JP2010508437A - Process for producing flat steel products from silicon alloyed multiphase steels - Google Patents

Process for producing flat steel products from silicon alloyed multiphase steels Download PDF

Info

Publication number
JP2010508437A
JP2010508437A JP2009533824A JP2009533824A JP2010508437A JP 2010508437 A JP2010508437 A JP 2010508437A JP 2009533824 A JP2009533824 A JP 2009533824A JP 2009533824 A JP2009533824 A JP 2009533824A JP 2010508437 A JP2010508437 A JP 2010508437A
Authority
JP
Japan
Prior art keywords
hot
rolled strip
strip
rolled
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009533824A
Other languages
Japanese (ja)
Other versions
JP5350255B2 (en
JP2010508437A5 (en
Inventor
ハンマー,ブリギッテ
ヘラー,トーマス
ヴィルヘルム シュミッツ,ヨハン
ヴァンス,ヨッヘン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel AG filed Critical ThyssenKrupp Steel AG
Publication of JP2010508437A publication Critical patent/JP2010508437A/en
Publication of JP2010508437A5 publication Critical patent/JP2010508437A5/ja
Application granted granted Critical
Publication of JP5350255B2 publication Critical patent/JP5350255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • C21D8/0415Rapid solidification; Thin strip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

The method for the production of flat steel products useful for automotive industry, comprises casting a steel into a cast strip having a thickness of 1-4 mm, hot-rolling the cast strip in-line into a hot-rolled strip having a thickness of greater than 1.5 mm in a continuous process at a final hot-rolling temperature at 850-1000[deg] C, and coiling the hot-rolled strip at a coiling temperature of 450-700[deg] C to obtain a hot-rolled strip, which has a minimum tensile strength R m of 880 MPa and a minimum breaking elongation A 8 0 of 5%. The steel forms a complex phase structure. The method for the production of flat steel products useful for automotive industry, comprises casting a steel into a cast strip having a thickness of 1-4 mm, hot-rolling the cast strip in-line into a hot-rolled strip having a thickness of greater than 1.5 mm in a continuous process at a final hot-rolling temperature at 850-1000[deg] C, and coiling the hot-rolled strip at a coiling temperature of 450-700[deg] C to obtain a hot-rolled strip, which has a minimum tensile strength R m of 880 MPa and a minimum breaking elongation A 8 0 of 5%. The steel forms a complex phase structure. The shaping degree is greater than 20%. The width of the hot-rolled strip is more than 1.600 mm. The hot-rolled strip is cold-rolled with a thickness of 0.5-1.4 mm at 750-805[deg] C to obtain a cold-rolled strip, which has a minimum tensile strength of more than 800 MPa and a minimum breaking elongation A 5 0 of 5%. The coiling temperature of the cold-rolled strip is 810-850[deg] C. The cold- or hot-rolled strip is provided with a metallic coating, which is galvanizing. The coiling temperature is 550-700[deg] C, when a minimum breaking elongation A 8 0 of the obtained hot-rolled strip is 10%. The hot-rolled temperature is 900-1000[deg] C and the coiling temperature is 450-550[deg] C, when a minimum tensile strength R m of the obtained hot-rolled strip is 1000 MPa.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、高張力のマルテンサイト鋼(hochfeste martensitischen Staehlen)から、フラット鋼生成物(Stahl-Flachprodukte;例えば、ストリップ又はシートメタルブランク)を製造する方法に関する。前記MS鋼は、多相鋼の群に属する。これらは、通常、ミクロ組織の相のタイプ、量、及び配置(Anordnung)によりその特性が決定される鋼に関する。従って、ミクロ組織中には、少なくとも2つの相(例えば、フェライト、マルテンサイト、ベイナイト)が存在する。その結果、これらは、通常の鋼と比較すると、優れた強度/成形性の組合せを有する。   The present invention relates to a process for producing flat steel products (Stahl-Flachprodukte; for example strips or sheet metal blanks) from high-tensile martensitic steel. The MS steel belongs to the group of multiphase steels. These usually relate to steels whose properties are determined by the type, amount, and arrangement of microstructure phases. Therefore, there are at least two phases (eg, ferrite, martensite, bainite) in the microstructure. As a result, they have an excellent strength / formability combination when compared to ordinary steel.

前記製造手段では、特に、包晶凝固する組成の鋳造で問題が生じる。これらの鋼の品質(Stahlguete)の場合には、連続鋳造間で縦方向の亀裂が生じるリスクがある。前記縦方向の亀裂の出現は、鋳造されたスラブ又は薄スラブから製造される熱間圧延ストリップの品質を低下させ、使用不可能にすることができる。このリスクを防止するために、大規模な対策(例えば、増加した火炎処理)が必要であり、それによって、前記鋼品質を不経済的なものへ転換させてしまう。高いAl含有量を有する鋳造鋼の場合には、粉末化フラックス(Giesspulver)での相互作用によって望ましくない効果も生じ、その結果、前記鋼製のフラット生成物の品質もネガティブな影響を受ける。   In the manufacturing means, there is a problem particularly in casting with a composition that peritectic solidifies. In the case of the quality of these steels (Stahlguete) there is a risk of longitudinal cracks occurring between continuous castings. The appearance of the longitudinal cracks can degrade the quality of hot rolled strips made from cast or thin slabs and render them unusable. In order to prevent this risk, large-scale measures (for example, increased flame treatment) are required, thereby converting the steel quality to uneconomical. In the case of cast steel with a high Al content, undesirable effects are also produced by the interaction with the powdered flux (Giesspulver), with the result that the quality of the steel flat product is also negatively affected.

