発生し、メッキ層の不均一を除去するために、さらなる工程が必要であるという問題点がある。   In the manufacturing process of such a semiconductor package, in order to maintain the bonding property of the lead wire connecting the chip and the internal lead part and the good characteristic of the pad part, the end part of the pad part and the internal lead part is made of silver. Plating using a metal material such as (Ag). In addition, after the resin protective film molding, in order to improve the soldering performance for mounting on the substrate, plating using a solder material is applied to a predetermined region of the external lead portion, that is, Sn (tin) -Pb (lead) Perform plating. However, it is difficult to carry out such a plating method, and in the plating process, the plating solution permeates between the surface of the lead frame and the epoxy molding, which frequently causes a failure of the semiconductor chip. There is a problem that an additional step is required to remove the non-uniformity.

かような問題点を解決するために提案されたのが事前メッキフレーム(PPF:pre-plated frame)法であり、これは、半導体組み立て工程前に、鉛湿潤性の良好な素材をリードフレームの上面にあらかじめメッキする方法である。現在、かようなPPFメッキの一例として、Cu(copper)のようなリードフレーム用金属基底素材上に、中間層としてNi(nickel)層を形成し、最上層として鉛湿潤性の良好なPd(palladium)層などを、中間層上に全面的または部分的に塗布した構造(二層構造)、基底素材上にNi層、Pd層及び最上層としてAu(gold)フラッシュ層を有する構造(三層構造)、及び基底素材上に、Niストライク層、Pd−Ni合金層、Ni層及びPd層を有する構造(四層構造)などが商業的に提供されている。しかし、かような方法は、基底素材がCuまたはCu成分を含まないalloy 42のような合金である場合には、腐食が激しく発生し、またPdの価格が不安定であって、予期できない製造コスト上昇が招来されうるという問題点が発生する。   In order to solve such problems, a pre-plated frame (PPF) method has been proposed. This is because a material with good lead wettability is applied to the lead frame before the semiconductor assembly process. In this method, the upper surface is pre-plated. Currently, as an example of such PPF plating, a Ni (nickel) layer is formed as an intermediate layer on a lead base metal base material such as Cu (copper), and Pd (having a good lead wettability as an uppermost layer). a structure in which a palladium layer or the like is entirely or partially applied on an intermediate layer (two-layer structure), a Ni layer on a base material, a Pd layer, and an Au (gold) flash layer as a top layer (three layers) Structure), and a structure having a Ni strike layer, a Pd—Ni alloy layer, a Ni layer and a Pd layer (four-layer structure) on the base material are commercially available. However, such a method is unpredictable due to severe corrosion and unstable Pd price when the base material is Cu or an alloy such as alloy 42 containing no Cu component. There arises a problem that an increase in cost may be caused.

また、最近では、金属基底素材で、内部リードに対応する部分と、外部リードに対応する部分とを互いに異なる金属を利用し、それぞれ独立的にメッキする二色事前メッキフレーム(two-tone pre-plated frame)法が提案されている。かような二色事前メッキフレーム法では、例えば、金属の基底素材で、内部リードに対応する部分には、銀などによるメッキを行い、外部リードに対応する部分には、Sn−Pbメッキを行っている。   Recently, a two-tone pre-plated frame (two-tone pre-plated frame) that uses metal that is different from each other for the part corresponding to the internal lead and the part corresponding to the external lead in the metal base material. A plated frame method has been proposed. In such a two-color pre-plating frame method, for example, a metal base material is plated with silver or the like on the portion corresponding to the internal lead, and Sn—Pb plating is performed on the portion corresponding to the external lead. ing.

しかし、かような事前メッキフレーム、または二色事前メッキフレーム法で使われるメッキ法は、鉛が引き起こす環境汚染のような問題によって、多くの問題点を内包しており、現在世界各国は、電子製品での鉛の使用を規制する方向に諸般事項及び関連法律などを整備しており、業界でも、鉛の使用が多いソルダペーストと、Sn−Pbメッキとを代替するための研究を持続的に行っている。   However, the plating method used in the pre-plated frame or the two-color pre-plated frame method has many problems due to problems such as environmental pollution caused by lead. Various matters and related laws have been established in the direction to regulate the use of lead in products, and the industry has continued research to replace solder paste and Sn-Pb plating that often use lead. Is going.

かような問題点を解決するためのSn−Pbメッキの代替手段としては、純粋なSnメッキが最善の方案といえるであろうが、純粋なSnメッキの場合、ウィスカ(whisker)の発生が激しく、回路に短絡(short circuit)が発生する危険性が高まるという問題点がある。   As an alternative to Sn—Pb plating to solve such problems, pure Sn plating may be the best method. However, in the case of pure Sn plating, whisker generation is severe. There is a problem in that the risk of a short circuit occurring in the circuit increases.

このウィスカは、互いに異なる物質が接合されて相互に広がるときに、そのメッキ層表面で発生する突出した結晶である。かようなウィスカは、熱と湿気とに敏感である。かようなウィスカがリードフレームのメッキ層表面に形成されれば、リードフレーム間に電気的短絡が発生し、回路の不良を引き起こすという問題点がある。   The whisker is a protruding crystal that is generated on the surface of the plating layer when different substances are joined and spread to each other. Such whiskers are sensitive to heat and moisture. If such whiskers are formed on the surface of the plated layer of the lead frame, there is a problem that an electrical short circuit occurs between the lead frames, causing a circuit failure.

ウィスカ発生に対する対処方案として、Snメッキ後熱処理、Niメッキ、Snの粒子サイズ調節、Snと異種金属との合金などの方法が考慮されており、そのうち代表的な異種金属との合金としては、Sn−Bi(bismuth)合金が広く使われている。   As countermeasures against whisker generation, methods such as post-Sn plating heat treatment, Ni plating, Sn particle size adjustment, and an alloy of Sn and a dissimilar metal are considered. Of these, representative alloys of dissimilar metals include Sn. -Bi (bismuth) alloys are widely used.

しかし、Sn−Bi合金では、ウィスカの発生が満足できるレベルに抑制されず、析出電位において、SnとBiとの差が顕著である関係で、共析(eutectoid)が困難であるという問題点がある。また、溶液中のBi濃度が高ければ、Biが陰極面上に粒子状に析出し、ソルダリング後に脱落する危険性があって、メッキ層中のBiの含有量が高ければ、曲げるときに亀裂(crack)が発生するという問題点がある。   However, the Sn-Bi alloy does not suppress the occurrence of whiskers to a satisfactory level, and the eutectoid is difficult to eutectoid because the difference between Sn and Bi is significant at the precipitation potential. is there. Further, if the Bi concentration in the solution is high, there is a risk that Bi will precipitate in the form of particles on the cathode surface and fall off after soldering. If the Bi content in the plating layer is high, cracks will occur when bending. There is a problem that (crack) occurs.

本発明は、鉛を含有せずとも、メッキ層でのウィスカ発生を抑制できる無鉛Sn−Bメッキ液及びこれを使用したメッキ法を提供するところに目的がある。   An object of the present invention is to provide a lead-free Sn-B plating solution that can suppress whisker generation in a plating layer and a plating method using the same without containing lead.

前記のような目的を達成するために、本発明は、Pbイオンを含まず、Snイオン供給源である硫酸スズ(tin sulfate)と、Bイオン供給源であるジメチルアミンボラン(dimethyl amine borane)またはトリメチルアミンボラン(trimethyl amine borane)とを含むSn−Bメッキ液を提供する。   In order to achieve the above-described object, the present invention does not include Pb ions, tin sulfate as a tin ion source, and dimethyl amine borane as a B ion source. An Sn-B plating solution containing trimethylamine borane is provided.

前記Snイオン供給源は、15g/Lないし50g/L含まれうる。   The Sn ion source may include 15g / L to 50g / L.

前記Bイオン供給源は、0.1g/Lないし3.0g/L含まれうる。   The B ion source may be included in an amount of 0.1 g / L to 3.0 g / L.

前記Sn−Bメッキ液には、硫酸が30ml/Lないし70ml/L、クレゾールスルホン酸(cresolsulfonic acid)またはフェノールスルホン酸(phenolsulfonicacid)が10g/Lないし40g/L、β−ナフトール(β−naphtol)が0.1g/Lないし0.5g/L、ゼラチン(gelatin)が0.1g/Lないし3g/Lさらに含まれうる。   The Sn-B plating solution includes 30 ml / L to 70 ml / L of sulfuric acid, 10 g / L to 40 g / L of cresolsulfonic acid or phenolsulfonic acid, and β-naphthol. Of 0.1 g / L to 0.5 g / L and gelatin of 0.1 g / L to 3 g / L.

本発明はまた、前記のようなメッキ液を使用してメッキするSn−Bメッキ法を提供する。   The present invention also provides a Sn-B plating method for plating using the above plating solution.

メッキ時に、電流密度0.5ないし5A/dmとすることができる。 The current density can be 0.5 to 5 A / dm 2 during plating.

そして、常温でメッキできる。   And it can be plated at room temperature.

本発明によって、ウィスカが発生しないSn−B合金メッキ層を提供できることになる。   According to the present invention, it is possible to provide a Sn-B alloy plating layer in which whiskers are not generated.

すなわち、本発明によれば、Bは、原子のサイズがSnより相対的に小さいために、後述するように、Snの格子間サイト(interstitial site)に浸入して固溶される。従って、SnとBとを含むメッキ溶液が、Cuからなるリードフレームにメッキ層を形成することになれば、CuがSn層に拡散することを防止し、かような現象によって、メッキ層で発生するウィスカの生成が抑制される。これによって、リードフレーム間の電気的短絡が抑制され、SnとBとを含むメッキ領域を有したリードフレームが適用された電子素子の寿命が向上する。   That is, according to the present invention, since the size of atoms is relatively smaller than Sn, B enters and dissolves in an interstitial site of Sn as described later. Therefore, if the plating solution containing Sn and B forms a plating layer on the lead frame made of Cu, Cu is prevented from diffusing into the Sn layer, and this phenomenon occurs in the plating layer. The generation of whiskers is suppressed. As a result, an electrical short circuit between the lead frames is suppressed, and the life of the electronic device to which the lead frame having a plating region containing Sn and B is applied is improved.

また、前記組成のメッキ液は、表面が相対的にすべすべしたメッキ表面を生成でき、これは、相対的に表面が粗いメッキ表面より、外部衝撃に対する延性が良好であり、表面損傷のない変形が起き、外部リードフレームの外側面を保護するメッキ層提供に適している。   In addition, the plating solution having the above composition can generate a relatively smooth surface, which is more ductile to external impact than a relatively rough surface, and has no surface damage. It is suitable for providing a plating layer that wakes up and protects the outer surface of the external lead frame.

そして、本発明のメッキ液は、鉛(Pb)が含まれていないために、人体に無害であり、環境に優しい。   And since the plating solution of this invention does not contain lead (Pb), it is harmless to a human body and is environmentally friendly.

また、本発明のメッキ液を使用してメッキすることにより、比較的低い電流密度でもってメッキでき、メッキ液を別途に加熱する必要なしに常温でメッキでき、さらに生産性及び経済性が向上しうる。   In addition, by plating using the plating solution of the present invention, plating can be performed with a relatively low current density, and plating can be performed at room temperature without the need to heat the plating solution separately, further improving productivity and economy. sell.

(a)ないし(c)は、それぞれ、常温放置試験後の実験例1ないし実験例3の表面状態を示したSEM(scanning electron microscope)写真である。(A) thru | or (c) are the SEM (scanning electron microscope) photographs which respectively showed the surface state of Experimental example 1 thru | or Experimental example 3 after a normal temperature leaving test. (a)ないし(c)は、それぞれ、常温放置試験後の実験例4ないし実験例6の表面状態を示したSEM写真である。(A) thru | or (c) are the SEM photographs which respectively showed the surface state of Experimental example 4 thru | or Experimental example 6 after a normal temperature leaving test. (a)ないし(c)は、それぞれ、常温放置試験後の実験例7ないし実験例9の表面状態を示したSEM写真である。(A) thru | or (c) are the SEM photographs which respectively showed the surface state of Experimental example 7 thru | or Experimental example 9 after a normal temperature leaving test. (a)ないし(c)は、それぞれ、常温放置試験後の実験例10ないし実験例12の表面状態を示したSEM写真である。(A) thru | or (c) are the SEM photographs which respectively showed the surface state of Experimental example 10 thru | or Experimental example 12 after a normal temperature leaving test. (a)ないし(c)は、それぞれ、常温放置試験後の実験例13ないし実験例15の表面状態を示したSEM写真である。(A) thru | or (c) are the SEM photographs which respectively showed the surface state of Experimental example 13 thru | or Experimental example 15 after a normal temperature leaving test. (a)は、実験例16の表面をメッキ直後に撮影したSEM写真であり、(b)は、実験例16に対して常温放置試験を行った後で撮影したSEM写真であり、(c)は、常温放置試験後の実験例17の表面状態を示したSEM写真である。(A) is the SEM photograph which image | photographed the surface of Experimental example 16 immediately after plating, (b) is the SEM photograph image | photographed after performing the normal temperature leaving test with respect to Experimental example 16, (c). These are the SEM photographs which showed the surface state of Experimental example 17 after a normal temperature leaving test. (a)ないし(e)は、それぞれ、常温放置試験後の比較例1ないし比較例5の表面状態を示したSEM写真である。(A) thru | or (e) are the SEM photographs which respectively showed the surface state of the comparative example 1 thru | or the comparative example 5 after a normal temperature leaving test.

前述の通り、従来のSn系メッキ層は、表面のウィスカ(whisker)が問題になっている。ところで、かようなウィスカの発生原因は、今のところ明確に明らかにされているわけではない。   As described above, the conventional Sn-based plating layer has a problem of whisker on the surface. By the way, the cause of the occurrence of such whiskers has not been clearly clarified so far.

本発明者らは、Sn系メッキ溶液がCuからなるリードフレームにメッキ層を形成することになれば、このSnとCuとの接合界面で、SnよりCuの方が拡散速度が速いという点に注目した。   If the Sn-based plating solution is to form a plating layer on a lead frame made of Cu, the present inventors are that the diffusion rate of Cu is faster than Sn at the bonding interface between Sn and Cu. noticed.

すなわち、SnとCuとの接合界面では、Cuの拡散速度がSnの拡散速度よりさらに速いために、リードフレームのCu成分がメッキ層のSnの結晶粒界(grain boundary)側に拡散することになる。この後、メッキ層には、金属間化合物(intermetallic compound)がCuSnの組成で形成される。 That is, at the junction interface between Sn and Cu, the Cu diffusion rate is faster than the Sn diffusion rate, so that the Cu component of the lead frame diffuses to the Sn grain boundary side of the plating layer. Become. Thereafter, an intermetallic compound is formed on the plating layer with a composition of Cu 6 Sn 5 .

本発明者らは、この金属間化合物がメッキ層のSn内部に圧縮応力(compressive stress)を与え、Snがメッキ層表面にひげ形態の単結晶であるウィスカを成長させ、この圧縮応力を解消すると考えた。   When the intermetallic compound applies compressive stress inside the Sn of the plating layer, Sn grows whiskers that are whisker-shaped single crystals on the surface of the plating layer, and this compressive stress is eliminated. Thought.

従って、本発明者らは、Snの結晶構造内の格子間サイト(interstitial site)に、原子サイズの小さい金属を挿入し、金属間拡散を抑制することによって、Sn内部の圧縮応力発生を減少させ、これによって、ウィスカの発生自体を抑制しようとしたのである。このための前記原子サイズの小さい金属としては、ホウ素(B)を使用することが望ましい。   Therefore, the present inventors have reduced the generation of compressive stress inside Sn by inserting a metal having a small atomic size into an interstitial site in the crystal structure of Sn to suppress intermetallic diffusion. In this way, we tried to suppress the occurrence of whiskers themselves. For this purpose, boron (B) is preferably used as the metal having a small atomic size.

下記のような本発明の実施例によるメッキ液は、鉛(Pb)イオンを含まずに、Snイオン供給源である硫酸スズ(tin sulfate)と、Bイオン供給源であるジメチルアミンボラン(dimethyl amine borane)とを含む。   The plating solution according to the embodiment of the present invention described below does not contain lead (Pb) ions, but includes tin sulfate as a tin ion source and dimethyl amine borane as a B ion source. borane).

前記Snイオン供給源である硫酸スズ(SnSO)は、15g/Lないし50g/L含まれ、前記Bイオン供給源であるジメチルアミンボラン(DMAB:dimethyl amine borane)は、0.1g/Lないし3.0g/L含まれうる。前記Bイオン供給源として、トリメチルアミンボラン(TMAB:trimethyl amine borane)を使用することもできる。 The Sn ion source tin sulfate (SnSO 4 ) is contained in an amount of 15 g / L to 50 g / L, and the B ion source dimethyl amine borane (DMAB) is 0.1 g / L to 3.0 g / L may be included. Trimethylamine borane (TMAB) can also be used as the B ion supply source.

前記ホウ素(B)イオン供給源が0.1g/L以上含まれている場合、0.1g/L未満である場合に比べ、メッキ層でスズ(Sn)の格子間サイトにホウ素(B)が挿入される量が十分であるために、前述のようなスズと母材との金属間化合物の成長を抑制する効果が大きく、ウィスカを発生させないことになる。一方、前記ホウ素(B)イオン供給源が3.0g/Lを超える場合、スズ(Sn)の格子間サイトに入っていくホウ素が飽和されるために、コストが上昇して経済性に劣るだけではなく、この過剰のホウ素によって、メッキ層の表面が不均一になり、メッキ浴自体が不安になりうる。   When the boron (B) ion supply source is contained in an amount of 0.1 g / L or more, boron (B) is present at the interstitial site of tin (Sn) in the plating layer as compared with the case where the boron (B) ion supply source is less than 0.1 g / L. Since the amount to be inserted is sufficient, the effect of suppressing the growth of the intermetallic compound between tin and the base material as described above is great, and whiskers are not generated. On the other hand, when the boron (B) ion source exceeds 3.0 g / L, the boron entering the interstitial site of tin (Sn) is saturated, so the cost increases and the cost is inferior. Rather, the excess boron can cause the surface of the plating layer to become non-uniform and make the plating bath itself uneasy.

前記メッキ液には、電解質の伝導度を調節し、Sn2+などのイオン移動度を調節するため、硫酸(HSO)30ml/Lないし70ml/Lを添加する。硫酸が30ml/L未満である場合、メッキ液の電気伝導度が低下し、すなわちメッキ液の電気抵抗が大きくなり、メッキ速度が低下し、これによって生産性が低下し、被メッキ体に不均一にメッキされることがある。硫酸が70ml/Lを超える場合、陽極でスライム(slime)が多く発生してメッキ液が不安定になり、メッキ層に欠陥が生じうる。 To the plating solution, 30 ml / L to 70 ml / L of sulfuric acid (H 2 SO 4 ) is added in order to adjust the conductivity of the electrolyte and the ion mobility of Sn 2+ and the like. When sulfuric acid is less than 30 ml / L, the electric conductivity of the plating solution is lowered, that is, the electric resistance of the plating solution is increased, the plating speed is lowered, thereby reducing the productivity and unevenness in the object to be plated. May be plated. When sulfuric acid exceeds 70 ml / L, a large amount of slime is generated at the anode, the plating solution becomes unstable, and defects may occur in the plating layer.

そして、Snの酸化を遅延させるように、クレゾールスルホン酸(cresolsulfonic acid)またはフェノールスルホン酸(phenolsulfonic acid)10g/Lないし40g/Lを添加する。クレゾールスルホン酸またはフェノールスルホン酸が10g/L未満である場合、酸化が容易に起こることになり、40g/Lを超える場合、メッキ液が不安定になりうる。   Then, 10 g / L to 40 g / L of cresolsulfonic acid or phenolsulfonic acid is added so as to delay the oxidation of Sn. If the cresol sulfonic acid or the phenol sulfonic acid is less than 10 g / L, the oxidation will easily occur, and if it exceeds 40 g / L, the plating solution may become unstable.

また、メッキ液には、メッキ層表面の粗度などを調節できるように、β−ナフトール(β−naphtol)が0.1g/Lないし0.5g/L含まれうる。β−ナフトールが0.1g/L未満である場合、粗悪な結晶粒を生成することがあり、0.5g/Lを超える場合、表面が非常に粗くなることがある。   In addition, the plating solution may contain 0.1 g / L to 0.5 g / L of β-naphthol so that the roughness of the surface of the plating layer can be adjusted. When (beta) -naphthol is less than 0.1 g / L, a bad crystal grain may be produced | generated, and when it exceeds 0.5 g / L, the surface may become very rough.

そして、メッキ液には、ゼラチン(gelatin)0.1g/Lないし3g/Lがさらに含まれうる。ゼラチンが0.1g/L未満である場合、結晶粒が粗悪になり、3g/Lを超える場合、針状形態または突起が多く発生しうる。   The plating solution may further include 0.1 g / L to 3 g / L of gelatin. When gelatin is less than 0.1 g / L, the crystal grains become poor, and when it exceeds 3 g / L, many acicular forms or protrusions may be generated.

かようなメッキ液を使用し、リードフレームの主材料になりうる銅(Cu)板に電解メッキする。この銅板を陰極として使用し、陽極としては溶解可能なスズを使用する。メッキ時に、電流密度は、0.5A/dmないし5A/dmとするが、1A/dmないし3A/dmが望ましく、下記実施例では、1A/dmとした。メッキ時の電流密度が5A/dmを超えれば、メッキ表面が非常に粗くなり、結晶成長も不規則になされ、不安定なメッキが発生しうる。従って、メッキされた被膜の信頼性が低下しうる。メッキ時の電流密度が0.5A/dm未満である場合には、メッキ時間が長くなり過ぎ、生産性が低下しうる。 Using such a plating solution, electrolytic plating is performed on a copper (Cu) plate that can be the main material of the lead frame. This copper plate is used as the cathode, and soluble tin is used as the anode. At the time of plating, the current density is 0.5 A / dm 2 to 5 A / dm 2 , but 1 A / dm 2 to 3 A / dm 2 is desirable, and in the following examples, 1 A / dm 2 was used. If the current density during plating exceeds 5 A / dm 2 , the plating surface becomes very rough, crystal growth is irregular, and unstable plating may occur. Therefore, the reliability of the plated film can be reduced. When the current density at the time of plating is less than 0.5 A / dm 2 , the plating time becomes too long, and the productivity can be lowered.

メッキ液の温度は、常温(25±3℃)とした。メッキ液の温度を高くする場合、例えば、メッキ液を50±3℃の条件とする場合、添加剤などが分解されて正常なメッキがなされず、結果的に、ウィスカが発生しうる。   The temperature of the plating solution was normal temperature (25 ± 3 ° C.). When the temperature of the plating solution is increased, for example, when the plating solution is set to a condition of 50 ± 3 ° C., the additives and the like are decomposed and normal plating is not performed, and as a result, whiskers can occur.

以下、本発明の理解を助けるために、望ましい実施例を提示する。   Hereinafter, preferred embodiments will be presented to help understanding of the present invention.

<実施例1>
硫酸スズ(tin sulfate)15g/L、硫酸(HSO)30ml/L、クレゾールスルホン酸(cresolsulfonic acid)10g/L、β−ナフトール(β−naphtol)0.1g/L、ゼラチン(gelatin)0.1g/Lを含むメッキ液を製造した。
<Example 1>
Tin sulfate 15 g / L, sulfuric acid (H 2 SO 4 ) 30 ml / L, cresolsulfonic acid 10 g / L, β-naphthol 0.1 g / L, gelatin A plating solution containing 0.1 g / L was produced.

実験例1は、前記メッキ液にDMABを0.1g/L添加したものであり、実験例2は、前記メッキ液にDMABを0.5g/L添加したものであり、実験例3は、前記メッキ液にDMABを3g/L添加したものである。   Experimental Example 1 is obtained by adding 0.1 g / L of DMAB to the plating solution. Experimental Example 2 is obtained by adding 0.5 g / L of DMAB to the plating solution. This is a solution obtained by adding 3 g / L of DMAB to the plating solution.

かようなメッキ液を使用し、前述のメッキ条件でメッキした。すなわち、銅板を陰極として使用し、陽極としては溶解可能なスズを使用し、電流密度は1A/dmとし、常温とした。 Using such a plating solution, plating was performed under the above-described plating conditions. That is, a copper plate was used as the cathode, soluble tin was used as the anode, the current density was 1 A / dm 2, and room temperature.

このようにメッキされた実験例を常温で12ヵ月間放置した後、表面のウィスカ発生いかんを確認した。   The experimental example plated in this way was allowed to stand at room temperature for 12 months, and then the occurrence of whisker on the surface was confirmed.

図1(a)ないし(c)は、それぞれ、前記のような常温放置試験後の実験例1ないし実験例3の表面状態を示したSEM(scanning electron microscope)写真である。   FIGS. 1A to 1C are SEM (scanning electron microscope) photographs showing the surface states of Experimental Examples 1 to 3, respectively, after the room-temperature standing test as described above.

<実施例2>
硫酸スズ(tin sulfate)30g/L、硫酸(HSO)50ml/L、クレゾールスルホン酸(cresolsulfonic acid)20g/L、β−ナフトール(β−naphtol)0.3g/L、ゼラチン(gelatin)0.5g/Lを含むメッキ液を製造した。
<Example 2>
Tin sulfate 30 g / L, sulfuric acid (H 2 SO 4 ) 50 ml / L, cresolsulfonic acid 20 g / L, β-naphthol 0.3 g / L, gelatin A plating solution containing 0.5 g / L was produced.

実験例4は、前記メッキ液にDMABを0.1g/L添加したものであり、実験例5は、前記メッキ液にDMABを0.5g/L添加したものであり、実験例6は、前記メッキ液にDMABを3g/L添加したものである。   Experimental Example 4 is obtained by adding 0.1 g / L of DMAB to the plating solution. Experimental Example 5 is obtained by adding 0.5 g / L of DMAB to the plating solution. This is a solution obtained by adding 3 g / L of DMAB to the plating solution.

かようなメッキ液を使用し、前述の実施例1と同じメッキ条件でメッキした後、メッキされた実験例を常温で12ヵ月間放置した後、表面のウィスカ発生いかんを確認した。   Using such a plating solution, plating was performed under the same plating conditions as in Example 1, and then the plated experimental example was allowed to stand for 12 months at room temperature, and then the occurrence of whisker on the surface was confirmed.

図2(a)ないし(c)は、それぞれ、前記のような常温放置試験後の実験例4ないし実験例6の表面状態を示したSEM写真である。   FIGS. 2A to 2C are SEM photographs showing the surface states of Experimental Examples 4 to 6 after the room temperature standing test as described above.

<実施例3>
硫酸スズ(tin sulfate)50g/L、硫酸(HSO)70ml/L、クレゾールスルホン酸(cresolsulfonic acid)40g/L、β−ナフトール(β−naphtol)0.5g/L、ゼラチン(gelatin)1.0g/Lを含むメッキ液を製造した。
<Example 3>
Tin sulfate 50 g / L, sulfuric acid (H 2 SO 4 ) 70 ml / L, cresolsulfonic acid 40 g / L, β-naphthol 0.5 g / L, gelatin A plating solution containing 1.0 g / L was produced.

実験例7は、前記メッキ液にDMABを0.1g/L添加したものであり、実験例8は、前記メッキ液にDMABを0.5g/L添加したものであり、実験例9は、前記メッキ液にDMABを3g/L添加したものである。   Experimental Example 7 is obtained by adding 0.1 g / L of DMAB to the plating solution, Experimental Example 8 is obtained by adding 0.5 g / L of DMAB to the plating solution, This is a solution obtained by adding 3 g / L of DMAB to the plating solution.

かようなメッキ液を使用し、前述の実施例1と同じメッキ条件でメッキした後、メッキされた実験例を常温で12ヵ月間放置した後、表面のウィスカ発生いかんを確認した。   Using such a plating solution, plating was performed under the same plating conditions as in Example 1, and then the plated experimental example was allowed to stand for 12 months at room temperature, and then the occurrence of whisker on the surface was confirmed.

図3(a)ないし(c)は、それぞれ、前記のような常温放置試験後の実験例7ないし実験例9の表面状態を示したSEM写真である。   FIGS. 3A to 3C are SEM photographs showing the surface states of Experimental Examples 7 to 9 after the room temperature standing test as described above.

<実施例4>
硫酸スズ(tin sulfate)50g/L、硫酸(HSO)70ml/L、クレゾールスルホン酸(cresolsulfonic acid)40g/L、β−ナフトール(β−naphtol)0.5g/L、ゼラチン(gelatin)3.0g/Lを含むメッキ液を製造した。
<Example 4>
Tin sulfate 50 g / L, sulfuric acid (H 2 SO 4 ) 70 ml / L, cresolsulfonic acid 40 g / L, β-naphthol 0.5 g / L, gelatin A plating solution containing 3.0 g / L was produced.

実験例10は、前記メッキ液にDMABを0.1g/L添加したものであり、実験例11は、前記メッキ液にDMABを0.5g/L添加したものであり、実験例12は、前記メッキ液にDMABを3g/L添加したものである。   Experimental Example 10 is obtained by adding 0.1 g / L of DMAB to the plating solution. Experimental Example 11 is obtained by adding 0.5 g / L of DMAB to the plating solution. This is a solution obtained by adding 3 g / L of DMAB to the plating solution.

かようなメッキ液を使用し、前述の実施例1と同じメッキ条件でメッキした後、メッキされた実験例を常温で12ヵ月間放置した後、表面のウィスカ発生いかんを確認した。   Using such a plating solution, plating was performed under the same plating conditions as in Example 1, and then the plated experimental example was allowed to stand for 12 months at room temperature, and then the occurrence of whisker on the surface was confirmed.

図4(a)ないし(c)は、それぞれ、前記のような常温放置試験後の実験例10ないし実験例12の表面状態を示したSEM写真である。   4 (a) to 4 (c) are SEM photographs showing the surface states of Experimental Examples 10 to 12 after the room temperature standing test as described above.

<実施例5>
硫酸スズ(tin sulfate)30g/L、硫酸(HSO)50ml/L、クレゾールスルホン酸(cresolsulfonic acid)20g/L、β−ナフトール(β−naphtol)0.5g/L、ゼラチン(gelatin)3.0g/Lを含むメッキ液を製造した。
<Example 5>
Tin sulfate 30 g / L, sulfuric acid (H 2 SO 4 ) 50 ml / L, cresolsulfonic acid 20 g / L, β-naphthol 0.5 g / L, gelatin A plating solution containing 3.0 g / L was produced.

実験例13は、前記メッキ液にDMABを0.1g/L添加したものであり、実験例14は、前記メッキ液にDMABを0.5g/L添加したものであり、実験例15は、前記メッキ液にDMABを3g/L添加したものである。   Experimental Example 13 is obtained by adding DMAB to the plating solution at 0.1 g / L, Experimental Example 14 is obtained by adding DMAB at 0.5 g / L to the plating solution, This is a solution obtained by adding 3 g / L of DMAB to the plating solution.

かようなメッキ液を使用し、前述の実施例1と同じメッキ条件でメッキした後、メッキされた実験例を常温で12ヵ月間放置した後、表面のウィスカ発生いかんを確認した。   Using such a plating solution, plating was performed under the same plating conditions as in Example 1, and then the plated experimental example was allowed to stand for 12 months at room temperature, and then the occurrence of whisker on the surface was confirmed.

図5(a)ないし(c)は、それぞれ、前記のような常温放置試験後の実験例13ないし実験例15の表面状態を示したSEM写真である。   FIGS. 5A to 5C are SEM photographs showing the surface states of Experimental Examples 13 to 15 after the room temperature standing test as described above.

<実施例6>
硫酸スズ(tin sulfate)50g/L、硫酸(HSO)70ml/L、クレゾールスルホン酸(cresolsulfonic acid)40g/L、β−ナフトール(β−naphtol)0.5g/L、ゼラチン(gelatin)1.0g/Lを含むメッキ液を製造した。
<Example 6>
Tin sulfate 50 g / L, sulfuric acid (H 2 SO 4 ) 70 ml / L, cresolsulfonic acid 40 g / L, β-naphthol 0.5 g / L, gelatin A plating solution containing 1.0 g / L was produced.

実験例16は、前記メッキ液にDMABを30ppm添加したものであり、実験例17は、前記メッキ液にDMABを4g/L添加したものである。   In Experimental Example 16, 30 ppm of DMAB was added to the plating solution, and in Experimental Example 17, 4 g / L of DMAB was added to the plating solution.

かようなメッキ液を使用し、前述の実施例1と同じメッキ条件でメッキした後、メッキされた実験例を常温で12ヵ月間放置した後、表面のウィスカ発生いかんを確認した。   Using such a plating solution, plating was performed under the same plating conditions as in Example 1, and then the plated experimental example was allowed to stand for 12 months at room temperature, and then the occurrence of whisker on the surface was confirmed.

図6(a)は、実験例16の表面をメッキ直後に撮影したSEM写真であり、図6(b)は、実験例16に対して常温放置試験を行った後、撮影したSEM写真である。図6(c)は、常温放置試験後の実験例17の表面状態を示したSEM写真である。   6A is an SEM photograph taken immediately after plating the surface of Experimental Example 16, and FIG. 6B is an SEM photograph taken after a room temperature standing test on Experimental Example 16. FIG. . FIG.6 (c) is the SEM photograph which showed the surface state of Experimental example 17 after a normal temperature leaving test.

図1(a)ないし図5(c)から分かるように、本発明の実施例1ないし実施例5によるメッキ層表面には、長時間が経過した後にも、ウィスカの発生がなかった。   As can be seen from FIGS. 1 (a) to 5 (c), whiskers were not generated on the surface of the plating layers according to Examples 1 to 5 of the present invention even after a long time had passed.

図6(a)及び図(b)から分かるように、DMABの含有量がきわめて少ない場合には、製造直後には、ウィスカの発生がなかったが、長時間が経過した後には、ウィスカが発生したことを確認することができた。   As can be seen from FIG. 6 (a) and FIG. 6 (b), when the content of DMAB is very small, whisker was not generated immediately after production, but whisker was generated after a long time passed. I was able to confirm that.

図6(c)から分かるように、DMABの含有量が多い場合には、ウィスカの発生はないが、メッキ層の表面が不均一であって粗いということを確認することができた。   As can be seen from FIG. 6C, whisker was not generated when the content of DMAB was large, but it was confirmed that the surface of the plating layer was uneven and rough.

<比較例>
比較例1ないし比較例5は、それぞれ実施例1ないし実施例5で、DMABを除いた組成のメッキ液を使用したものである。
<Comparative example>
Comparative Examples 1 to 5 are the same as those in Examples 1 to 5, respectively, using a plating solution having a composition excluding DMAB.

かようなメッキ液を使用し、前述の実施例1と同じメッキ条件でメッキした後、メッキされた実験例を常温で12ヵ月間放置した後、表面のウィスカ発生いかんを確認した。   Using such a plating solution, plating was performed under the same plating conditions as in Example 1, and then the plated experimental example was allowed to stand for 12 months at room temperature, and then the occurrence of whisker on the surface was confirmed.

図7(a)ないし(e)は、それぞれ前記のような常温放置試験後の比較例1ないし比較例5の表面状態を示したSEM写真である。   FIGS. 7A to 7E are SEM photographs showing the surface states of Comparative Examples 1 to 5 after the room temperature standing test as described above.

図7(a)ないし(e)から分かるように、ホウ素(B)イオン供給源の含まれていないメッキ浴を使用してメッキする場合、表面にウィスカが発生することが分かる。   As can be seen from FIGS. 7A to 7E, when plating is performed using a plating bath that does not include a boron (B) ion supply source, it can be seen that whiskers are generated on the surface.

このように本発明によれば、鉛(Pb)が含まれておらず、同時にウィスカの発生を抑制できるメッキ層を提供できる。   Thus, according to the present invention, it is possible to provide a plating layer that does not contain lead (Pb) and can simultaneously suppress the generation of whiskers.

以上、本発明について望ましい実施例を挙げて詳細に説明したが、本発明は、前記実施例に限定されるものではなく、本発明の技術的思想の範囲内で、当分野で当業者によってさまざまな変形が可能であろう。   The present invention has been described in detail with reference to preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made by those skilled in the art within the scope of the technical idea of the present invention. Various modifications would be possible.

Claims (10)

Pbイオンを含まず、Snイオン供給源である硫酸スズと、Bイオン供給源であるジメチルアミンボランまたはトリメチルアミンボランとを含むSn−Bメッキ液。   A Sn-B plating solution that does not contain Pb ions and contains tin sulfate as a Sn ion source and dimethylamine borane or trimethylamine borane as a B ion source. 前記Snイオン供給源が、15g/Lないし50g/L含まれた請求項1に記載のSn−B合金メッキ液。   The Sn-B alloy plating solution according to claim 1, wherein the Sn ion supply source is contained in an amount of 15 g / L to 50 g / L. 前記Bイオン供給源が、0.1g/Lないし3.0g/L含まれた請求項1に記載のSn−Bメッキ液。   The Sn-B plating solution according to claim 1, wherein the B ion supply source is contained in an amount of 0.1 g / L to 3.0 g / L. 硫酸が30ml/Lないし70ml/Lさらに含まれた請求項1に記載のSn−Bメッキ液。   The Sn-B plating solution according to claim 1, further comprising 30 ml / L to 70 ml / L of sulfuric acid. クレゾールスルホン酸またはフェノールスルホン酸が10g/Lないし40g/Lさらに含まれた請求項1に記載のSn−Bメッキ液。   The Sn-B plating solution according to claim 1, further comprising 10 g / L to 40 g / L of cresol sulfonic acid or phenol sulfonic acid. β−ナフトールが0.1g/Lないし0.5g/Lさらに含まれた請求項1に記載のSn−Bメッキ液。   The Sn-B plating solution according to claim 1, further comprising β-naphthol in an amount of 0.1 g / L to 0.5 g / L. ゼラチンが0.1g/Lないし3g/Lさらに含まれた請求項1に記載のSn−Bメッキ液。   The Sn-B plating solution according to claim 1, further comprising 0.1 g / L to 3 g / L of gelatin. 鉛イオンを含まず、Snイオン供給源である硫酸スズと、Bイオン供給源であるジメチルアミンボランまたはトリメチルアミンボランとを含むSn−Bメッキ液を使用してメッキするSn−Bメッキ法。   An Sn-B plating method that uses an Sn-B plating solution that does not contain lead ions and contains tin sulfate as a Sn ion source and dimethylamine borane or trimethylamine borane as a B ion source. 電流密度0.5A/dmないし5A/dmでメッキする請求項8に記載のSn−Bメッキ法。 The Sn-B plating method according to claim 8, wherein plating is performed at a current density of 0.5 A / dm 2 to 5 A / dm 2 . 前記Sn−Bメッキ液において前記Snイオン供給源は、15g/Lないし50g/L含まれ、前記Bイオン供給源は、0.1g/Lないし3.0g/L含まれ、さらに前記Sn−Bメッキ液は、硫酸30ml/Lないし70ml/L、クレゾールスルホン酸またはフェノールスルホン酸10g/Lないし40g/L、β−ナフトール0.1g/Lないし0.5g/L、ゼラチン0.1g/Lないし3g/Lを含む請求項8または請求項9に記載のSn−Bメッキ法。   In the Sn-B plating solution, the Sn ion source includes 15 g / L to 50 g / L, the B ion source includes 0.1 g / L to 3.0 g / L, and the Sn-B The plating solution is sulfuric acid 30 ml / L to 70 ml / L, cresolsulfonic acid or phenolsulfonic acid 10 g / L to 40 g / L, β-naphthol 0.1 g / L to 0.5 g / L, gelatin 0.1 g / L to The Sn-B plating method according to claim 8 or 9 containing 3 g / L.
JP2009543955A 2006-12-29 2007-12-28 Sn-B plating solution and plating method using the same Expired - Fee Related JP5033197B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2006-0138526 2006-12-29
KR20060138526 2006-12-29
KR10-2007-0139768 2007-12-28
PCT/KR2007/006952 WO2008082192A1 (en) 2006-12-29 2007-12-28 Sn-b plating solution and plating method using it
KR1020070139768A KR101016415B1 (en) 2006-12-29 2007-12-28 Sn-B plating solution for electroplating and Sn-B electroplating method using it

Publications (2)

Publication Number Publication Date
JP2010514932A true JP2010514932A (en) 2010-05-06
JP5033197B2 JP5033197B2 (en) 2012-09-26

Family

ID=39815105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009543955A Expired - Fee Related JP5033197B2 (en) 2006-12-29 2007-12-28 Sn-B plating solution and plating method using the same

Country Status (7)

Country Link
US (1) US20100038255A1 (en)
EP (1) EP2126159A4 (en)
JP (1) JP5033197B2 (en)
KR (1) KR101016415B1 (en)
CN (1) CN101595248B (en)
TW (1) TWI386523B (en)
WO (1) WO2008082192A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005409B2 (en) 2011-04-14 2015-04-14 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus
US9017528B2 (en) 2011-04-14 2015-04-28 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus
US10072347B2 (en) * 2012-07-31 2018-09-11 The Boeing Company Systems and methods for tin antimony plating
US9303329B2 (en) 2013-11-11 2016-04-05 Tel Nexx, Inc. Electrochemical deposition apparatus with remote catholyte fluid management
CN105908227A (en) * 2016-06-03 2016-08-31 河海大学 Electrochemical preparation method for CMMA structure capable of improving corrosion resistance and abrasion resistance of Ni-B alloy
CN106011956A (en) * 2016-06-03 2016-10-12 河海大学 Electrochemical preparation method for CMMA structure capable of improving corrosion resistance of Ni-W alloy
CN106011955A (en) * 2016-06-03 2016-10-12 河海大学 Corrosion-resistant and wear-resistant Ni-W/Al2O3 CMMA protective layer for maritime work machinery, and preparation method thereof
CN105908228A (en) * 2016-06-03 2016-08-31 河海大学 Nickel alloy composition modulated multilayer alloy (CMMA) coating and preparation method thereof
CN105887148A (en) * 2016-06-03 2016-08-24 河海大学 Ni-B/SiC CMMA coating for marine equipment and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144482A (en) * 1998-09-11 2000-05-26 Nippon Mining & Metals Co Ltd Metallic material
JP2000169996A (en) * 1998-09-28 2000-06-20 Nippon Mining & Metals Co Ltd Metallic material
JP2000169997A (en) * 1998-09-28 2000-06-20 Nippon Mining & Metals Co Ltd Metallic material
JP2003129278A (en) * 2001-10-16 2003-05-08 Ishihara Chem Co Ltd Process for inhibiting tin whisker through pre-treatment

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB842826A (en) * 1957-11-15 1960-07-27 Du Pont Improvements in or relating to chemical plating
US3063850A (en) * 1959-09-11 1962-11-13 Metal Hydrides Inc Metal plating by chemical reduction with amine boranes
JPS529638A (en) * 1975-07-15 1977-01-25 Sumitomo Electric Industries Tinnelectroplating solution
US4955909A (en) * 1989-01-31 1990-09-11 Bioplasty, Inc. Textured silicone implant prosthesis
US5207709A (en) * 1991-11-13 1993-05-04 Picha George J Implant with textured surface
CN1094099A (en) * 1994-03-24 1994-10-26 天津大学 The tinned method of a kind of acidity
KR100223320B1 (en) 1996-03-06 1999-10-15 이계철 Sn-pb alloy plating manufacturing method for electric contact
GB9805214D0 (en) * 1998-03-11 1998-05-06 Univ Glasgow Cell adhesion
US6613451B1 (en) * 1998-09-11 2003-09-02 Nippon Mining & Metals Co., Ltd. Metallic material
JP4489232B2 (en) * 1999-06-14 2010-06-23 日鉱金属株式会社 Plating material for connectors
JP4698904B2 (en) * 2001-09-20 2011-06-08 株式会社大和化成研究所 Tin or tin-based alloy plating bath, tin salt and acid or complexing agent solution for building bath, maintenance or replenishment of the plating bath, and electric / electronic parts manufactured using the plating bath
US6860981B2 (en) * 2002-04-30 2005-03-01 Technic, Inc. Minimizing whisker growth in tin electrodeposits
KR100680650B1 (en) * 2002-11-29 2007-02-08 미츠이 마이닝 & 스멜팅 콤파니 리미티드 Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
JP2004204308A (en) * 2002-12-25 2004-07-22 Nec Semiconductors Kyushu Ltd Lead-free tin alloy plating method
JP2005002368A (en) * 2003-06-09 2005-01-06 Ishihara Chem Co Ltd Tin plating bath for preventing whisker
US7332193B2 (en) * 2004-10-18 2008-02-19 Enthone, Inc. Cobalt and nickel electroless plating in microelectronic devices
ES2354045T3 (en) * 2005-02-28 2011-03-09 Rohm And Haas Electronic Materials, Llc PROCEDURES WITH SOUND IMPROVED.
US20080275546A1 (en) * 2007-05-03 2008-11-06 Chameleon Scientific Corp Inhibitory cell adhesion surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144482A (en) * 1998-09-11 2000-05-26 Nippon Mining & Metals Co Ltd Metallic material
JP2000169996A (en) * 1998-09-28 2000-06-20 Nippon Mining & Metals Co Ltd Metallic material
JP2000169997A (en) * 1998-09-28 2000-06-20 Nippon Mining & Metals Co Ltd Metallic material
JP2003129278A (en) * 2001-10-16 2003-05-08 Ishihara Chem Co Ltd Process for inhibiting tin whisker through pre-treatment

Also Published As

Publication number Publication date
CN101595248A (en) 2009-12-02
KR20080063177A (en) 2008-07-03
TWI386523B (en) 2013-02-21
KR101016415B1 (en) 2011-02-21
EP2126159A1 (en) 2009-12-02
WO2008082192A1 (en) 2008-07-10
TW200928006A (en) 2009-07-01
EP2126159A4 (en) 2010-06-02
US20100038255A1 (en) 2010-02-18
JP5033197B2 (en) 2012-09-26
CN101595248B (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP5033197B2 (en) Sn-B plating solution and plating method using the same
US6646330B2 (en) Lead frame for semiconductor device, process for producing the same and semiconductor device using the same
US20130228907A1 (en) Semiconductor device and method of manufacturing the same
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
JP2012502462A (en) Lead frame and manufacturing method thereof
JP2006009039A (en) Tin based plating film in which growth of whisker is suppressed and forming method therefor
EP2270260A1 (en) Electronic component and method for manufacturing the same
US7215014B2 (en) Solderable metal finish for integrated circuit package leads and method for forming
JP2008166645A (en) Plating member, and its manufacturing method
US9520347B2 (en) Lead frame construct for lead-free solder connections
JPH10284667A (en) Material for electric electronic device component having superior corrosion resistance and oxidation resistance
KR20060030356A (en) Semiconductor lead frame, semiconductor package including the such, and fabrication method plating the such
TWI790062B (en) Plated structure with Ni plating film and lead frame including the plated structure
KR102579479B1 (en) Connecting Pin
KR102579478B1 (en) Metal pin for conductive connection
KR101372205B1 (en) Lead frame and method for manufacturing the same
TWI404185B (en) Metal frame for electronic part
JPH11251503A (en) Electronic part and manufacture therefor
KR20240033889A (en) Connecting Pin
KR20240033887A (en) Connecting method of pin
KR20240033886A (en) Transferring catridge for connecting pin
JP5056333B2 (en) Plating substrate with lead-free plating layer
JPH04174546A (en) Manufacture of semiconductor lead frame
JP2002368175A (en) Method of manufacturing electronic component
JPH10247716A (en) Manufacturing method of lead frame for semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Ref document number: 5033197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees