JP2010275408A - 2置換修飾シクロデキストリンおよびこれを用いた核酸検出方法 - Google Patents
2置換修飾シクロデキストリンおよびこれを用いた核酸検出方法 Download PDFInfo
- Publication number
- JP2010275408A JP2010275408A JP2009128563A JP2009128563A JP2010275408A JP 2010275408 A JP2010275408 A JP 2010275408A JP 2009128563 A JP2009128563 A JP 2009128563A JP 2009128563 A JP2009128563 A JP 2009128563A JP 2010275408 A JP2010275408 A JP 2010275408A
- Authority
- JP
- Japan
- Prior art keywords
- nucleic acid
- cyd
- cyclodextrin
- disubstituted
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
核酸マイクロアレイは、複数の遺伝子を同時に解析できる技術であり、塩基配列を決定するための方法だけではなく、遺伝子の発現量や多型などを効率よく調べる方法として開発され、テーラーメイド医療、菌類などの生物学的分類の特定および疾病の診断などへの技術開発が展開されている。
例えば、特許文献1には、HCV(C型肝炎ウイルス)単離物の同定方法に用いる核酸マイクロアレイとして、ラインプローブ(LiPA:Line Probe Assay,イノジジェネティクス社登録商標)法が開示されている。
このアッセイは、ポリアミド膜片上に平行線として核酸プローブが固定されたものである。
これらの方法の中でも、特に、酵素発色法は、安価で簡便な方法であるとして有効とされている。
しかし、この酵素発色法を用いた場合であっても、プライマーをビオチンで修飾する必要があるため、その分コストが高くなるという問題がある。
さらに、酵素発色法では、ストレプトアビジンで修飾したアルカリホスファターゼ、およびストレプトアビジンに対する基質を作用・洗浄する必要があり、検出工程が極めて煩雑となるという問題もある。
しかし、非特許文献1に開示されたインターカレーターは、水に難溶であるためにハイブリダイズした2本鎖の核酸に作用し得るだけの濃度調製が極めて困難であった。また、試薬の保存性が悪いため、工業的手法としては適していなかった。
このモノ置換修飾デキストリンを用いることで、1本鎖DNAと2本鎖DNAとの間に蛍光強度の違いが生じるため、それを検出することで、それらの判別を安価かつ容易に行えるようになる。
しかし、特許文献2の手法では、1本鎖DNAの場合でも蛍光強度に変化が生じてしまうため、1本鎖DNAと2本鎖DNAとを完全かつ高精度に判別するという点においては不十分であった。
1. 式(1)で示されることを特徴とする2置換修飾シクロデキストリン、
(式中、CyDは、α−、β−またはγ−シクロデキストリン骨格を、A1およびA2は、互いに独立して、エーテル結合またはチオエーテル結合を含んでいてもよい炭素数1〜10のアルキレン基を、B1およびB2は、互いに独立して、単結合、−C(O)−、−C(O)NH−、−NHC(O)−、−C(O)O−または−OC(O)−を、C1およびC2は、互いに独立して、エーテル結合を含む炭素数1〜20のアルキレン基を、X1およびX2は、互いに独立して、蛍光性発色団を表す。)
2. 前記蛍光性発色団が、ピレン、ナフタレン、ダンシルグリシン、アントラセンおよびローダミンBから選ばれる少なくとも1種である1の2置換修飾シクロデキストリン、
3. 前記蛍光性発色団が、エキシマ蛍光性発色団である1の2置換修飾デキストリン、
4. 前記エキシマ蛍光性発色団が、ピレンおよびナフタレンから選ばれる少なくとも1種である3の2置換修飾デキストリン、
5. 式(2)で示されることを特徴とする1の2置換修飾シクロデキストリン、
(式中、CyD、A1、A2、B1、B2、C1およびC2は、前記と同じ意味を表す。)
6. 式(3)で示される5の2置換修飾シクロデキストリン、
(式中、CyD、C1およびC2は、前記と同じ意味を表す。)
7. 式(4)で示される6の2置換修飾シクロデキストリン、
(式中、mおよびnは1〜10の整数を表し、m+n≦19を満足し、oおよびpは1〜10の整数を表し、o+p≦19を満足する。CyDは、前記と同じ意味を表す。)
8. 式(5)で示される7の2置換修飾シクロデキストリン、
(式中、CyDは、前記と同じ意味を表す。)
9. 前記CyDが、γ−シクロデキストリン骨格である1〜8のいずれかの2置換修飾シクロデキストリン、
10. AE2置換体である8の2置換修飾シクロデキストリン、
11. 1〜10のいずれかの2置換修飾シクロデキストリンを用いることを特徴とする核酸検出方法
を提供する。
このため、本発明の2置換修飾シクロデキストリンを用いることで、従来法に比べ、高精度かつ簡便に2本鎖DNAと1本鎖DNAとを識別することができるようになる。
このような特徴を有する本発明の2置換修飾シクロデキストリンは、DNAチップ用の試薬など、核酸検出用の標識として好適に利用できる。
本発明に係る2置換修飾シクロデキストリンは、式(1)で表されるものである。
シクロデキストリンは、D−グルコースが環状に1,4−α−グリコシド結合した化合物であり、これを構成するグルコース数の違いによって、α−シクロデキストリン(グルコース6個)、β−シクロデキストリン(グルコース7個)、γ−シクロデキストリン(グルコース8個)に分類され、本発明の2置換修飾シクロデキストリンには、α−、β−、γ−のいずれも使用することができるが、特に、γ−シクロデキストリン骨格が好適である。
また、2置換シクロデキストリンでは、これを構成するグルコース上における2つの置換基の結合位置によって各種位置異性体が存在し、例えば、2置換γ−シクロデキストリンでは、下記に示されるように、AB体、AC体、AD体、AE体の各2置換体が存在するが、本発明においては、グルコースAとグルコースEとがそれぞれ置換されているAE体が好適である。
なお、置換基の結合部位は、グルコースの1級水酸基、2級水酸基のいずれでもよいが、製造コストの観点から、1級水酸基が好ましい。
その具体例としては、−CH2−O−CH2−、−(CH2)2−O−(CH2)2−、−(CH2)3−O−(CH2)3−、−(CH2)4−O−(CH2)4−、−(CH2)5−O−(CH2)5−、−CH2−S−CH2−、−(CH2)2−S−(CH2)2−、−(CH2)3−S−(CH2)3−、−(CH2)4−S−(CH2)4−、−(CH2)5−S−(CH2)5−等が挙げられる。
なお、単結合の場合は、A1およびC1、A2およびC2が直接結合することになる。
C1の具体例としては、−CH2−o(O2pHpC)−(oおよびpは1〜10の整数を表し、o+p≦19を満足する。)が挙げられるが、特にp=1〜5、o=1〜5のものが好適である。
C2の具体例としては、−(CnH2nO)m−CH2−(mおよびnは1〜10の整数を表し、m+n≦19を満足する。)が挙げられるが、特にm=1〜5、n=1〜5のものが好適である。
発色団の具体例としては、ピレン、ナフタレン、ダンシルグリシン、アントラセン、ローダミンB等が挙げられ、これらの中でもエキシマを形成し得るピレン、ナフタレンが好ましく、ピレンがより好ましい。
置換位置を含めた発色団の具体例としては、下記式で示されるものが挙げられるが、これらに限定されるものではない。
デキストリンの1級水酸基への修飾は、例えば、下記スキームに示されるように、これをトシル化することで行うことができる。
反応溶媒としては、アミン溶媒が好適であり、例えば、ピリジン等を用いることができる。
反応温度は、0〜50℃程度であり、反応時間は、0.1〜10時間程度である。
反応終了後は、水酸化ナトリウム等の塩基で中和し、アセトン等の有機溶媒によって沈殿させることで粗生成物が得られる。
得られた粗生成物は、逆相シリカゲルカラムクロマトグラフィー法等によって精製することができる。
例えば、下記スキームに示されるように、メルカプト酢酸と反応させることで、チオ酢酸で置換されたCyDを得ることができる。
反応の際には塩基を用いることが好ましく、その具体例としては、炭酸ナトリウム等が挙げられる。塩基の使用量は、CyD1当量に対して、2〜20当量程度とすることができる。
反応溶媒は、特に限定されるものではないが、DMFが好ましい。
反応温度は、0〜100℃程度であるが、50〜100℃程度が好ましい。
反応時間は、1〜240時間程度である。
反応終了後は、溶媒留去後、塩酸等で中和し、アセトン等の有機溶媒で沈殿させることで、粗生成物が得られる。
得られた粗生成物は、ゲル濾過法等によって精製することができる。
例えば、下記スキームに示されるように、8−(1−ピレンメトキシ)−3,6−(ジオキサ)オクタ−1−アミンと縮合させてアミド結合を形成させることで、発色団としてピレンを有するCyDが得られる。
また、反応の際には、N,N’−ジシクロヘキシルカルボジイミド等の公知の脱水縮合剤を用いることもできる。縮合剤の使用量は、CyDに対して、2〜10当量程度とすることができる。
反応溶媒としては、特に限定されるものではないが、DMFを用いることが好ましい。
反応温度は、0〜100℃程度である。
反応時間は、1〜240時間程度である。
反応終了後は、溶媒を留去し、アセトン等の有機溶媒で沈殿させることで、粗生成物が得られる。
得られた粗生成物は、逆相シリカゲルカラムクロマトグラフィー法等によって精製することができる。
また、以上の説明では、CyD側のカルボキシル基と、発色団側のアミノ基とを反応させていたが、この逆でもよい。
さらに、発色団を有するアルコールを用いる場合は、酸や塩基を触媒とした公知のエステル化法を用いればよい。
したがって、本発明の2置換修飾デキストリンは、DNAチップ用試薬等の核酸検出のための標識として好適に用いることができ、例えば、基材上に検体核酸または核酸プローブを固定化してアレイを作製する第1工程と、この第1工程で得られたアレイを用いて検体核酸および核酸プローブをハイブリダイズして2本鎖核酸を調製する第2工程と、この第2工程で得られた2本鎖核酸を、本発明の2置換修飾シクロデキストリンで処理する第3工程と、を備えるような核酸検出方法などに好適に用いることができる。
核酸プローブは、合成されたDNAを用いても、mRNAから逆転写されたcDNAを用いてもよい。DNAの合成は、核酸自動合成機によって行うことができる。
核酸プローブの塩基配列は、検体核酸とハイブリダイズし得るものであれば、検体核酸の塩基配列の完全相補配列に対して数塩基が挿入された配列や、完全相補配列の数塩基が変異および欠失した配列であってもよいが、検出精度を考慮すると、完全相補配列が望ましい。
また、ゲノムDNAは、PCR法、LAMP法、ICAN法などの公知の方法によって、検出すべき特定の塩基配列が増幅されたものであってもよい。
基材の形状も任意であり、板状、フィルム状、チューブ状等適宜な形状とすることができる。
物理的手法としては、核酸溶液を基材にスポッティングする方法が挙げられる。スポッティング法としては、ディスペンサなどを用いた押出法、クーロン力を用いた吸引法、インクジェット法などが挙げられる。
この場合、核酸プローブに無関係な塩基配列を付加し、UV照射によって基材への核酸プローブへの固定化率を向上させてもよい。核酸プローブに無関係な塩基配列としては、ポリアデニン、ポリシトシン、ポリチミン、ポリグアニン等などが挙げられる。
表面処理法としては、ポリリジンなどのポリカチオン性の高分子で基材表面を被覆する方法、シランカップリング剤で無機基材表面を処理する方法、アミノ基を有するチオールやジスルフィド化合物で金属基材表面を処理する方法などが挙げられる。
その具体例としては、(1)核酸プローブを、トリメトキシシラン、トリエトキシシラン等のシランカップリング反応が可能な官能基で修飾する方法、(2)基材を、アミノエトキシシラン等のアミノ基を有するシランカップリング剤で処理し、一方、核酸プローブをカルボキシル基で修飾する方法などが挙げられる。
ハイブリダイズ法としては、特に限定されるものではなく、一般的な手法を用いればよい。
その具体例としては、核酸プローブまたは検体核酸を固定化したアレイを、検体核酸の溶液または核酸プローブの溶液に浸漬する方法が挙げられる。ハイブリダイズの温度条件は、用いるDNAプローブの熱変性温度を考慮し、適宜設定すればよい。
なお、未反応の核酸は、洗浄によって容易に除去することができる。
2置換修飾シクロデキストリンでの処理方法は特に限定されるものではなく、2置換修飾シクロデキストリンの溶液に核酸を適宜な濃度で添加しても、その逆でもよい。この際、溶媒としては、2置換修飾シクロデキストリンおよび核酸が溶解するものであれば特に制限はないが、本発明においては、DMSO−水の混合溶媒を好適に用いることができる。DMSOの濃度は、1〜30体積%程度が好ましい。
具体的には、後述の実施例で詳細に述べるとおり、2置換修飾シクロデキストリンと2本鎖核酸との相互作用によって、シクロデキストリンが有する蛍光性発色団のモノマー蛍光の強度が増加し、また、蛍光性発色団がエキシマを形成し得るものである場合、それと同時にエキシマ蛍光の強度も増加するが、この現象は1本鎖核酸の場合には観察されない。
この現象の違いによって、2本鎖核酸と1本鎖核酸とを高精度に検出、同定することができる。
このインターカレートの態様は、置換している蛍光性発色団によってはエキシマ蛍光の増加が確認されることから、1つの蛍光性発色団が2本鎖核酸にインターカレートし、その外側からもう1つの蛍光性発色団がインターカレートしている発色団を固定化しているもの、または、2つの蛍光性発色団へ2本鎖核酸の1つの塩基対間に挿入しているものが考えられる。
[1]1H NMRおよび13C NMR
装置:ブルカー:BURUKER-SPECTROSPIN 300
測定溶媒:DMSO−d6
基準物質:テトラメチルシラン
[2]IR
装置:パーキンエルマー:FT-IR Spectrometer SPECTRUM 2000
[3]FAB−MS
装置:日本電子(JEOL):JMS-700
[4]元素分析
装置:ヤナコ分析工業(株):CHNコーダー
[5]蛍光スペクトル
装置:蛍光光度計 Perkin-Elmer LS 40B Fluorescence Spectrophotometer
セル:標準角型蛍光セル(2500μL)
測定条件:Start wavelength:300nm,End wavelength:600nm,Excitation wavelength:343.0nm、Excitation slit:5nm,Emission slit:5nm,Scan speed:100nm/min.
[6]CDスペクトル
装置:日本分光(JASCO):J-720 spectrophotometer
反応終了後、メタノールを少量加えてナトリウムヒドリドを分解し、溶媒を留去後、水を加え、クロロホルムで3回抽出した。有機相を水で洗浄後、硫酸ナトリウムで乾燥し、濾過した。濾液を濃縮後、60℃で一晩減圧乾燥し、黄色のオイル状の粗生成物4.45gを回収した。
粗生成物を少量のクロロホルムに溶解させ、順相シリカゲルカラムクロマトグラフィーで精製した。展開溶媒はn−ヘキサン−酢酸エチルを用い、徐々に酢酸エチルの比率を上げ、およそ酢酸エチル26〜32vol%の溶出物を回収して濃縮後、60℃で減圧乾燥して黄色のオイル状の目的物0.86g(収率;51.1%)を得た。
1H NMR (300 MHz, CDCl3)
δ= 3.5-3.8(12H, m, -OCH2CH2O-),5.2-5.3(2H, s, CH2 of pyrenemethoxy),7.9-8.4(9H, m, aromatic H of pyrene).
13C NMR (75 MHz, CDCl3)
δ= 41-45(1C,t,-CCl),67-74(6C, m, -OCH2-),122-132(16C, m, aromatic C of pyrene).
IR(KBr) ν 3041.4(aryl-H), 2865.2(C-H), 1588.6(C=C), 1108.9(C-O-C), 682.3(C-Cl)cm-1.
FAB-MS(m/z);382.2[M]+
反応終了後、溶媒を留去し、水を加え、クロロホルムで3回抽出した。有機相を0.2M水酸化ナトリウム水溶液および水で順次洗浄後、硫酸ナトリウムで乾燥し、濾過した。濾液を濃縮後、60℃で一晩減圧乾燥し、黄色のオイル状の粗生成物0.98gを回収した。
粗生成物を少量のクロロホルムに溶解させ、順相シリカゲルカラムクロマトグラフィーで精製した。展開溶媒はn−ヘキサン−酢酸エチルを用い、徐々に酢酸エチルの比率を上げ、およそ酢酸エチル30〜55vol%の溶出物を回収し、濃縮後、60℃で減圧乾燥して黄色オイル状の目的物0.45g(収率;41.6%)を得た。
1H NMR (300MHz, CDCl3)
δ= 3.6-3.9(12H, m, -OCH2CH2O-), 5.2-5.3(2H, s, CH2 of pyrenemethoxy), 7.4-7.8(4H, m, aromatic H of phthalimide), 7.9-8.4(9H, m, aromatic H of pyrene).
13C NMR (75MHz, CDCl3)
δ= 35-40(1C, t, -CN), 65-74(6C, m, -OCH2-), 121-135(22C, m, aromatic C of pyrene and phthalimide), 168-169(2C, s, C=O).
IR(KBr) ν 3042.3(aryl-H), 2865.5(C-H), 1772.8(C=O), 1707.6(C=O), 1603.4(C=C), 1106.2(C-O-C)cm-1.
FAB-MS(m/z);493.3[M]+
反応終了後、1M塩酸で中和後、溶媒を留去し、1M水酸化ナトリウム水溶液を加え、クロロホルムで3回抽出した。有機相を1M水酸化ナトリウム水溶液および水で順次洗浄後、硫酸ナトリウムで乾燥し、濾過した。濾液を濃縮後、60℃で一晩減圧乾燥し、黄色オイル状の目的物1.06g(収率;81.3%)を回収した。
1H NMR (300 MHz, CDCl3)
δ= 1.5-1.7(2H, s, NH2), 2.7-2.9(2H, t, -CH2N), 3.4-3.8(10H, m, -CH2OCH2-), 5.2-5.3(2H, s, CH2 of pyrenemethoxy), 7.9-8.5(9H, m, aromatic H of pyrene).
13C NMR (75 MHz, CDCl3)
δ= 39-44(1C, t, -CN), 67-74(6C, m, -OCH2-), 122-132(16C, m, aromatic C of pyrene ).
IR(KBr) ν 3397.2(NH), 3040.9(aryl-H), 1587.5(C=C), 1090.1(C-O-C)cm-1.
Calcd. for 3C23H25NO3・H2O: C;74.76, H;7.01, N;3.79%.;Found: C;74.89, H;6.83, N;3.64%.
FAB-MS(m/z);364.2[M+H]+
反応終了後、ある程度溶媒を留去し、1M水酸化ナトリウム水溶液で中和し、アセトン500mLで再沈した。沈殿物を吸引濾過し、30℃で減圧乾燥後、白色結晶の粗生成物9.7270gを回収した。
粗生成物をdry−DMF30mLに溶解させ、不溶解物を桐山ロート((有)桐山製作所製)で濾過し、濾液を逆相シリカゲルカラムクロマトグラフィー(Lobar column LiChroprep RP−18,メルク製,310mm×10mm)で精製した。展開溶媒はメタノール−水を用い、徐々にメタノールの比率を上げ、メタノール40%の溶出物を回収した。濃縮後、アセトンを加えて結晶化し、沈殿物を吸引濾過後、30℃で減圧乾燥して白色結晶の目的物0.2040g(収率;3.23%)を得た。
1H NMR (300MHz, DMSO-d6)
δ= 4.5-4.6(6H, w, C1H of CyD), 5.7-5.9(16H, s, OH of C2 and C3 of CyD), 7.4-7.5(4H, d, aromatic H of benzene), 7.7-7.8(4H, d, aromatic H of benzene).
反応終了後、溶媒を留去し、水を少量加えて炭酸ナトリウムを溶解後、1M塩酸で中和した。濃縮後、アセトン300mLで再沈した。沈殿物を吸引濾過し、60℃で減圧乾燥後、白色結晶の粗生成物0.3295gを回収した。
粗生成物を少量の水に溶解させ、セファデックスG−15のオープンカラム(100cm×1.8cm)で精製した。溶出溶媒は水を用いた。目的の溶出物を回収し、濃縮後、アセトンを加えて結晶化した。沈殿物を吸引濾過後、60℃で減圧乾燥して白色結晶の目的物0.1266g(収率;68.7%)を得た。
1H NMR (300 MHz, DMSO-d6)
δ= 4.7-5.0(8H, w, C1H of CyD), 5.5-5.9(16H, s, OH of C2 and C3 of CyD).
IR(KBr) ν 3430.4(O-H), 2934.8(C-H), 1635.4(C=O), 1029.6(C-O-C)cm-1.
反応終了後、溶媒を留去し、アセトン200mLで再沈した。沈殿物を吸引濾過し、60℃で減圧乾燥後、白色結晶の粗生成物0.1628gを回収した。
粗生成物を少量のdry−DMFと水に溶解させ、逆相シリカゲルカラムクロマトグラフィー(Lobar column LiChroprep RP−18,メルク製,310mm×10mm)で精製した。展開溶媒はメタノール−水を用い、徐々にメタノールの比率を上げ、メタノール80〜100vol%の溶出物を回収した。濃縮後、アセトンを加えて結晶化した。沈殿物を吸引濾過後、60℃で減圧乾燥して白色結晶の目的物0.0134g(yield;6.14%)を得た。
1H NMR (300 MHz, DMSO-d6)
δ =4.5-4.7(6H, m, OH of C6 of CyD), 4.8-5.0(8H, d, H of C1 of CyD), 5.1-5.3(2H, s, CH2 of pyrenemethoxy), 5.8-6.2(16H, s, OH of C2 and C3 of CyD), 7.9-8.0(2H, t, H of amide), 8.0-8.5(18H, m, aromatic H of pyrene).
IR(KBr) ν 3423.5(O-H), 2923.5(C-H), 1655.1(C=C), 1634.9(C=O), 1029.8(C-O)cm-1.
以下の全ての手順において、溶媒には10%DMSO水溶液を用いた。
〈dsDNAとの相互作用〉
実施例1で得られたジ−6A,6E−デオキシ−6A,6E−[{8−(1−ピレンメトキシ)−3,6−(ジオキサ)オクタ−1−アミノ}−(チオアセチル)]−γ−CyD(以下、2置換ピレン修飾γ−CyDという)を、濃度3×10-7Mとなるように調整した。
そこへ、市販のdsDNA(200Mer)を溶媒にて所定濃度に調整したものを、蛍光セル中でDNA濃度が0,0.9375×10-10,1.875×10-10,3.75×10-10,7.5×10-10,15×10-10,30×10-10,60×10-10,120×10-10,250×10-10Mとなるように加え、蛍光スペクトルの測定を行った。結果を図1に示す。
実施例1で得られた2置換ピレン修飾γ−CyDを、濃度3×10-7Mとなるように調整した。
そこへ、市販のssDNA(40Mer)を溶媒にて所定濃度に調整したものを、蛍光セル中で、DNA濃度が0,4.6875×10-10,9.375×10-10,18.75×10-10,37.5×10-10,75×10-10,150×10-10,300×10-10,600×10-10,1200×10-10Mとなるように加え、蛍光スペクトルの測定を行った。結果を図2に示す。
なお、蛍光強度増加の度合いは、dsDNAを7.5×10-10M添加するまで急激に増加し、その後、さらにdsDNAを添加しても蛍光強度はほぼ変化しなかった。
一方、図2に示されるように、ssDNAを添加しても、2置換ピレン修飾γ−CyDの蛍光強度は増加していないことがわかる。
これは、dsDNAを添加した場合には、2置換ピレン修飾γ−CyDのピレン部位がdsDNAの疎水性の塩基対間に挿入され、10%DMSO水溶液中よりも安定な状態となったため、蛍光強度が増加したと考えられる。
これより、2置換ピレン修飾γ−CyDは10%DMSO水溶液中では自己包接していないことがわかる。
以上説明したとおり、2置換ピレン修飾γ−CyDを用いることによって、dsDNA、ssDNAを高精度に識別でき、核酸の検出に好適に利用できることがわかる。
Claims (11)
- 前記蛍光性発色団が、ピレン、ナフタレン、ダンシルグリシン、アントラセンおよびローダミンBから選ばれる少なくとも1種である請求項1記載の2置換修飾シクロデキストリン。
- 前記蛍光性発色団が、エキシマ蛍光性発色団である請求項1記載の2置換修飾デキストリン。
- 前記エキシマ蛍光性発色団が、ピレンおよびナフタレンから選ばれる少なくとも1種である請求項3記載の2置換修飾デキストリン。
- 前記CyDが、γ−シクロデキストリン骨格である請求項1〜8のいずれか1項記載の2置換修飾シクロデキストリン。
- AE2置換体である請求項8記載の2置換修飾シクロデキストリン。
- 請求項1〜10のいずれか1項記載の2置換修飾シクロデキストリンを用いることを特徴とする核酸検出方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009128563A JP5747432B2 (ja) | 2009-05-28 | 2009-05-28 | 2置換修飾シクロデキストリンおよびこれを用いた核酸検出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009128563A JP5747432B2 (ja) | 2009-05-28 | 2009-05-28 | 2置換修飾シクロデキストリンおよびこれを用いた核酸検出方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010275408A true JP2010275408A (ja) | 2010-12-09 |
JP5747432B2 JP5747432B2 (ja) | 2015-07-15 |
Family
ID=43422676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009128563A Active JP5747432B2 (ja) | 2009-05-28 | 2009-05-28 | 2置換修飾シクロデキストリンおよびこれを用いた核酸検出方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5747432B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019512563A (ja) * | 2016-03-22 | 2019-05-16 | オーボ アカデミー ユニヴァーシティー | 蛍光増白剤としての多糖誘導体 |
WO2023026980A1 (ja) * | 2021-08-23 | 2023-03-02 | 国立大学法人大阪大学 | ホスト基含有重合性単量体、高分子材料及びそれらの製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180207A (ja) * | 1997-09-02 | 1999-03-26 | Akihiko Ueno | シクロデキストリン誘導体 |
JP2002534097A (ja) * | 1998-12-19 | 2002-10-15 | ザ・ビクトリア・ユニバーシテイ・オブ・マンチエスター | 核酸の検出 |
JP2006502301A (ja) * | 2002-09-06 | 2006-01-19 | インサート セラピューティクス インコーポレイテッド | 治療剤配送のためのシクロデキストリン基材重合体 |
WO2007105786A1 (ja) * | 2006-03-16 | 2007-09-20 | National University Corporation Akita University | 核酸検出方法及び核酸検出キット |
-
2009
- 2009-05-28 JP JP2009128563A patent/JP5747432B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180207A (ja) * | 1997-09-02 | 1999-03-26 | Akihiko Ueno | シクロデキストリン誘導体 |
JP2002534097A (ja) * | 1998-12-19 | 2002-10-15 | ザ・ビクトリア・ユニバーシテイ・オブ・マンチエスター | 核酸の検出 |
JP2006502301A (ja) * | 2002-09-06 | 2006-01-19 | インサート セラピューティクス インコーポレイテッド | 治療剤配送のためのシクロデキストリン基材重合体 |
WO2007105786A1 (ja) * | 2006-03-16 | 2007-09-20 | National University Corporation Akita University | 核酸検出方法及び核酸検出キット |
Non-Patent Citations (2)
Title |
---|
JPN6013063665; Miyuki NARITA et al: 'Fluorescence Molecular Sensing for Endocrine-disrupting Chemicals and Their Analogues Based on Dansy' Analytical Sciences Vol.16, No.1, 2000, p.37-43 * |
JPN6013063666; 藤本和久他: 'モノマー/エキシマースイッチングを利用したDNA二重鎖を骨格とする蛍光プローブ・センサ' YAKUGAKU ZASSHI Vol.128, No.11, 2008, p.1605-1613 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019512563A (ja) * | 2016-03-22 | 2019-05-16 | オーボ アカデミー ユニヴァーシティー | 蛍光増白剤としての多糖誘導体 |
US10988716B2 (en) | 2016-03-22 | 2021-04-27 | Abo Akademi University | Polysaccharide derivatives as optical brightening agents |
WO2023026980A1 (ja) * | 2021-08-23 | 2023-03-02 | 国立大学法人大阪大学 | ホスト基含有重合性単量体、高分子材料及びそれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5747432B2 (ja) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12129518B2 (en) | Method for nanopore RNA characterization | |
EP2987864B1 (en) | Method for detecting an analyte | |
KR101685208B1 (ko) | 확장에 의한 고성능 핵산 서열분석 | |
CN104703700B (zh) | 用于核酸测序的方法和试剂盒 | |
JP2641322B2 (ja) | 大きな櫛型分枝状ポリヌクレオチド | |
CN101605743A (zh) | 用于产生报告分子的点击化学 | |
CN110114476A (zh) | 一种基于单荧光染料的测序方法 | |
AU2021293238A1 (en) | Compositions and methods for in situ single cell analysis using enzymatic nucleic acid extension | |
CN116323974A (zh) | 多路复用covid-19锁式测定 | |
JP5747432B2 (ja) | 2置換修飾シクロデキストリンおよびこれを用いた核酸検出方法 | |
JP5429962B2 (ja) | 核酸検出方法及び核酸検出キット | |
CN115867670A (zh) | 作为底物用于基于tdt的酶核酸的碱基修饰的核苷酸 | |
JP5427408B2 (ja) | 目的の生体分子、特に核酸を含む生体試料を標識又は処理する方法 | |
JP2009222635A (ja) | 核酸検出方法 | |
KR20080011314A (ko) | 분석물의 감응성 검출을 위한 신규한 표지화 전략 | |
JP5196448B2 (ja) | アミノオキシ基を含有する反応性化合物 | |
JP2008125470A (ja) | ビピリジン修飾ヌクレオシド又はヌクレオチド、及びそれを用いたメチルシトシンの検出法 | |
ES2352509T3 (es) | Nuevas estrategias de marcaje para la detección sensible de analitos. | |
JP2007078399A (ja) | 固体支持体及びdnaチップ | |
Frydrych-Tomczak et al. | Application of epoxy functional silanes in the preparation of DNA microarrays | |
CN116497102A (zh) | 用于表征目标多核苷酸的衔接体、方法及其用途 | |
EP3010929A1 (en) | Universal methylation profiling methods | |
CN117813390A (zh) | 用于表面结合的多核苷酸的金属定向裂解的方法 | |
CN114656394A (zh) | 一种荧光化合物及其制备方法、荧光修饰核苷酸、试剂盒 | |
JP2003319799A (ja) | 核酸塩基配列の解析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150414 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150427 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5747432 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |