JP2010274180A - Water treatment method and water treatment system - Google Patents

Water treatment method and water treatment system Download PDF

Info

Publication number
JP2010274180A
JP2010274180A JP2009128040A JP2009128040A JP2010274180A JP 2010274180 A JP2010274180 A JP 2010274180A JP 2009128040 A JP2009128040 A JP 2009128040A JP 2009128040 A JP2009128040 A JP 2009128040A JP 2010274180 A JP2010274180 A JP 2010274180A
Authority
JP
Japan
Prior art keywords
water
treated
water treatment
rapid stirring
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009128040A
Other languages
Japanese (ja)
Other versions
JP4707752B2 (en
Inventor
Toshiaki Ochiai
壽昭 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009128040A priority Critical patent/JP4707752B2/en
Publication of JP2010274180A publication Critical patent/JP2010274180A/en
Application granted granted Critical
Publication of JP4707752B2 publication Critical patent/JP4707752B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method capable of effectively performing water treatment of water to be treated which contains ferrous ions. <P>SOLUTION: The water treatment method includes: a first step of oxidizing the ferrous ions contained in the water to be treated; a second step of giving carriers into the water to be treated, depositing iron oxyhydroxide after oxidation onto surfaces of the carriers and stripping the iron oxyhydroxide from the surfaces of the carriers by means of flow of the water to be treated; a third step of injecting an inorganic coagulant into the water to be treated; a fourth step of quickly stirring the water to be treated; and a fifth step of introducing the water to be treated into a sedimentation pond involving an upward stream and causing the water to be treated to pass between a plurality of inclined plates arranged in routes of the upward stream. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、第1鉄イオンを含む地下水などの被処理水を処理する水処理方法に関する。   The present invention relates to a water treatment method for treating water to be treated such as groundwater containing ferrous ions.

地下水は地表水に比べて多量の鉄分を含有しており、鉄分の多くは第1鉄イオンとして存在している。地下水を水処理する際には、第1鉄イオンを除去する必要があり、そのような方法として例えば、特許文献1に記載のものがある。   Groundwater contains a larger amount of iron than surface water, and most of the iron is present as ferrous ions. When groundwater is treated with water, it is necessary to remove ferrous ions, and for example, there is a method described in Patent Document 1.

特開平9−1157号公報Japanese Patent Laid-Open No. 9-1157

一般的に、被処理水から第1鉄イオンを除去するには、被処理水に塩素を注入して第1鉄イオンを酸化させ、水酸化鉄とした後に除去するという方法が採られることが多い。この方法は、酸化速度が速いこと、酸化設備をコンパクトにすることができるという利点があるものの、この方法で形成される水酸化鉄粒子は粗粒・低密化する一方、微細なまま残留する粒子が多いため、凝集沈殿における水酸化鉄粒子の除去率が低いという問題があった。また、沈澱処理に当たって微細粒子の除去率を向上させるため、多量の凝集剤を注入しているため、形成されるフロックは益々粗粒・低密化するという問題があった。そのため、ろ過処理で用いられてきた、細粒・高密なオキシ水酸化鉄を形成することのできる酸化方法を採用しても、凝集処理後のフロックは粗粒・低密化してしまうため、同酸化法が凝集沈澱に適用されることはなかった。更に、沈殿水中に残留する微フロックの数が多く、これに起因してろ過処理水中への微フロックの漏洩量が多くなるだけでなく、砂層のろ材表面を被覆するためマンガンの除去効果が低くなるという問題があった。その結果、ろ過池の洗浄頻度が多くなり、発生汚泥の沈降濃縮率が極めて悪かった。そのため、汚泥処理が困難であり、処理コストの増大も招いていた。   Generally, in order to remove ferrous ions from the water to be treated, a method of injecting chlorine into the water to be treated to oxidize the ferrous ions to form iron hydroxide and then remove the ferrous ions may be employed. Many. Although this method has the advantage that the oxidation rate is high and the oxidation equipment can be made compact, the iron hydroxide particles formed by this method become coarse and low-density, while remaining fine. Since there are many particles, there was a problem that the removal rate of iron hydroxide particles in the coagulation sedimentation was low. In addition, since a large amount of aggregating agent is injected to improve the removal rate of fine particles during the precipitation treatment, there is a problem that the flocs formed become coarser and less dense. Therefore, even if the oxidation method that can form fine-grained and high-density iron oxyhydroxide, which has been used in filtration treatment, is adopted, flocs after agglomeration treatment become coarse-grained and low-density. The oxidation method has not been applied to coagulation precipitation. In addition, the number of fine flocs remaining in the precipitated water is large, which not only increases the amount of fine flocs leaking into the filtered water, but also lowers the manganese removal effect because it coats the filter medium surface of the sand layer. There was a problem of becoming. As a result, the frequency of washing the filtration pond increased and the sedimentation concentration rate of the generated sludge was extremely poor. Therefore, the sludge treatment is difficult and the treatment cost is increased.

本発明は、上記問題を解決するためになされたものであり、第1鉄イオンを含有する被処理水の水処理を効果的に行うことができる水処理方法を提供することを目的とする。   This invention is made | formed in order to solve the said problem, and it aims at providing the water treatment method which can perform the water treatment of the to-be-processed water containing a ferrous ion effectively.

本発明に係る水処理方法は、被処理水に含有される第1鉄イオンを酸化する第1ステップと、被処理水に担体を付与し、当該担体の表面に酸化後のオキシ水酸化鉄を析出させるとともに、被処理水の流動によってオキシ水酸化鉄を前記担体の表面から剥離する第2ステップと、被処理水に無機凝集剤を注入する第3ステップと、被処理水を急速攪拌する第4ステップと、被処理水を上向流を伴う沈殿池に導入し、当該沈澱池内において、細粒・高密な母フロックを高濃度に集積したスラッジ・ブランケット層と、清澄分離ゾーンに配置された複数段の上向流傾斜板もしくは上向流傾斜管の間を通過させる第5ステップとを備えている。   The water treatment method according to the present invention includes a first step of oxidizing ferrous ions contained in water to be treated, a carrier provided to the water to be treated, and oxidized iron oxyhydroxide on the surface of the carrier. A second step of separating the iron oxyhydroxide from the surface of the carrier by the flow of the water to be treated, a third step of injecting an inorganic flocculant into the water to be treated, and a step of rapidly stirring the water to be treated. In 4 steps, water to be treated was introduced into a sedimentation basin with an upward flow, and in the sedimentation basin, a sludge / blanket layer in which fine grains and dense mother floc were accumulated at a high concentration, and a clarification separation zone were arranged. And a fifth step for allowing passage between a plurality of stages of upward-flow inclined plates or upward-flow inclined pipes.

従来は、急速攪拌強度G値を低く、急速攪拌時間T値を短く取り、粒子ならびに微フロックの集塊化を凝集剤粒子の粗粒・低密化の際の付着力のみに依存してきた。その結果、フロックの粗粒・低密化、微細な水酸化鉄粒子及び微フロックの沈澱水中への残留などの問題点の多くは、第3、第4ステップの凝集条件に起因している。問題点の解決は、Me/SS比を低く保ち、攪拌条件を強化することが重要である。 Conventionally, rapid stirring intensity G R value low, taking short rapid stirring time T R values, have relied particles and fine flocks agglomeration only adhesion during coarse, low densification coagulant particles It was. As a result, many of the problems such as coarse and low floc flocs, fine iron hydroxide particles and fine floc remaining in the precipitated water are caused by the aggregation conditions of the third and fourth steps. To solve the problem, it is important to keep the Me / SS ratio low and strengthen the stirring conditions.

上記水処理方法において、第5ステップは、従来の第3、第4ステップで形成されたフロックを自由沈降下に分離する横流沈澱池もしくは粗粒・低密な母フロックを集積するスラッジ・ブランケット型高速凝集沈澱池に替えて、細粒・高密な母フロックを高濃度に集積するスラッジ・ブランケット型高速凝集沈澱池を実現可能としたことを特徴としている。   In the water treatment method, the fifth step is a cross-flow sedimentation basin that separates the flocs formed in the conventional third and fourth steps under free settling, or a sludge / blanket type that accumulates coarse and low-density mother flocs. Instead of a high-speed coagulation sedimentation basin, it is possible to realize a sludge / blanket type high-speed coagulation sedimentation basin that accumulates fine grains and dense mother floc in high concentration.

上記水処理方法において、第2ステップでは、被処理水を上向流を伴う水槽内で行うことができる。   In the water treatment method, in the second step, water to be treated can be performed in a water tank with an upward flow.

第2ステップで担体上に析出した細粒・高密なオキシ水酸化鉄を、第3、第4ステップの凝集処理過程ならびに第5ステップの沈澱分離過程において、細粒・高密を保持しつつ微細な凝集微フロックを高度に分離することができる。   The fine and high-density iron oxyhydroxide precipitated on the support in the second step is fine while maintaining the fine and high density in the aggregation process of the third and fourth steps and the precipitation separation process of the fifth step. Agglomerated fine flocs can be highly separated.

上記水処理方法において、第4ステップでは、被処理水を2以上の区画に直列に分割され、順次移行し得るように急速攪拌槽を通過させることで行うことができる。   In the water treatment method, in the fourth step, the water to be treated can be divided into two or more sections in series and passed through a rapid stirring tank so that the water can be sequentially transferred.

第3ステップでは、無機凝集剤中の金属含有量Meと、急速攪拌槽に流入させる被処理水中のSS濃度との比であるMe/SS比が0.1以下であり、更に急速攪拌後の凝集剤粒子の残留量を示す指標であるSTRが2.5以下となるように、無機凝集剤を注入することができる。   In the third step, the Me / SS ratio, which is the ratio of the metal content Me in the inorganic flocculant and the SS concentration in the water to be treated flowing into the rapid stirring tank, is 0.1 or less, and further after rapid stirring. The inorganic flocculant can be injected so that STR, which is an index indicating the residual amount of flocculant particles, is 2.5 or less.

また、第4ステップにおける急速攪拌強度G値が150s−1以上とし、急速攪拌時間T値は3分以上とすることができる。 Further, rapid agitation intensity G R value in the fourth step is set to 150s -1 over rapid stirring time T R value can be 3 minutes or more.

第5ステップにおける上向流傾斜板は、傾斜板の相互の間隔である取付ピッチが50mm以下とすることができる。   The upward flow inclined plate in the fifth step may have a mounting pitch of 50 mm or less, which is the interval between the inclined plates.

また、第5ステップにおける急速攪拌槽出口水に対して10mg/L以下の無機凝集剤を再注入することができる。   Moreover, 10 mg / L or less inorganic flocculant can be reinject | poured with respect to the rapid stirring tank exit water in a 5th step.

また、第5ステップにおけるスラッジ・ブランケットの母フロックの濃縮性を示す指標SDI値は、4.0mg/mL以上、好ましくは6.0mg/mL以上とすることができる。   The index SDI value indicating the concentration of the mother floc of the sludge / blanket in the fifth step can be 4.0 mg / mL or more, preferably 6.0 mg / mL or more.

また、本発明に係る水処理システムは、被処理水に含有される第1鉄イオンを酸化する酸化手段と、担体が充填され、当該担体の表面に酸化後のオキシ水酸化鉄を析出させるとともに、被処理水の流動によってオキシ水酸化鉄を前記担体の表面から剥離する流動槽と、被処理水に無機凝集剤を注入する無機凝集剤注入手段と、急速攪拌槽と、細粒・高密な母フロックを高濃度に集積したスラッジ・ブランケット層と清澄分離ゾーンとを有し、清澄分離ゾーン内に複数段の上向流傾斜板もしくは上向流傾斜管を設けた沈殿池と、を備えている。   Moreover, the water treatment system according to the present invention includes an oxidizing means for oxidizing ferrous ions contained in the water to be treated and a support, and deposits oxidized iron oxyhydroxide on the surface of the support. A fluid tank for peeling iron oxyhydroxide from the surface of the carrier by the flow of the treated water, an inorganic flocculant injecting means for injecting the inorganic flocculant into the treated water, a rapid stirring tank, A sedimentation basin having a sludge blanket layer in which mother floc is accumulated at a high concentration and a clarification separation zone, and a plurality of upwardly inclined plates or upwardly inclined tubes in the clarification separation zone. Yes.

上記水処理システムは、前記流動槽には、被処理水を上向させる上向流が流れているものとすることができる。   In the water treatment system, an upward flow that causes the water to be treated to flow upward may flow in the fluid tank.

上記水処理システムは、前記急速攪拌槽が2以上の区画に直列に分割され、順次移行し得るように設けられているものとすることができる。   The said water treatment system shall be provided so that the said rapid stirring tank may be divided | segmented into two or more divisions in series, and it can transfer to it sequentially.

上記水処理システムは、前記無機凝集剤注入手段では、前記無機凝集剤中の金属含有量Meと、前記急速攪拌槽に流入させる被処理水中のSS濃度との比であるMe/SS比が0.1以下であり、更に急速攪拌後の凝集剤粒子の残留量を示す指標であるSTRが2.5以下となるように、無機凝集剤が注入されるものとすることができる。   In the water treatment system, in the inorganic flocculant injection means, the Me / SS ratio, which is the ratio between the metal content Me in the inorganic flocculant and the SS concentration in the water to be treated flowing into the rapid stirring tank, is 0. The inorganic flocculant can be injected so that the STR, which is an index indicating the residual amount of the flocculant particles after rapid stirring, is 2.5 or less.

上記水処理システムは、前記急速攪拌槽では、急速攪拌強度G値が150s−1以上であり、急速攪拌時間T値は3分以上であるとすることができる。 The water treatment system, wherein the rapid agitation tank, and the rapid agitation intensity G R value 150s -1 or more, rapid stirring time T R values may be not less than 3 minutes.

上記水処理システムは、前記上向流傾斜板は、傾斜板の相互の間隔である取付ピッチが50mm以下であるものとすることができる。   In the water treatment system, the upward flow inclined plate may have an attachment pitch which is an interval between the inclined plates of 50 mm or less.

上記水処理システムは、前記急速攪拌槽出口水に対して10mg/L以下の無機凝集剤を再注入する、注入手段をさらに備えているものとすることができる。   The water treatment system may further include injection means for reinjecting 10 mg / L or less of the inorganic flocculant with respect to the rapid stirring tank outlet water.

上記水処理システムは、前記沈殿池における、スラッジ・ブランケットの母フロックの濃縮性を示す指標SDI値は、4.0mg/mL以上、好ましくは6.0mg/mL以上であるものとすることができる。   In the water treatment system, the index SDI value indicating the concentration of sludge blanket mother floc in the sedimentation basin may be 4.0 mg / mL or more, preferably 6.0 mg / mL or more. .

本発明に係る水処理方法によれば、効果的な水処理が可能となる。   The water treatment method according to the present invention enables effective water treatment.

本発明の一実施形態における水処理システムを示す説明図である。It is explanatory drawing which shows the water treatment system in one Embodiment of this invention.

以下、本発明に係る水処理方法の一実施形態について説明する。図1は、本実施形態に係る水処理方法を実施するシステムの概略構成図である。   Hereinafter, an embodiment of a water treatment method according to the present invention will be described. FIG. 1 is a schematic configuration diagram of a system that performs a water treatment method according to the present embodiment.

図1に示すように、このシステムは、第1鉄イオンを含む地下水などの被処理水を処理するものである。ここでは、第1鉄イオンを含有する地下水の水処理について説明する。まず、処理対象となる地下水が流入する流入管1には、空気2が注入される(酸化手段)。これにより、流入管1が連結される第1槽の気液接触槽3においては、第1鉄イオンの酸化が行われる。酸化が行われた被処理水は、第2槽の触媒酸化槽(流動槽)4に導入される。第2槽の触媒酸化槽4には、上向流が形成されており、被処理水は、第2槽の触媒酸化槽4の下方から導入され上方へ向かう。この過程において、第2槽の触媒酸化槽4には、担体5が充填されている。担体は、例えば、比重1以上の砂粒をはじめ、合成樹脂,ガラス等にすることができる。また、単位体積当たりの表面積の大きな球形、または不定形粒子であることが好ましく、上向流によって流動できるようなものであればよい。担体の触媒作用により、酸化されたオキシ水酸化鉄は、担体の表面に析出する。そして、被処理水が上向する過程において、流動下の担体は、相互のせん断作用を受け、その結果、担体表面のオキシ水酸化鉄が剥離する。こうして、剥離したオキシ水酸化鉄を含む被処理水は、第2槽の触媒酸化槽4の上部から排出される。なお、オキシ水酸化鉄は鉄錆びそのものであり、一方水酸化第二鉄は綿状の凝集フロックであり、その密度は大きな違いがある。   As shown in FIG. 1, this system treats water to be treated such as ground water containing ferrous ions. Here, water treatment of groundwater containing ferrous ions will be described. First, air 2 is injected into the inflow pipe 1 into which groundwater to be treated flows (oxidation means). Thereby, in the gas-liquid contact tank 3 of the first tank to which the inflow pipe 1 is connected, ferrous ions are oxidized. The treated water that has been oxidized is introduced into the catalytic oxidation tank (fluid tank) 4 of the second tank. An upward flow is formed in the catalytic oxidation tank 4 of the second tank, and the water to be treated is introduced from below the catalytic oxidation tank 4 of the second tank and moves upward. In this process, the catalyst oxidation tank 4 of the second tank is filled with the carrier 5. The carrier can be, for example, sand particles having a specific gravity of 1 or more, synthetic resin, glass or the like. Further, it is preferably a spherical or irregular shaped particle having a large surface area per unit volume, as long as it can flow by upward flow. Oxidized iron oxyhydroxide precipitates on the surface of the support due to the catalytic action of the support. In the process in which the water to be treated is upward, the carrier under flow is subjected to a mutual shearing action, and as a result, the iron oxyhydroxide on the surface of the carrier is peeled off. Thus, the water to be treated containing the separated iron oxyhydroxide is discharged from the upper part of the catalytic oxidation tank 4 of the second tank. It should be noted that iron oxyhydroxide is iron rust itself, while ferric hydroxide is a flocculent floc and has a large difference in density.

続いて、この被処理水には、無機凝集剤6が注入され(無機凝集剤注入手段)、その後、第3槽7に導入される。ここで用いられる無機凝集剤としては、例えば、硫酸アルミニウム、鉄と無機アニオンポリマーである重合ケイ酸(シリカ)とを組み合わせた鉄−シリカ無機高分子凝集剤(PSI)、ポリ塩化アルミニウム凝集剤(PAC)などの無機凝集剤などが例示できる。さらに、それら無機凝集剤の使用に加えて、有機性高分子凝集剤を併用することもできる。   Subsequently, the inorganic flocculant 6 is injected into this water to be treated (inorganic flocculant injection means) and then introduced into the third tank 7. Examples of the inorganic flocculant used here include iron-silica inorganic polymer flocculant (PSI), which is a combination of aluminum sulfate, iron and polymerized silicic acid (silica), which is an inorganic anionic polymer, and polyaluminum chloride flocculant ( Examples thereof include inorganic flocculants such as PAC). Furthermore, in addition to the use of these inorganic flocculants, organic polymer flocculants can be used in combination.

第3槽7は、急速攪拌槽であり、3つの処理槽(サブ処理槽)から構成されており、それぞれにモータ8で回転する攪拌翼が設けられている。なお、この例では、3つの処理槽を設けているが、2つ、またはそれ以上であることが好ましい。それは、同一の容量、攪拌強度の下では、槽分割数を増すほど微細粒子の数を低減化できるからである。ここでは、無機凝集剤が、急速攪拌槽7に導入される前の原水に注入されているが、急速攪拌槽7に導入後の被処理水に無機凝集剤を注入してもよい。   The third tank 7 is a rapid stirring tank, and is composed of three processing tanks (sub-processing tanks), each having a stirring blade that is rotated by a motor 8. In this example, three treatment tanks are provided, but two or more are preferable. This is because, under the same volume and stirring strength, the number of fine particles can be reduced as the number of tank divisions is increased. Here, the inorganic flocculant is injected into the raw water before being introduced into the rapid stirring tank 7, but the inorganic flocculant may be injected into the water to be treated after being introduced into the rapid stirring tank 7.

そして、無機凝集剤の注入量を調整した上で、急速攪拌を行うと、被処理水中に存在する懸濁粒子と無機凝集剤中の凝集剤粒子とが衝突し、概ね1〜60μmの所定の粒度分布を有する微フロックが形成される。さらに、本実施形態においては、急速攪拌槽の出口において被処理水中の凝集剤粒子の水中残留量を示すSTRが2.0以下となるように無機凝集剤の注入率と急速攪拌強度を制御する。STRとは、Suction Time Ratio:被処理水と同温・等量の蒸留水を、同一の吸引の程度によって同一のろ紙を吸引させた場合に、被処理水の吸引時間をTsとし、蒸留水の吸引時間をTvとした場合、Ts/Tvによって表現される指標である。   Then, when the rapid stirring is performed after adjusting the injection amount of the inorganic flocculant, the suspended particles present in the water to be treated collide with the flocculant particles in the inorganic flocculant, and a predetermined amount of about 1 to 60 μm is obtained. A fine floc having a particle size distribution is formed. Furthermore, in this embodiment, the injection rate of the inorganic flocculant and the rapid stirring strength are controlled so that the STR indicating the residual amount of the flocculant particles in the water to be treated is 2.0 or less at the outlet of the rapid stirring tank. . STR is Suction Time Ratio: When the same filter paper is aspirated with the same temperature and the same amount of distilled water as the treated water, the suction time of treated water is Ts, and distilled water Is the index expressed by Ts / Tv.

ここで無機凝集剤の注入率を上昇すると、高い急速攪拌強度を採用したとしても、急速攪拌後のSTRは高くなってしまい、後段のスラッジ・ブランケット層内で凝集剤粒子は粗粒・低密化してしまう。凝集剤粒子は被処理水中に存在する懸濁粒子の集塊化の際に微フロック中に取込まれて減少するので、無機凝集剤の注入率を可能な限り制限し、急速攪拌強度、急速攪拌時間を高めることによって、STRが2.5以下のより低い値とすることが好ましい。   Here, when the injection rate of the inorganic flocculant is increased, even if a high rapid stirring strength is adopted, the STR after the rapid stirring becomes high, and the flocculant particles in the subsequent sludge / blanket layer are coarse / low density. It will become. Since the flocculant particles are reduced by being incorporated into the fine flocs during the agglomeration of the suspended particles present in the water to be treated, the injection rate of the inorganic flocculant is limited as much as possible, rapid stirring strength, By increasing the stirring time, the STR is preferably set to a lower value of 2.5 or less.

被処理水中に存在する懸濁粒子の除去効果は、次の衝突頻度式で表現されている。   The effect of removing suspended particles present in the water to be treated is expressed by the following collision frequency formula.

dni/dt = α×β×ni×nj (1)
ここで、α:衝突効率、β:衝突頻度、ni:流入粒子数、nj:既存フロック数
流入するi粒子の除去速度は、流入粒子iが既存フロックjと衝突する回数βと衝突の際に付着する割合αによって決まり、4つのファクターの積に比例する。付着は凝集剤粒子が与え、従来は衝突頻度βを向上させるための急速攪拌は行われなかったり、設置されたとしても急速攪拌強度GR値、急速攪拌時間TR値が低くかった。急速攪拌槽内の既存フロック数njの上昇は実質的に期待できないので、従来は凝集剤注入率を高めて付着力、つまり衝突効率αの上昇のみに依存する運転法が取られてきた。そのため、後続のスラッジ・ブランケット母フロックの粗粒・低密化は避けられなかった。そのため細粒・高密なオキシ水酸化鉄を形成させる意義はなく、より手軽な塩素酸化法が採用されるという背景があった。
dn i / dt = α × β × n i × n j (1)
Here, α: collision efficiency, β: collision frequency, n i : number of inflowing particles, n j : number of existing flocs The removal speed of inflowing i particles is the number of collisions β of inflowing particles i with existing floc j and the number of collisions It is determined by the rate α that adheres to the product and is proportional to the product of four factors. Adhesion was given by the flocculant particles, and conventionally, rapid stirring for improving the collision frequency β was not performed or even if installed, the rapid stirring strength GR value and the rapid stirring time TR value were low. Since the increase in the number of existing flocs n j in the rapid agitation tank cannot be substantially expected, conventionally, an operation method that relies only on the increase of the coagulant injection rate and the adhesion force, that is, the collision efficiency α has been taken. For this reason, the subsequent sludge and blanket mother flocs are inevitably coarse and low in density. Therefore, there is no significance of forming fine-grained and dense iron oxyhydroxide, and there was a background that a simpler chlorine oxidation method was adopted.

STRの算出方法としては、例えば、試料水500mL及びこれと同温・等量の蒸留水をそれぞれ合計45mmのメンブランろ紙(平均孔径0.45μm、多孔度38%であるADVANTEC社製のろ紙)を装着した吸引装置(具体的には減圧容器、フィルターフォルダー、真空到達度26.7kPaである吸引ポンプを備えた装置)にて吸引する時間をそれぞれT(sec)及びT(sec)とした場合のSTR=T/Tの比率とすることができる。 As a calculation method of STR, for example, 500 mL of sample water and distilled water having the same temperature and the same amount as this are respectively used for membrane filter paper of 45 mm in total (filter paper manufactured by ADVANTEC having an average pore diameter of 0.45 μm and a porosity of 38%). The suction time with the attached suction device (specifically, a device equipped with a vacuum container, a filter folder, and a suction pump with a vacuum reach of 26.7 kPa) was defined as T s (sec) and T v (sec), respectively. STR = T s / T v ratio in the case.

上記のように、STRを2.5以下となるように、無機凝集剤が注入され、急速攪拌が行われると、被処理水中に含まれる微細な懸濁粒子の低減化と同時に、微フロックの集塊化と高密化が達成される。   As described above, when an inorganic flocculant is injected so that the STR is 2.5 or less and rapid stirring is performed, the fine suspended particles contained in the water to be treated are simultaneously reduced and the fine flocs are reduced. Agglomeration and densification are achieved.

次いで、前記微フロックを含む被処理水を、細粒・高密な母フロックが高度に集積されたスラッジ・ブランケット層に流入させて、急速攪拌過程で形成された細粒・高密な微フロックを母フロックに抑留させる。   Next, the water to be treated containing the fine flocs is allowed to flow into a sludge / blanket layer in which fine grains / high density mother flocs are highly accumulated, and fine grains / high density fine flocs formed in the rapid stirring process are used as mother substances. Detain in Flock.

ここでの母フロックによる微フロックの抑留に関しても、衝突頻度式で説明できる。まずSTRが2.5以上になると、凝集剤粒子はスラッジ・ブランケット層内で粗粒・低密化し、細粒・高密な母フロックを相互に付着させて粗大化させ、母フロック数njを減少させる。この時、母フロックの濃縮性は低下する。 The inflection of the fine flock by the mother flock here can also be explained by the collision frequency formula. First, STR is 2.5 or more, coagulant particles are coarse, low densification in the sludge blanket layer, depositing a fine-dense mother floc mutually to coarsening, the mother flock number n j Decrease. At this time, the concentration of the mother floc decreases.

急速攪拌過程で形成された細粒・高密な微フロックを母フロックに抑留させ、STRを2.5以下と低く保つと、母フロックは小径ながらも、大きな沈降速度と高い濃縮性を保持することになる。スラッジ・ブランケット層内と急速攪拌過程との相違は、桁違いに高い母フロックが集積されていることである。しかも母フロック相互の間隙は狭小化していることから、周囲を通過する流入微フロックとの間に極めて高い衝突頻度βが与えられ除去率の向上が図られる。   If the fine flocs and dense flocs formed during the rapid stirring process are retained in the mother floc and the STR is kept low at 2.5 or less, the mother floc retains a large sedimentation rate and high concentration even though it has a small diameter. become. The difference between the sludge blanket layer and the rapid agitation process is that an extremely high mother floc is accumulated. Moreover, since the gap between the mother flocs is narrowed, an extremely high collision frequency β is given to the inflowing fine floc passing through the periphery, and the removal rate is improved.

つまり衝突頻度式の高濃度の母フロック数njと高い衝突頻度βから、スラッジ・ブランケット層は、高い付着力を必要とすることなく高い衝突効率αを得ることができるという粒子分離特性を有している。その傾向は、流入粒子が径3.0μm以上となるとより高くなる。従って、急速攪拌過程の集塊化が重要な意味を持つ。 In other words, the sludge / blanket layer has a particle separation characteristic that can obtain a high collision efficiency α without requiring high adhesion force from the high concentration mother floc number n j and high collision frequency β in the collision frequency formula. is doing. This tendency becomes higher when the inflowing particles have a diameter of 3.0 μm or more. Therefore, agglomeration during the rapid stirring process is important.

ところが、STRを2.5以下と低く保つ条件は、母フロックを細粒・高密に維持することを目的としているが、一部の母フロックは流動層内の剪断力によって破壊され、母フロック破片が沈澱水中に流出するようになる。   However, the condition for keeping the STR as low as 2.5 or less is intended to maintain the mother floc finely and densely, but a part of the mother floc is destroyed by the shearing force in the fluidized bed, and the mother floc fragments Will flow into the sedimentation water.

従来、以上のような凝集条件は、沈澱水濁度を高めるとして採用してはならないとされてきた。しかし、元来母フロック破片を含む微フロックは後続のろ過処理では分離されている粒子である。そこで、上向流傾斜板の取付ピッチを狭めてゆくと、傾斜板下端の剪断作用によって、傾斜板抑留面に向かう渦流の形成が確認され、同渦流が輸送する母フロック破片を含む微フロックは、傾斜板抑留面上の既存フロックと衝突し、砂ろ過と同じ分離機構によって高度に分離可能となる。つまり、細粒・高密な微フロックとは、大きな付着力を持たないため、そのような形状と大きな沈降速度を持つ。傾斜板抑留面上の既存フロックと衝突して、徐々に径を増した微フロックは、傾斜板との間の付着力が低いため容易に滑落することができる。その際、下方に抑留された微フロックを巻き込んで、更に径を増すことでより大きな沈降速度を得て、スラッジ・ブランケット層内に回収される。   Conventionally, it has been considered that the agglomeration conditions as described above should not be adopted as increasing the turbidity of the precipitated water. However, the fine flocs originally containing the mother floc fragments are particles that have been separated in subsequent filtration processes. Therefore, when the mounting pitch of the upward flow inclined plate is narrowed, the formation of a vortex toward the inclined plate retaining surface is confirmed by the shearing action of the lower end of the inclined plate, and the fine flock including the mother flock fragments transported by the eddy current is It collides with existing flocs on the inclined plate retaining surface and becomes highly separable by the same separation mechanism as sand filtration. That is, fine grains and high-density fine flocs do not have a large adhesive force, and thus have such a shape and a large sedimentation speed. The fine flock, which gradually increases in diameter by colliding with the existing floc on the inclined plate retaining surface, can easily slide down because of its low adhesive force with the inclined plate. At that time, a fine flock restrained downward is taken up, and the diameter is further increased to obtain a larger settling velocity, which is collected in the sludge / blanket layer.

つまり、急速攪拌過程から上向流傾斜板における分離に至るまで、従来採用を避けるべきとされた集塊化における短所を全て長所に変えることによって本発明を考案するに至っている。   In other words, the present invention has been devised by changing all the disadvantages in agglomeration, which should be avoided in the past, from rapid stirring to separation in an upward flow inclined plate.

また、各処理槽において行われる急速攪拌は、急速攪拌強度であるG値を150sec−1以上とすることが好ましい。このときの、急速攪拌時間であるT値は、1分以上にすることが好ましく、3分以上にすることがさらに好ましい。なお、G値は、攪拌係数をC、攪拌翼の面積をA(m2)、攪拌翼の周辺速度をv(m/sec)、動粘性係数をγ(m2/sec)、攪拌槽の体積(容量)をV(m3)とした場合、以下の式で算出される。 Further, rapid agitation is carried out in each processing tank, it is preferable that the 150 sec -1 or more G R value is rapid stirring intensity. At this time, T R value is rapid stirring time is preferably 1 minute or more, more preferably be at least 3 minutes. Incidentally, G R value, the agitation coefficient C, and the area of the stirring blade A (m 2), the peripheral speed of the stirring blade v (m / sec), the kinematic viscosity γ (m 2 / sec), stirred tank When the volume (capacity) of V is V (m 3 ), it is calculated by the following formula.

Figure 2010274180
Figure 2010274180

一般に、急速攪拌を行う各処理槽において、高密度化された微フロックを得る第一の条件は、低い凝集剤注入率の採用である。同条件において、攪拌強度Gを大きくし、しかも攪拌時間Tを大きくすると、凝集剤粒子は、懸濁粒子及び微フロックの衝突の際に付着を与えながら消費されるので、STRは低下してゆき、微フロックの密度は更に高くなる。ところが、急速攪拌後に、STRが所定の数値を超え、無機凝集剤が多量に残留するような高い凝集剤注入率を採用すると、その後のフロック化工程の段階において、凝集剤粒子の粗粒化、低密度化が避けられないため、急速攪拌で微細化、高密度化した微フロックは、必然的に粗粒化し、かつ低密度化することにならざるを得ない。したがって、STRを2.5以下とすることによって、フロックが粗粒化し、かつ低密度化することを防止することができる。 In general, in each treatment tank that performs rapid stirring, the first condition for obtaining a fine floc with a high density is to employ a low coagulant injection rate. In the same conditions, to increase the agitation intensity G R, yet by increasing the stirring time T R, coagulant particles, since it is consumed while providing adhesion upon impact of the suspended particles and fine flocks, STR decreases As a result, the density of fine flocs is further increased. However, when a high flocculant injection rate is employed such that the STR exceeds a predetermined value and a large amount of inorganic flocculant remains after rapid stirring, coarsening of flocculant particles in the subsequent flocking step, Since the reduction in density is inevitable, fine flocs that have been refined and densified by rapid stirring inevitably become coarser and lower in density. Therefore, by setting the STR to 2.5 or less, it is possible to prevent the floc from being coarsened and reduced in density.

また、この急速攪拌に先立って注入される無機凝集剤については、次のようにすることが好ましい。すなわち、無機凝集剤中の金属含有量Meと、急速攪拌槽に流入させる被処理水中のSS濃度との比であるMe/SS比が0.1以下であり、更に急速攪拌後の凝集剤粒子の残留量を示す指標であるSTRが2.5以下となるように、無機凝集剤を注入することが好ましい。   The inorganic flocculant injected prior to the rapid stirring is preferably as follows. That is, the Me / SS ratio, which is the ratio of the metal content Me in the inorganic flocculant and the SS concentration in the water to be treated flowing into the rapid stirring tank, is 0.1 or less, and further the flocculant particles after rapid stirring It is preferable to inject the inorganic flocculant so that the STR, which is an index indicating the residual amount, is 2.5 or less.

こうして、急速攪拌槽7で処理された被処理水は、スラッジ・ブランケット型の高速凝集沈殿池9に導入される。この沈殿池には上向流が形成され、被処理水は下方から導入されて上方から排出されるようになっている。沈殿池における被処理水の経路の上部の清澄分離ゾーン内には、複数段の傾斜板11が配置されている。傾斜板11の間隔は、例えば、50mm以下にすることが好ましい。上記のように、急速攪拌槽7では、細粒高密化されたフロックが形成されるため、これらは傾斜板11において効果的に除去することができる。なお、高速沈殿池9は、公知の装置形状を概ね踏襲でき、コンセントレータ12,汚泥引き抜き管14、沈殿水流出管13が設けている。しかし、その実態は全く異なる装置と言える。つまり、従来の凝集沈澱処理においては、1)径の大きなフロックの形成を前提としていた:「フロックの沈降速度Vを大きくして、除去率をより良くしようという試みは、できるだけ大きく、沈降速度が大きなフロックを作ろうとするものであり、凝集剤や凝集補助剤の研究、凝集操作の在り方の研究等が行われてきた。」2)径の大きなフロックは剪断力に耐えられないので、攪拌強度には上限がある:「フロック形成の段階では、G値を大きくするとフロックの成長速度は増大するが、一方では、剪断力の増加によってフロックの破壊が起るので、G値を大きくするのは限界がある。」とされてきた。この2つの考え方が従来の凝集沈澱処理の効率が低く、処理コストの上昇要因となっていた。   Thus, the water to be treated treated in the rapid stirring tank 7 is introduced into the sludge / blanket type high-speed coagulation sedimentation basin 9. An upward flow is formed in the sedimentation basin, and the water to be treated is introduced from below and discharged from above. A plurality of inclined plates 11 are arranged in the clarification separation zone at the upper part of the path of the water to be treated in the settling basin. The interval between the inclined plates 11 is preferably 50 mm or less, for example. As described above, in the rapid agitation tank 7, flocs with finer and higher density are formed, and these can be effectively removed by the inclined plate 11. The high-speed sedimentation basin 9 can generally follow a known device shape, and is provided with a concentrator 12, a sludge extraction pipe 14, and a sedimentation water outflow pipe 13. However, it can be said that the actual situation is completely different. In other words, in the conventional coagulation sedimentation treatment, 1) it was premised on the formation of flocs having a large diameter: “The attempt to improve the removal rate by increasing the sedimentation velocity V of the floc is as large as possible, and the sedimentation velocity is as high as possible. It is intended to make large flocs, and research on flocculants and coagulants, research on the state of coagulation operations, etc. has been carried out. ”2) Since flocs with large diameters cannot withstand shearing forces, stirring strength There is an upper limit: “In the flock formation stage, increasing the G value increases the floc growth rate, but on the other hand, the increase in shear force causes the floc to break, so increasing the G value There is a limit. " These two ways of thinking have resulted in low efficiency of the conventional coagulation-precipitation treatment, which has been a factor in increasing the treatment cost.

発明者は、凝集処理は被処理水中に含まれる最小懸濁粒子の除去技術であり、その集塊化特性ならびに分離の特性は共に上述の式(1)の衝突頻度式に依存することを確認した。従来の凝集沈澱法は、フロックの破壊が起こるとしてG値を抑えてきたが、同式では衝突頻度βを低く抑えて、凝集剤注入率を高めることで、その付着力に関わる衝突効率αに強く依存した運転法であったと指摘できる。しかも攪拌槽内の既存フロック数njは、集塊化が進行するほど減少し、フロック形成速度(dn/dt)の向上に殆ど寄与しない。   The inventor confirmed that the agglomeration treatment is a technique for removing the smallest suspended particles contained in the water to be treated, and that the agglomeration characteristics and the separation characteristics both depend on the collision frequency formula of the above formula (1). did. The conventional coagulation-precipitation method has suppressed the G value because floc breakage occurs, but in the same formula, the collision frequency β is kept low, and the coagulant injection rate is increased, thereby improving the collision efficiency α related to the adhesion force. It can be pointed out that the driving method was strongly dependent. Moreover, the existing number of flocs nj in the agitation tank decreases as the agglomeration progresses, and hardly contributes to the improvement of the floc formation rate (dn / dt).

ところが、低い凝集剤注入率と高い衝突頻度を与えることのできる凝集条件を採用すると、個々の微フロックは自由沈降下では分離できないが、既存フロックである母フロックを高濃度に集積したスラッジ・ブランケットは、径3.0μm以上の微フロックを97%以上の高率で抑留し、その時形成される細粒・高密な微フロックは、細粒・高密な母フロックを形成し、径の大きなフロックを遥かに上回る大きな群沈降速度と高い濃縮性を有することを見出した。つまり衝突頻度式の既存フロック数及び衝突頻度βを高めることによって、抑留つまり分離効率は飛躍的に向上し、径の大きなフロックを形成することなく沈殿分離を実現できる。   However, if the agglomeration conditions that can give a low flocculant injection rate and high collision frequency are adopted, individual fine flocs cannot be separated under free settling, but sludge blankets in which the existing flocs are accumulated at high concentrations. Suppresses fine flocs with a diameter of 3.0 μm or more at a high rate of 97% or more, and the fine and dense fine flocs formed at that time form fine and dense mother flocs, It has been found that it has a large group sedimentation rate far exceeding that of high concentration. That is, by increasing the number of existing flocs and the collision frequency β in the collision frequency formula, the retention, that is, the separation efficiency is dramatically improved, and precipitation separation can be realized without forming a floc having a large diameter.

なお、この凝集条件は、2以上の区画に直列に分割され、順次移行し得るようにした急速攪拌槽を用いるとともに、Me/SSを0.1以下の低い凝集剤注入率を採用し、G値150s−1以上、T値3分以上で、被処理水中に含まれる最小懸濁粒子数と凝集剤粒子の水中残留量(STR)の低減化を図ることによって達成される。その結果、母フロックの濃縮性を示す指標SDI値は上昇する。 Note that this agglomeration condition uses a rapid agitation tank that is divided in series into two or more compartments so that it can be sequentially transferred, and adopts a low coagulant injection rate of Me / SS of 0.1 or less. R value 150s -1 or more, at T R value 3 minutes or more, is achieved by achieving a reduction in water residual amount of minimum suspended particle number and the aggregating agent particles contained in the water to be treated (STR). As a result, the index SDI value indicating the concentration of the mother floc increases.

この凝集条件では、従来のスラッジ・ブランケット型高速凝集沈澱池の場合、清澄ゾーンは自由沈降による分離であるため、母フロックの破壊に伴って流出する母フロック破片などの沈澱水中への流出により、沈澱水濁度は高くなる。そのため「攪拌強度の上昇はフロックを破壊する」との説明に繋がっていた。また清澄ゾーンには通常傾斜板あるいは傾斜管などが採用されているが、取付ピッチ(傾斜板間の間隔)は広く、分離効果は高くなかった。   In this flocculation condition, in the case of the conventional sludge blanket type high-speed flocculation sedimentation basin, the clarification zone is separated by free sedimentation, so by outflow into the sediment water such as mother floc fragments that flow out along with the destruction of the mother floc, Precipitation water turbidity increases. Therefore, it led to the explanation that “an increase in stirring strength destroys the floc”. In addition, inclined plates or inclined tubes are usually used in the fining zone, but the mounting pitch (interval between inclined plates) is wide and the separation effect is not high.

しかし、従来破壊によって生じ、沈澱水濁度上昇の要因となる母フロック破片は、傾斜板の取付ピッチを狭めると、傾斜板下端の剪断作用により生じる渦流は傾斜板抑留面に向かい、傾斜板上の既抑留微フロックとの間に衝突が生じて、沈澱水中に流出することなく抑留分離されることを、発明者らは見出した。より具体的には、径3.0〜7.0μm微フロックは、自由沈降下では分離できず、取付ピッチ50mmでは除去率9%に過ぎないが、同24mmでは約60%、同11mmでは75%除去可能となる。また径7.0μm以上の微フロックになると、取付ピッチ50mmで除去率50%、同24mm、同11mmでは共に85%以上の高率で除去される。   However, when the mounting pitch of the inclined plate is reduced, the vortex generated by the shearing action of the lower end of the inclined plate is directed toward the inclined plate retaining surface, and the mother floc fragments, which have been caused by the conventional breakage and cause the increased sediment water turbidity, The inventors have found that there is a collision with the existing detained micro flocs, and the detained and separated without flowing into the precipitated water. More specifically, a fine floc having a diameter of 3.0 to 7.0 μm cannot be separated under free settling, and the removal rate is only 9% at a mounting pitch of 50 mm, but about 60% at 24 mm and 75% at 11 mm. It becomes. Further, when the fine floc has a diameter of 7.0 μm or more, the removal rate is 50% at a mounting pitch of 50 mm, and the removal rate is 85% or more at both 24 mm and 11 mm.

ここでの分離効果は、式(1)の衝突頻度式に従い、また母フロックと流入微フロックとの衝突、抑留と同一の分離機構に基づいている。つまり自由沈降下にフロックを分離するという従来の凝集沈澱方法の考え方に替えて、群沈降速度の大きな母フロックと取付ピッチの狭い傾斜板の2つの接触フロック形成機能を導入した新たな概念の凝集沈澱方法を提供することで、ろ過処理のみで採用されてきた「オキシ水酸化鉄法」の採用を可能とすることができたのである。   The separation effect here is based on the collision frequency equation of equation (1) and based on the same separation mechanism as the collision and detention of the mother flock and the inflow fine floc. In other words, instead of the conventional method of coagulation sedimentation that separates flocs under free sedimentation, a new concept of aggregation that introduces two contact floc formation functions of a mother floc with a large group sedimentation speed and an inclined plate with a narrow mounting pitch. By providing a precipitation method, it was possible to adopt the “iron oxyhydroxide method” that has been employed only by filtration.

以上のように本実施形態によれば、被処理水中の第1鉄イオンの効率的な酸化が可能になり、細粒・高密なオキシ酸化鉄を形成することができる。また、細粒・高密なオキシ酸化鉄に対して無機凝集剤をMe/SS比が0.1以下となるように制限して注入した後、急送攪拌しているので、オキシ水酸化鉄を細粒・高密に保ったまま、更に細粒・高密な微フロックを形成することができ、例えば、3.0μm以下のオキシ水酸化鉄粒子数の低減を図ることができる。   As described above, according to the present embodiment, it is possible to efficiently oxidize ferrous ions in the water to be treated, and fine-grained and dense iron oxyoxide can be formed. In addition, the inorganic flocculant is injected into the fine-grained, high-density iron oxyoxide with the Me / SS ratio limited to 0.1 or less, and then rapidly stirred, so the iron oxyhydroxide is finely divided. Fine particles and high density fine flocs can be formed while keeping the grains and high density, and for example, the number of iron oxyhydroxide particles of 3.0 μm or less can be reduced.

さらに、高速凝集沈殿池においては、高密な母フロックを高度に集積するようにしたので、母フロックと微フロックとの間に極めて高い衝突頻度を与えることができ、結果として凝集剤注入率を高くする必要がない。よって、微フロックを高率で抑留することかできる。また、高速凝集沈殿池においては、上部の清澄ゾーンに取付ピッチの狭い傾斜板11を設けている。このため、低い凝集剤注入率による母フロックの破壊に伴い流出する母フロック破片を含む各径微フロックを高効率沈殿分離が可能となり、極めて良好な沈殿水を得ることができる。   Furthermore, in the high-speed coagulation sedimentation basin, high-density mother flocs are highly accumulated, so that an extremely high collision frequency can be given between the mother flocs and the fine flocs, resulting in a high flocculant injection rate. There is no need to do. Therefore, the fine floc can be restrained at a high rate. In the high-speed coagulation sedimentation basin, an inclined plate 11 having a narrow mounting pitch is provided in the upper clarification zone. For this reason, the fine flocs of each diameter including the mother floc fragments that flow out with the destruction of the mother floc due to the low flocculant injection rate can be separated with high efficiency, and very good precipitated water can be obtained.

そして、沈殿水中に残留する微フロックの数が少なく、且つ細粒高密であることから、ろ過水中への微フロック漏洩量の低減を実現できる。その結果、ろ過水質は飛躍的に向上し、ろ過池の洗浄頻度を低減することができる。また、スラッジ・ブランケット10の母フロックは高密に維持されるので、発生した汚泥の処理・処分を大幅に軽減することができる。さらに、凝集沈殿処理効率が極めて高いので、沈殿池のコンパクト化と建設コストの低減を図ることができる。また、ろ過池洗浄頻度の低下と発生汚泥の処理・処分の軽減は浄水処理コストの低下につながる。   And since the number of fine flocs remaining in the precipitated water is small and the fine particles are dense, it is possible to reduce the amount of fine floc leakage into the filtered water. As a result, the quality of filtered water can be dramatically improved, and the frequency of washing the filtration pond can be reduced. In addition, since the mother floc of the sludge blanket 10 is maintained at a high density, the treatment and disposal of the generated sludge can be greatly reduced. Furthermore, since the coagulation sedimentation efficiency is extremely high, the sedimentation basin can be made compact and the construction cost can be reduced. Moreover, the reduction in the frequency of washing the filter basin and the reduction in treatment and disposal of the generated sludge will lead to a reduction in the cost of water purification.

以下、本発明の実施例について説明する。但し、本発明は以下の実施例には限定されない。ここでは、本実施例と、2つの比較例について検討する。   Examples of the present invention will be described below. However, the present invention is not limited to the following examples. Here, this example and two comparative examples are examined.

Figure 2010274180
Figure 2010274180

上記表1の比較例1は、水酸化第一鉄の酸化剤に次亜塩素酸ソーダを用いている。従って図1に示す触媒酸化槽4は設置せずに酸化処理を実施した。また、凝集処理過程に従来の低く短い攪拌条件を採用し、Al/SS比として0.3と多量のPACを注入して凝集処理を行った。ところが、懸濁粒子として最小径の0.5〜1.0μm粒子は213000個/mLと多量に残留し、沈澱水濁度は0.24度と高かった。この比較例1では、酸化過程で形成される水酸化第二鉄が既に高い含水率を有しているのみならず、凝集過程で注入された凝集剤粒子は沈澱水STRの3.4が示すように急速攪拌後に残留し、スラッジ・ブランケット層内で粗粒・低密化した。その結果、フロックの濃縮性を示すSDI値は2.21mg/mLと低く、後続のろ過処理ならびに汚泥処理は極めて困難であった。   Comparative Example 1 in Table 1 uses sodium hypochlorite as the oxidizing agent for ferrous hydroxide. Therefore, the oxidation treatment was carried out without installing the catalyst oxidation tank 4 shown in FIG. Moreover, the conventional low and short stirring conditions were employ | adopted for the agglomeration process, and 0.3% as a Al / SS ratio was inject | poured and flocculation process was performed. However, as the suspended particles, particles having a minimum diameter of 0.5 to 1.0 μm remained in a large amount of 213,000 particles / mL, and the precipitated water turbidity was as high as 0.24 degrees. In Comparative Example 1, not only the ferric hydroxide formed in the oxidation process already has a high water content, but the flocculant particles injected in the coagulation process are represented by 3.4 of the precipitated water STR. Thus, the mixture remained after rapid stirring, and became coarse and thin in the sludge / blanket layer. As a result, the SDI value indicating floc concentration was as low as 2.21 mg / mL, and subsequent filtration treatment and sludge treatment were extremely difficult.

次の比較例2は、水酸化第一鉄の酸化処理に空気を用い、図1の気液接触槽3、触媒酸化槽4によってオキシ水酸化鉄を形成させた。従って、この段階におけるオキシ水酸化鉄の密度は高い。しかしながら、凝集処理過程に槽分割数1、滞留時間1分と従来の低い急速攪拌条件を採用し、Al/SS比として0.2と未だ高いPACを注入して凝集処理を行った。その結果、沈澱水中に0.5〜1.0μm粒子が多数残留し、沈澱水濁度も0.16度と未だ高く、低減化は十分ではない。そのため、沈澱水STRの2.6が示すように急速攪拌後に残留した凝集剤粒子の粗粒・低密化は避けられない。つまり、比較例1に比べるとフロックの濃縮性を示すSDI値は3.82mg/mLと若干高くなるものの、十分とは言えない状況にあることがわかる。以上のように、折角高密度のオキシ水酸化鉄を形成しても、凝集剤粒子の粗粒・低密化はそれを台無しにしてしまう。そのため、後続のろ過処理ならびに汚泥処理の困難さは、比較例1と大きな差異はなかった。   In Comparative Example 2, air was used for the oxidation treatment of ferrous hydroxide, and iron oxyhydroxide was formed by the gas-liquid contact tank 3 and the catalyst oxidation tank 4 of FIG. Therefore, the density of iron oxyhydroxide at this stage is high. However, in the agglomeration process, the number of divisions in the tank was 1, the residence time was 1 minute, and the conventional low rapid stirring conditions were adopted, and the agglomeration process was performed by injecting PAC still having a high Al / SS ratio of 0.2. As a result, a large number of particles of 0.5 to 1.0 μm remain in the precipitated water, and the turbidity of the precipitated water is still high at 0.16 degrees, and the reduction is not sufficient. Therefore, as indicated by 2.6 of the precipitated water STR, coarse and low density flocculant particles remaining after rapid stirring are inevitable. That is, it can be seen that the SDI value indicating floc concentration is slightly higher at 3.82 mg / mL than Comparative Example 1, but it is not sufficient. As described above, even when high-concentration iron oxyhydroxide is formed, the coarse and low-density flocculant particles spoil it. Therefore, the difficulty of subsequent filtration treatment and sludge treatment was not significantly different from that of Comparative Example 1.

これに対して実施例の高効率分離法は、図1のシステムを用い、比較例2と同様水酸化第一鉄の酸化処理に空気を用い、図1の気液接触槽3、触媒酸化槽4においてオキシ水酸化鉄を形成させた。次いで、凝集処理過程に槽分割数3、滞留時間6分と高いGT値の急速攪拌条件ならびにAl/SS比として0.08と低い凝集剤注入率を採用して実験をおこなった。また、スラッジ・ブランケット層の清澄分離ゾーン内に配置された複数段の上向流傾斜板の間を通過させる第5ステップを具備するようにして処理を行った。その結果、まず凝集過程における0.5〜1.0μm粒子数の低減化が進み、沈澱水中の同粒子は86900個/mLに、沈澱水濁度は0.08度へと低下した。また低いAl/SS比を採用した上、沈澱水STRが1.20まで低下しているように、急速攪拌後の凝集剤粒子残留量が減少したので、母フロックの密度は高く保たれ、濃縮性を示すSDI値は6.24mg/mLまで向上した。ところでこのように、急速攪拌後の凝集剤粒子の残留量が減少すると、母フロックが径を維持するための付着力を十分付与できなくなるので、母フロックの破壊によって沈澱水中に母フロック破片が流出するようになるが、傾斜板の相互の間隔である取付ピッチが狭められているので、沈澱水中への母フロック破片の流出を防ぐことができた。その結果、ろ過処理ならびに汚泥処理は大幅に軽減でき、処理コストの削減が図れるようになった。   In contrast, the high-efficiency separation method of the example uses the system of FIG. 1 and uses air for the oxidation treatment of ferrous hydroxide as in Comparative Example 2, and uses the gas-liquid contact tank 3 and the catalytic oxidation tank of FIG. In 4, iron oxyhydroxide was formed. Next, the experiment was conducted by adopting a rapid stirring condition with a high GT value of 3 tank divisions and a residence time of 6 minutes and a low flocculant injection rate of 0.08 as the Al / SS ratio in the coagulation treatment process. Moreover, it processed so that it might comprise the 5th step which passes between the several steps of upward flow inclination boards arrange | positioned in the clarification separation zone of a sludge blanket layer. As a result, the number of particles of 0.5 to 1.0 μm was first reduced in the aggregation process, and the same particles in the precipitated water were reduced to 86900 particles / mL, and the precipitated water turbidity was decreased to 0.08 degrees. Moreover, since the residual amount of flocculant particles after rapid stirring was reduced so that the precipitated water STR was lowered to 1.20 in addition to adopting a low Al / SS ratio, the density of the mother floc was kept high and concentrated. The SDI value indicating sex was improved to 6.24 mg / mL. By the way, if the residual amount of the flocculant particles after rapid stirring is reduced in this way, the mother floc cannot be given sufficient adhesion to maintain its diameter, and the mother floc breaks out into the sediment water due to the destruction of the mother floc. However, since the mounting pitch, which is the interval between the inclined plates, is narrowed, it was possible to prevent the mother floc fragments from flowing out into the settling water. As a result, filtration treatment and sludge treatment can be greatly reduced, and treatment costs can be reduced.

3 気液接触槽
4 触媒酸化槽
7 急速攪拌槽
9 高速沈殿池
11 上向流傾斜板

3 Gas-liquid contact tank 4 Catalytic oxidation tank 7 Rapid stirring tank 9 High-speed sedimentation tank 11 Upwardly inclined plate

Claims (16)

被処理水に含有される第1鉄イオンを酸化する第1ステップと、
被処理水に担体を付与し、当該担体の表面に酸化後のオキシ水酸化鉄を析出させるとともに、被処理水の流動によってオキシ水酸化鉄を前記担体の表面から剥離する第2ステップと、
被処理水に無機凝集剤を注入する第3ステップと、
被処理水を急速攪拌する第4ステップと、
被処理水を上向流を伴う沈殿池に導入し、当該沈澱池内において、細粒・高密な母フロックを高濃度に集積したスラッジ・ブランケット層と、清澄分離ゾーンに配置された複数段の上向流傾斜板もしくは上向流傾斜管の間を通過させる第5ステップと
を備えている,水処理方法。
A first step of oxidizing ferrous ions contained in the water to be treated;
A second step of providing a carrier to the water to be treated, precipitating the oxidized iron oxyhydroxide on the surface of the carrier, and peeling the iron oxyhydroxide from the surface of the carrier by the flow of the water to be treated;
A third step of injecting an inorganic flocculant into the water to be treated;
A fourth step of rapidly stirring the water to be treated;
The treated water is introduced into a sedimentation basin with an upward flow, and in the sedimentation basin, a sludge / blanket layer in which fine grains and dense mother floc are concentrated at a high concentration, and a plurality of stages arranged in the clarification separation zone A water treatment method comprising: a fifth step of passing between a counterflow inclined plate or an upward flow inclined pipe.
前記第2ステップは、被処理水を上向流を伴う水槽内で行われる、請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the second step is performed in a water tank with upward flow of water to be treated. 前記第4ステップは、被処理水を2以上の区画に直列に分割された急速攪拌槽を順次移行し得るように通過させることで行われる、請求項1または2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein the fourth step is performed by passing the water to be treated through a rapid stirring tank divided in series into two or more sections so as to be sequentially transferred. 前記第3ステップでは、前記無機凝集剤中の金属含有量Meと、前記急速攪拌槽に流入させる被処理水中のSS濃度との比であるMe/SS比が0.1以下であり、更に急速攪拌後の凝集剤粒子の残留量を示す指標であるSTRが2.5以下となるように、前記無機凝集剤が注入される,請求項1から3のいずれかに記載の水処理方法。   In the third step, the Me / SS ratio, which is the ratio of the metal content Me in the inorganic flocculant and the SS concentration in the water to be treated flowing into the rapid stirring tank, is 0.1 or less, and more rapidly The water treatment method according to any one of claims 1 to 3, wherein the inorganic flocculant is injected so that STR, which is an index indicating the residual amount of flocculant particles after stirring, is 2.5 or less. 前記第4ステップにおける急速攪拌強度G値は150s−1以上であり、急速攪拌時間T値は3分以上である、請求項1から4のいずれかに記載の水処理方法。 The rapid agitation intensity G R value in the fourth step is at 150s -1 or more, rapid stirring time T R value is more than 3 minutes, the water treatment method according to any one of claims 1 to 4. 前記第5ステップにおける上向流傾斜板は、傾斜板の相互の間隔である取付ピッチが50mm以下である、請求項1から5のいずれかに記載の水処理方法。   6. The water treatment method according to claim 1, wherein the upward flow inclined plate in the fifth step has an attachment pitch which is an interval between the inclined plates of 50 mm or less. 前記第5ステップにおける急速攪拌槽出口水に対して10mg/L以下の無機凝集剤を再注入する、請求項1から6のいずれかに記載の水処理方法。   The water treatment method according to any one of claims 1 to 6, wherein an inorganic flocculant of 10 mg / L or less is reinjected with respect to the rapid stirring tank outlet water in the fifth step. 前記第5ステップにおけるスラッジ・ブランケットの母フロックの濃縮性を示す指標SDI値は、4.0mg/mL以上、好ましくは6.0mg/mL以上である、請求項1から7のいずれかに記載の水処理方法。   The index SDI value indicating the concentration of the mother floc of the sludge blanket in the fifth step is 4.0 mg / mL or more, preferably 6.0 mg / mL or more. Water treatment method. 被処理水に含有される第1鉄イオンを酸化する酸化手段と、
担体が充填され、当該担体の表面に酸化後のオキシ水酸化鉄を析出させるとともに、被処理水の流動によってオキシ水酸化鉄を前記担体の表面から剥離する流動槽と、
被処理水に無機凝集剤を注入する無機凝集剤注入手段と、
急速攪拌槽と、
細粒・高密な母フロックを高濃度に集積したスラッジ・ブランケット層と清澄分離ゾーンとを有し、清澄分離ゾーン内に複数段の上向流傾斜板もしくは上向流傾斜管を設けた沈殿池と、
を備えている,水処理システム。
Oxidizing means for oxidizing ferrous ions contained in the water to be treated;
A fluid tank filled with a carrier, depositing oxidized iron oxyhydroxide on the surface of the carrier, and peeling iron oxyhydroxide from the surface of the carrier by the flow of water to be treated;
An inorganic flocculant injection means for injecting an inorganic flocculant into the water to be treated;
A rapid stirring tank;
A sedimentation basin with a sludge / blanket layer and fine clarification zone with high concentration of fine-grained and dense mother floc and a clarification separation zone. When,
A water treatment system.
前記流動槽には、被処理水を上向させる上向流が流れている、請求項9に記載の水処理システム。   The water treatment system according to claim 9, wherein an upward flow that causes the water to be treated to flow is flowing in the fluid tank. 前記急速攪拌槽が2以上の区画に直列に分割され、順次移行し得るように設けられている、請求項9または10に記載の水処理システム。   The water treatment system according to claim 9 or 10, wherein the rapid stirring tank is divided into two or more sections in series and is provided so as to be able to move sequentially. 前記無機凝集剤注入手段では、前記無機凝集剤中の金属含有量Meと、前記急速攪拌槽に流入させる被処理水中のSS濃度との比であるMe/SS比が0.1以下であり、更に急速攪拌後の凝集剤粒子の残留量を示す指標であるSTRが2.5以下となるように、無機凝集剤が注入される,請求項9から11のいずれかに記載の水処理システム。   In the inorganic flocculant injection means, the Me / SS ratio, which is the ratio of the metal content Me in the inorganic flocculant and the SS concentration in the water to be treated flowing into the rapid stirring tank, is 0.1 or less, The water treatment system according to any one of claims 9 to 11, wherein the inorganic flocculant is injected so that STR, which is an index indicating the residual amount of flocculant particles after rapid stirring, is 2.5 or less. 前記急速攪拌槽では、急速攪拌強度G値が150s−1以上であり、急速攪拌時間T値は3分以上である、請求項9から12のいずれかに記載の水処理システム。 Wherein in the rapid agitation tank, and the rapid agitation intensity G R value 150s -1 or more, rapid stirring time T R value is greater than or equal to 3 minutes, water treatment system according to any of claims 9-12. 前記上向流傾斜板は、傾斜板の相互の間隔である取付ピッチが50mm以下である、請求項9から13のいずれかに記載の水処理システム。   The water treatment system according to any one of claims 9 to 13, wherein the upward flow inclined plate has an attachment pitch that is an interval between the inclined plates of 50 mm or less. 前記急速攪拌槽出口水に対して10mg/L以下の無機凝集剤を再注入する、注入手段をさらに備えている、請求項9から14のいずれかに記載の水処理システム。   The water treatment system according to claim 9, further comprising injection means for re-injecting 10 mg / L or less of the inorganic flocculant with respect to the rapid stirring tank outlet water. 前記沈殿池における、スラッジ・ブランケットの母フロックの濃縮性を示す指標SDI値は、4.0mg/mL以上、好ましくは6.0mg/mL以上である、請求項9から15のいずれかに記載の水処理システム。   The index SDI value indicating the concentration of the sludge blanket mother floc in the sedimentation basin is 4.0 mg / mL or more, preferably 6.0 mg / mL or more. Water treatment system.
JP2009128040A 2009-05-27 2009-05-27 Water treatment method and water treatment system Expired - Fee Related JP4707752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128040A JP4707752B2 (en) 2009-05-27 2009-05-27 Water treatment method and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128040A JP4707752B2 (en) 2009-05-27 2009-05-27 Water treatment method and water treatment system

Publications (2)

Publication Number Publication Date
JP2010274180A true JP2010274180A (en) 2010-12-09
JP4707752B2 JP4707752B2 (en) 2011-06-22

Family

ID=43421638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128040A Expired - Fee Related JP4707752B2 (en) 2009-05-27 2009-05-27 Water treatment method and water treatment system

Country Status (1)

Country Link
JP (1) JP4707752B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166144A (en) * 2011-02-14 2012-09-06 Nippon Steel Corp Method for recovering dissolved iron from wastewater containing many kinds of metal ion
JP2012228673A (en) * 2011-04-27 2012-11-22 Swing Corp Method for starting high-speed flocculation and sedimentation basin
JP6145240B1 (en) * 2017-04-17 2017-06-07 壽昭 落合 Coagulation precipitation treatment method
JPWO2016199385A1 (en) * 2015-06-09 2018-02-22 パナソニックIpマネジメント株式会社 Metal material aggregation promoting layer and water treatment apparatus using the same
JP2018126689A (en) * 2017-02-08 2018-08-16 株式会社東芝 Water treatment system and water treatment method
JP2020132467A (en) * 2019-02-19 2020-08-31 水ing株式会社 Method and device of removing iron from iron ion-containing water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232123B (en) * 2013-04-28 2014-08-06 台州学院 Catalytic reduction-fenton-like oxidization integrated device for preprocessing chemical wastewater
CN103850288B (en) * 2014-04-02 2016-01-13 哈尔滨市旭东给水技术有限责任公司 Deferrization and demanganization formula health transmission & distribution wetting system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091157A (en) * 1995-06-16 1997-01-07 Nkk Corp Method for oxidation ferrous ion contained in underground water
JP2001354426A (en) * 2000-06-07 2001-12-25 Toagosei Co Ltd Method for manufacturing high purity ferric chloride aqueous solution
JP2004008969A (en) * 2002-06-07 2004-01-15 Mitsubishi Materials Natural Resources Development Corp Method for removing iron in water using jet stream generator and system therefor
JP2008264687A (en) * 2007-04-20 2008-11-06 Nippon Steel Corp Recovery method of iron from waste liquid
JP2009045532A (en) * 2007-08-16 2009-03-05 Toshiaki Ochiai Coagulating sedimentation method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091157A (en) * 1995-06-16 1997-01-07 Nkk Corp Method for oxidation ferrous ion contained in underground water
JP2001354426A (en) * 2000-06-07 2001-12-25 Toagosei Co Ltd Method for manufacturing high purity ferric chloride aqueous solution
JP2004008969A (en) * 2002-06-07 2004-01-15 Mitsubishi Materials Natural Resources Development Corp Method for removing iron in water using jet stream generator and system therefor
JP2008264687A (en) * 2007-04-20 2008-11-06 Nippon Steel Corp Recovery method of iron from waste liquid
JP2009045532A (en) * 2007-08-16 2009-03-05 Toshiaki Ochiai Coagulating sedimentation method and apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166144A (en) * 2011-02-14 2012-09-06 Nippon Steel Corp Method for recovering dissolved iron from wastewater containing many kinds of metal ion
JP2012228673A (en) * 2011-04-27 2012-11-22 Swing Corp Method for starting high-speed flocculation and sedimentation basin
JPWO2016199385A1 (en) * 2015-06-09 2018-02-22 パナソニックIpマネジメント株式会社 Metal material aggregation promoting layer and water treatment apparatus using the same
JP2018126689A (en) * 2017-02-08 2018-08-16 株式会社東芝 Water treatment system and water treatment method
JP6145240B1 (en) * 2017-04-17 2017-06-07 壽昭 落合 Coagulation precipitation treatment method
WO2018193794A1 (en) * 2017-04-17 2018-10-25 落合壽昭 Treatment method for condensed sludge
JP2018176086A (en) * 2017-04-17 2018-11-15 壽昭 落合 Flocculation precipitation treatment method
JP2020132467A (en) * 2019-02-19 2020-08-31 水ing株式会社 Method and device of removing iron from iron ion-containing water
JP7097316B2 (en) 2019-02-19 2022-07-07 水ing株式会社 Methods and equipment for removing iron from iron ion-containing water

Also Published As

Publication number Publication date
JP4707752B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4707752B2 (en) Water treatment method and water treatment system
CA2680057C (en) Coagulation sedimentation process
CN107082506B (en) Treatment method and process flow for oilfield produced water
CN107108289B (en) Improved ballasted purge system
JP4223870B2 (en) Water purification method
JP6067268B2 (en) Water treatment system
JP3773169B2 (en) High speed biological treatment method and apparatus for organic wastewater
JP5173538B2 (en) Water treatment method
JP5827340B2 (en) Method and apparatus for purifying water
JP2006035221A (en) Method and apparatus for high-speed biological treatment of organic sewage
JP2000317220A (en) Flocculating and settling device
JP2013540586A5 (en)
WO1999033541A1 (en) Coagulation precipitator
JP3744699B2 (en) Coagulation precipitation method and apparatus
JP2019198806A (en) Water treatment method, and water treatment device
KR101694919B1 (en) Powerless mixing flocculation tank and dissolved air flotation device using the same
JP2005125177A (en) Flocculating and settling apparatus and method for treating water to be treated by using the same
JP2007083179A (en) Treatment method and apparatus for copper particle-containing water
CN113683167A (en) Magnetic coagulation sedimentation sewage treatment system and method based on low-density magnetic particles
JP7142540B2 (en) Water purification method and water purification device
KR101045878B1 (en) High-efficiency hybrid sedimentation basin for processing water elevation
JP2002355506A (en) Flocculating and settling equipment
JP5068279B2 (en) Softening device and operation method thereof
JP2002113472A (en) High-speed coagulating sedimentation method for suspended water and its device
CN214360640U (en) Active coke adsorption high-density clarification tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees