JPH04365814A - Production of cold rolled high strength steel sheet excellent in baking hardenability - Google Patents

Production of cold rolled high strength steel sheet excellent in baking hardenability

Info

Publication number
JPH04365814A
JPH04365814A JP13930491A JP13930491A JPH04365814A JP H04365814 A JPH04365814 A JP H04365814A JP 13930491 A JP13930491 A JP 13930491A JP 13930491 A JP13930491 A JP 13930491A JP H04365814 A JPH04365814 A JP H04365814A
Authority
JP
Japan
Prior art keywords
cold
strength
steel
steel sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13930491A
Other languages
Japanese (ja)
Inventor
Yaichiro Mizuyama
水山 弥一郎
Giichi Matsumura
義一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13930491A priority Critical patent/JPH04365814A/en
Publication of JPH04365814A publication Critical patent/JPH04365814A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a cold rolled high strength steel sheet excellent in baking hardenability by successively subjecting a steel, having a specific composition where respective contents of Ti, Nb, Mo, and Cr are specified, to hot rolling, coiling, and continuous annealing after cold rolling under respectively specified conditions. CONSTITUTION:The steel is prepared by adding 0.01-0.20%, in total, of Ti and/or Nb to a steel having a composition consisting of, by weight, 0.05-0.25% C, <=0.8% Si, 0.50-3.0% Mn, <=0.1% P, <=0.020% S, 0.01-0.1% Al, <=0.01% N, and the balance Fe with inevitable impurities and further adding 0.01-3.0% Mo and 0.01-3.0% Cr to the above steel. This steel is hot-rolled at a temp. not lower than the Ar3 transformation point, coiled at >=500 deg.C, cold-rolled, and then continuously annealed at a temp. not lower than the recrystallization temp. at about 5-5000 deg.C/sec heating rate. By this method, the cold rolled high strength steel sheet increased in tensile strength as well as yield strength due to baking hardening and excellent in baking hardenability can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は焼付硬化性に優れた高強
度冷延鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing high-strength cold-rolled steel sheets with excellent bake hardenability.

【0002】0002

【従来の技術】高強度冷延鋼板の製造に関しては、従来
より特開昭58−22327号公報記載の如く水冷によ
る方法あるいは箱焼鈍のように冷却速度の遅い場合は合
金元素添加量を増やして強度を高める方法が用いられて
いる。水冷による方法では冷却速度があまりに速いため
に冷却過程において鋼板中に蓄積される歪量が多く、優
れた曲げ加工をはじめ加工特性を得ることができず、ま
た冷却速度がきわめて遅い箱焼鈍の場合には、高い引張
強さを得るためには多量の合金元素を添加する必要があ
り、溶接性を損なうとともに経済的に高価なものとなり
、しかも冷延前の鋼板は硬質で冷間圧延機の能力から板
厚の薄い鋼板の製造は困難視され、従来からの製造方法
では曲げ性をはじめ加工特性を満足する高い引張強さを
有する高強度薄鋼板を製造することはできなかった。
[Prior Art] Conventionally, high-strength cold-rolled steel sheets have been produced by water cooling as described in Japanese Patent Application Laid-Open No. 58-22327, or by increasing the amount of alloying elements added when the cooling rate is slow as in box annealing. Methods are used to increase strength. In the water cooling method, the cooling rate is too fast, so a large amount of strain accumulates in the steel plate during the cooling process, making it impossible to obtain excellent bending and other processing properties.Also, in the case of box annealing, where the cooling rate is extremely slow, In order to obtain high tensile strength, it is necessary to add a large amount of alloying elements, which impairs weldability and becomes economically expensive.In addition, the steel sheet before cold rolling is hard and difficult to use in a cold rolling mill. It is considered difficult to manufacture thin steel sheets due to the manufacturing capacity, and conventional manufacturing methods have not been able to manufacture high-strength thin steel sheets with high tensile strength that satisfies bendability and other processing characteristics.

【0003】一方、冷延鋼板の焼付硬化性を向上させる
方法としては、例えば特開昭55−141526号公報
、特開昭55−141555号公報記載の如くNb添加
鋼において、鋼中のC、N、Al含有量に応じてNbを
添加して、at.%でNb/(固溶C+固溶N)をある
範囲内に制限することにより、鋼板中の固溶C、固溶N
を調整し、さらに焼鈍後の冷却速度を制御する方法が開
示されている。
On the other hand, as a method for improving the bake hardenability of cold-rolled steel sheets, for example, as described in JP-A-55-141526 and JP-A-55-141555, in Nb-added steel, C, Nb is added according to the N and Al contents, and at. By limiting Nb/(solid solute C + solid solute N) within a certain range, the solid solute C and solid solute N in the steel sheet can be reduced.
A method for adjusting the cooling rate after annealing and further controlling the cooling rate after annealing is disclosed.

【0004】また、特公昭61−45689号公報記載
の如くTiとNbの複合添加によって焼付硬化性に優れ
た鋼板とすることが開示されている。しかしながら、こ
のような方法においても、未だ工業規模では満足すべき
結果が得られ難く、また焼付硬化量が少なくなっている
。しかも、高強度で焼付硬化性を有する冷延鋼板の製造
方法は開示されていない。
Furthermore, as described in Japanese Patent Publication No. 61-45689, it has been disclosed that a steel sheet having excellent bake hardenability can be obtained by adding Ti and Nb in combination. However, even with such a method, it is still difficult to obtain satisfactory results on an industrial scale, and the amount of bake hardening is still small. Moreover, there is no disclosure of a method for producing a cold-rolled steel sheet that has high strength and bake hardenability.

【0005】このように、高強度冷延鋼板の焼付硬化性
の向上が強く要求されている。
[0005] Thus, there is a strong demand for improving the bake hardenability of high-strength cold-rolled steel sheets.

【0006】[0006]

【発明の目的】本発明はこのような要求を有利に満足す
るためなされたものである。
OBJECTS OF THE INVENTION The present invention has been made to advantageously satisfy these needs.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、冷延鋼板を製造するに際して、重量%にて、C:
0.05〜0.25%、Si:0.8%以下、Mn:0
.50〜3.0%、P:0.1%以下、S:0.020
%以下、Al:0.01〜0.1%、N:0.01%以
下を含み、残部がFeおよび不可避的不純物からなる鋼
に、Ti、Nbの1種あるいは2種を合計量で0.01
〜0.20%添加し、さらにMo:0.001〜3.0
%、Cr:0.01〜3.0%を添加した鋼をAr3 
変態点以上で熱延した後、500℃以上の温度で巻き取
り、しかる後、冷間圧延後、再結晶温度以上の温度で連
続焼鈍を行うことを特徴とする焼付硬化による降伏強度
および引張強度の上昇する焼付硬化性に優れた高強度冷
延鋼板の製造方法にある。
[Means for Solving the Problems] The gist of the present invention is that when producing a cold rolled steel sheet, C:
0.05-0.25%, Si: 0.8% or less, Mn: 0
.. 50-3.0%, P: 0.1% or less, S: 0.020
% or less, Al: 0.01 to 0.1%, N: 0.01% or less, and the balance is Fe and unavoidable impurities, and the total amount of one or both of Ti and Nb is 0. .01
~0.20% added, further Mo: 0.001~3.0
%, Cr: 0.01~3.0% steel added with Ar3
Yield strength and tensile strength by bake hardening characterized by hot rolling at a temperature higher than the transformation point, then winding at a temperature higher than 500°C, followed by cold rolling and continuous annealing at a temperature higher than the recrystallization temperature. The present invention provides a method for producing a high-strength cold-rolled steel sheet with excellent bake hardenability.

【0008】本発明の対象とする冷延鋼板は、めっき等
を施さない、いわゆる冷延鋼板、亜鉛等をめっきしため
っき鋼板等であり、鋼の製造方法としては、転炉、電気
炉、平炉等いずれの方法でもよく、スラブとしては鋳型
による鋳造後分塊したスラブ、連続鋳造でスラブとした
もの等、その製造方法は問わない。本発明者らは、焼付
硬化性に優れた高強度冷延鋼板の曲げ性をはじめ加工性
を向上させるために、種々の研究を重ねた結果、重量%
にて、C:0.05〜0.25%、Si:0.8%以下
、Mn:0.50〜3.0%、P:0.1%以下、S:
0.020%以下、Al:0.01〜0.1%、N:0
.01%以下を含み、残部がFeおよび不可避的不純物
からなる鋼に、Ti、Nbの1種あるいは2種を合計量
で0.01〜0.20%添加し、さらにMo:0.00
1〜3.0%、Cr:0.01〜3.0%を添加した鋼
をAr3 変態点以上で熱延した後、500℃以上の温
度で巻き取り、しかる後、冷間圧延後、再結晶温度以上
の温度で連続焼鈍を行うことによって、曲げ性をはじめ
加工性に優れ、しかも焼付硬化による降伏強度および引
張強度の上昇する焼付硬化性に優れた高強度冷延鋼板と
することを見出した。
[0008] The cold-rolled steel sheets to which the present invention is applied include so-called cold-rolled steel sheets that are not subjected to plating, etc., and galvanized steel sheets that are coated with zinc or the like, and methods for producing steel include converter furnaces, electric furnaces, and open hearth furnaces. Any method such as the above may be used, and the method of manufacturing the slab does not matter, such as a slab formed by casting with a mold and then bloomed, or a slab formed by continuous casting. The present inventors have conducted various studies in order to improve the bendability and workability of high-strength cold-rolled steel sheets with excellent bake hardenability.
In, C: 0.05 to 0.25%, Si: 0.8% or less, Mn: 0.50 to 3.0%, P: 0.1% or less, S:
0.020% or less, Al: 0.01-0.1%, N: 0
.. 0.01% or less, with the remainder consisting of Fe and unavoidable impurities, one or both of Ti and Nb are added in a total amount of 0.01 to 0.20%, and further Mo: 0.00
Cr: 0.01-3.0% and Cr: 0.01-3.0% are hot-rolled at a temperature higher than the Ar3 transformation point, then coiled at a temperature of 500°C or higher, and then cold-rolled and re-rolled. We have discovered that continuous annealing at temperatures above the crystallization temperature can produce high-strength cold-rolled steel sheets with excellent bendability and workability, as well as excellent bake hardenability, which increases yield strength and tensile strength through bake hardening. Ta.

【0009】従来の上記高強度冷延鋼板においては、曲
げ性をはじめ加工性に劣るものとなったり、焼付硬化性
を有しないものとなったり、焼付硬化性を有しても、そ
の量が少なく、しかも時効性を損なうもので、不安定で
あった。本発明の鋼の成分を限定した理由は以下のとお
りである。まず、C:0.05〜0.25%とし、その
下限を0.05%としたのは、それ未満では、Cが鋼の
強化元素であり、必要とする強度を確保することができ
ないためであり、また焼付硬化による降伏強度および引
張強度の上昇する焼付硬化性が向上しないためである。 その上限を0.25%としたのは、それを超えると強度
が高くなり、加工性を損ない、しかもTi、Nbの1種
あるいは2種の元素やCr、Moを添加する量が多くな
り、析出物による強度上昇が避けられず、加工性が劣る
とともに経済的にも不利になるためである。またCの添
加量が増加するとスポット溶接等の溶接性の観点から、
形成されるナゲットの強度が弱くなり、補強部材として
使用されるとき、高強度冷延鋼板の意義がなくなるため
である。
[0009] The conventional high-strength cold-rolled steel sheets described above have poor bendability and workability, have no bake hardenability, or even if they do have bake hardenability, the amount is low. Moreover, it was unstable because it impairs the statute of limitations. The reason for limiting the components of the steel of the present invention is as follows. First, C: 0.05 to 0.25%, and the lower limit was set to 0.05% because if it is less than that, C is a strengthening element for steel, and the required strength cannot be achieved. This is also because bake hardenability, which increases yield strength and tensile strength due to bake hardening, does not improve. The reason why we set the upper limit to 0.25% is because if it exceeds it, the strength will increase and the workability will be impaired, and moreover, the amount of addition of one or two elements of Ti and Nb, Cr, and Mo will increase. This is because an increase in strength due to precipitates is unavoidable, resulting in poor workability and being economically disadvantageous. In addition, when the amount of C added increases, from the viewpoint of weldability such as spot welding,
This is because the strength of the formed nugget becomes weaker, and the high-strength cold-rolled steel sheet becomes meaningless when used as a reinforcing member.

【0010】Si:0.8%以下としたのは、それを超
えるとSiが鋼の強化元素であり、強度が高くなり、加
工性を損なうためであり、亜鉛めっき等を行うときには
、亜鉛が付着しにくく密着性を損なうためである。 Mn:0.50〜3.0%とし、その下限を0.50%
としたのは、それ未満では、Mnが鋼の強化元素であり
、必要とする強度を確保することができないためであり
、またMnがSを固定して、熱間脆性を防止する元素で
あり、熱間加工を可能にするために必要なためである。 その上限を3.0%としたのは、それを超えると強度が
高くなり、加工性を損なうためである。
[0010]Si: The reason for setting it to 0.8% or less is because Si is a strengthening element for steel, increasing its strength and impairing workability.When performing zinc plating, etc., zinc This is because it is difficult to adhere and impairs adhesion. Mn: 0.50-3.0%, the lower limit is 0.50%
This is because if it is less than that, Mn is a strengthening element for steel and the required strength cannot be secured, and Mn is an element that fixes S and prevents hot embrittlement. This is because it is necessary to enable hot working. The reason why the upper limit is set to 3.0% is that if it exceeds the upper limit, the strength will increase and workability will be impaired.

【0011】P:0.1%以下としたのは、それを超え
て添加することは、Pが少量でも鋼の強化元素であり、
強度が高くなり、加工性を損なうためであり、しかもP
は結晶粒界に濃化して、粒界脆化をおこしやすい元素で
あり、それを超えて添加することは加工性を損なうため
である。 S:0.020%以下としたのは、本来鋼中に存在する
ことが無意味な元素であり、それを超えて添加すると、
Mn等の硫化物形成元素が少ないと熱間圧延時に赤熱脆
性を起こし、表面で割れる、いわゆる熱間脆性を起こす
ことがあるためである。
[0011] P: The reason for setting it below 0.1% is that even a small amount of P is an element that strengthens the steel.
This is because the strength increases and the workability is impaired, and moreover, P
is an element that tends to concentrate at grain boundaries and cause grain boundary embrittlement, and adding more than this will impair workability. S: 0.020% or less is an element that has no meaning in originally existing in steel, and if added in excess of this,
This is because if the content of sulfide-forming elements such as Mn is low, red brittleness may occur during hot rolling, which may cause cracking on the surface, so-called hot brittleness.

【0012】Al:0.01〜0.1%として、その下
限を0.01%としたのは、それ未満ではNをAlNと
して析出させ、Nによる時効性を改善することが困難に
なるためである。また、その上限を0.1%としたのは
、それを超えて添加しても時効性の向上は飽和し、しか
も強度が高くなり、加工性を損なうためである。 N:0.01%以下としたのは、それを超えて添加すれ
ばAlの添加量を多くしないと時効性を確保できず、し
かも強度が高くなり、加工性を損なうためである。
[0012] Al: 0.01 to 0.1%, and the lower limit was set to 0.01% because if it is less than that, N will precipitate as AlN, making it difficult to improve the aging property due to N. It is. Moreover, the reason why the upper limit is set to 0.1% is that even if it is added in excess of this, the improvement in aging properties will be saturated, and the strength will also increase, impairing workability. The reason why N: is set to 0.01% or less is that if it is added in excess of this amount, aging properties cannot be ensured unless the amount of Al added is increased, and furthermore, the strength increases and workability is impaired.

【0013】Ti、Nbの1種あるいは2種の合計量が
0.01〜0.20%として、Ti、Nbの1種あるい
は2種としたのは、Tiのみ添加することによって加工
性がよく、Nbのみ添加することによって焼付硬化性が
よく、2種を複合添加することによって双方の欠点を補
うことから、より有効なためである。その下限を0.0
1%としたのはそれ未満ではC、N等の固溶元素を固定
して、時効性を確保することが不可能となるためである
。また、その上限を0.20%としたのはそれを超えて
添加しても、時効性は飽和し、しかも析出物による強度
上昇があり、加工性の劣化を招くためである。
[0013] The total amount of one or both of Ti and Nb is 0.01 to 0.20%, and the processability is improved by adding only Ti. This is because adding only Nb gives good bake hardenability, and adding the two in combination compensates for the drawbacks of both, making it more effective. The lower limit is 0.0
The reason why it is set at 1% is that if it is less than that, it becomes impossible to fix solid solution elements such as C and N and ensure aging properties. Moreover, the reason why the upper limit is set to 0.20% is that even if added in excess of this, the aging property will be saturated, and furthermore, the strength will increase due to precipitates, leading to deterioration of workability.

【0014】Mo:0.001〜3.0%とし、その下
限を0.001%としたのは、それ未満では焼付硬化性
を高くする効果がないためである。また、上限を3.0
%としたのはそれを超えるとMoが鋼の強化元素であり
、強度が高くなりすぎ、加工性を損なうためであり、焼
付硬化性も飽和してしまうために、高価で経済的になり
たたなくなるためである。MoはFe3 Cの核生成を
抑制し、パーライト変態を抑制する元素であることが知
られているが、焼付硬化性を高くする理由は明らかでは
ないが、添加したMoが固溶して、多くの歪場を作るた
めに、加工歪の少ない部位での塗装焼付時の170℃程
度の低温でも、残存している固溶炭素、固溶窒素との析
出物を容易に生成するか、クラスター状となり、可動転
位を固着して硬化すると考えられ、Moを添加した効果
が表れると考えられる。
[0014] Mo: 0.001 to 3.0%, and the lower limit is set to 0.001% because if it is less than that, there is no effect of increasing bake hardenability. Also, set the upper limit to 3.0
% because Mo is a reinforcing element for steel, and the strength becomes too high, impairing workability, and the bake hardenability becomes saturated, making it expensive and economical. This is so that it will disappear. Mo is known to be an element that suppresses the nucleation of Fe3C and suppresses pearlite transformation, but the reason why it increases bake hardenability is not clear, but the added Mo dissolves in solid solution, causing a large amount of In order to create the strain field of Therefore, it is thought that movable dislocations are fixed and hardened, and the effect of adding Mo appears.

【0015】Cr:0.01〜3.0%とし、その下限
を0.01%としたのは、それ未満ではCrが強度上昇
に有効ではなく、鋼の脆性破壊を防止する効果がでない
ためであり、その上限を3.0%としたのは、それを超
えると鋼の脆性破壊の防止への寄与が飽和するためであ
り、またCrはCと結合して炭化物として強度上昇に寄
与するが、それを超えて添加しても強度上昇効果が飽和
するためである。
[0015] Cr: 0.01 to 3.0%, and the lower limit was set to 0.01% because if it is less than that, Cr is not effective in increasing the strength and is not effective in preventing brittle fracture of steel. The reason why the upper limit was set at 3.0% is that beyond this, the contribution to preventing brittle fracture of steel becomes saturated, and Cr combines with C and contributes to increasing strength as carbide. However, even if added in excess of this amount, the strength increasing effect will be saturated.

【0016】次に熱延条件で、仕上圧延終了温度をAr
3 変態点以上としたのは、それ未満では圧延組織が残
存し、冷延圧下時に圧下量が大きくなり、不利となるた
めであり、また加工性を向上させるには、熱延終了後の
結晶粒はランダムなほどよいとされており、圧延組織が
残存することは結晶の集合組織の面からも加工性に悪影
響をおよぼすためである。
Next, under the hot rolling conditions, the finish rolling end temperature is set to Ar.
3 The reason for setting the transformation point or higher is that if it is lower than that, the rolling structure will remain and the reduction amount will become large during cold rolling, which is disadvantageous.In addition, in order to improve workability, it is necessary to It is said that the more random the grains are, the better, and the residual rolling structure will have a negative effect on workability from the perspective of crystal texture.

【0017】また、巻取温度を500℃以上としたのは
、鋼板の加工性を向上するために結晶粒を大きくするこ
とが必要であり、高温からの冷却過程での結晶粒の成長
が見込まれるためであり、そのことは鋼が軟質で、冷延
圧下時、その圧下量が少なくてすむからである。さらに
、冷間圧延後、再結晶温度以上の温度で連続焼鈍を行う
条件として、冷間圧延率は加工性を良くする最適点があ
り、冷延鋼板の最終板厚にあわせることで、特に規定す
るものではないが、30〜80%が望ましい。連続焼鈍
の温度条件を再結晶温度以上としたのは、それ未満では
冷間圧延によって生成した歪が除去されず、しかも再結
晶しないために加工性の優れた結晶とならず、加工性が
劣るためである。なお、焼鈍温度を高温にするほどγ域
単相になり、冷却後の組織が均一になり、加工性、特に
曲げ性、つまり局部変形能が向上することから高温ほど
よいが、再結晶と多少の粒成長させるための温度として
は700℃以上であればよい。さらに、焼鈍時の加熱速
度は高速なほど加工性をよくする(111)面の発達が
促進されるといわれているが、高強度冷延鋼板の場合、
特に規定するものではない。その範囲は連続焼鈍と称す
る焼鈍では5〜5000℃/sec 程度で、その加熱
方法は規定するものではない。
[0017] Furthermore, the reason why the coiling temperature is set to 500°C or higher is that it is necessary to increase the size of crystal grains in order to improve the workability of the steel sheet, and growth of crystal grains is expected during the cooling process from high temperature. This is because the steel is soft and requires less reduction during cold rolling. Furthermore, as a condition for continuous annealing at a temperature higher than the recrystallization temperature after cold rolling, the cold rolling rate has an optimum point for improving workability, and by adjusting it to the final thickness of the cold rolled steel sheet, it is especially important to Although not necessarily, 30 to 80% is desirable. The reason why the temperature condition for continuous annealing is set to be higher than the recrystallization temperature is because if it is lower than that, the strain generated by cold rolling will not be removed and recrystallization will not occur, resulting in poor workability. It's for a reason. Note that the higher the annealing temperature, the more the single phase in the γ region becomes, the more uniform the structure after cooling, and the better the workability, especially the bendability, that is, the local deformability. The temperature for grain growth may be 700° C. or higher. Furthermore, it is said that the faster the heating rate during annealing, the more the development of (111) planes, which improve workability, is promoted, but in the case of high-strength cold-rolled steel sheets,
There are no particular regulations. The range is about 5 to 5000°C/sec in annealing called continuous annealing, and the heating method is not specified.

【0018】焼鈍時間は、特に規定するものではないが
、温度との関係で温度が高いと時間が短く、低いと長く
なる再結晶完了時間以上とすればよい。焼鈍後の冷却速
度は規定するものではないが、焼付硬化性を高くする点
、可動転位を増加させる点から急速冷却することが望ま
しい。このことは低炭素鋼への焼付硬化性の付与の固溶
炭素を残存させて、焼付硬化時、固溶炭素の可動転位の
固着による原理とともに、Mo、Cr等の炭化物形成元
素とCとの微細な炭化物が形成されることによる可動転
位の固着による強度上昇が考えられ、焼付硬化による降
伏強度の上昇とともに、引張強度の上昇に寄与している
と考えられる。
[0018] The annealing time is not particularly specified, but it may be set to be equal to or longer than the recrystallization completion time, which is related to the temperature: the higher the temperature, the shorter the annealing time, and the lower the temperature, the longer the annealing time. Although the cooling rate after annealing is not specified, rapid cooling is desirable from the viewpoint of increasing bake hardenability and increasing mobile dislocations. This is due to the principle that the solute carbon that imparts bake hardenability to low carbon steel remains, and during bake hardening, the movable dislocations of the solute carbon are fixed, and the combination of carbide-forming elements such as Mo and Cr with C. It is thought that the strength increases due to the fixation of mobile dislocations due to the formation of fine carbides, which is thought to contribute to the increase in tensile strength as well as the increase in yield strength due to bake hardening.

【0019】その後の調質圧延は形状調整のために実施
してもよいが、そのまま調質圧延をしないで製品とする
ことでもよい。調質圧延をしなくても降伏伸びがなく、
加工性がよいのは先述のとおり可動転位を多く残存させ
製造できる方法であるからであり、調質圧延を行わない
ことにより降伏点が低く加工が容易になる点でも有利で
ある。
[0019] The subsequent skin pass rolling may be carried out to adjust the shape, but it is also possible to produce a product as is without skin pass rolling. There is no yield elongation even without temper rolling,
The reason why the workability is good is because, as mentioned above, this method can be manufactured by leaving many movable dislocations, and it is also advantageous in that it has a low yield point and is easy to work by not performing skin pass rolling.

【0020】このようにして製造した高強度冷延鋼板は
図1のとおり、Moの添加によって焼付硬化性に優れた
鋼板とすることができる。Moの添加量が0.001〜
3.0%の領域で焼付硬化量は高くなり、曲げ性をはじ
め加工性に優れ、しかも焼付硬化による降伏強度および
引張強度の上昇する焼付硬化性に優れた高強度冷延鋼板
とすることができる。
As shown in FIG. 1, the high-strength cold-rolled steel sheet produced in this manner can be made into a steel sheet with excellent bake hardenability by adding Mo. The amount of Mo added is 0.001~
The amount of bake hardening increases in the 3.0% range, and it is possible to obtain a high-strength cold-rolled steel sheet that has excellent bendability and workability, and has excellent bake hardenability that increases yield strength and tensile strength due to bake hardening. can.

【0021】かくして、鋼の成分を調整し、熱延条件、
冷延条件、焼鈍条件を調整することで、焼付硬化による
降伏強度および引張強度の上昇する焼付硬化性に優れた
高強度冷延鋼板とすることができる。しかして、前記の
如き焼付硬化による降伏強度および引張強度の上昇する
焼付硬化性に優れた高強度冷延鋼板を製造する方法とし
ては、連続鋳造で、重量%にて、C:0.05〜0.2
5%、Si:0.8%以下、Mn:0.50〜3.0%
、P:0.1%以下、S:0.020%以下、Al:0
.01〜0.1%、N:0.01%以下を含み、残部が
Feおよび不可避的不純物からなる鋼に、Ti、Nbの
1種あるいは2種を合計量で0.01〜0.20%添加
し、さらにMo:0.001〜3.0%、Cr:0.0
1〜3.0%を添加した鋼をAr3 変態点以上で熱延
した後、500℃以上の温度で巻き取り、しかる後、冷
間圧延後、再結晶温度以上の温度で連続焼鈍を行うこと
によって、曲げ性をはじめ加工性に優れ、しかも焼付硬
化による降伏強度および引張強度の上昇する焼付硬化性
に優れた高強度冷延鋼板とすることできる。
[0021] Thus, by adjusting the composition of the steel, the hot rolling conditions,
By adjusting the cold rolling conditions and annealing conditions, it is possible to obtain a high-strength cold rolled steel sheet with excellent bake hardenability, which increases the yield strength and tensile strength due to bake hardening. Therefore, as a method for manufacturing a high-strength cold-rolled steel sheet with excellent bake hardenability that increases the yield strength and tensile strength due to bake hardening, continuous casting is used, and C: 0.05 to 0.05 by weight. 0.2
5%, Si: 0.8% or less, Mn: 0.50-3.0%
, P: 0.1% or less, S: 0.020% or less, Al: 0
.. 0.01 to 0.1%, N: 0.01% or less, and the balance is Fe and unavoidable impurities, and one or both of Ti and Nb are added in a total amount of 0.01 to 0.20%. Additionally, Mo: 0.001 to 3.0%, Cr: 0.0
After hot-rolling steel containing 1 to 3.0% of Ar3 at a temperature higher than the transformation point, it is wound up at a temperature of 500°C or higher, and then, after cold rolling, continuous annealing is performed at a temperature higher than the recrystallization temperature. As a result, a high-strength cold-rolled steel sheet can be obtained which has excellent bendability and workability, and also has excellent bake hardenability in which the yield strength and tensile strength increase due to bake hardening.

【0022】なお、かくして製造した鋼板を、例えばZ
nを電気めっきして防錆鋼板とすることができ、焼付硬
化性に優れた防錆鋼板とすることができ、さらに、かか
る鋼板を冷間圧延後、再結晶温度以上の温度で連続焼鈍
を行った後、直ちに溶融亜鉛めっきを施し、付け加えて
合金化処理を行い、合金化溶融亜鉛めっき鋼板とし、高
強度化、高防錆化に寄与できる鋼板とすることが可能で
ある。
[0022] The steel plate thus produced may be used, for example, in Z
A rust-proof steel plate can be obtained by electroplating n, and a rust-proof steel plate with excellent bake hardenability can be obtained.Furthermore, such a steel plate can be subjected to continuous annealing at a temperature higher than the recrystallization temperature after cold rolling. After that, hot-dip galvanizing is immediately applied, and alloying treatment is also performed to obtain an alloyed hot-dip galvanized steel sheet, which can contribute to high strength and high rust prevention.

【0023】[0023]

【実施例】次に本発明の実施例を比較例とともに表1〜
表4に挙げる。表1、2に鋼の成分、表3、4に製造条
件と鋼板の特性値を示す。
[Examples] Next, Examples of the present invention are shown in Tables 1 to 1 along with comparative examples.
Listed in Table 4. Tables 1 and 2 show the composition of the steel, and Tables 3 and 4 show the manufacturing conditions and characteristic values of the steel plate.

【0024】[0024]

【表1】[Table 1]

【0025】[0025]

【表2】[Table 2]

【0026】[0026]

【表3】[Table 3]

【0027】[0027]

【表4】[Table 4]

【0028】[0028]

【発明の効果】かくすることにより、高強度冷延鋼板の
加工性は向上し、また焼付硬化による降伏強度および引
張強度の上昇する焼付硬化性に優れた高強度冷延鋼板と
することができ、例えば自動車のバンパー、ドアインパ
クトビーム等の強度部材に使用され、曲げ性をはじめ加
工性に優れ、加工時に軟質で、使用時に降伏点、引張強
さともに上昇して硬質になる特性を上げることができる
等の優れた効果が得られる。
[Effects of the Invention] By doing so, the workability of the high-strength cold-rolled steel sheet is improved, and a high-strength cold-rolled steel sheet with excellent bake hardenability that increases yield strength and tensile strength due to bake hardening can be obtained. For example, it is used for strength members such as automobile bumpers and door impact beams, and has excellent bendability and workability, and is soft during processing, and has the characteristics of increasing both yield point and tensile strength and becoming hard during use. Excellent effects such as being able to do this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】下記の条件で製造した高強度冷延鋼板のMo添
加量と焼付硬化による降伏強度および引張強度の上昇す
る焼付硬化性の関係を示す図である。 C  :0.15% Si:0.05% Mn:2.52% P  :0.012% S  :0.007% Al:0.036% N  :0.0023% Ti:0.048% Mo:0〜3.8% Cr:0.20% 熱延仕上温度:860℃ 熱延巻取温度:600℃ 冷間圧延率  :50% 冷延最終板厚:1.4mm 焼鈍温度    :850℃×120sec冷却速度 
   :150℃/sec 調質圧延率  :0.4%
FIG. 1 is a diagram showing the relationship between the amount of Mo added and bake hardenability, which is an increase in yield strength and tensile strength due to bake hardening, of a high-strength cold-rolled steel sheet manufactured under the following conditions. C: 0.15% Si: 0.05% Mn: 2.52% P: 0.012% S: 0.007% Al: 0.036% N: 0.0023% Ti: 0.048% Mo: 0 to 3.8% Cr: 0.20% Hot rolling finishing temperature: 860°C Hot rolling winding temperature: 600°C Cold rolling rate: 50% Cold rolling final plate thickness: 1.4mm Annealing temperature: 850°C x 120sec cooling rate
:150℃/sec Temper rolling rate :0.4%

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  冷延鋼板を製造するに際して、重量%
にて、C:0.05〜0.25%、Si:0.8%以下
、Mn:0.50〜3.0%、P:0.1%以下、S:
0.020%以下、Al:0.01〜0.1%、N:0
.01%以下を含み、残部がFeおよび不可避的不純物
からなる鋼に、Ti、Nbの1種あるいは2種を合計量
で0.01〜0.20%添加し、さらにMo:0.00
1〜3.0%、Cr:0.01〜3.0%を添加した鋼
をAr3 変態点以上で熱延した後、500℃以上の温
度で巻き取り、しかる後、冷間圧延後、再結晶温度以上
の温度で連続焼鈍を行うことを特徴とする焼付硬化によ
る降伏強度および引張強度の上昇する焼付硬化性に優れ
た高強度冷延鋼板の製造方法。
[Claim 1] When manufacturing a cold rolled steel sheet, weight %
In, C: 0.05 to 0.25%, Si: 0.8% or less, Mn: 0.50 to 3.0%, P: 0.1% or less, S:
0.020% or less, Al: 0.01-0.1%, N: 0
.. 0.01% or less, with the remainder consisting of Fe and unavoidable impurities, one or both of Ti and Nb are added in a total amount of 0.01 to 0.20%, and further Mo: 0.00
Cr: 0.01-3.0% and Cr: 0.01-3.0% are hot-rolled at a temperature higher than the Ar3 transformation point, then coiled at a temperature of 500°C or higher, and then cold-rolled and re-rolled. A method for producing a high-strength cold-rolled steel sheet with excellent bake hardenability, which increases yield strength and tensile strength through bake hardening, the method comprising continuous annealing at a temperature higher than the crystallization temperature.
JP13930491A 1991-06-11 1991-06-11 Production of cold rolled high strength steel sheet excellent in baking hardenability Withdrawn JPH04365814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13930491A JPH04365814A (en) 1991-06-11 1991-06-11 Production of cold rolled high strength steel sheet excellent in baking hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13930491A JPH04365814A (en) 1991-06-11 1991-06-11 Production of cold rolled high strength steel sheet excellent in baking hardenability

Publications (1)

Publication Number Publication Date
JPH04365814A true JPH04365814A (en) 1992-12-17

Family

ID=15242174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13930491A Withdrawn JPH04365814A (en) 1991-06-11 1991-06-11 Production of cold rolled high strength steel sheet excellent in baking hardenability

Country Status (1)

Country Link
JP (1) JPH04365814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064967A1 (en) * 2000-02-29 2001-09-07 Kawasaki Steel Corporation High tensile cold-rolled steel sheet having excellent strain aging hardening properties
JP2001355042A (en) * 2000-04-10 2001-12-25 Kawasaki Steel Corp Hot dip galvanized steel sheet excellent in press formability and strain age hardening characteristic and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064967A1 (en) * 2000-02-29 2001-09-07 Kawasaki Steel Corporation High tensile cold-rolled steel sheet having excellent strain aging hardening properties
JP2001355042A (en) * 2000-04-10 2001-12-25 Kawasaki Steel Corp Hot dip galvanized steel sheet excellent in press formability and strain age hardening characteristic and its production method

Similar Documents

Publication Publication Date Title
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
JP6723377B2 (en) Ultra high strength and high ductility steel sheet with excellent yield ratio and method for producing the same
EP0475096B2 (en) High strength steel sheet adapted for press forming and method of producing the same
JPS6256209B2 (en)
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
KR20110027496A (en) Method for manufacturing of high strength and high formability dual phase steel and galvanized steel sheet
JPH06102816B2 (en) Cold rolled steel sheet with a composite structure having excellent workability, non-aging at room temperature, and bake hardenability, and a method for producing the same
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JPH04120217A (en) Manufacture of cold-rolled steel sheet having excellent baking hardenability of paint
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JPH04365814A (en) Production of cold rolled high strength steel sheet excellent in baking hardenability
JPH05171293A (en) Production of cold rolled steel sheet having high strength and excellent in deep drawability
JP2631437B2 (en) Cold rolled steel sheet excellent in workability, bake hardenability and aging, and method for producing the same
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH05171285A (en) Production of extremely soft steel sheet for vessel reduced in low anisotropy and having ageing resistance
JPS6249323B2 (en)
JPS638164B2 (en)
RU2788613C1 (en) Cold-rolled coated steel sheet and method for production thereof
JP3175063B2 (en) Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same
JPH0525549A (en) Production of cold rolled steel sheet excellent in baking hardenability
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPH05179357A (en) Production of cold rolled ferritic stainless steel sheet
JPH0356656A (en) Production of steel plate coated with alloyed zinc by galvanization having excellent aging resistance

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903