多相鋼は、これらの特殊な特徴のために、特に自動車製造にとって極めて興味深い。なぜなら、それらの強度が高いために、一方で、より小さい材料厚の使用が可能になると同時に、車両重量の削減を可能にし、そして、他方で、衝突の際の車体の安全性(衝突態様)を改良するからである。従って、ボディ全体の少なくとも均等な強度を有する多相鋼によって、前記多相鋼製の部品のシートメタル厚を、従来の鋼製のボディよりも減少させることができる。   Multiphase steels are particularly interesting for automobile manufacturing because of these special features. Because of their high strength, on the one hand, it is possible to use a smaller material thickness, while at the same time enabling a reduction in vehicle weight, and on the other hand, the safety of the vehicle body in the event of a collision (collision mode) It is because it improves. Accordingly, the sheet metal thickness of the multi-phase steel part can be reduced as compared with the conventional steel body by the multi-phase steel having at least equal strength of the entire body.

通常、多相鋼は、コンバータースチールミル(Konverterstahlwerk)中で溶融され、そして、連続鋳造機でスラブ又は薄スラブへ鋳造され、次に、熱間圧延ストリップへ熱間圧延されて、巻き取られる。この場合には、特定のミクロ組織フラクションを調節する目的で、熱間圧延後での熱間圧延ストリップの選択的に制御された冷却によって、熱間圧延ストリップの機械的特性を変化させることができる。熱間圧延ストリップを冷間圧延ストリップへ冷間圧延して、より薄いシートメタル厚を得ることもできる(EP0910675B1、EP0966547B1、EP1169486B1、EP1319725B1、EP1398390A1)。   Usually, the multiphase steel is melted in a converter steel mill (Konverterstahlwerk) and cast into a slab or thin slab in a continuous caster and then hot rolled into a hot rolled strip and wound up. In this case, the mechanical properties of the hot-rolled strip can be changed by selectively controlled cooling of the hot-rolled strip after hot rolling in order to adjust the specific microstructure fraction. . It is also possible to cold roll a hot rolled strip into a cold rolled strip to obtain a thinner sheet metal thickness (EP0910675B1, EP0966547B1, EP1169486B1, EP13197725B1, EP1398390A1).

800MPaを超える引張強度を有する高張力多相鋼からフラット生成物を製造することについての更なる問題は、前記鋼を圧延する際に、高い圧延力を付与する必要があることである。前記要件のために、通常、一般に入手可能な現在の製造機では、前記タイプの鋼から製造される高張力熱間圧延ストリップが、自動車産業により現在要求される要件を十分に満たさない幅及び厚さでしか、製造できないということが結果として生じる。特に、従来の装置では、十分な幅を有する厚さの小さいストリップを非常に良好に製造することができない。更に、従来の方法によって、800MPaを超える強度を有する冷間圧延ストリップを多相鋼から製造することが実際に困難であることが分かっている。   A further problem with producing flat products from high-strength multiphase steels having a tensile strength in excess of 800 MPa is that when rolling the steel, it is necessary to impart a high rolling force. Because of the above requirements, current production machines that are generally available generally have a width and thickness that does not sufficiently meet the requirements currently required by the automotive industry for high-strength hot-rolled strips made from said type of steel. Only then can it be produced. In particular, conventional devices cannot produce very thin strips with a sufficient width. Furthermore, it has proved practically difficult to produce cold-rolled strips with a strength exceeding 800 MPa from multiphase steel by conventional methods.

多相鋼から鋼ストリップを製造するための代替的な方法が、欧州特許EP1072689B1(DE60009611T2)中に提案されている。この公知方法によると、最初に、(以下、重量%で表示)C:0.05及び0.25%;Mn、Cu及びNi:合計で0.5〜3%;Si及びAl:合計で0.1〜4%;P、Sn、As及びSb:合計で0.1%まで;Ti、Nb、V、Zr及び希土類金属元素(REM):合計で0.3%未満;並びに、Cr、Mo及びV:それぞれ1%未満;残余鉄及び不可避の不純物を含む鋼メルトを、厚さ0.5〜10mm(特に、1〜5mm)を有する鋳造ストリップへ鋳造する。続いて、25%〜70%の間の範囲にある変形度(Umformgrad)で、鋳造ストリップを熱間圧延ストリップへ1回又は複数回のパスでインラインに熱間圧延する。この場合、最終熱間圧延温度は、Ar温度を超える。熱間圧延の終了時点で、得られる熱間圧延ストリップは、次に、2つの工程で冷却される。前記冷却の最初の工程では、温度が400〜550℃の間の範囲に達するまで、冷却速度5〜100℃/秒が維持される。次に、前記温度で、熱間圧延ストリップを滞留時間保持する。前記滞留時間は、5%を超える残余オーステナイト含有量を有する鋼がベイナイト変態するために必要とされる時間である。この場合、パーライトの形成も避けられるべきである。所望のミクロ組織を得るのに十分な滞留時間後で、変態プロセスが第2冷却工程の始まりによって中断される。前記第2冷却工程では、熱間圧延ストリップを400℃未満の温度にして、350℃未満の巻き取り温度でコイルに巻き取る。 An alternative method for producing steel strips from multiphase steel has been proposed in European patent EP 1072689B1 (DE 60009611T2). According to this known method, first (hereinafter expressed in weight percent) C: 0.05 and 0.25%; Mn, Cu and Ni: 0.5 to 3% in total; Si and Al: 0 in total 0.1 to 4%; P, Sn, As and Sb: up to 0.1% in total; Ti, Nb, V, Zr and rare earth metal elements (REM): less than 0.3% in total; and Cr, Mo And V: each less than 1%; a steel melt containing residual iron and inevitable impurities is cast into cast strips having a thickness of 0.5 to 10 mm (especially 1 to 5 mm). Subsequently, the cast strip is hot rolled inline in one or more passes to the hot rolled strip with a degree of deformation (Umformgrad) in the range between 25% and 70%. In this case, the final hot rolling temperature exceeds the Ar 3 temperature. At the end of hot rolling, the resulting hot rolled strip is then cooled in two steps. In the first step of cooling, a cooling rate of 5-100 ° C./sec is maintained until the temperature reaches a range between 400-550 ° C. The hot rolled strip is then held at that temperature. The residence time is the time required for a steel having a residual austenite content of more than 5% to undergo bainite transformation. In this case, the formation of pearlite should also be avoided. After a residence time sufficient to obtain the desired microstructure, the transformation process is interrupted by the beginning of the second cooling step. In the second cooling step, the hot-rolled strip is brought to a temperature of less than 400 ° C. and wound around the coil at a winding temperature of less than 350 ° C.

EP1072689B1に記載される方法では、TRIP特性(TRIP=変態誘起塑性)を有し、そして、ベイナイトミクロ組織フラクションを有する熱間圧延ストリップを、多相鋼から単純な方法で製造することができる。前記鋼は、良好な成形性を有する比較的高い強度を有する。しかしながら、多くの用途(特に、自動車製造分野における)にとって、強度が不十分である。   In the method described in EP 1072689 B1, hot-rolled strips having TRIP properties (TRIP = transformation induced plasticity) and having a bainite microstructure fraction can be produced in a simple manner from multiphase steel. The steel has a relatively high strength with good formability. However, for many applications (especially in the field of automobile production) the strength is insufficient.

従って、本発明の目的は、高張力フラット鋼生成物を、少ない労力で、幾何学的寸法の広い範囲で、製造することを可能にする方法を提供することからなる。   The object of the invention therefore consists in providing a method which makes it possible to produce high-tensile flat steel products with a small amount of effort and in a wide range of geometric dimensions.

前述の先行技術に基づいて、本発明によると、前記目的は、
以下の組成(重量%で表示)
C: 0.10 〜 0.15 %
Mn: 0.80 〜 1.20 %
P: ≦ 0.030 %
S: ≦ 0.004 %
Si: 1.10 〜 1.30 %
Al: 0.0 〜 0.05 %
N: ≦ 0.0060 %
Cr: 0.30 〜 0.60 %
Ti: 0.080 〜 0.120 %
Nb: 0.040 〜 0.060 %
Mo: 0.150 〜 0.250 %
残余鉄及び不可避の不純物
を有し、そして、多相ミクロ組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
850〜1000℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、450〜700℃の範囲にある巻き取り温度で巻き取り;そして、
5%の最小破断伸びA80での、880MPaの最小引張強さRを有する熱間圧延ストリップを得る;
フラット鋼生成物の製造方法によって達成される。
According to the present invention, based on the aforementioned prior art, the object is
The following composition (expressed in% by weight)
C: 0.10 to 0.15%
Mn: 0.80 to 1.20%
P: ≦ 0.030%
S: ≦ 0.004%
Si: 1.10 to 1.30%
Al: 0.0 to 0.05%
N: ≦ 0.0060%
Cr: 0.30 to 0.60%
Ti: 0.080 to 0.120%
Nb: 0.040 to 0.060%
Mo: 0.150 to 0.250%
Casting steel having residual iron and inevitable impurities and forming a multiphase microstructure into cast strips having a thickness of 1 to 4 mm;
Final hot rolling temperature in the range of 850 to 1000 ° C., hot deformation having a thickness in the range of 0.5 to 3.2 mm in-line during continuous rolling of the cast strip at a degree of deformation greater than 20% Hot rolled into a rolling strip;
Winding the hot rolled strip at a winding temperature in the range of 450-700 ° C; and
Obtaining a hot-rolled strip having a minimum tensile strength R m of 880 MPa with a minimum elongation at break A 80 of 5%;
This is achieved by a method for producing a flat steel product.

本発明は、高張力で、包晶凝固する多相鋼を熱間圧延ストリップへ加工するためのストリップ鋳造の可能性を利用する。この場合、鋳造ストリップそれ自体が小さい厚さを有しているので、自動車製造の分野で特に必要とされる厚さの小さいフラット生成物を製造するために、前記ストリップの熱間圧延の過程で比較的低い変形度のみを維持することが必要である。従って、本発明の方法によって、相当する鋳造ストリップの初めの厚さを特定することによって、熱間圧延ストリップを問題なく製造することが可能である。前記熱間圧延ストリップは、最適な特性分布での最大厚さ1.5mmを有し、そして、前記熱間圧延ストリップから、例えば、車両の支持体構造用の部品を製造することができる。   The present invention takes advantage of the possibility of strip casting to process high tension, peritectic solidified multiphase steel into hot rolled strips. In this case, the cast strip itself has a small thickness, so in the process of hot rolling of the strip to produce a thin product with a small thickness that is particularly required in the field of automobile production. It is necessary to maintain only a relatively low degree of deformation. Thus, by the method of the invention, it is possible to produce hot rolled strips without problems by specifying the initial thickness of the corresponding cast strip. The hot-rolled strip has a maximum thickness of 1.5 mm with an optimum distribution of properties, and parts from, for example, vehicle support structures can be produced from the hot-rolled strip.

熱間圧延間での変形度が低いために、このために必要とされる圧延力は、従来方法による熱間圧延スラブ又は薄スラブで必要とされる力よりも低く、その結果、幅の大きい熱間圧延ストリップ(従来方法で鋳造される同じ強度及び厚さを有する熱間圧延ストリップの幅よりも実質的に大きい)を、本発明の方法で問題なく製造することができる。従って、本発明によって、前記組成を有し、本発明により製造されるマルテンサイト鋼からなり、そして、1200mmを超える(特に、1600mmを超える)幅を有する高張力熱間圧延ストリップを確実に製造することができる。   Due to the low degree of deformation during hot rolling, the rolling force required for this is lower than that required for hot rolling slabs or thin slabs according to conventional methods, and as a result is wider. Hot rolled strips (substantially larger than the width of hot rolled strips having the same strength and thickness cast by conventional methods) can be produced without problems with the method of the present invention. Therefore, according to the present invention, a high-tensile hot-rolled strip having the above composition and made of martensitic steel manufactured according to the present invention and having a width exceeding 1200 mm (especially exceeding 1600 mm) is reliably produced. be able to.

前記利点とは別に、本発明方法に特有のそれらの特徴及びプロセス変数(例えば、熱間圧延最終温度、冷却、巻取り温度)のために、本発明により構成されるタイプの高張力鋼を加工するためのストリップ鋳造工程の本発明の適用は、本発明により処理されるタイプの重要な鋼組成の確実な鋳造の可能性(さらに、それらの凝固態様について)を提供する。従って、ストリップの鋳造に特有な、鋳造ストリップの非常に素早い凝固によって、従来の製造と比較すると、中央溶解(Mittenseigerungen)の出現のリスクを実質的に減少させることができ、その結果、本発明により製造される熱間圧延ストリップは、その断面及びその長さにわたって特に均一な特徴分布及びミクロ組織を有する。   Apart from the advantages mentioned above, high strength steels of the type constructed according to the invention are processed because of their characteristics and process variables specific to the method of the invention (for example, hot rolling final temperature, cooling, winding temperature). The application of the present invention of the strip casting process to provide the possibility of reliable casting of important steel compositions of the type treated according to the present invention (and their solidification aspects). Thus, the very rapid solidification of the cast strip, characteristic of the casting of the strip, can substantially reduce the risk of the appearance of a central melt (Mittenseigerungen) compared to conventional production, and as a result, the present invention The hot rolled strip produced has a particularly uniform feature distribution and microstructure across its cross section and its length.

本発明の方法の更なる特別な利点は、例えば、EP1072689B1に記載されるように、冷却中断の必要の結果としての、熱間圧延後と巻き取り後との間に維持されるべき、熱間圧延ストリップの特別な冷却サイクルを追加することなく、本発明により製造される熱間圧延ストリップが、少なくとも880MPaの高い強度を有することである。本発明の方法を実施する場合には、熱間圧延を比較的厳密に限定される温度枠で終了すること、そして、巻取りを正確に規定された温度範囲で実施すること、だけが保証される必要がある。単一工程の冷却がその合間に実施される。   A further special advantage of the method according to the invention is that the hot to be maintained between hot rolling and after winding as a result of the need for a cooling interruption, as described for example in EP 1072689 B1. Without adding a special cooling cycle of the rolled strip, the hot rolled strip produced according to the present invention has a high strength of at least 880 MPa. When carrying out the method of the invention, it is only guaranteed that the hot rolling is terminated in a relatively strictly limited temperature window and that the winding is carried out in a precisely defined temperature range. It is necessary to Single step cooling is performed in between.

本発明の方法の更なる利点は、本発明により製造されるストリップの機械的特性の範囲における拡張を、冷却及び圧延条件を変化させることによって、単一の鋼分析に基づいて、達成することができることである。   A further advantage of the method of the invention is that an extension in the range of mechanical properties of the strip produced according to the invention can be achieved on the basis of a single steel analysis by changing the cooling and rolling conditions. It can be done.

本発明により製造される熱間圧延ストリップは、次の冷間圧延ストリップへの加工に特に適当である。従って、本発明の或る実際の実施態様では、熱間圧延ストリップが提供され、前記熱間圧延ストリップは、自動車車体製造用に必要とされる、厚さ0.5〜1.4mm(特に、0.7mm〜1.3mmまで)を有する冷間圧延ストリップへ冷間圧延される。冷間圧延の間で生じる凝固を排除するために、冷間圧延ストリップを焼鈍温度750〜850℃で焼鈍することができる。この場合に、本発明の方法により製造される熱間圧延ストリップから製造される冷間圧延ストリップでは、最小引張強度800MPaを確実に保証することができる。同時に、冷間圧延ストリップの最小破断伸びA50は、5%である。焼鈍温度を750℃〜805℃の範囲に限定することによって、冷間圧延ストリップを少なくとも1000MPaの引張強度で製造することができる。これらの高強度にもかかわらず、この方法で焼鈍されるストリップでは、5%の最小破断伸びA50を保証することができる。最小引張強度800MPaを保証することができ、そして、改良された破断伸びを有する冷間圧延ストリップを、その一方で、焼鈍温度を810℃〜850℃の間の範囲へ限定することによって確実に製造することができる。 The hot-rolled strip produced according to the invention is particularly suitable for processing into the next cold-rolled strip. Accordingly, in one actual embodiment of the present invention, a hot rolled strip is provided, the hot rolled strip having a thickness of 0.5 to 1.4 mm (especially required for automobile body manufacturing) Cold rolled to a cold rolled strip having a thickness of 0.7 mm to 1.3 mm. To eliminate the solidification that occurs during cold rolling, the cold rolled strip can be annealed at an annealing temperature of 750-850 ° C. In this case, the minimum tensile strength of 800 MPa can be reliably ensured in the cold rolled strip manufactured from the hot rolled strip manufactured by the method of the present invention. At the same time, the minimum breaking elongation A 50 of the cold rolled strip is 5%. By limiting the annealing temperature to a range of 750 ° C. to 805 ° C., a cold-rolled strip can be produced with a tensile strength of at least 1000 MPa. Despite their high strength, strips annealed in this way can guarantee a minimum break elongation A 50 of 5%. Minimum tensile strength of 800 MPa can be assured and cold rolled strips with improved elongation at break while reliably manufacturing by limiting the annealing temperature to a range between 810 ° C. and 850 ° C. can do.

本発明の更なる有利な実施態様によると、冷間圧延ストリップは、それ自体が公知である方法により、金属コーティング(例えば、これを亜鉛コーティングであることができる)を提供される。   According to a further advantageous embodiment of the invention, the cold-rolled strip is provided with a metal coating (for example it can be a zinc coating) by methods known per se.

本発明により製造される熱間圧延ストリップの強度値及び伸び値を、最終熱間圧延温度及び巻き取り温度の相当する調整によって、大きな範囲にわたって調節することができる。例えば、得られた熱間圧延ストリップの10%の最小破断伸びA80と、880MPaの最小引張強度Rとを有する熱間圧延ストリップを製造すべき場合には、これを、850〜1000℃の最終熱間圧延温度、及び、550〜700℃の巻き取り温度により達成することができる。 The strength and elongation values of the hot-rolled strip produced according to the invention can be adjusted over a large range by corresponding adjustments in the final hot-rolling temperature and the winding temperature. For example, if a hot rolled strip having a minimum elongation at break A 80 of 10% of the resulting hot rolled strip and a minimum tensile strength R m of 880 MPa is to be produced, this is reduced to 850-1000 ° C. It can be achieved by a final hot rolling temperature and a winding temperature of 550 to 700 ° C.

更に、5%の最小破断伸びA80での少なくとも1000MPaの、保証された高い引張強さRを有する熱間圧延ストリップを製造すべき場合には、このために、900〜1000℃の範囲にある最終熱間圧延温度、及び、450〜550℃の範囲にある巻き取り温度が選択される。 Furthermore, if a hot-rolled strip with a guaranteed high tensile strength R m of at least 1000 MPa with a minimum breaking elongation A 80 of 5% is to be produced, this is in the range of 900-1000 ° C. A certain final hot rolling temperature and a winding temperature in the range of 450-550 ° C are selected.

本発明を、模範的な実施態様に基づいて、以下に詳しく説明する。   The invention is described in detail below on the basis of exemplary embodiments.

本発明の効果を実証するために実施される試験において、表1に示される組成を有する本発明により構成される鋼を溶融し、双ロール鋳造機(Zweiwalzengiess-Maschine)で、1.6mm厚の鋳造ストリップへ鋳造した。

Figure 2010508437
In a test carried out to demonstrate the effectiveness of the present invention, a steel constructed according to the present invention having the composition shown in Table 1 was melted and 1.6 mm thick in a twin roll caster (Zweiwalzengiess-Maschine). Cast into a casting strip.
Figure 2010508437

ストリップを鋳造した後に、鋳造されたストリップを、最終熱間圧延温度WETで、インラインに、1.25mmの厚さを有する熱間圧延ストリップへ直接熱間圧延した。続いて、それぞれの場合において得られた熱間圧延ストリップを、冷却工程中で巻き取り温度HTまで冷却して巻き取った。巻き取り後に、得られる熱間圧延ストリップは、それらの製造の間でそれぞれ維持される最終熱間温度WET及び巻き取り温度HTと共に表2に示される、引張強さR及び破断伸びA80を有していた。

Figure 2010508437
After casting the strip, the cast strip was hot rolled directly inline to a hot rolled strip having a thickness of 1.25 mm at the final hot rolling temperature WET. Subsequently, the hot-rolled strip obtained in each case was cooled to the winding temperature HT during the cooling process and wound up. After winding, the resulting hot rolled strips have the tensile strength R m and elongation at break A 80 shown in Table 2, together with the final hot temperature WET and the winding temperature HT maintained during their manufacture, respectively. Had.
Figure 2010508437

この方法で製造される熱間圧延ストリップを、巻き取り及びピックリング後で、0.7mm厚の冷間圧延ストリップへ冷間圧延した。   The hot rolled strip produced in this way was cold rolled into a 0.7 mm thick cold rolled strip after winding and pickling.

前記冷間圧延ストリップAを、840℃の温度で焼鈍して、ストリップを再結晶化した。12.7%の破断伸びA50での、冷間圧延ストリップAの引張強度Rは、851MPaであった。 The cold rolled strip A was annealed at a temperature of 840 ° C. to recrystallize the strip. In breaking elongation A 50 12.7% tensile strength R m of the cold-rolled strip A was 851MPa.

追加の冷間圧延ストリップBを、再結晶化のために、800℃の温度で焼鈍した。前記冷間圧延ストリップBは、8.6%の破断伸びA50と、1003MPaの引張強度Rとを有していた。 An additional cold rolled strip B was annealed at a temperature of 800 ° C. for recrystallization. The cold-rolled strip B had an elongation at break A 50 of 8.6% and a tensile strength R m of 1003 MPa.

Claims (14)

フラット鋼生成物の製造方法であって、
以下の組成(重量%で表示)
C: 0.10 〜 0.15 %
Mn: 0.80 〜 1.20 %
P: ≦ 0.030 %
S: ≦ 0.004 %
Si: 1.10 〜 1.30 %
Al: 0.0 〜 0.05 %
N: ≦ 0.0060 %
Cr: 0.30 〜 0.60 %
Ti: 0.080 〜 0.120 %
Nb: 0.040 〜 0.060 %
Mo: 0.150 〜 0.250 %
残余鉄及び不可避の不純物
を有し、そして、多相ミクロ組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
850〜1000℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、450〜700℃の範囲にある巻き取り温度で巻き取り;そして、
5%の最小破断伸びA80での、880MPaの最小引張強さRを有する熱間圧延ストリップを得る;
前記製造方法。
A method for producing a flat steel product comprising:
The following composition (expressed in% by weight)
C: 0.10 to 0.15%
Mn: 0.80 to 1.20%
P: ≦ 0.030%
S: ≦ 0.004%
Si: 1.10 to 1.30%
Al: 0.0 to 0.05%
N: ≦ 0.0060%
Cr: 0.30 to 0.60%
Ti: 0.080 to 0.120%
Nb: 0.040 to 0.060%
Mo: 0.150 to 0.250%
Casting steel having residual iron and inevitable impurities and forming a multiphase microstructure into cast strips having a thickness of 1 to 4 mm;
Final hot rolling temperature in the range of 850 to 1000 ° C., hot deformation having a thickness in the range of 0.5 to 3.2 mm in-line during continuous rolling of the cast strip at a degree of deformation greater than 20% Hot rolled into a rolling strip;
Winding the hot rolled strip at a winding temperature in the range of 450-700 ° C; and
Obtaining a hot-rolled strip having a minimum tensile strength R m of 880 MPa with a minimum elongation at break A 80 of 5%;
The manufacturing method.
熱間圧延ストリップの幅が、1200mmを超える(特に、1600mmを超える)ことを特徴とする、請求項1に記載の方法。   The method according to claim 1, characterized in that the width of the hot-rolled strip is greater than 1200 mm (especially greater than 1600 mm). 熱間圧延ストリップの厚さが、多くとも1.5mmであることを特徴とする、請求項1又は2に記載の方法。   The method according to claim 1 or 2, characterized in that the thickness of the hot-rolled strip is at most 1.5 mm. 熱間圧延ストリップを、厚さ0.5〜1.4mmを有する冷間圧延ストリップへ冷間圧延することを特徴とする、請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, characterized in that the hot-rolled strip is cold-rolled into a cold-rolled strip having a thickness of 0.5 to 1.4 mm. 冷間圧延ストリップを、焼鈍温度750〜805℃で焼鈍することを特徴とする、請求項4に記載の方法。   The method according to claim 4, characterized in that the cold-rolled strip is annealed at an annealing temperature of 750-805 ° C. 冷間圧延ストリップの最小引張強さが、1000MPaであることを特徴とする、請求項4又は5に記載の方法。   The method according to claim 4 or 5, characterized in that the minimum tensile strength of the cold-rolled strip is 1000 MPa. 冷間圧延ストリップが、5%の最小破断伸びA50を有することを特徴とする、請求項4〜6のいずれか一項に記載の方法。 Cold rolling strip, and having a minimum elongation at break A 50 of 5% A method according to any one of claims 4-6. 冷間圧延ストリップを、焼鈍温度810〜850℃で焼鈍することを特徴とする、請求項4に記載の方法。   The method according to claim 4, wherein the cold-rolled strip is annealed at an annealing temperature of 810 to 850 ° C. 冷間圧延ストリップの引張強さが、800MPaより多きいことを特徴とする、請求項4又は8に記載の方法。   The method according to claim 4 or 8, characterized in that the cold-rolled strip has a tensile strength of more than 800 MPa. 冷間圧延ストリップが、5%の最小破断伸びA50を有することを特徴とする、請求項4、8、又は9のいずれか一項に記載の方法。 Cold rolling the strip, characterized in that it has a minimum breaking elongation A 50 of 5% A method according to any one of claims 4, 8, or 9. 熱間圧延又は冷間圧延ストリップに、金属コーティングを施すことを特徴とする、請求項1〜10のいずれか一項に記載の方法。   11. A method according to any one of the preceding claims, characterized in that a hot-rolled or cold-rolled strip is provided with a metal coating. 金属コーティングが亜鉛コーティングであることを特徴とする、請求項11に記載の方法。   12. A method according to claim 11, characterized in that the metal coating is a zinc coating. 得られた熱間圧延ストリップの10%の最小破断伸びA80の場合に、巻き取り温度が550〜700℃であることを特徴とする、請求項1〜12のいずれか一項に記載の方法。 The method according to any one of claims 1 to 12, characterized in that the winding temperature is 550 to 700 ° C in the case of a minimum breaking elongation A 80 of 10% of the obtained hot-rolled strip. . 得られた熱間圧延ストリップの1000MPaの最小引張強さRの場合に、最終熱間圧延温度が900〜1000℃であり、そして、巻き取り温度が450〜550℃であることを特徴とする、請求項1〜12のいずれか一項に記載の方法。 If the resulting minimum tensile strength R m of 1000MPa of hot rolled strip, the final hot-rolling temperature is 900 to 1000 ° C., and the winding temperature is characterized by a 450 to 550 ° C. The method according to any one of claims 1 to 12.
JP2009533824A 2006-10-30 2007-10-24 Process for producing flat steel products from silicon alloyed multiphase steels Expired - Fee Related JP5350255B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06123141A EP1918405B1 (en) 2006-10-30 2006-10-30 Process for manufacturing steel flat products from silicon alloyed multi phase steel
EP06123141.1 2006-10-30
PCT/EP2007/061392 WO2008052921A1 (en) 2006-10-30 2007-10-24 Method for manufacturing flat steel products from a multiphase steel alloyed with silicon

Publications (3)

Publication Number Publication Date
JP2010508437A true JP2010508437A (en) 2010-03-18
JP2010508437A5 JP2010508437A5 (en) 2010-07-22
JP5350255B2 JP5350255B2 (en) 2013-11-27

Family

ID=37781961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009533824A Expired - Fee Related JP5350255B2 (en) 2006-10-30 2007-10-24 Process for producing flat steel products from silicon alloyed multiphase steels

Country Status (10)

Country Link
US (1) US20100065161A1 (en)
EP (1) EP1918405B1 (en)
JP (1) JP5350255B2 (en)
KR (1) KR101461585B1 (en)
CN (1) CN101528968B (en)
AT (1) ATE432375T1 (en)
DE (1) DE502006003833D1 (en)
ES (1) ES2325964T3 (en)
PL (1) PL1918405T3 (en)
WO (1) WO2008052921A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071416B2 (en) * 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
EP2209926B1 (en) * 2007-10-10 2019-08-07 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
US20110277886A1 (en) 2010-02-20 2011-11-17 Nucor Corporation Nitriding of niobium steel and product made thereby
EP2439290B1 (en) 2010-10-05 2013-11-27 ThyssenKrupp Steel Europe AG Multiphase steel, cold rolled flat product produced from this multiphase steel and method for producing same
AT512399B1 (en) 2012-09-10 2013-08-15 Siemens Vai Metals Tech Gmbh Method for producing a microalloyed tubular steel in a cast-rolled composite plant and microalloyed tubular steel
JP6778943B2 (en) 2014-12-19 2020-11-04 ニューコア・コーポレーション Hot-rolled lightweight martensite steel sheet and its manufacturing method
IT201700010994A1 (en) * 2017-02-01 2018-08-01 Nova Ferr S R L Cutting blade for a lawn mower.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073040A (en) * 1999-07-30 2001-03-21 Usinor Production of thin strip-form trip steel and thin strip obtained thereby
JP2003510186A (en) * 1999-09-24 2003-03-18 ユジノール Carbon steel strip, in particular a method for producing a steel strip for packaging, and the steel strip thus produced
EP1396550A1 (en) * 2002-08-28 2004-03-10 ThyssenKrupp Stahl AG Method for manufacturing hot strip
EP1398390A1 (en) * 2002-09-11 2004-03-17 ThyssenKrupp Stahl AG Steel with a very fine ferritic and martensitic microstructure having a high tensile strength

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
ES2230613T3 (en) * 1996-07-12 2005-05-01 Thyssenkrupp Stahl Ag HOT LAMINATION STEEL BAND AND METHOD FOR MANUFACTURING.
DE19710125A1 (en) * 1997-03-13 1998-09-17 Krupp Ag Hoesch Krupp Process for the production of a steel strip with high strength and good formability
TW426742B (en) * 1997-03-17 2001-03-21 Nippon Steel Corp Dual-phase type high strength steel sheets having high impact energy absorption properties and a method of producing the same
AUPQ779900A0 (en) * 2000-05-26 2000-06-22 Bhp Steel (Jla) Pty Limited Hot rolling thin strip
CN1269986C (en) * 2000-10-19 2006-08-16 杰富意钢铁株式会社 Zinc-plated steel sheet and method for preparation thereof, and method for manufacturing formed article by press working
JP3927384B2 (en) * 2001-02-23 2007-06-06 新日本製鐵株式会社 Thin steel sheet for automobiles with excellent notch fatigue strength and method for producing the same
DE10128544C2 (en) * 2001-06-13 2003-06-05 Thyssenkrupp Stahl Ag High-strength, cold-workable sheet steel, process for its production and use of such a sheet
US6878920B2 (en) * 2002-06-28 2005-04-12 Intel Corporation Optical receiver circuit, method, and system
JP4299560B2 (en) * 2003-03-20 2009-07-22 日新製鋼株式会社 Method for producing high-strength galvannealed steel sheet with excellent workability
JP4317384B2 (en) * 2003-04-28 2009-08-19 新日本製鐵株式会社 High-strength galvanized steel sheet with excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its manufacturing method
FR2855184B1 (en) * 2003-05-19 2006-05-19 Usinor COLD LAMINATED, ALUMINATED, HIGH STRENGTH, DUAL PHASE STEEL FOR TELEVISION ANTI-IMPLOSION BELT, AND METHOD FOR MANUFACTURING THE SAME
US20070144633A1 (en) * 2004-03-31 2007-06-28 Taro Kizu High-stiffness high-strength thin steel sheet and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073040A (en) * 1999-07-30 2001-03-21 Usinor Production of thin strip-form trip steel and thin strip obtained thereby
JP2003510186A (en) * 1999-09-24 2003-03-18 ユジノール Carbon steel strip, in particular a method for producing a steel strip for packaging, and the steel strip thus produced
EP1396550A1 (en) * 2002-08-28 2004-03-10 ThyssenKrupp Stahl AG Method for manufacturing hot strip
EP1398390A1 (en) * 2002-09-11 2004-03-17 ThyssenKrupp Stahl AG Steel with a very fine ferritic and martensitic microstructure having a high tensile strength

Also Published As

Publication number Publication date
DE502006003833D1 (en) 2009-07-09
JP5350255B2 (en) 2013-11-27
ATE432375T1 (en) 2009-06-15
ES2325964T3 (en) 2009-09-25
WO2008052921A1 (en) 2008-05-08
PL1918405T3 (en) 2009-10-30
CN101528968B (en) 2013-03-06
EP1918405A1 (en) 2008-05-07
CN101528968A (en) 2009-09-09
US20100065161A1 (en) 2010-03-18
KR20090090303A (en) 2009-08-25
EP1918405B1 (en) 2009-05-27
KR101461585B1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5350253B2 (en) Method for producing flat steel products from boron microalloyed multiphase steels
JP5232793B2 (en) Method for producing a flat steel product from steel forming a composite phase microstructure
JP5350252B2 (en) Process for producing flat steel products from steel forming a martensitic microstructure
JP6992070B2 (en) A tempered coated steel sheet with very good formability and a method for manufacturing this steel sheet.
RU2554265C2 (en) Method of production of hot-rolled flat rolled steel
AU2006274901B2 (en) Method for producing a grain-oriented electrical steel strip
AU2006274900B2 (en) Method for producing a grain-oriented electrical steel strip
US20090010793A1 (en) Method For Producing High Strength Steel Strips or Sheets With Twip Properties, Method For Producing a Component and High-Strength Steel Strip or Sheet
JP5350255B2 (en) Process for producing flat steel products from silicon alloyed multiphase steels
KR20160039304A (en) Method of producing a hot-rolled twip-steel and a twip-steel product produced thereby
JP5350254B2 (en) Process for producing flat steel products from aluminum alloyed multiphase steels
KR20070085757A (en) High-strength steel strip or sheet exhibiting twip properties and method for producing said strip by direct strip casting
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JPH04365814A (en) Production of cold rolled high strength steel sheet excellent in baking hardenability

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5350255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees