JP6067268B2 - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP6067268B2
JP6067268B2 JP2012165508A JP2012165508A JP6067268B2 JP 6067268 B2 JP6067268 B2 JP 6067268B2 JP 2012165508 A JP2012165508 A JP 2012165508A JP 2012165508 A JP2012165508 A JP 2012165508A JP 6067268 B2 JP6067268 B2 JP 6067268B2
Authority
JP
Japan
Prior art keywords
tank
water
carrier
sludge
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012165508A
Other languages
Japanese (ja)
Other versions
JP2014024003A (en
Inventor
則三 森川
則三 森川
俊則 京才
俊則 京才
隆伸 星
隆伸 星
寿 尾林
寿 尾林
Original Assignee
株式会社西原環境
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社西原環境 filed Critical 株式会社西原環境
Priority to JP2012165508A priority Critical patent/JP6067268B2/en
Publication of JP2014024003A publication Critical patent/JP2014024003A/en
Application granted granted Critical
Publication of JP6067268B2 publication Critical patent/JP6067268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は、水量や水質が変動する下水であっても、その下水を短時間で所定の水質に処理でき、かつ、緊急に施設の稼働を要する場合においても、迅速に対応するために、当該施設への緊急輸送が可能であり、例えば天災や事故などによって機能不全に陥り、短期間での復旧が見込めない状態にある下水処理施設が復旧するまでの代替施設、あるいは下水処理施設の補完設備として使用できる水処理システムに関するものである。   In the present invention, even in the case of sewage whose water quantity and water quality fluctuate, the sewage can be processed into a predetermined water quality in a short time, and even when urgent operation of the facility is required, The facility can be transported urgently, for example due to natural disasters or accidents, it will be malfunctioning, and it will not be expected to be restored in a short period of time. It is related with the water treatment system which can be used as.

下水を処理する際には、下水処理施設設計・計画指針に準じた処理方式を選定することになる。例えば、従来の小規模下水処理方式であれば、長時間ばっ気方式や標準活性汚泥方式などがある。前者の方式は、オキシデーションディッチ槽(水理学的滞留時間(HRT):約24時間)と重力沈殿槽(HRT:約6時間)との組合せによって処理するものであり、後者の方式は、最初沈殿池(HRT:約3時間)、エアレーションタンク(HRT:約8時間)および最終沈殿池(HRT:約3時間)を組合せて処理するものである。   When treating sewage, a treatment method that conforms to the design and planning guidelines for sewage treatment facilities will be selected. For example, conventional small-scale sewage treatment methods include a long-term aeration method and standard activated sludge method. The former method is a combination of an oxidation ditch tank (hydraulic residence time (HRT): about 24 hours) and a gravity settling tank (HRT: about 6 hours). A combination of a settling basin (HRT: about 3 hours), an aeration tank (HRT: about 8 hours) and a final settling basin (HRT: about 3 hours).

ここで、HRTと略記される水理学的滞留時間(単位:時間)とは、被処理水が各水槽・設備に流入してから流出するまでの時間、つまり各水槽・設備内に滞留していたと看做される時間であり、被処理水量Q(単位:m/時間)が同じである場合、この時間が長くなるほど施設の規模V(水槽容積。単位:m)が大きくなることを意味する(HRT=V/Q)。 Here, the hydraulic residence time (unit: hour) abbreviated as HRT is the time from when the treated water flows into each water tank / equipment until it flows out, that is, the water stays in each water tank / equipment. When the amount of treated water Q (unit: m 3 / hour) is the same, the facility scale V (aquarium volume; unit: m 3 ) increases as this time increases. Meaning (HRT = V / Q).

上述のような従来の小規模下水処理方式では、処理に要する時間(HRTの総和)がおよそ14時間から30時間であり、そのような規模の施設を設計・施工し、竣工するまでに要する期間は数か月から十数か月と長期間にわたる。このため、天災や事故などによって機能不全に陥った下水処理施設の復旧のように緊急を要する場合に、即座に対応できない。   In the conventional small-scale sewage treatment system as described above, the time required for treatment (total of HRT) is approximately 14 to 30 hours, and the time required to design, construct, and complete a facility of such scale For a long period of months to dozens of months. For this reason, it is not possible to respond immediately when an emergency is required, such as the restoration of a sewage treatment facility that has been malfunctioning due to a natural disaster or accident.

また、従来の小規模下水処理方式では、浮遊微生物によって溶解性有機成分を除去するオキシデーションディッチ槽やエアレーションタンクなどのHRTの比較的長い水槽(大きな水槽)や溶解性有機成分を除去した後に処理水と微生物を分離する重力沈殿槽や最終沈殿池を用いるため、施設規模が大きなものとなり、施設用地の確保も困難である。   Also, in conventional small-scale sewage treatment methods, treatment is performed after removing relatively long HRT tanks (large water tanks) such as oxidation ditch tanks and aeration tanks that remove soluble organic components by floating microorganisms and soluble organic components. Since a gravity sedimentation tank and a final sedimentation tank that separate water and microorganisms are used, the scale of the facility is large, and it is difficult to secure a site for the facility.

さらに、下水の処理区域が被災している場合、下水管渠の復旧と処理区域の復興状況に応じて下水の流入量や流入水質が変動すると予想される。しかし、この変動の発生タイミングは通常、予想が困難である。下水処理施設には、このような変動に柔軟かつ迅速に対応できる機能が求められるが、浮遊微生物による処理を主とした従来の小規模下水処理方式では処理が安定するまでには長時間を要する。   Furthermore, when the sewage treatment area is damaged, the inflow and quality of the sewage are expected to change depending on the recovery of the sewer pipe and the recovery status of the treatment area. However, it is usually difficult to predict the occurrence timing of this fluctuation. Sewage treatment facilities are required to have a function that can respond flexibly and promptly to such fluctuations, but it takes a long time for the treatment to stabilize in the conventional small-scale sewage treatment method that mainly uses floating microorganisms. .

特許文献1には、施設の敷地が小面積であり安定して下水処理を行うことができる処理方法として、微生物を用いない物理化学処理による処理方法が開示されている。この処理方法は、流入下水に加圧水を加えて加圧浮上させて分離した加圧浮上分離水に凝集剤を添加して得られた凝集水を膜濾過により処理水と濃縮水とに分離し、その濃縮水を凝集系へ戻し、膜を逆洗した逆洗水を流入下水と共に、再び処理するものである。   Patent Document 1 discloses a treatment method by physicochemical treatment that does not use microorganisms as a treatment method that can stably perform sewage treatment since the site of the facility is a small area. In this treatment method, the agglomerated water obtained by adding a flocculant to the separated pressure levitation separated water by adding pressurized water to the inflowing sewage and separating it is separated into treated water and concentrated water by membrane filtration, The concentrated water is returned to the coagulation system, and the backwash water obtained by backwashing the membrane is treated again together with the inflowing sewage.

しかしながら、特許文献1の処理方法では、加圧浮上により分離されない一部の溶解性成分への対応が考慮されておらず、仮にこれを膜濾過で除去するとなれば逆浸透膜(RO膜)のような分子レベルでのろ過が可能な施設が必要となる。このような逆浸透膜で加圧浮上分離水を直接ろ過した場合、逆浸透膜が即座に閉塞してしまうこと、また洗浄によってろ過能力を元に戻すことも困難であることは、当業者においては周知の事実である。通常は、逆浸透膜に影響を及ぼさないようにするために、予め、加圧浮上分離水を急速ろ過あるいはマイクロフィルター(MF)、限外ろ過膜(UF)によってろ過を行う別のろ過設備などを経てから、逆浸透膜によるろ過を行う必要がある。下水のように少なくとも1日数百m、通常数万mの処理能力を要求される処理施設に、上述のような多様多段な膜ろ過設備を設けることは、設備の規模が大きくなり、膜のろ過、洗浄および維持管理にかかる費用およびエネルギーが膨大となってしまう。 However, the treatment method of Patent Document 1 does not take into account the response to some soluble components that are not separated by pressurized flotation. If this is removed by membrane filtration, the reverse osmosis membrane (RO membrane) A facility capable of filtering at the molecular level is required. It is known to those skilled in the art that when the pressure floating separation water is directly filtered with such a reverse osmosis membrane, the reverse osmosis membrane is immediately clogged and it is difficult to restore the filtration capacity by washing. Is a well-known fact. Usually, in order not to affect the reverse osmosis membrane, other pre-filtering equipment that preliminarily filters the pressurized flotation separated water by rapid filtration or microfilter (MF), ultrafiltration membrane (UF), etc. After that, it is necessary to perform filtration with a reverse osmosis membrane. Installing a multi-stage membrane filtration facility as described above in a treatment facility that requires a processing capacity of at least several hundred m 3 per day and usually several tens of thousands m 3 like sewage increases the scale of the facility. The cost and energy for membrane filtration, cleaning and maintenance are enormous.

特開平5−192694号公報JP-A-5-192694

本発明者らは、本発明に想到するに際して、少なくとも以下に記載する課題を認識していた。
(1) 天災や事故などによって機能不全に陥った下水処理施設の速やかな復旧には、長時間ばっ気方式や標準活性汚泥方式など、微生物(活性汚泥)による酸化に依存した処理方式ではHRTが長く、施設の規模が大きくなるため広い敷地面積を要し、また計画から竣工までに時間を要することから、敷地面積が小さく、短時間で竣工可能な処理施設が必要である。
(2) 凝集分離法による処理方式では、凝集性成分の除去は行えても非凝集性成分(溶解性有機成分)には対応できないため、非凝集性成分(溶解性有機成分)の除去にも対応した処理方式との組み合わせによる処理システムが必要である。
(3) 下水の処理区域の復旧、復興に伴い、流入する下水の水量および水質が変動するため、この変動に追従できる処理システムが必要である。
The present inventors have recognized at least the following problems when conceiving the present invention.
(1) For quick recovery of sewage treatment facilities that have become dysfunctional due to natural disasters or accidents, HRT is used for treatment methods that depend on oxidation by microorganisms (activated sludge), such as long-term aeration and standard activated sludge methods. Long and large facilities require a large site area, and it takes time from planning to completion, so a processing facility that requires a small site area and can be completed in a short time is required.
(2) Although the coagulation component can be removed by the treatment method using the coagulation separation method, it cannot cope with the non-aggregation component (soluble organic component), so it can also remove the non-aggregation component (soluble organic component). A processing system in combination with a corresponding processing method is required.
(3) The amount and quality of inflowing sewage changes as the sewage treatment area is restored and reconstructed, so a treatment system that can follow these changes is necessary.

本発明は、上述のような課題を解決するためになされたもので、下水中の凝集性成分および非凝集性成分を確実に除去でき、下水の水量や水質の変動に対応して処理手順を容易に変更でき、被災地等における下水処理施設の代替設備あるいは補完設備としても使用できる水処理システムを提供することを目的とするものである。   The present invention has been made in order to solve the above-described problems, and can reliably remove cohesive components and non-cohesive components in sewage, and can perform treatment procedures in response to fluctuations in the amount and quality of sewage. It is an object of the present invention to provide a water treatment system that can be easily changed and can be used as an alternative or supplementary facility for a sewage treatment facility in a stricken area or the like.

上記課題を解決するために、本発明に係る水処理システムは、微生物担体が複数配設された担体槽および該担体槽内を散気する散気設備を備えた担体処理装置と、無機凝集剤を注入する無機凝集剤注入設備、高分子凝集剤を注入する高分子凝集剤注入設備、攪拌機が設けられ、沈降促進材が存在する混合撹拌槽および該混合撹拌槽から流出する凝集混合液を導入して固液分離し、上澄水を排出する沈殿槽を備えた凝集沈殿処理装置と、前記沈殿槽の沈殿汚泥を引き抜く汚泥引抜ポンプおよび該汚泥引抜ポンプで引き抜いた沈殿汚泥から凝集汚泥を分離し、前記沈降促進材を回収して前記混合撹拌槽へ供給する分離回収器を備えた沈降促進材分離回収装置とからなることを特徴とするものである。   In order to solve the above-described problems, a water treatment system according to the present invention includes a carrier tank provided with a plurality of microbial carriers, a carrier treatment apparatus provided with an air diffuser for diffusing the inside of the carrier tank, and an inorganic flocculant. Inorganic flocculant injection equipment for injecting polymer, polymer flocculant injection equipment for injecting polymer flocculant, mixing stirrer equipped with a stirrer, and introducing agglomerated mixed liquid flowing out of the mixing stirring tank And then separating the coagulated sludge from the coagulation sedimentation treatment apparatus equipped with a sedimentation tank for discharging the supernatant water, the sludge extraction pump for extracting the sedimentation sludge from the sedimentation tank, and the sedimentation sludge extracted by the sludge extraction pump. And a settling promoting material separation and recovery device equipped with a separation and recovery device that collects the settling promoting material and supplies it to the mixing and stirring tank.

本発明に係る水処理システムは、混合撹拌槽は、無機凝集剤を注入して撹拌する混和槽と、高分子凝集剤を注入すると共に、沈降促進材を供給して撹拌する凝集槽とからなることを特徴とするものである。   In the water treatment system according to the present invention, the mixing and stirring tank includes a mixing tank for injecting and stirring the inorganic flocculant, and a coagulating tank for injecting the polymer flocculant and supplying and stirring the settling accelerator. It is characterized by this.

本発明に係る水処理システムは、微生物担体は、両端が固定された幹糸と該幹糸に設けられた複数の枝糸とからなることを特徴とするものである。   The water treatment system according to the present invention is characterized in that the microbial carrier is composed of a trunk thread having both ends fixed and a plurality of branch threads provided on the trunk thread.

本発明に係る水処理システムは、被処理水から夾雑物を除去する夾雑物除去設備を設け、被処理水を該夾雑物除去設備に導入し、夾雑物が除去された被処理水を担体処理装置に導入し、該担体処理装置から流出する担体槽流出水を前記凝集沈殿処理装置に導入することを特徴とするものである。   The water treatment system according to the present invention includes a contaminant removal facility for removing contaminants from the treated water, introduces the treated water into the contaminant removal facility, and supports the treated water from which contaminants have been removed by carrier treatment. The carrier tank effluent introduced into the apparatus and flowing out from the carrier treatment apparatus is introduced into the coagulation sedimentation treatment apparatus.

本発明に係る水処理システムは、前記担体処理装置から流出する担体槽流出水から懸濁物質を除去する固液分離設備を設け、被処理水を凝集沈殿処理装置に導入し、該凝集沈殿処理装置から流出する沈殿槽流出水を前記担体処理装置に導入し、該担体処理装置から流出する担体槽流出水を前記固液分離設備に導入することを特徴とするものである。   The water treatment system according to the present invention is provided with a solid-liquid separation facility that removes suspended solids from the carrier tank effluent flowing out of the carrier treatment device, and introduces water to be treated into the coagulation sedimentation treatment device. The sedimentation tank effluent flowing out from the apparatus is introduced into the carrier treatment apparatus, and the carrier tank effluent flowing out from the carrier treatment apparatus is introduced into the solid-liquid separation facility.

本発明に係る水処理システムによれば、担体処理装置に、微生物担体が複数配設された担体槽および該担体槽内を散気する散気設備を備えたので、被処理水中の溶解性成分を吸収・分解する好気性微生物を良好な好気性条件の下に担体槽内に保持することが容易となる。さらに微生物担体上の微生物の保持量が被処理水の処理に必要以上となった場合には、散気設備の散気強度により担体槽内の水流れおよび気泡の流れが加わり、この激しい水流れおよび気泡の流れが微生物担体上の余剰の微生物を剥離することで被処理水の処理に必要量の微生物を維持できる。   According to the water treatment system of the present invention, the carrier treatment apparatus is provided with a carrier tank in which a plurality of microbial carriers are arranged and an air diffuser for aeration inside the carrier tank. It becomes easy to hold the aerobic microorganisms that absorb and decompose the microorganisms in the carrier tank under favorable aerobic conditions. In addition, when the amount of microorganisms retained on the microbial carrier is more than necessary for the treatment of the treated water, the turbulent strength of the diffuser adds the flow of water and bubbles in the carrier tank. In addition, the flow of bubbles peels off excess microorganisms on the microorganism carrier, so that a necessary amount of microorganisms can be maintained for treatment of the water to be treated.

本発明に係る水処理システムによれば、凝集沈殿処理装置に、無機凝集剤を注入する無機凝集剤注入設備、高分子凝集剤を注入する高分子凝集剤注入設備、攪拌機が設けられ、沈降促進材が存在する混合撹拌槽および該混合撹拌槽から流出する凝集混合液を導入して固液分離し、上澄水を排出する沈殿槽を備えたので、混合撹拌槽内の未凝集性成分を無機凝集剤によって確実に凝集させると共に、高分子凝集剤と沈降促進材によって沈降性の高い凝集汚泥を混合撹拌槽内の凝集混合液中に形成し、沈殿槽において凝集汚泥を沈降させることによって、上澄水を沈殿槽流出水として、沈降した凝集汚泥を沈殿汚泥として容易に分離できる。   According to the water treatment system of the present invention, the coagulation / sedimentation treatment apparatus is provided with an inorganic coagulant injection facility for injecting an inorganic coagulant, a polymer coagulant injection facility for injecting a polymer coagulant, and a stirrer. A mixing agitation tank in which the material is present and a precipitation tank that introduces the agglomerated mixed liquid flowing out from the mixing agitation tank and separates it into solid and liquid, and discharges the supernatant water. By agglomerating reliably with the flocculant, the polymer flocculant and the sedimentation accelerator are used to form agglomerated sludge with high sedimentation in the agglomerated mixed liquid in the mixing and stirring tank. Clear water can be easily separated as sedimentation tank effluent, and sedimented agglomerated sludge as sedimentation sludge.

本発明に係る水処理システムによれば、沈降促進材分離回収装置に、沈殿槽の沈降汚泥を引き抜く汚泥引抜ポンプおよび該汚泥引抜ポンプで引き抜いた沈殿汚泥から凝集汚泥を分離し、前記沈降促進材を回収して沈降促進材供給管を介して混合撹拌槽へ供給する分離回収器を備えたので、汚泥引抜ポンプによって沈殿槽の沈殿汚泥を適切に引き抜くことで沈殿槽内の沈殿汚泥の汚泥界面(上澄水と沈殿汚泥との界面)を管理し、沈殿槽の処理水流出口での沈殿汚泥の巻き込みによる処理水の水質悪化を防止できる。また、分離回収器によって沈殿汚泥から分離された凝集汚泥が汚泥処理に供されると共に、回収された沈降促進材が沈降促進材供給管を介して混合撹拌槽に供給されるため、沈降促進材は常に再利用される。   According to the water treatment system of the present invention, the settling promoting material separating and collecting device separates the sludge withdrawing settling sludge in the settling tank, and the aggregated sludge from the settling sludge withdrawn by the sludge drawing pump, and the settling promoting material A separator / collector that collects and supplies the mixture to the mixing and stirring tank through the settling accelerator supply pipe is provided. (Interface between the supernatant water and the precipitated sludge) can be managed to prevent deterioration of the quality of the treated water due to the entrainment of the precipitated sludge at the treated water outlet of the settling tank. In addition, the aggregated sludge separated from the precipitated sludge by the separator / collector is used for the sludge treatment, and the collected sedimentation promoting material is supplied to the mixing and stirring tank through the sedimentation promoting material supply pipe. Are always reused.

本発明に係る水処理システムによれば、前述した効果を示す担体処理装置と凝集沈殿処理装置と沈降促進材分離回収装置とから構成したので、被処理水中の溶解性成分および未凝集性成分を短い滞留時間で効率よく吸着・分解・凝集・分離して清浄な処理水を得ることができる。   According to the water treatment system according to the present invention, the carrier treatment device, the coagulation sedimentation treatment device, and the sedimentation promoting material separation / recovery device that exhibit the above-described effects are used. Clean treated water can be obtained by adsorption, decomposition, aggregation and separation efficiently with a short residence time.

本発明に係る水処理システムによれば、混合撹拌槽を、無機凝集剤を注入して撹拌する混和槽および高分子凝集剤を注入すると共に沈降促進材を供給して撹拌する凝集槽から構成したので、無機凝集剤による未凝集性成分の凝集処理を確実に行った後、高分子凝集剤と沈降促進材によって凝集混合液中に沈降性の高い凝集汚泥を形成でき、その凝集混合液における固液分離が容易となることから、沈殿槽の小型化を図っても、その沈殿槽から良質な処理水を得ることができる。   According to the water treatment system of the present invention, the mixing and stirring tank is composed of a mixing tank for injecting and stirring the inorganic flocculant and a coagulating tank for injecting the polymer flocculant and supplying and stirring the settling accelerator. Therefore, after the agglomeration treatment of the non-agglomerated component with the inorganic flocculant has been performed reliably, the polymer flocculant and the settling accelerator can form agglomerated sludge with high sedimentation in the agglomerated liquid mixture. Since liquid separation becomes easy, even if the size of the precipitation tank is reduced, high-quality treated water can be obtained from the precipitation tank.

本発明に係る水処理システムによれば、微生物担体を、両端が固定された幹糸と該幹糸に設けられた複数の枝糸とから構成したので、被処理水の処理に必要な微生物量を高密度にかつ適切に保持でき、担体処理装置を含めた施設の規模をコンパクトにできる。また、保持された微生物と溶解性成分との接触効率が向上し、溶解性成分の吸着に要する時間を短縮できる。さらに、幹糸と枝糸の動きによって余剰微生物の剥離が適切に行える。   According to the water treatment system of the present invention, since the microbial carrier is composed of a stem yarn having both ends fixed and a plurality of branch yarns provided on the stem yarn, the amount of microorganisms required for treatment of the water to be treated Can be held at high density and appropriately, and the scale of the facility including the carrier processing apparatus can be made compact. Further, the contact efficiency between the retained microorganism and the soluble component is improved, and the time required for adsorption of the soluble component can be shortened. Further, excess microorganisms can be appropriately peeled off by the movement of the trunk yarn and branch yarn.

本発明に係る水処理システムによれば、当該水処理システムへの被処理水から夾雑物を除去する夾雑物除去設備を設け、被処理水を該夾雑物除去設備に導入し、夾雑物が除去された被処理水を担体処理装置に導入し、担体処理装置から流出する担体槽流出水を凝集沈殿処理装置に導入するように構成したので、微生物への吸着・分解や凝集分離を必要としない夾雑物が被処理水から排除され、担体処理装置や凝集沈殿処理装置への負荷が低減される。夾雑物による微生物担体の閉塞、破損が防止されるため、担体処理装置の機能を安定して維持できる。   According to the water treatment system of the present invention, a contaminant removal facility for removing contaminants from the water to be treated to the water treatment system is provided, the treated water is introduced into the contaminant removal facility, and the contaminants are removed. Since the treated water is introduced into the carrier treatment device and the carrier tank effluent flowing out from the carrier treatment device is introduced into the coagulation sedimentation treatment device, adsorption / decomposition to microorganisms and coagulation separation are not required Contaminants are excluded from the water to be treated, and the load on the carrier treatment device and the coagulation sedimentation treatment device is reduced. Since the blockage and breakage of the microbial carrier due to contaminants are prevented, the function of the carrier treatment apparatus can be stably maintained.

本発明に係る水処理システムによれば、担体処理装置から流出する担体槽流出水から懸濁物質を除去する固液分離設備を設け、被処理水を凝集沈殿装置に導入し、凝集沈殿装置から流出する沈殿槽流出水を前記担体処理装置に導入し、担体処理装置から流出する担体槽流出水を前記固液分離設備に導入するように構成したので、浮遊する微生物(浮遊微生物)や微生物担体から剥離した微生物膜(剥離汚泥)が分離され、清浄な処理水が得られる。得られた処理水は水処理システム外に放流が可能となる。さらに、固液分離設備によって分離した凝集汚泥中の微生物フロックや剥離汚泥の一部もしくは全部を担体槽に戻すように構成することで、処理目的に適した微生物量を担体槽内に保持することが可能となる。   According to the water treatment system of the present invention, a solid-liquid separation facility for removing suspended substances from the carrier tank effluent flowing out from the carrier treatment apparatus is provided, and the water to be treated is introduced into the coagulation precipitation apparatus. Since the precipitation tank effluent flowing out is introduced into the carrier treatment apparatus, and the carrier tank effluent flowing out from the carrier treatment apparatus is introduced into the solid-liquid separation facility, floating microorganisms (floating microorganisms) and microorganism carriers The separated microbial membrane (peeled sludge) is separated to obtain clean treated water. The obtained treated water can be discharged out of the water treatment system. In addition, the microbial flocs and flaking sludge in the coagulated sludge separated by the solid-liquid separation facility are configured to return part or all of them to the carrier tank, so that the amount of microorganisms suitable for the processing purpose can be maintained in the carrier tank. Is possible.

本発明の実施の形態1による水処理システムの全体を示し、一部を破断して示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic block diagram which shows the whole water treatment system by Embodiment 1 of this invention, and shows a part broken away. 図1に示した実施の形態1の水処理システムの変形例1を示し、一部を破断して示す概略構成図である。It is the schematic block diagram which shows the modification 1 of the water treatment system of Embodiment 1 shown in FIG. 図1に示した実施の形態1の水処理システムの変形例2を示し、一部を破断して示す概略構成図である。It is the schematic block diagram which shows the modification 2 of the water treatment system of Embodiment 1 shown in FIG. 図3に示した実施の形態1の水処理システムの変形例2に使用された微生物担体の変形例であって、幹糸を水平方向に延在させるように構成した微生物担体を示す上面図である。FIG. 6 is a top view showing a microbial carrier used in the second modified example of the water treatment system of the first embodiment shown in FIG. 3 and configured to extend the stem yarn in the horizontal direction. is there. 図3Aの矢印A方向からの矢視図であって、微生物担体およびその支持フレーム並びに散気設備を示す概略構成図である。It is an arrow line view from the arrow A direction of FIG. 3A, Comprising: It is a schematic block diagram which shows a microorganisms carrier, its support frame, and aeration equipment. 図3に示した実施の形態1の水処理システムの変形例2に使用された微生物担体の他の変形例であって、枝糸が、幹糸を中心として複数の略リング状のひもで構成した微生物担体を示す概略斜視図である。It is another modification of the microorganism carrier used for the modification 2 of the water treatment system of Embodiment 1 shown in FIG. 3, Comprising: A branch thread is comprised with several substantially ring-shaped strings centering on a trunk thread. It is a schematic perspective view which shows the microbial carrier which carried out. 本発明の実施の形態2による水処理システムの全体を示し、一部を破断して示す概略構成図である。It is a schematic block diagram which shows the whole water treatment system by Embodiment 2 of this invention, and fracture | ruptures and shows a part. 図4に示した実施の形態2の水処理システムの変形例1を示し、一部を破断して示す概略構成図である。It is the schematic block diagram which shows the modification 1 of the water treatment system of Embodiment 2 shown in FIG. 図4に示した実施の形態2の水処理システムの変形例2を示し、一部を破断して示す概略構成図である。It is the schematic block diagram which shows the modification 2 of the water treatment system of Embodiment 2 shown in FIG. 本発明の実施の形態3による水処理システムの全体を示し、一部を破断して示す概略構成図である。It is a schematic block diagram which shows the whole water treatment system by Embodiment 3 of this invention, and fractures | ruptures and shows a part. 図7に示した実施の形態3の水処理システムの変形例1を示し、一部を破断して示す概略構成図である。It is the schematic block diagram which shows the modification 1 of the water treatment system of Embodiment 3 shown in FIG. 7, and fractures | ruptures and shows it partially. 図7に示した実施の形態3の水処理システムの変形例2を示し、一部を破断して示す概略構成図である。It is the schematic block diagram which shows the modification 2 of the water treatment system of Embodiment 3 shown in FIG. 本発明の実施の形態4による水処理システムの全体を示し、一部を破断して示す概略構成図である。It is a schematic block diagram which shows the whole water treatment system by Embodiment 4 of this invention, and fractures | ruptures and shows a part. 図10に示した実施の形態4の水処理システムの変形例1を示し、一部を破断して示す概略構成図である。It is the schematic block diagram which shows the modification 1 of the water treatment system of Embodiment 4 shown in FIG. 10, and fractures | ruptures and shows it partially. 図10に示した実施の形態4の水処理システムの変形例2を示し、一部を破断して示す概略構成図である。It is the schematic block diagram which shows the modification 2 of the water treatment system of Embodiment 4 shown in FIG. 図4に示した実施の形態2による水処理システムのBOD処理状況を示すグラフである。It is a graph which shows the BOD process condition of the water treatment system by Embodiment 2 shown in FIG. 図10に示した実施の形態4による水処理システムのSS処理状況を示すグラフである。It is a graph which shows SS process condition of the water treatment system by Embodiment 4 shown in FIG. (A1)、(A2)、(B1)および(B2)は、同一の処理条件で水処理を行うことを想定した場合における図7に示した実施の形態3による水処理システムと従来の水処理方式(オキシデーションディッチ法)との施設規模の大きさの比較図である。(A1), (A2), (B1) and (B2) are the water treatment system according to the third embodiment shown in FIG. 7 and the conventional water treatment when it is assumed that water treatment is performed under the same treatment conditions. It is a comparison figure of the size of the facility scale with the method (oxidation ditch method).

まず、本発明に係る水処理システムの基本的な構成について説明する。
本発明に係る水処理システムは、下水を短時間で所定の水質に処理できるオールインワンタイプであり、基本的に、担体処理装置と凝集沈殿処理装置と沈降促進材分離回収装置を含み、必要に応じて、夾雑物除去設備および/または固液分離設備をさらに含むものである。このシステムでは、各装置、設備、機器間の接続配管を切り替えることにより、システム内の水の流れを適宜、変更できる。例えば、水処理システムに流入する下水等の処理対象水(以下、「流入水」または「被処理水」という)の水量や水質などの諸条件あるいはその変動に応じて、適宜、設定あるいは変更される処理手順に従って接続配管を切り替えることになるため、当該処理手順によっては、被処理水を流入させる装置または設備、および、処理水(水処理システムによる処理が終了し、河川等に放流できる程度に浄化された所定の水質の水)を流出させる装置または機器が異なる場合がある。
First, the basic configuration of the water treatment system according to the present invention will be described.
The water treatment system according to the present invention is an all-in-one type capable of treating sewage to a predetermined water quality in a short time, and basically includes a carrier treatment device, a coagulation sedimentation treatment device, and a sedimentation promoting material separation and recovery device. In addition, the apparatus further includes a contaminant removal facility and / or a solid-liquid separation facility. In this system, the flow of water in the system can be changed as appropriate by switching the connecting pipes between the devices, facilities, and devices. For example, it is set or changed as appropriate according to various conditions such as the amount and quality of water to be treated (hereinafter referred to as “inflow water” or “treated water”) such as sewage flowing into the water treatment system, or variations thereof. Therefore, depending on the processing procedure, depending on the processing procedure, the equipment or equipment that supplies the water to be treated and the treated water (to the extent that the treatment by the water treatment system is completed and can be discharged into a river, etc. There may be a difference in the apparatus or equipment that discharges the purified water having a predetermined water quality.

次に、以下の各実施の形態およびその変形例と被処理水との関係について、その概要を説明する。
(1) 例えば、夾雑物を含まず、非凝集性成分(溶解性有機成分)を比較的多く含み、生物学的酸素要求量(BOD)が高い被処理水については、その被処理水を担体処理装置に流入させた後に、凝集沈殿処理装置から清浄な処理水を流出させる水処理システムの構成(例えば、図1〜図6)を好適に採用することができる。
(2) 例えば、夾雑物を含み、溶解性有機成分を比較的多く含み、BODが高い被処理水については、その被処理水を夾雑物除去設備に通してから担体処理装置に流入させた後に、凝集沈殿処理装置から清浄な処理水を流出させる水処理システムの構成(例えば、図7〜図9)を好適に採用することができる。
(3) 例えば、浮遊物質(SS)などの未凝集性成分が多い被処理水については、その被処理水を凝集沈殿処理装置に流入させた後に、担体処理装置による微生物処理を経て固液分離設備から清浄な処理水を流出させる水処理システムの構成(例えば、図10〜図12)を好適に採用することができる。
Next, the outline | summary is demonstrated about the relationship between the following each embodiment and its modification, and to-be-processed water.
(1) For example, for treated water that does not contain contaminants, contains a relatively large amount of non-aggregating components (soluble organic components), and has a high biological oxygen demand (BOD), the treated water is used as a carrier. The structure (for example, FIGS. 1-6) of the water treatment system which flows out a clean treated water from a coagulation sedimentation processing apparatus after making it flow into a processing apparatus can be employ | adopted suitably.
(2) For example, for water to be treated that contains impurities, contains a relatively large amount of soluble organic components, and has a high BOD, after passing the water to be treated through the contaminant removal equipment, it flows into the carrier treatment device. A configuration of a water treatment system (for example, FIGS. 7 to 9) that allows clean treated water to flow out from the coagulation sedimentation treatment apparatus can be suitably employed.
(3) For example, for water to be treated with a large amount of unaggregated components such as suspended solids (SS), the treated water is allowed to flow into a coagulation sedimentation treatment device, and then subjected to microbial treatment by a carrier treatment device, followed by solid-liquid separation. The structure (for example, FIGS. 10-12) of the water treatment system which flows out the clean treated water from an installation can be employ | adopted suitably.

なお、以下の実施の形態およびその変形例は、本発明に係る水処理システムの具体例であり、これらは本発明の単なる例示に過ぎず、本発明は当該例示に限定されるものではなく、本発明に係る水処理システムは、当該例示以外の多種多様なバリエーションを含めて構成することもできる。   The following embodiments and modifications thereof are specific examples of the water treatment system according to the present invention, these are merely examples of the present invention, and the present invention is not limited to the examples, The water treatment system according to the present invention can be configured including various variations other than the above examples.

実施の形態1.
図1は本発明の実施の形態1による水処理システムの全体を示し、一部を破断して示す概略構成図である。
実施の形態1による水処理システムは、例えば、夾雑物を含まず、非凝集性成分(溶解性有機成分)を比較的多く含み、生物学的酸素要求量(BOD)が高い被処理水を処理する場合などに適用されるもので、担体処理装置1と凝集沈殿処理装置2と沈降促進材分離回収装置3とを含み、原水ポンプ(図示せず)により被処理水導入管4を介して送られる被処理水を担体処理装置1に導入し、この担体処理装置1から得られる担体槽流出水を、連結管5を介して凝集沈殿処理装置2に送出し、この凝集沈殿処理装置2から処理水を水処理システム外に排出するように構成されている。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram showing the entire water treatment system according to Embodiment 1 of the present invention, with a part thereof broken away.
The water treatment system according to the first embodiment treats water to be treated that does not contain contaminants, contains a relatively large amount of non-aggregating components (soluble organic components), and has a high biological oxygen demand (BOD), for example. And includes a carrier treatment device 1, a coagulation sedimentation treatment device 2, and a sedimentation facilitating material separation / recovery device 3, and is fed via a raw water pump (not shown) through a treated water introduction pipe 4. The treated water to be treated is introduced into the carrier treatment device 1, and the carrier tank outflow water obtained from the carrier treatment device 1 is sent to the coagulation sedimentation treatment device 2 through the connecting pipe 5, and treated from the coagulation sedimentation treatment device 2. It is configured to discharge water out of the water treatment system.

担体処理装置1は、被処理水を受け入れ、かつ、内部に微生物担体11が複数配設された担体槽12と、この担体槽12内の槽底部12a上に配設され、かつ、担体槽12内を散気して被処理水中の溶存酸素濃度を高める散気設備13とから概略構成されている。   The carrier treatment apparatus 1 accepts water to be treated and is disposed on a carrier tank 12 in which a plurality of microbial carriers 11 are disposed, and on a tank bottom 12a in the carrier tank 12, and the carrier tank 12 It is comprised roughly from the aeration equipment 13 which diffuses the inside and raises the dissolved oxygen concentration in to-be-processed water.

担体槽12内に配設される微生物担体11としては、微生物が付着する表面積が大きく、かつ、散気設備13からの酸素供給を受け易い形状であれば、いかなる形状や材質であってもよく、これらに限定されるものではない。このような個々の微生物担体11は、担体槽12内で溶解性成分(被処理水中の溶解性成分や散気設備によって供給された溶存酸素等)や散気設備13によって発生する気泡と効率よく接触できる状態に維持されるよう、所定の間隔で配設されている。また、微生物担体11は、例えば矩形板状の微生物担体モジュール11a内に収容され、微生物担体モジュール11aは、支持フレーム11bに支持されており、この支持フレーム11bは複数の支柱11cによって担体槽12内の槽底部12aに立設されている。このような微生物担体モジュール11aは、水処理システムの運転中においても、必要に応じて、支持フレーム11bから引き上げて、微生物担体11上への微生物の付着状況の確認や新品との交換も容易に行うことができる。なお、微生物担体モジュール11aは、微生物と溶解性成分との接触機会を増やす一方、担体槽12内の水の流れを妨げない範囲で、水の流れに沿って平行に配設されてもよく、あるいは、その水の流れに対して角度をもって配設されてもよい。さらに、担体槽12内には、複数の支持フレーム11bが互いに並列するように設けられてもよい。   The microorganism carrier 11 disposed in the carrier tank 12 may be of any shape and material as long as the surface area to which microorganisms adhere is large and the shape allows easy supply of oxygen from the aeration equipment 13. However, it is not limited to these. Such individual microbial carriers 11 are efficiently dissolved in the carrier tank 12 with soluble components (soluble components in the water to be treated, dissolved oxygen supplied by the diffuser, etc.) and bubbles generated by the diffuser 13. It arrange | positions by the predetermined space | interval so that it may maintain in the state which can contact. The microbial carrier 11 is accommodated in, for example, a rectangular plate-like microbial carrier module 11a, and the microbial carrier module 11a is supported by a support frame 11b. The support frame 11b is supported in the carrier tank 12 by a plurality of columns 11c. The tank bottom 12a is erected. Such a microbial carrier module 11a can be easily lifted from the support frame 11b as needed to check the state of microbial adhesion on the microbial carrier 11 and replace with a new one even during operation of the water treatment system. It can be carried out. The microbial carrier module 11a may be arranged in parallel along the flow of water as long as it increases the chance of contact between the microorganism and the soluble component, while not interfering with the flow of water in the carrier tank 12. Or you may arrange | position with an angle with respect to the flow of the water. Furthermore, a plurality of support frames 11b may be provided in the carrier tank 12 so as to be parallel to each other.

このような担体槽12内では、被処理水中の溶解性成分と、散気設備13から供給される酸素を利用して微生物担体11上で好気性微生物が増殖し、微生物膜が形成される。形成された微生物膜は被処理水中の未凝集性成分や溶解性成分を吸着・分解し、その一部の成分は、微生物の栄養源となり、新たな微生物膜の形成に利用される。   In such a carrier tank 12, aerobic microorganisms grow on the microorganism carrier 11 using the soluble component in the water to be treated and oxygen supplied from the aeration equipment 13, and a microbial film is formed. The formed microbial membrane adsorbs and decomposes unaggregated components and soluble components in the water to be treated, and some of the components become nutrient sources for microorganisms and are used to form new microbial membranes.

散気設備13は、担体槽12内の槽底部12a上に配設され、かつ、複数の開口部(図示せず)を有する散気装置13aと、この散気装置13aに空気を供給する送風機(図示せず)とから概略構成されている。散気装置13aは、微生物担体11上の好気性微生物の成長に必要な好気性条件を常に維持するために、微生物担体11の直下の位置に配設されている。この散気設備13は、微生物担体11上の好気性微生物を増殖させるための酸素供給のみならず、微生物膜の剥離にも使用される。被処理水中の溶解性成分の吸着量が飽和に達した微生物膜や微生物担体11上の微生物保持量が被処理水に対する微生物処理にとって必要以上の量となったときの余剰の微生物は、送風機(図示せず)からの送風量を増やすことによって上向流速の増加(エアリフト効果)と気泡の上昇に伴う水流の乱れ(乱流)が担体槽12内の水の流れおよび気泡の流れを激しくすることによって、微生物担体11から剥離され、担体槽12から流出させることによって担体槽12内の被処理水の処理に必要な微生物量を維持できる。この剥離した微生物および余剰の微生物は、その一部は担体槽12内の被処理水中を浮遊する浮遊微生物として微生物処理に寄与するものの、最終的には、微生物膜に吸着されなかった被処理水中の未凝集性成分と、担体槽12内で形成された浮遊微生物と共に、凝集沈殿処理装置2へ送られ、沈殿汚泥として、沈殿槽流出水(処理水)から分離され、その沈殿汚泥は後述の分離回収器により分離されて凝集汚泥としてシステム外に排出されることになる。   The air diffuser 13 is disposed on the tank bottom 12a in the carrier tank 12, and has an air diffuser 13a having a plurality of openings (not shown), and a blower for supplying air to the air diffuser 13a. (Not shown). The air diffuser 13a is disposed at a position immediately below the microbial carrier 11 in order to always maintain the aerobic condition necessary for the growth of the aerobic microorganisms on the microbial carrier 11. This aeration equipment 13 is used not only for supplying oxygen for growing aerobic microorganisms on the microorganism carrier 11 but also for peeling the microorganism membrane. Surplus microorganisms when the amount of microorganisms retained on the microbial membrane or microbial carrier 11 in which the amount of the soluble component adsorbed in the water to be treated reaches saturation is more than necessary for the microbial treatment of the water to be treated is a blower ( By increasing the amount of air blown from (not shown), an increase in upward flow velocity (air lift effect) and turbulence of water flow (turbulent flow) accompanying the rise of bubbles intensify the flow of water and bubbles in the carrier tank 12. Thus, the amount of microorganisms necessary for the treatment of the water to be treated in the carrier tank 12 can be maintained by being peeled from the microorganism carrier 11 and flowing out from the carrier tank 12. Although part of the separated microorganisms and surplus microorganisms contribute to microbial treatment as floating microorganisms floating in the treated water in the carrier tank 12, the treated water that has not been adsorbed by the microbial membrane in the end. Together with the non-aggregating components and the floating microorganisms formed in the carrier tank 12, it is sent to the coagulation sedimentation treatment device 2 and separated from the sedimentation tank effluent (treated water) as sedimentation sludge. It is separated by the separation / recovery device and discharged out of the system as agglomerated sludge.

凝集沈殿処理装置2は、担体槽処理装置1からの担体槽流出水に無機凝集剤を添加した混和液に、高分子凝集剤や沈降促進材を添加することにより、混和液に含まれた未凝集性成分の凝集を促進させ、これによって形成される凝集汚泥を重量化することで、凝集汚泥の沈降速度を高めて高速分離するものであり、無機凝集剤を注入する無機凝集剤注入設備14と、高分子凝集剤を注入する高分子凝集剤注入設備15と、担体槽流出水、無機凝集剤、高分子凝集剤および沈降促進材を混合撹拌する混合撹拌槽17と、この混合撹拌槽17から流出する凝集混合液を重力沈降により沈殿槽流出水(処理水)と沈殿汚泥に分離する沈殿槽18とから概略構成されている。   The coagulation / sedimentation treatment apparatus 2 is added to a mixed liquid obtained by adding an inorganic flocculant to the carrier tank outflow water from the carrier tank treatment apparatus 1, thereby adding a polymer flocculant and a settling accelerator to the unmixed liquid. Inorganic flocculant injection equipment 14 for injecting an inorganic flocculant, which accelerates the aggregation of the flocculent component and increases the sedimentation speed of the aggregated sludge by increasing the weight of the aggregated sludge formed thereby, and injects the inorganic flocculant. A polymer flocculant injection facility 15 for injecting the polymer flocculant, a mixing tank 17 for mixing and stirring the carrier tank outflow water, the inorganic flocculant, the polymer flocculant, and the settling accelerator, and the mixing and stirring tank 17 It consists of a precipitation tank 18 that separates the agglomerated mixed liquid flowing out from the precipitation tank outflow water (treated water) and precipitation sludge by gravity sedimentation.

混合撹拌槽17は、水平に設けられた槽底部17aから離間する下部と水面から上方に突出する上部を有する仕切板17bを有しており、この仕切板17bにより、担体槽流出水の流入上流側の急速撹拌槽19とその下流側の凝集汚泥形成槽20とに区画されている。急速撹拌槽19には、この急速撹拌槽19内に流入した担体槽流出水を撹拌する撹拌翼19aとこの撹拌翼19aを回転駆動させるモータ19bが設けられている。また、撹拌翼19aによる撹拌強度は、担体槽流出水と無機凝集剤との混和、混和液と高分子凝集剤および沈降促進材との混合が急速に均一となるように行われ、かつ、形成される凝集汚泥を解砕しない範囲で決められる。なお、撹拌翼19aは、図1に示すように、急速撹拌槽19内の上流側に寄り、かつ、仕切板17bから離間した位置に配設されている。これは、急速撹拌槽19内の上流側を担体槽流出水と無機凝集剤を均一に混和させる混和領域とし、急速撹拌槽19内の仕切板17b側を混和液に高分子凝集剤および沈降促進材を添加して凝集汚泥を重量化する沈降領域とするためである。このように急速撹拌槽19内を混和領域と沈降領域に分けることにより、重量化した凝集汚泥を含む凝集混合液を仕切板17bの下部を通って凝集汚泥形成槽20へ速やかに移流させることができる。   The mixing and agitation tank 17 has a partition plate 17b having a lower part spaced apart from a horizontally provided tank bottom 17a and an upper part protruding upward from the water surface. It is divided into a rapid stirring tank 19 on the side and an agglomerated sludge forming tank 20 on the downstream side. The rapid stirring tank 19 is provided with a stirring blade 19a that stirs the carrier tank outflow water that has flowed into the rapid stirring tank 19 and a motor 19b that rotationally drives the stirring blade 19a. Further, the stirring strength by the stirring blade 19a is such that the mixing of the carrier tank effluent and the inorganic flocculant and the mixing of the admixture with the polymer flocculant and the settling accelerator are performed rapidly and uniformly. It is determined within the range that does not crush the aggregated sludge. As shown in FIG. 1, the stirring blade 19a is disposed at a position closer to the upstream side in the rapid stirring tank 19 and away from the partition plate 17b. This is because the upstream side in the rapid stirring tank 19 is a mixing region in which the carrier tank outflow water and the inorganic flocculant are uniformly mixed, and the partition plate 17b side in the rapid stirring tank 19 is mixed with the polymer flocculant and settling acceleration. This is because a material is added to form a sedimentation region in which the aggregated sludge is weighted. By dividing the inside of the rapid stirring tank 19 into the mixing area and the sedimentation area in this way, the agglomerated mixed liquid containing the agglomerated sludge can be quickly transferred to the agglomerated sludge forming tank 20 through the lower part of the partition plate 17b. it can.

凝集汚泥形成槽20には、この凝集汚泥形成槽20内の凝集混合液を撹拌する撹拌翼20aとこの撹拌翼20aを回転駆動させるモータ20bが設けられている。凝集汚泥形成槽20の下流側(混合撹拌槽17の最下流側)の槽底部17a上には、水面まで達しない上部を有する仕切板17cが立設されており、混合撹拌槽17で得られた凝集混合液は仕切板17cの上部を越えて沈殿槽18内に送られるように構成されている。また、撹拌翼20aによる撹拌強度は、凝集混合液に上昇流を形成し、かつ、凝集混合液中に含まれる大きな凝集汚泥を解砕して微細化しない範囲で決められる。   The agglomerated sludge forming tank 20 is provided with an agitating blade 20a for agitating the agglomerated mixed liquid in the agglomerated sludge forming tank 20, and a motor 20b for rotating the agitating blade 20a. A partition plate 17c having an upper portion that does not reach the water surface is erected on the tank bottom 17a on the downstream side of the coagulated sludge forming tank 20 (the most downstream side of the mixing and stirring tank 17). The agglomerated mixed liquid is configured to be sent into the precipitation tank 18 over the upper part of the partition plate 17c. The stirring strength by the stirring blade 20a is determined within a range in which an upward flow is formed in the flocculated liquid mixture and the large flocculated sludge contained in the flocculated liquid mixture is not crushed and refined.

実施の形態1における無機凝集剤注入設備14は、無機凝集剤を急速撹拌槽19内に注入するための設備であり、液状の無機凝集剤を貯留する無機凝集剤貯留タンク14aと、この無機凝集剤貯留タンク14aから急速撹拌槽19内の上流側の上方にまで延在する無機凝集剤注入管14bと、この無機凝集剤注入管14bを介して無機凝集剤貯留タンク14aからの無機凝集剤を注入する注入ポンプ14cとから概略構成されている。無機凝集剤としては、被処理水の水質等に応じて、例えばポリ塩化アルミニウム(PAC)、ポリ硫酸第二鉄(ポリ鉄)、塩化第二鉄等の周知の無機凝集剤を適宜選択することができる。担体槽流出水中にリン(富栄養化物質)を多く含む場合には、処理水中にリンが残留しないようにリンを効率よく除去するために、例えばポリ硫酸第二鉄(ポリ鉄)の使用が有効である。また、被処理水1リットルに対する無機凝集剤の注入量(薬品注入率)は、例えばポリ塩化アルミニウム(PAC)の場合、5〜10mg/L(Alとして算出した場合における換算値)の注入率幅で好適に使用できるが、これに限定されるものではない。 The inorganic flocculant injection facility 14 in the first embodiment is a facility for injecting the inorganic flocculant into the rapid stirring tank 19. The inorganic flocculant storage tank 14 a for storing the liquid inorganic flocculant and the inorganic flocculant Inorganic flocculant injection pipe 14b extending from the agent storage tank 14a to the upper upstream side in the rapid stirring tank 19, and the inorganic flocculant from the inorganic flocculant storage tank 14a via the inorganic flocculant injection pipe 14b. An infusion pump 14c for infusion is schematically configured. As the inorganic flocculant, a known inorganic flocculant such as polyaluminum chloride (PAC), polyferric sulfate (polyiron), ferric chloride and the like is appropriately selected according to the quality of the water to be treated. Can do. If the carrier tank effluent contains a large amount of phosphorus (eutrophication substance), for example, the use of polyferric sulfate (polyiron) can be used to efficiently remove phosphorus so that phosphorus does not remain in the treated water. It is valid. Moreover, the injection amount (chemical injection rate) of the inorganic flocculant for 1 liter of water to be treated is, for example, 5 to 10 mg / L (converted value when calculated as Al 2 O 3 ) in the case of polyaluminum chloride (PAC). Although it can use suitably by the injection rate width | variety, it is not limited to this.

高分子凝集剤注入設備15は、高分子凝集剤を液状に調製する高分子凝集剤調製装置15aと、この高分子凝集剤調製装置15aから急速撹拌槽19の上方にまで延在する高分子凝集剤注入管15bと、この高分子凝集剤注入管15bを介して高分子凝集剤調製装置15aからの液状の高分子凝集剤を注入する注入ポンプ15cとから概略構成されている。高分子凝集剤調製装置15aは、高分子凝集剤混合タンク15dと、この高分子凝集剤混合タンク15d内に供給される例えば粉状または粒状の高分子凝集剤を貯留する高分子凝集剤収容タンク15eと、高分子凝集剤混合タンク15d内に処理水等の水を供給する給水管15fと、この給水管15f内の流路を開閉して給水量を調節するバルブ15gと、高分子凝集剤混合タンク15d内で水と高分子凝集剤を混合する撹拌翼15hと、この撹拌翼15hを回転駆動するモータ15iとから概略構成されている。高分子凝集剤としては、被処理水の水質等に応じて、例えば両性、カチオン系、アニオン系およびノニオン系等の周知の高分子凝集剤を適宜選択することができる。被処理水1リットルに対する高分子凝集剤の注入量(薬品注入率)は、例えばアニオン系ポリマーの場合、例えば0.8〜2.0mg/Lの注入率幅で好適に使用できるが、これに限定されるものではない。なお、無機凝集剤と高分子凝集剤とは、種々の組み合わせが可能であるが、無機凝集剤として、例えばポリ硫酸第二鉄(ポリ鉄)を注入して担体槽流出水中に微細な凝集汚泥を形成させた後に、両性高分子凝集剤を注入すると、さらに凝集が進み、強固な凝集汚泥を形成させることができる。   The polymer flocculant injection equipment 15 includes a polymer flocculant preparation device 15a for preparing the polymer flocculant in a liquid state, and a polymer flocculant extending from the polymer flocculant preparation device 15a to above the rapid stirring tank 19. An agent injection tube 15b and an injection pump 15c for injecting the liquid polymer flocculant from the polymer flocculant preparation device 15a via the polymer flocculant injection tube 15b are schematically configured. The polymer flocculant preparation device 15a includes a polymer flocculant mixing tank 15d and a polymer flocculant storage tank for storing, for example, powdery or granular polymer flocculant supplied into the polymer flocculant mixing tank 15d. 15e, a water supply pipe 15f for supplying water such as treated water into the polymer flocculant mixing tank 15d, a valve 15g for opening and closing the flow path in the water supply pipe 15f to adjust the amount of water supply, and a polymer flocculant The mixing tank 15d includes a stirring blade 15h that mixes water and the polymer flocculant, and a motor 15i that rotationally drives the stirring blade 15h. As the polymer flocculant, known polymer flocculants such as amphoteric, cationic, anionic, and nonionic can be appropriately selected according to the quality of the water to be treated. For example, in the case of an anionic polymer, the injection amount (chemical injection rate) of the polymer flocculant per 1 liter of water to be treated can be suitably used with an injection rate width of 0.8 to 2.0 mg / L. It is not limited. Various combinations of the inorganic flocculant and the polymer flocculant are possible, but as the inorganic flocculant, for example, polyferric sulfate (polyiron) is injected and fine flocculated sludge is added to the carrier tank effluent. When the amphoteric polymer flocculant is injected after the formation of, the agglomeration further proceeds, and a strong agglomerated sludge can be formed.

沈降促進材は、凝集汚泥を重量化して、その凝集汚泥の沈降速度を高めるためのものであり、例えば、その直径が約100〜約400マイクロメートルの範囲であり、比重が2.3〜2.8の範囲であり、耐摩耗、耐衝撃に強い材質のものがよい。例えば硅砂のようにケイ酸分を高く含むものが好ましいが、これに限られるものではない。   The sedimentation promoting material is for increasing the sedimentation rate of the aggregated sludge by weighting the aggregated sludge. For example, the diameter is in the range of about 100 to about 400 micrometers and the specific gravity is 2.3 to 2. It is preferable that the material is resistant to wear and shock. For example, a material containing a high silicic acid content such as cinnabar is preferable, but it is not limited thereto.

沈殿槽18は、中央に向かって下降傾斜する略円錐状の槽底部18aを有する略円筒状の重力沈殿槽である。槽底部18aの中央には、沈殿汚泥を集める略円筒状の汚泥ピット18bが設けられている。沈殿槽18内には、槽底部18a上に沈殿した沈殿汚泥(凝集汚泥を含む)を汚泥ピット18b内に掻き寄せる凝集汚泥掻寄機21と、この凝集汚泥掻寄機21を回転駆動するモータ22が設けられている。凝集汚泥掻寄機21は、汚泥ピット18b内に集められる沈殿汚泥の汚泥界面(上澄水と沈殿汚泥との界面)を安定化させるために、上澄水に凝集汚泥が混入しない構造を有すると共に、その回転速度は沈殿汚泥の掻き寄せが可能であり、かつ、汚泥界面に乱れを生じさせない範囲で決められる。また、沈殿槽18内の上部には、上記混合撹拌槽17の仕切板17cの近傍に仕切板18cが設けられている。この仕切板18cの上部は水面から上方に突出しており、その下部は汚泥ピット18bに向けて傾斜するように、上部に対して屈曲し、その最下端は槽底部18aおよび凝集汚泥掻寄機21から離間している。仕切板18c内の上部には、上澄水が沈殿槽18から流出する際に生じる水流による沈殿汚泥の巻き上げを防止する一つまたは二つ以上の集水樋18dが設けられている。   The sedimentation tank 18 is a substantially cylindrical gravity sedimentation tank having a substantially conical tank bottom portion 18a inclined downward toward the center. A substantially cylindrical sludge pit 18b for collecting the precipitated sludge is provided at the center of the tank bottom 18a. In the sedimentation tank 18, the aggregated sludge scraping machine 21 that scrapes the precipitated sludge (including the aggregated sludge) deposited on the tank bottom 18a into the sludge pit 18b, and a motor that rotationally drives the aggregated sludge scraping machine 21. 22 is provided. The agglomerated sludge scraper 21 has a structure in which the agglomerated sludge is not mixed into the supernatant water in order to stabilize the sludge interface (the interface between the supernatant water and the precipitated sludge) of the precipitated sludge collected in the sludge pit 18b. The rotation speed is determined within a range in which the precipitated sludge can be scraped and the turbulent interface is not disturbed. In addition, a partition plate 18 c is provided in the vicinity of the partition plate 17 c of the mixing and stirring tank 17 in the upper part in the precipitation tank 18. The upper part of the partition plate 18c protrudes upward from the water surface, the lower part is bent with respect to the upper part so as to incline toward the sludge pit 18b, and the lowermost end thereof is the tank bottom part 18a and the coagulated sludge scraper 21. It is away from. In the upper part of the partition plate 18c, one or two or more water collecting tanks 18d are provided for preventing the settling sludge from being rolled up by the water flow generated when the supernatant water flows out of the settling tank 18.

沈降促進材分離回収装置3は、沈殿槽18の汚泥ピット18b内の沈殿汚泥を引き抜く汚泥引抜ポンプ23と、この汚泥引抜ポンプ23により引き抜いた沈殿汚泥から凝集汚泥を分離し、かつ、沈降促進材を回収して上記沈降促進材供給管16へ供給する分離回収器24と、この分離回収器24と汚泥ピット18bを接続し、かつ、上記汚泥引抜ポンプ23が設けられた沈殿汚泥返送管25とから概略構成されている。分離回収器24は、凝集沈殿処理装置2の沈降促進材供給管16の上部に設けられており、遠心力と重力(重量差)により、沈殿汚泥中の凝集汚泥に比べて重量の大きな沈降促進材を沈降促進材供給管16内に降下させることにより、沈降促進材と凝集汚泥を分離するサイクロン式の分離器である。   The sedimentation promoting material separation and recovery device 3 separates the coagulated sludge from the sludge extraction pump 23 that extracts the sedimented sludge in the sludge pit 18b of the sedimentation tank 18, and the sedimented sludge that is extracted by the sludge extraction pump 23, and the sedimentation promoting material. Is collected and supplied to the settling accelerator supply pipe 16, and the separated sludge return pipe 25 is connected to the separation / collector 24 and the sludge pit 18b and provided with the sludge extraction pump 23. It is roughly composed. The separation / recovery unit 24 is provided on the upper part of the settling promoting material supply pipe 16 of the coagulation sedimentation processing device 2 and is settling accelerated with a larger weight than the coagulated sludge in the precipitated sludge by centrifugal force and gravity (weight difference). It is a cyclone separator that separates the sedimentation promoting material and the coagulated sludge by lowering the material into the sedimentation promoting material supply pipe 16.

次に動作について説明する。
まず、被処理水導入管4から担体処理装置1の担体槽12内に供給された被処理水は、散気設備13の散気によって撹拌され、酸素供給を受ける微生物担体11上の微生物により被処理水中の未凝集性成分や溶解性成分が吸着・除去され、担体槽流出水として連結管5を介して凝集沈殿処理装置2の混合撹拌槽17の急速撹拌槽19内に送られる。
Next, the operation will be described.
First, the water to be treated supplied from the treated water introduction pipe 4 into the carrier tank 12 of the carrier treatment apparatus 1 is stirred by the air diffused by the air diffuser 13 and is covered by the microorganisms on the microorganism carrier 11 receiving the oxygen supply. Unflocculated components and soluble components in the treated water are adsorbed and removed, and sent to the rapid agitation tank 19 of the mixing and agitation tank 17 of the agglomeration sedimentation processing apparatus 2 through the connecting pipe 5 as carrier tank outflow water.

次に、急速撹拌槽19内では、撹拌翼19aにより撹拌される担体槽流出水に無機凝集剤が注入されて未凝集性成分を凝集させ、形成された微細な凝集汚泥に沈降促進材が添加されて重量化し、さらに高分子凝集剤が注入されることで、微細で重量化した凝集汚泥を、より強固で沈降性の高い凝集汚泥とすることができる。高分子凝集剤を利用することによって微細な凝集汚泥が強固で沈降性の高い凝集汚泥に吸着されるため、沈殿槽18における沈殿分離後の沈殿槽流出水への凝集汚泥の混入が低減される。より強固で沈降性の高い凝集汚泥を含む凝集混合液は、矢印Xで示すように、仕切板17bの下部を通って凝集汚泥形成槽20へ移流される。   Next, in the rapid agitation tank 19, an inorganic flocculant is injected into the carrier tank effluent stirred by the stirring blade 19a to agglomerate the non-agglomerated components, and a settling accelerator is added to the formed fine agglomerated sludge. Then, the polymer flocculant is injected and the polymer flocculant is injected, so that the fine and weighted flocculent sludge can be made stronger and more settled. By using the polymer flocculant, fine agglomerated sludge is adsorbed to the agglomerated sludge which is strong and has high sedimentation properties, so that mixing of the agglomerated sludge into the sedimentation tank effluent after the precipitation separation in the sedimentation tank 18 is reduced. . The flocculated mixed liquid containing the flocculated sludge which is stronger and has a higher sedimentation property is transferred to the flocculated sludge forming tank 20 through the lower part of the partition plate 17b as indicated by an arrow X.

次に、凝集汚泥形成槽20内では、凝集混合液が撹拌翼20aにより十分に撹拌されて、その凝集混合液中の凝集汚泥がより強固で沈降性の高い状態に維持されながら、さらに大きく成長する。このような凝集混合液は、撹拌翼20aにより形成される上昇流によって、矢印Yで示すように、仕切板17cの上部を越えて沈殿槽18内に移流される。   Next, in the agglomerated sludge forming tank 20, the agglomerated mixed liquid is sufficiently stirred by the stirring blade 20a, and the agglomerated sludge in the agglomerated mixed liquid grows further while being maintained in a stronger and more settled state. To do. Such an agglomerated mixed liquid is transferred into the sedimentation tank 18 over the upper part of the partition plate 17c by the upward flow formed by the stirring blade 20a as indicated by an arrow Y.

次に、沈殿槽18内に移流された凝集混合液は、沈殿槽流出水(処理水)と沈殿汚泥に分離される。すなわち、凝集混合液は、矢印Yで示すように、仕切板18cの上部に当たって流れの向きが下方向に変わり、矢印Zで示すように、仕切板18cの下部に沿って下降し、その下部の最下端を越えて集水樋18dの下側の領域に達する。この集水樋18dの下側の領域では、凝集混合液中の凝集成分は凝集汚泥として重力沈降して槽底部18a上に沈殿し、その凝集汚泥は凝集汚泥掻寄機21により汚泥ピット18b内に集められる。汚泥ピット18b内に沈殿した凝集汚泥は、沈殿汚泥として、汚泥引抜ポンプ23により引き抜かれ、沈殿汚泥返送管25を介して分離回収器24に送られる。一方、凝集成分が徐々に重力沈降して分離される過程にある凝集混合液は、集水樋18dの下側の領域を上昇することから、液中に含まれる凝集成分がさらに減少し、集水樋18dまで上昇すると、凝集成分を含まない清浄な分離水(上澄水)となり、沈殿槽流出水(処理水)として処理水流出口(図示せず)から排出管6を介して水処理システム外に排出される。この処理水は、そのまま、放流されてもよく、あるいは、水処理システムを構成する各装置等の洗浄用水、高分子凝集剤の調製用水、生活水、あるいは必要に応じて逆浸透膜(RO膜)等でろ過して飲料水等に利用されてもよい。   Next, the agglomerated mixed liquid transferred to the settling tank 18 is separated into settling tank outflow water (treated water) and settling sludge. That is, the agglomerated mixed liquid hits the upper part of the partition plate 18c as indicated by an arrow Y, and the flow direction changes downward, and as indicated by the arrow Z, it descends along the lower part of the partition plate 18c. It reaches the lower region of the catchment basin 18d beyond the lowermost end. In the lower region of the catchment basin 18d, the agglomerated component in the agglomerated mixed liquid is gravity settled as agglomerated sludge and settles on the tank bottom 18a. The agglomerated sludge is collected in the sludge pit 18b by the agglomerated sludge scraper 21. To be collected. The agglomerated sludge precipitated in the sludge pit 18 b is extracted by the sludge extraction pump 23 as the precipitated sludge and sent to the separation / recovery device 24 through the precipitated sludge return pipe 25. On the other hand, the agglomerated mixed liquid in the process where the agglomerated components are gradually separated by gravity sedimentation rises in the lower region of the catchment basin 18d. When it rises to the water tank 18d, it becomes clean separated water (supernatant water) that does not contain agglomerated components, and flows out of the water treatment system from the treated water outlet (not shown) through the discharge pipe 6 as settling tank outflow water (treated water). To be discharged. This treated water may be discharged as it is, or cleaning water for each device constituting the water treatment system, water for preparing a polymer flocculant, domestic water, or a reverse osmosis membrane (RO membrane as necessary) ) Etc. and may be used for drinking water.

次に、分離回収器24では、遠心力と重量(重量差)によって、沈殿汚泥を沈降促進材と凝集汚泥とに分離される。すなわち、比重の大きい沈降促進材は、回転しながら落下し、沈降促進材供給管16内に回収され、混合撹拌槽17の上流側に配設された急速撹拌槽19内に供給されることにより、再度、凝集汚泥の重量化による沈降促進に供される。一方、沈降促進材と比較して比重の小さい凝集汚泥は、排泥ポンプ(図示せず)により水処理システム外に排出される。   Next, in the separation / recovery unit 24, the precipitated sludge is separated into a settling accelerator and agglomerated sludge by centrifugal force and weight (weight difference). That is, the sedimentation promoting material having a large specific gravity falls while rotating, is collected in the sedimentation promoting material supply pipe 16, and is supplied into the rapid stirring tank 19 disposed on the upstream side of the mixing stirring tank 17. Again, it is subjected to settling acceleration by increasing the weight of the coagulated sludge. On the other hand, agglomerated sludge having a smaller specific gravity than the sedimentation promoting material is discharged out of the water treatment system by a sludge pump (not shown).

以上のように、実施の形態1によれば、担体処理装置1に、微生物担体11が複数配設された担体槽12および該担体槽12内を散気する散気設備13を備えるように構成したので、次のような優れた効果を奏することができる。
(1) 被処理水中の溶解性成分を吸収・分解する好気性微生物を良好な好気性条件の下に担体槽12内に保持することが容易となる。
(2) 被処理水中の溶解性成分の吸着量が飽和に達した場合や微生物担体11上の微生物の保持量が被処理水の処理にとって必要以上の量となった場合などには、散気設備13の散気強度を増やすことで担体槽12内の水流れおよび気泡の流れを激しくし、この激しい水流れおよび気泡の流れによって微生物担体11上の余剰の微生物を剥離することで被処理水の処理に必要量の微生物を維持できる。
As described above, according to the first embodiment, the carrier processing apparatus 1 is configured to include the carrier tank 12 in which a plurality of microbial carriers 11 are arranged, and the air diffuser 13 that diffuses the inside of the carrier tank 12. Therefore, the following excellent effects can be achieved.
(1) It becomes easy to hold aerobic microorganisms that absorb and decompose soluble components in the water to be treated in the carrier tank 12 under favorable aerobic conditions.
(2) When the adsorption amount of the soluble component in the water to be treated reaches saturation, or when the amount of microorganisms retained on the microorganism carrier 11 becomes more than necessary for the treatment of the water to be treated, aeration By increasing the aeration intensity of the equipment 13, the water flow and the bubble flow in the carrier tank 12 are made violent, and excess microorganisms on the microorganism carrier 11 are peeled off by this violent water flow and bubble flow. The necessary amount of microorganisms can be maintained.

実施の形態1によれば、凝集沈殿処理装置2に無機凝集剤を注入する無機凝集剤注入設備14、高分子凝集剤を注入する高分子凝集剤注入設備15、混合撹拌する撹拌機(撹拌翼19aおよび20a、並びに、モータ19bおよび20b)が設けられた混合撹拌槽17および該混合撹拌槽17から流出する凝集混合液を沈殿槽流出水と沈殿汚泥に分離する沈殿槽18を備えるように構成したので、混合撹拌槽17内の未凝集性成分を無機凝集剤によって確実に凝集させると共に、高分子凝集剤と沈降促進材によって沈降性の高い凝集汚泥を混合撹拌槽17内の凝集混合液中に形成し、沈殿槽18において凝集汚泥を沈降させることによって、上澄水を沈殿槽流出水として、沈降した凝集汚泥を沈殿汚泥として容易に分離できる。   According to the first embodiment, the inorganic flocculant injection equipment 14 for injecting the inorganic flocculant into the coagulation sedimentation treatment apparatus 2, the polymer flocculant injection equipment 15 for injecting the polymer flocculant, and the agitator (stirring blade) for mixing and stirring 19a and 20a and motors 19b and 20b) are provided with a mixing agitation tank 17 and a precipitation tank 18 for separating the agglomerated mixed liquid flowing out of the mixing agitation tank 17 into precipitation tank outflow water and precipitation sludge. As a result, the non-aggregating component in the mixing and stirring tank 17 is reliably aggregated by the inorganic flocculant, and the agglomerated sludge having a high sedimentation property is mixed in the aggregating mixed liquid in the mixing and stirring tank 17 by the polymer flocculant and the settling accelerator. By forming the aggregate sludge in the sedimentation tank 18, the supernatant water can be easily separated as the sedimentation tank outflow water, and the sedimented aggregate sludge can be easily separated as the sedimentation sludge.

実施の形態1によれば、沈降促進材分離回収装置3が沈殿槽18内の沈降汚泥を引き抜く汚泥引抜ポンプ23および該汚泥引抜ポンプ23で引き抜いた沈殿汚泥から凝集汚泥を分離し、前記沈降促進材を回収して沈降促進材供給管16を介して前記急速撹拌槽19へ供給する分離回収器24を備えるように構成したので、次のような優れた効果を奏することができる。
(1) 沈殿槽18内の沈殿汚泥を適切に引き抜くことで沈殿槽18内の沈殿汚泥の汚泥界面を管理し、処理水流出口(図示せず)での沈殿汚泥の巻き込みによる処理水の水質悪化を防止できる。
(2) また、汚泥引抜ポンプ23によって引き抜かれた沈殿汚泥から分離回収器24によって分離された凝集汚泥が汚泥処理に供されると共に、回収された沈降促進材が沈降促進材供給管16を介して前記急速撹拌槽19に供給されるため、沈降促進材を常に再利用できる。
According to the first embodiment, the settling promoting material separation and recovery device 3 separates the coagulated sludge from the sludge extraction pump 23 for extracting the settling sludge in the settling tank 18 and the settling sludge extracted by the sludge extraction pump 23, thereby promoting the settling. Since the separation / recovery unit 24 is provided to collect the material and supply it to the rapid stirring tank 19 through the settling accelerator supply pipe 16, the following excellent effects can be obtained.
(1) By appropriately extracting the sludge from the sedimentation tank 18, the sludge interface of the sedimentation sludge in the sedimentation tank 18 is managed, and the quality of the treated water deteriorates due to the entrainment of the sludge at the treated water outlet (not shown). Can be prevented.
(2) In addition, the coagulated sludge separated from the precipitated sludge extracted by the sludge extraction pump 23 by the separator / collector 24 is used for the sludge treatment, and the collected settling promoting material is passed through the settling promoting material supply pipe 16. Therefore, the settling accelerator can be reused at all times.

実施の形態1によれば、前述した効果を示す担体処理装置1と凝集沈殿処理装置2と沈降促進材分離回収装置3を備えるように構成したので、被処理水中の溶解性成分および未凝集性成分を短い水理学的滞留時間(HRT)で効率よく吸着・分解・凝集・分離して清浄な処理水を得ることができる。   According to the first embodiment, since the carrier processing device 1, the coagulation sedimentation processing device 2, and the sedimentation facilitating material separation and recovery device 3 that exhibit the effects described above are provided, the soluble components and the non-aggregation properties in the water to be treated are included. Clean treated water can be obtained by efficiently adsorbing, decomposing, agglomerating and separating the components with a short hydraulic residence time (HRT).

なお、実施の形態1では、微生物担体11の形状や材質等を特に限定していないが、例えば短い筒状の樹脂(例えば、図2参照)や紐状のもの(例えば、図3参照)を用いてもよい。また、実施の形態1における微生物担体11や図2に示した形状や材質等の微生物担体11は、例えば図3〜図12に示す後述の実施の形態2〜4およびこれらの変形例においても使用可能である。   In the first embodiment, the shape and material of the microorganism carrier 11 are not particularly limited. For example, a short cylindrical resin (for example, see FIG. 2) or a string-like one (for example, see FIG. 3). It may be used. In addition, the microbial carrier 11 in the first embodiment and the microbial carrier 11 having the shape and material shown in FIG. 2 are used in, for example, later-described second to fourth embodiments shown in FIGS. 3 to 12 and modifications thereof. Is possible.

また、実施の形態1では、撹拌混合槽17内における混合撹拌に、水中にプロペラ(撹拌翼)を配設した機械式撹拌装置を用いたが、無機凝集剤の添加や高分子凝集剤と沈降促進材の添加によって形成される凝集汚泥が解砕されない撹拌装置であれば、機械的撹拌装置に限定されるものではなく、例えば混合撹拌槽17内への空気の送風によるばっ気式の撹拌装置を用いてもよい。   In the first embodiment, a mechanical stirrer in which a propeller (stirring blade) is disposed in water is used for mixing and stirring in the stirring and mixing tank 17. However, addition of an inorganic flocculant or polymer flocculant and sedimentation are used. The stirring device is not limited to a mechanical stirring device as long as the agglomerated sludge formed by the addition of the accelerator is not crushed. For example, an aeration type stirring device by blowing air into the mixing stirring tank 17 May be used.

実施の形態1の変形例1.
図2は図1に示した実施の形態1の水処理システムの変形例1を示し、一部を破断して示す概略構成図であり、図1等と同一の構成要素には同一符号を付して重複説明を省略する。
この変形例1では、微生物担体11として短い筒状の樹脂を用いた点と、無機凝集剤を、担体処理装置1と凝集沈殿処理装置2との間に配設された連結管5内に注入する(ライン注入)ように構成した点で、図1に示した実施の形態1の水処理システムと異なる。
Modification 1 of Embodiment 1
FIG. 2 is a schematic configuration diagram illustrating a first modification of the water treatment system according to the first embodiment illustrated in FIG. 1, partly broken away, and the same components as those in FIG. Therefore, duplicate explanation is omitted.
In this modified example 1, a short cylindrical resin is used as the microorganism carrier 11 and an inorganic flocculant is injected into the connecting pipe 5 disposed between the carrier treatment device 1 and the coagulation sedimentation treatment device 2. This is different from the water treatment system of the first embodiment shown in FIG. 1 in that it is configured to perform (line injection).

短い筒状の樹脂からなる微生物担体11は、担体処理装置1の担体槽12内における空気や水の流れを阻害せず、かつ、微生物担体11を保持できる目幅の金網やパンチングメタルなどで覆われた微生物担体モジュール11a内に小分けにして収容された状態で、担体槽12内に浸漬されている。微生物担体11を短い筒状とすることで、筒の内面と外面に微生物が付着し、単位容積当たりの微生物量が大きくなる。このような形状の微生物担体11であれば、水流れ抵抗が小さいままで、被処理水中の未凝集性成分および溶解性成分と微生物膜との接触効率を向上させることができる。また、短い筒状の微生物担体11の外面を例えば波形とすることで、外面への微生物の付着量を増大させることもできる。さらに、微生物担体モジュール11aは、図1に示した実施の形態1の場合と同様に、個別に引上げ可能となるように構成されているので、水処理システムの運転中であっても、必要に応じて引き上げて、微生物担体11上への微生物の付着状況の確認や新品との交換も可能である。   The microbial carrier 11 made of a short cylindrical resin is covered with a wire mesh or punching metal having a mesh width that does not hinder the flow of air or water in the carrier tank 12 of the carrier treatment apparatus 1 and can hold the microbial carrier 11. It is immersed in the carrier tank 12 in a state of being accommodated in small portions in the broken microorganism carrier module 11a. By making the microorganism carrier 11 into a short cylindrical shape, microorganisms adhere to the inner and outer surfaces of the cylinder, and the amount of microorganisms per unit volume increases. With the microbial carrier 11 having such a shape, the contact efficiency between the non-aggregable component and the soluble component in the water to be treated and the microbial membrane can be improved while the water flow resistance remains small. Moreover, the adhesion amount of the microorganisms to an outer surface can also be increased by making the outer surface of the short cylindrical microorganism carrier 11 into a waveform, for example. Furthermore, since the microorganism carrier module 11a is configured to be individually liftable as in the case of the first embodiment shown in FIG. 1, it is necessary even during operation of the water treatment system. Accordingly, it is possible to confirm the state of adhesion of microorganisms on the microorganism carrier 11 and exchange for a new one.

連結管5内への無機凝集剤の注入(ライン注入)は、予め、無機凝集剤と混和させた状態の担体槽流出水を急速撹拌槽19内に流入させることができるので、急速撹拌槽19内に無機凝集剤を注入する実施の形態1と比べて、担体槽流出水中の未凝集性成分に対する凝集反応を早期に開始することができ、微細な凝集汚泥を形成できる。この凝集反応の早期開始は、被処理水中にリン(富栄養化物質)が比較的多く含まれている場合に、処理水中にリンを残留させないために、例えばポリ硫酸第二鉄(ポリ鉄)等の無機凝集剤を注入してリンを早期に不溶化させることができる点で、有利である。また、図15(A1)および(A2)に示すように、水処理システム全体は、例えばトラックの荷台に積載できる程度に小型化が可能であり、その水処理システムを構成する各装置も非常に小型であることから、急速撹拌槽19と凝集汚泥形成槽20から構成される混合撹拌槽17における水理学的滞留時間(HRT)も短い。したがって、このHRTの短さとリン不溶化の反応時間の長さを勘案すると、上記ライン注入はリン不溶化の反応開始を早めることができる点で、特に有利である。   The injection (line injection) of the inorganic flocculant into the connecting pipe 5 can cause the carrier tank effluent mixed with the inorganic flocculant to flow into the rapid stirring tank 19 in advance. Compared with Embodiment 1 in which the inorganic flocculant is injected into the inside, the agglomeration reaction with respect to the non-agglomerated components in the carrier tank effluent can be started earlier, and fine agglomerated sludge can be formed. The early start of this agglutination reaction is, for example, polyferric sulfate (polyiron) in order to prevent phosphorus from remaining in the treated water when the treatment water contains a relatively large amount of phosphorus (eutrophication substance). It is advantageous in that phosphorus can be insolubilized early by injecting an inorganic flocculant such as. Further, as shown in FIGS. 15A1 and 15A2, the entire water treatment system can be miniaturized to such an extent that it can be loaded on a truck bed, for example. Since it is small in size, the hydraulic residence time (HRT) in the mixed stirring tank 17 composed of the rapid stirring tank 19 and the coagulated sludge forming tank 20 is also short. Therefore, in consideration of the shortness of the HRT and the length of the reaction time for insolubilization of phosphorus, the above line injection is particularly advantageous in that the start of the reaction for insolubilization of phosphorus can be accelerated.

以上のように、実施の形態1の水処理システムの変形例1によれば、実施の形態1による作用・効果に加えて、次のような優れた効果を奏することができる。
(1) 微生物担体11として、内面および外面に大きな表面積を有する短い筒状の樹脂を用いたので、微生物担体11上に担持される微生物の付着量を大きくできることから、被処理水に対する微生物処理を効率よく短時間で行うことができる。
(2) 無機凝集剤をライン注入するように構成したので、急速撹拌槽19内に流入させる前に、担体槽流出水中の未凝集性成分に対する凝集反応を早期に開始することができる。
As described above, according to the first modification of the water treatment system of the first embodiment, in addition to the functions and effects of the first embodiment, the following excellent effects can be achieved.
(1) Since a short cylindrical resin having a large surface area on the inner surface and outer surface is used as the microorganism carrier 11, the amount of microorganisms supported on the microorganism carrier 11 can be increased. It can be performed efficiently and in a short time.
(2) Since the inorganic flocculant is line-injected, the flocculent reaction with respect to unaggregated components in the carrier tank effluent can be started at an early stage before flowing into the rapid stirring tank 19.

実施の形態1の変形例2.
図3は図1に示した実施の形態1の水処理システムの変形例2を示し、一部を破断して示す概略構成図であり、図1等と同一の構成要素には同一符号を付して重複説明を省略する。
この変形例2では、微生物担体11として紐状のものを用いた点と、無機凝集剤注入設備14の無機凝集剤注入管14bに分岐管14dおよび14eを設けた点と、沈殿槽18内の集水樋18dの下側であって凝集汚泥掻寄機21の上方の領域に清澄促進部材18eを設けた点で、図1に示した実施の形態1の水処理システムと異なる。
Modification 2 of Embodiment 1
FIG. 3 is a schematic configuration diagram showing a modification 2 of the water treatment system according to the first embodiment shown in FIG. 1, with a part thereof broken, and the same components as those in FIG. Therefore, duplicate explanation is omitted.
In this modified example 2, a string-shaped microbial carrier 11 is used, a branch pipe 14d and 14e are provided on the inorganic flocculant injection pipe 14b of the inorganic flocculant injection equipment 14, and It differs from the water treatment system of Embodiment 1 shown in FIG. 1 in that a clarification promoting member 18e is provided in a region below the water collecting tank 18d and above the coagulated sludge scraper 21.

微生物担体モジュール11aを構成する紐状の微生物担体11は、上下方向に延びる両端が固定された幹糸と、この幹糸に支持されて横方向(幹糸に交差する方向)に延びる様に設けられた複数の枝糸とから概略構成されている。この枝糸は、担体槽12内の液体や散気装置13から供給される気体などの流体の応力に対して幹糸と接触する部分を支点として上下左右に自由にかつ柔軟に動く(自由動)構造となっている。一方、散気設備13は、担体槽12内の液体に空気を供給し、その空気の浮力等により上昇流を発生させると共に、紐状の微生物担体11に増殖した微生物膜に対して好気性状態の維持と溶解成分の酸化に必要な酸素を供給する。紐状の微生物担体11の表面に形成された微生物膜に肥大化しても、上昇流や枝糸の自由動などにより、その微生物膜の一部が剥離し、微生物担体11の閉塞を防止できる。   The string-like microbial carrier 11 constituting the microbial carrier module 11a is provided so as to extend in a lateral direction (a direction intersecting the trunk yarn) supported by the trunk yarn that is fixed at both ends extending in the vertical direction. And a plurality of branch yarns. This branch yarn moves freely and flexibly up and down and left and right with a portion in contact with the trunk yarn as a fulcrum against the stress of fluid such as liquid in the carrier tank 12 or gas supplied from the diffuser 13 (free movement) ) Structure. On the other hand, the air diffuser 13 supplies air to the liquid in the carrier tank 12 and generates an upward flow due to the buoyancy of the air, etc., and is in an aerobic state with respect to the microbial film grown on the string-like microbial carrier 11. The oxygen necessary for maintaining the temperature and oxidizing the dissolved components is supplied. Even if the microbial membrane formed on the surface of the string-like microbial carrier 11 is enlarged, a part of the microbial membrane is peeled off due to upward flow or free movement of branch yarns, and the microbial carrier 11 can be prevented from being blocked.

無機凝集剤注入管14bの分岐管14dは、担体槽12の上流側、すなわち被処理水導入管4の開口(図示せず)近傍の上方に配設されており、被処理水導入管4から被処理水が担体槽12内に流入する際に、分岐管14dから無機凝集剤を被処理水に注入することができる。また、分岐管14eは、担体槽12の下流側、すなわち担体槽流出水を凝集沈殿処理装置2へ流出させる流出口12b近傍の上方に配設されており、担体槽流出水が連結管5を流れる前に無機凝集剤を担体槽流出水に注入することができる。なお、担体槽12内の被処理水に無機凝集剤を注入しても、被処理水中の未凝集性成分と無機凝集剤から形成される凝集汚泥は微細であるため、微生物担体11上の微生物膜に付着することが少なく、仮に付着したとしても、散気設備13からの散気により微生物膜から微細な凝集汚泥を物理的に取り除くことができるので、無機凝集剤の注入が担体槽12内での微生物処理に影響を与えることは少ない。   The branch pipe 14d of the inorganic flocculant injection pipe 14b is disposed on the upstream side of the carrier tank 12, that is, above the vicinity of the opening (not shown) of the treated water introduction pipe 4, and from the treated water introduction pipe 4 When the water to be treated flows into the carrier tank 12, the inorganic flocculant can be injected into the water to be treated from the branch pipe 14d. Further, the branch pipe 14e is disposed on the downstream side of the carrier tank 12, that is, above the vicinity of the outlet 12b for allowing the carrier tank outflow water to flow out to the coagulation sedimentation treatment device 2, and the carrier tank outflow water passes through the connecting pipe 5. The inorganic flocculant can be injected into the carrier tank effluent before flowing. Even if the inorganic flocculant is injected into the water to be treated in the carrier tank 12, the flocculated sludge formed from the non-aggregating components and the inorganic flocculant in the water to be treated is fine. Even if it adheres to the membrane, even if it adheres, fine agglomerated sludge can be physically removed from the microbial membrane by aeration from the aeration equipment 13, so that the injection of the inorganic aggregating agent is carried out in the carrier tank 12. Has little effect on microbial treatment in

清澄促進部材18eは、沈殿槽18内で上昇し、凝集成分が徐々に重力沈降して分離される過程にある凝集混合液中に残存する凝集成分を、その表面で捕捉・沈降させて清澄化させる部材である。清澄促進部材18eを構成する部材は、様々な形態をとることができるが、例えば、一定の間隔をもって傾斜配置されるパラレルプレート、同様に傾斜配置されるコルゲートプレート、同様に傾斜配置され、内部に複数の通水路に仕切られた角型沈降管、あるいは、同様に傾斜配置される複数の丸パイプユニット等を挙げることができるが、これらに限定されるものではない。なお、傾斜配置について、例えば角型沈降管を例に説明すると、清澄促進部材18eが複数のユニットの角型沈降管から構成される場合、隣接する各ユニット同士は、その傾斜方向が互いに交差するように配設される。このような清澄促進部材18eを備えた沈殿槽18内では、沈殿槽18内の凝集混合液が矢印Zで示すように、仕切板18cの下部の最下端を越えて清澄促進部材18eの下側の領域に達すると、その領域では、凝集混合液中の凝集成分が徐々に重力沈降して分離され、この重力沈降の過程にある凝集混合液が、清澄促進部材18eの各ユニットを構成する角型沈降管の下側開口部から集水樋18dに向けて上昇し、その上昇中に、角型沈降管の内壁等に凝集成分が捕捉されるため、凝集成分の上昇が妨げられ、その重力によって槽底部18aに向けて沈降する。これにより、液中に含まれる凝集成分がさらに減少し、集水樋18dまで上昇すると、凝集成分を含まない清浄な分離水(上澄水)となり、沈殿槽流出水(処理水)として処理水流出口(図示せず)から排出管6を介して水処理システム外に排出され、例えば、放流される。   The clarification accelerating member 18e rises in the sedimentation tank 18, and the flocculated components remaining in the flocculated mixed liquid in the process of gradually separating the flocculated components by gravity sedimentation are captured and settled on the surface to be clarified. It is a member to be made. The members constituting the clarification promoting member 18e can take various forms. For example, parallel plates that are inclined with a certain interval, corrugated plates that are similarly inclined, and similarly inclined, Examples thereof include, but are not limited to, a rectangular sedimentation pipe partitioned by a plurality of water passages, or a plurality of round pipe units that are similarly inclined. For example, when the clarification promoting member 18e is composed of a plurality of units of the rectangular sedimentation tube, the inclined directions of the adjacent units intersect each other. It is arranged as follows. In the sedimentation tank 18 provided with such a fining promotion member 18e, as shown by an arrow Z, the aggregated mixed liquid in the precipitation tank 18 exceeds the lowermost lower end of the partition plate 18c and is located below the fining promotion member 18e. In this region, the agglomerated components in the agglomerated liquid mixture are gradually gravity settled and separated, and the agglomerated liquid mixture in the process of gravitational sedimentation is the angle that constitutes each unit of the fining promotion member 18e. The ascending component rises from the lower opening of the die settling tube toward the catchment basin 18d. During the rise, the agglomerated component is trapped on the inner wall of the square settling tube and the like. To settle toward the tank bottom 18a. As a result, when the agglomerated component contained in the liquid further decreases and rises to the catchment basin 18d, it becomes clean separated water (supernatant water) that does not contain the agglomerated component, and the treated water outlet as precipitation tank outflow water (treated water). It is discharged from the water treatment system through a discharge pipe 6 (not shown) and discharged, for example.

以上のように、実施の形態1の水処理システムの変形例2によれば、実施の形態1の水処理システムによる作用・効果に加えて、次のような優れた効果を奏することができる。
(1) 無機凝集剤注入設備14の無機凝集剤注入管14bが2本の分岐管14dおよび14eを有しているので、被処理水や担体槽流出水の水質等に応じて、無機凝集剤注入管14b、分岐管14dおよび14eのうち、少なくともいずれか一つを選択するか、あるいは、その全てから無機凝集剤を注入して未凝集性成分を効率よく凝集させ、微細な凝集汚泥を含む担体槽流出水を得ることができる。
(2) 沈殿槽18内に清澄促進部材18eを設けたので、沈殿槽18内における重力沈降を促進することができ、沈殿槽18内における重力沈降を効率よく短時間に行うことができる。
As described above, according to the second modification of the water treatment system of the first embodiment, in addition to the functions and effects of the water treatment system of the first embodiment, the following excellent effects can be achieved.
(1) Since the inorganic flocculant injection pipe 14b of the inorganic flocculant injection equipment 14 has the two branch pipes 14d and 14e, the inorganic flocculant is selected according to the quality of the water to be treated and the effluent of the carrier tank. At least one of the injection pipe 14b and the branch pipes 14d and 14e is selected, or an inorganic flocculant is injected from all of them to efficiently agglomerate the non-agglomerated components and include fine agglomerated sludge Carrier tank effluent can be obtained.
(2) Since the clarification promoting member 18e is provided in the settling tank 18, gravity settling in the settling tank 18 can be promoted, and gravity settling in the settling tank 18 can be efficiently performed in a short time.

実施の形態1の変形例2によれば、微生物担体11が上下方向に延びる両端が固定された幹糸と横方向に延びる様に設けられた複数の枝糸を備えるように構成したので、次のような優れた効果を奏することができる。
(1) 被処理水の処理に必要な微生物量を高密度にかつ適切に保持でき、施設がコンパクトになる。
(2) 保持された微生物と溶解性成分との接触効率が良くなり、吸着に要する時間を短縮できる。
(3) 幹糸の横の動きと枝糸の縦の動きによって余剰微生物の剥離が適切に行える。
According to the second modification of the first embodiment, since the microbial carrier 11 is configured to include a trunk yarn that is fixed at both ends extending in the vertical direction and a plurality of branch yarns provided so as to extend in the lateral direction, The following excellent effects can be achieved.
(1) The amount of microorganisms necessary for the treatment of treated water can be maintained at high density and appropriately, and the facility becomes compact.
(2) The contact efficiency between the retained microorganism and the soluble component is improved, and the time required for adsorption can be shortened.
(3) Excess microorganisms can be appropriately detached by the horizontal movement of the trunk yarn and the vertical movement of the branch yarn.

なお、実施の形態1の変形例2において、微生物担体11の幹糸は上下方向に延びるよう構成したが、例えば、図3Aに示すように、水平方向に延びるように構成しても良い。この場合、幹糸は、図3Aおよび図3Bに示すように、支持フレーム11bの内側に設けられた幹糸固定用フレーム11dに水平方向に沿って所定の間隔をもって固定されることが望ましい。このように構成された微生物担体11を備えた担体処理装置1内では、図3Aおよび図3Bに示すように、空気供給管13bからヘッダー管13cを経て分配された空気が散気装置13aから散気され、微細気泡となった空気が微生物担体11をすり抜けながら上昇するため、担体槽12内での空気の滞留時間が長くなり、酸素溶解効率が上昇する。また、微細であった気泡同士は上昇するにつれて接合し粗大化する傾向にあるが、微生物担体11の幹糸を水平方向に延びるように構成することで該幹糸と気泡の接触機会を増加させ、粗大化の始まった気泡の細分化を行い、総じて比表面積の大きい微細気泡(空気の単位容積当たりの水との界面面積が大きいため酸素溶解効率が高い)を維持することが出来る。なお、図3Aでは、4つの散気装置13aが2つ一組としてヘッダー管13cに接合され、このヘッダー管13cに空気供給管13bが接合された構成となっているが、この構成は一例であり、これに限定されるものではなく、上述の微生物担体11の幹糸や枝糸に向けて散気できる構成であれば、いかなる構成であってもよい。   In the second modification of the first embodiment, the trunk yarn of the microorganism carrier 11 is configured to extend in the vertical direction, but may be configured to extend in the horizontal direction as shown in FIG. 3A, for example. In this case, as shown in FIGS. 3A and 3B, the trunk yarn is preferably fixed to the trunk yarn fixing frame 11d provided inside the support frame 11b at a predetermined interval along the horizontal direction. In the carrier processing apparatus 1 including the microorganism carrier 11 configured as described above, as shown in FIGS. 3A and 3B, the air distributed from the air supply pipe 13b through the header pipe 13c is scattered from the air diffuser 13a. Since the air that has been vaporized and becomes fine bubbles rises while passing through the microorganism carrier 11, the residence time of the air in the carrier tank 12 becomes longer, and the oxygen dissolution efficiency increases. In addition, although the fine bubbles tend to be joined and coarsened as they rise, the stem yarn of the microorganism carrier 11 is configured to extend in the horizontal direction, thereby increasing the chance of contact between the stem yarn and the bubble. Then, the bubbles that have started to become coarse can be subdivided to maintain fine bubbles having a large specific surface area as a whole (the interface area with water per unit volume of air is large, so that the oxygen dissolution efficiency is high). In FIG. 3A, the four air diffusers 13a are joined to the header pipe 13c as a pair, and the air supply pipe 13b is joined to the header pipe 13c, but this configuration is an example. There is no limitation to this, and any configuration may be used as long as it can diffuse toward the trunk yarn and branch yarn of the microorganism carrier 11 described above.

また、実施の形態1の変形例2において、微生物担体11の枝糸は幹糸を中心として放射状に延びる複数本のひもで構成したが、これに限らず、枝糸は、例えば図3Cに示すように幹糸を中心として複数の略リング状のひもで構成されていても良い。   Further, in the second modification of the first embodiment, the branch yarn of the microbial carrier 11 is composed of a plurality of strings extending radially around the trunk yarn. However, the present invention is not limited to this, and the branch yarn is shown in FIG. 3C, for example. Thus, it may be composed of a plurality of substantially ring-shaped strings centering on the trunk thread.

実施の形態2.
図4は本発明の実施の形態2による水処理システムの全体を示し、一部を破断して示す概略構成図であり、図1等と同一の構成要素には同一符号を付して重複説明を省略する。
実施の形態2による水処理システムでは、凝集沈殿処理装置2の混合撹拌槽17を急速撹拌槽(混和槽)26と注入撹拌槽(凝集槽)27と凝集汚泥形成槽(凝集槽)20とから構成した点で、図1に示した実施の形態1の水処理システムと異なる。なお、沈殿槽18内に清澄促進部材18eを設けた点では、この実施の形態2は、図3に示した実施の形態1の変形例2と共通している。
Embodiment 2. FIG.
FIG. 4 is a schematic configuration diagram showing the entire water treatment system according to the second embodiment of the present invention, with a part broken away, and the same components as those in FIG. Is omitted.
In the water treatment system according to the second embodiment, the mixing and stirring tank 17 of the coagulation sedimentation treatment apparatus 2 is divided into a rapid stirring tank (mixing tank) 26, an injection stirring tank (coagulation tank) 27, and a coagulation sludge forming tank (coagulation tank) 20. In the point which comprised, it differs from the water treatment system of Embodiment 1 shown in FIG. The second embodiment is common to the second modification of the first embodiment shown in FIG. 3 in that a clarification promoting member 18e is provided in the settling tank 18.

混合撹拌槽17の槽底部17a上には、急速撹拌槽(混和槽)26と注入撹拌槽(凝集槽)27との間に、水面まで達しない上部を有する仕切板17dが立設されており、注入撹拌槽(凝集槽)27と凝集汚泥形成槽(凝集槽)20とは、仕切板17bにより区画されている。急速撹拌槽(混和槽)26内には、この急速撹拌槽(混和槽)26内に流入した担体槽流出水を撹拌する撹拌翼26aとこの撹拌翼26aを回転駆動させるモータ26bが設けられており、急速撹拌槽(混和槽)26内の上流側の上方には、無機凝集剤注入管14bが設けられている。また、注入撹拌槽(凝集槽)27内には、この注入撹拌槽(凝集槽)27内に流入した混和液を撹拌する撹拌翼27aとこの撹拌翼27aを回転駆動させるモータ27bが設けられており、注入撹拌槽(凝集槽)27内の下流側の上方には、高分子凝集剤注入管15bが設けられている。   On the tank bottom 17a of the mixing and stirring tank 17, a partition plate 17d having an upper portion that does not reach the water surface is erected between a rapid stirring tank (mixing tank) 26 and an injection stirring tank (coagulation tank) 27. The injection stirring tank (coagulation tank) 27 and the coagulation sludge formation tank (coagulation tank) 20 are partitioned by a partition plate 17b. In the rapid stirring tank (mixing tank) 26, a stirring blade 26a that stirs the carrier tank outflow water that has flowed into the rapid stirring tank (mixing tank) 26 and a motor 26b that rotationally drives the stirring blade 26a are provided. In addition, an inorganic flocculant injection pipe 14 b is provided above the upstream side in the rapid stirring tank (mixing tank) 26. Further, in the injection stirring tank (coagulation tank) 27, a stirring blade 27a for stirring the mixed liquid flowing into the injection stirring tank (coagulation tank) 27 and a motor 27b for rotationally driving the stirring blade 27a are provided. In addition, a polymer flocculant injection tube 15 b is provided above the downstream side in the injection stirring tank (aggregation tank) 27.

次に動作について説明する。
まず、被処理水導入管4から担体処理装置1の担体槽12内に供給された被処理水は、散気設備13の散気によって撹拌され、酸素供給を受ける紐状の微生物担体11上の微生物により、被処理水中の未凝集性成分や溶解性成分が吸着・除去され、担体槽流出水として連結管5を介して凝集沈殿処理装置2の混合撹拌槽17の急速撹拌槽(混和槽)26内に送られる。
Next, the operation will be described.
First, the water to be treated supplied from the water to be treated introduction pipe 4 into the carrier tank 12 of the carrier treatment apparatus 1 is agitated by the aeration of the aeration equipment 13 and is supplied on the string-like microbial carrier 11 receiving the oxygen supply. The microorganisms adsorb and remove unagglomerated components and soluble components in the water to be treated, and as a carrier tank outflow water, a rapid stirring tank (mixing tank) of the mixing and stirring tank 17 of the coagulation sedimentation treatment apparatus 2 through the connecting pipe 5. 26.

次に、急速撹拌槽(混和槽)26内では、撹拌翼26aにより撹拌される担体槽流出水に無機凝集剤が注入されて混和され、その混和液中の未凝集性成分を微細な凝集汚泥に凝集させる。この混和液は、矢印X1で示すように、仕切板17dの上部領域を通って注入撹拌槽(凝集槽)27内に移流される。   Next, in the rapid agitation tank (mixing tank) 26, the inorganic flocculant is injected and mixed in the carrier tank effluent stirred by the stirring blade 26a, and the non-aggregated components in the mixed liquid are finely flocculated sludge. Aggregate. As shown by the arrow X1, this mixed liquid is transferred into the injection stirring tank (aggregation tank) 27 through the upper region of the partition plate 17d.

次に、注入撹拌槽(凝集槽)27内では、撹拌翼27aにより撹拌される混和液に沈降促進材が添加された後に、高分子凝集剤が注入されることで、より強固で沈降性の高い凝集汚泥となっていく。このような凝集汚泥を含む凝集混合液は、矢印Xで示すように、仕切板17bの下部を通って凝集汚泥形成槽20へ移流される。   Next, in the injection agitation tank (aggregation tank) 27, after the settling accelerator is added to the mixed liquid stirred by the agitation blade 27a, the polymer flocculant is injected to make the mixture stronger and more settled. It becomes high agglomerated sludge. The agglomerated mixed liquid containing such agglomerated sludge is transferred to the agglomerated sludge forming tank 20 through the lower part of the partition plate 17b as indicated by an arrow X.

次に、凝集汚泥形成槽(混和槽)20内では、凝集混合液が撹拌翼20aにより十分に撹拌されて、その凝集混合液中の凝集汚泥がより強固で沈降性の高い状態に維持されながら、さらに大きく成長する。このような凝集混合液は、撹拌翼20aにより形成される上昇流によって、矢印Yで示すように、仕切板17cの上部を越えて沈殿槽18内に移流される。   Next, in the agglomerated sludge formation tank (mixing tank) 20, the agglomerated mixed liquid is sufficiently stirred by the stirring blade 20a, and the agglomerated sludge in the agglomerated mixed liquid is maintained in a stronger and more settled state. , Grow even bigger. Such an agglomerated mixed liquid is transferred into the sedimentation tank 18 over the upper part of the partition plate 17c by the upward flow formed by the stirring blade 20a as indicated by an arrow Y.

次に、沈殿槽18内では、凝集混合液が矢印Zで示すように、仕切板18cの上部に当たって流れの向きが下方向に変わり、仕切板18cの下部に沿って下降し、その下部の最下端を越えて清澄促進部材18eの下側の領域に達すると、その領域では、凝集混合液中の凝集成分が徐々に重力沈降して分離され、この重力沈降過程にある凝集混合液が、清澄促進部材18eの下側開口部から集水樋18dに向けて上昇し、その上昇中に、角型沈降管の内壁等に凝集成分が捕捉されるため、凝集成分の上昇が妨げられ、その重力によって槽底部18aに向けて沈降する。槽底部18a上に沈殿した凝集汚泥は凝集汚泥掻寄機21により汚泥ピット18b内に集められる。汚泥ピット18b内に沈殿した凝集汚泥は、沈殿汚泥として、汚泥引抜ポンプ23により引き抜かれ、沈殿汚泥返送管25を介して分離回収器24に送られる。一方、凝集成分が徐々に重力沈降して分離される過程にある凝集混合液は、清澄促進部材18eによる沈降促進作用により、液中に含まれる凝集成分がさらに減少し、清澄促進部材18eを介して集水樋18dまで上昇すると、凝集成分を含まない清浄な分離水(上澄水)となり、沈殿槽流出水(処理水)として処理水流出口(図示せず)から排出管6を介して水処理システム外に排出され、例えば、放流される。   Next, in the settling tank 18, as shown by the arrow Z, the agglomerated mixed liquid hits the upper part of the partition plate 18c to change the flow direction downward, descends along the lower part of the partition plate 18c, and reaches the bottom of the lower part. When reaching the lower region of the clarification promoting member 18e beyond the lower end, the flocculated components in the flocculated liquid mixture are gradually gravity settled and separated in that region, and the flocculated liquid mixture in the gravity settling process is clarified. Ascending component rises from the lower opening of the promoting member 18e toward the catchment basin 18d, and during the rising, the aggregating component is trapped on the inner wall or the like of the square sedimentation tube. To settle toward the tank bottom 18a. Aggregated sludge precipitated on the tank bottom 18a is collected in the sludge pit 18b by the agglomerated sludge scraper 21. The agglomerated sludge precipitated in the sludge pit 18 b is extracted by the sludge extraction pump 23 as the precipitated sludge and sent to the separation / recovery device 24 through the precipitated sludge return pipe 25. On the other hand, in the flocculated liquid mixture in the process of gradually separating the flocculated components by gravity sedimentation, the flocculated components contained in the liquid further decrease due to the sedimentation promoting action by the clarification accelerating member 18e. When it rises to the water collecting tank 18d, it becomes clean separated water (supernatant water) that does not contain agglomerated components, and is treated as a settling tank effluent (treated water) from the treated water outlet (not shown) through the discharge pipe 6. It is discharged out of the system, for example, discharged.

次に、分離回収器24では、遠心力と重量(重量差)によって、沈殿汚泥を沈降促進材と凝集汚泥とに分離される。分離された沈降促進材は、沈降促進材供給管16内に回収され、混合撹拌槽17の注入撹拌槽(凝集槽)27内に供給されることにより、再度、凝集汚泥の重量化による沈降促進に供される。一方、分離された凝集汚泥は、排泥ポンプ(図示せず)により水処理システム外に排出される。   Next, in the separation / recovery unit 24, the precipitated sludge is separated into a settling accelerator and agglomerated sludge by centrifugal force and weight (weight difference). The separated sedimentation promoting material is collected in the sedimentation promoting material supply pipe 16 and supplied into the injection stirring tank (coagulation tank) 27 of the mixing and stirring tank 17 so as to accelerate sedimentation by increasing the weight of the coagulated sludge. To be served. On the other hand, the separated coagulated sludge is discharged out of the water treatment system by a mud pump (not shown).

以上のように、実施の形態2によれば、混合撹拌槽17を、無機凝集剤を注入して撹拌する混和槽(急速撹拌槽26)と、高分子凝集剤を注入すると共に沈降促進材を供給して撹拌する凝集槽(注入撹拌槽27、凝集汚泥形成槽20)とから構成したので、
(1) 混和槽(急速撹拌槽26)において未凝集性成分や剥離した余剰微生物等は無機凝集剤と混和されることで凝集し、凝集槽(注入撹拌槽27、凝集汚泥形成槽20)において沈降促進材および高分子凝集剤が注入されて強固で沈降性の高い凝集汚泥が形成される。すなわち、混和槽を備えることで凝集槽における凝集汚泥の成長および微細で沈降し難い凝集汚泥の強固で沈降性の高い凝集汚泥への吸着が促進されるので、より沈降分離性の高い凝集汚泥が得られる。
(2) 無機凝集剤による未凝集性成分の凝集処理を確実に行った後、高分子凝集剤と沈降促進材によって沈降性の高い汚泥の形成がなされるので、沈殿槽18自体の小型化を図ることができると共に、沈殿槽18から、より良質の処理水を得ることができる。
As described above, according to the second embodiment, the mixing agitation tank 17 is mixed with the mixing agitation tank (rapid agitation tank 26) for injecting and stirring the inorganic flocculant, and the settling accelerator is injected with the polymer flocculant. Since it is composed of a coagulation tank (injection agitation tank 27, coagulated sludge formation tank 20) to be supplied and stirred,
(1) In the mixing tank (rapid stirring tank 26), non-aggregating components, exfoliated surplus microorganisms and the like are agglomerated by mixing with the inorganic flocculant, and in the coagulating tank (injection stirring tank 27, aggregated sludge forming tank 20). A settling accelerator and a polymer flocculant are injected to form a strong and highly settled coagulated sludge. In other words, the provision of the mixing tank promotes the growth of the coagulated sludge in the coagulation tank and the adsorption of the fine, hard-to-set-up coagulated sludge to the cohesive sludge having a high sedimentation property. can get.
(2) After the agglomeration treatment of the non-agglomerated component with the inorganic flocculant is performed securely, sludge having a high sedimentation property is formed by the polymer flocculant and the sedimentation accelerator, so that the sedimentation tank 18 itself can be downsized. It is possible to obtain high quality treated water from the sedimentation tank 18 while being able to achieve this.

実施の形態2の変形例1.
図5は図4に示した実施の形態2の水処理システムの変形例1を示し、一部を破断して示す概略構成図であり、図4等と同一の構成要素には同一符号を付して重複説明を省略する。
この変形例1では、無機凝集剤を、担体処理装置1と凝集沈殿処理装置2との間に配設された連結管5内に注入する(ライン注入)ように構成した点で、図4に示した実施の形態2の水処理システムと異なる。なお、無機凝集剤のライン注入の点では、この実施の形態2の変形例1は、図2に示した実施の形態1の水処理システムの変形例1と共通している。
Modification 1 of Embodiment 2
FIG. 5 shows a first modification of the water treatment system according to the second embodiment shown in FIG. 4, and is a schematic configuration diagram showing a part thereof broken. The same components as those in FIG. Therefore, duplicate explanation is omitted.
In the first modification, the inorganic flocculant is injected (line injection) into the connecting pipe 5 disposed between the carrier treatment device 1 and the coagulation sedimentation treatment device 2. It differs from the water treatment system of Embodiment 2 shown. In addition, in the point of the line injection | pouring of an inorganic flocculant, the modification 1 of this Embodiment 2 is common in the modification 1 of the water treatment system of Embodiment 1 shown in FIG.

連結管5内への無機凝集剤の注入(ライン注入)は、予め、無機凝集剤と混和させた状態の担体槽流出水を急速撹拌槽26内に流入させることができるので、急速撹拌槽26内に無機凝集剤を注入する実施の形態2と比べて、担体槽流出水中の未凝集性成分に対する凝集反応を早期に開始することができる。この凝集反応の早期開始は、実施の形態1の変形例1において述べたように、被処理水中にリン(富栄養化物質)が比較的多く含まれている場合、例えばポリ硫酸第二鉄(ポリ鉄)等の無機凝集剤を注入してリンを早期に不溶化させることで、処理水中にリンを残留させないようにすることができる点で、有利である。また、この実施の形態2の変形例1における三つの槽(急速撹拌槽26と注入撹拌槽27と凝集汚泥形成槽20)から構成される混合撹拌槽17は、実施の形態1の変形例1における二つの槽(急速撹拌槽19と凝集汚泥形成槽20)から構成される混合撹拌槽17と同様に、水理学的滞留時間(HRT)も短い点とリン不溶化の反応時間の長さを勘案すると、上記ライン注入はリン不溶化の反応開始を早めることができる点で、特に有利である。   The injection (line injection) of the inorganic flocculant into the connecting pipe 5 can cause the carrier tank effluent mixed with the inorganic flocculant to flow into the rapid stirring tank 26 in advance. Compared with the second embodiment in which the inorganic flocculant is injected into the inside, the agglomeration reaction for the non-aggregable components in the carrier tank effluent can be started earlier. As described in the first modification of the first embodiment, this agglutination reaction is started early when phosphorus (eutrophication substance) is relatively contained in the water to be treated, for example, polyferric sulfate ( By injecting an inorganic flocculant such as polyiron) to insolubilize phosphorus early, it is advantageous in that phosphorus can be prevented from remaining in the treated water. Further, the mixing and stirring tank 17 including the three tanks (the rapid stirring tank 26, the injection stirring tank 27, and the coagulated sludge forming tank 20) in the first modification of the second embodiment is the same as the first modification of the first embodiment. In consideration of the short hydraulic retention time (HRT) and the length of reaction time for phosphorus insolubilization, as in the case of the mixing and stirring tank 17 composed of the two tanks (the rapid stirring tank 19 and the coagulated sludge forming tank 20). Then, the above-mentioned line injection is particularly advantageous in that the reaction start of phosphorus insolubilization can be accelerated.

以上のように、実施の形態2の変形例1によれば、無機凝集剤をライン注入するように構成したので、急速撹拌槽26内に流入させる前に、担体槽流出水中の未凝集性成分に対する凝集反応を早期に開始することができる。   As described above, according to the first modification of the second embodiment, since the inorganic flocculant is line-injected, the unaggregated component in the carrier tank effluent before flowing into the rapid stirring tank 26 is obtained. The agglutination reaction can be started early.

実施の形態2の変形例2.
図6は図4に示した実施の形態2の水処理システムの変形例2を示し、一部を破断して示す概略構成図であり、図4等と同一の構成要素には同一符号を付して重複説明を省略する。
この変形例2では、被処理水中に溶解性成分が多い場合に対応し、通常、担体槽12から流出してしまう、微生物担体11から剥離した汚泥分(剥離汚泥)や浮遊微生物を回収して微生物処理に再利用するために、担体処理装置1内に、担体槽12内の浮遊汚泥を被処理水導入管4へ返送する汚泥返送手段28を設けた点で、図4に示した実施の形態2の水処理システムと異なる。
Modification 2 of Embodiment 2
FIG. 6 is a schematic configuration diagram showing a second modification of the water treatment system according to the second embodiment shown in FIG. 4 and is partially broken away. The same components as those in FIG. Therefore, duplicate explanation is omitted.
This modification 2 corresponds to the case where there are many soluble components in the water to be treated, and usually collects sludge separated from the microorganism carrier 11 (peeled sludge) and suspended microorganisms that flow out of the carrier tank 12. 4 in that the sludge returning means 28 for returning the suspended sludge in the carrier tank 12 to the treated water introduction pipe 4 is provided in the carrier treatment apparatus 1 for reuse in microbial treatment. Different from the water treatment system of form 2.

汚泥返送手段28は、担体槽12の下流側の槽底部12a上に立設され、かつ、水面に達しない上部を有する多孔板29と、この多孔板29と担体槽12の下流側の内壁部との間の槽底部12a上の近傍領域に設定された沈殿ゾーン30と、この沈殿ゾーン30内の槽底部12a上に配設された汚泥返送ポンプ31と、この汚泥返送ポンプ31と被処理水導入管4を接続する汚泥返送管32と、担体槽12の下流側の内壁部近傍に設けられ、かつ、槽底部12aから離間する下部と水面から上方に突出する上部を有する阻流板(バッフル)33とから概略構成されている。多孔板29は、沈殿ゾーン30内に沈殿した汚泥を嫌気的環境としないために、沈殿汚泥に対して、散気装置13からの空気を通過させるための複数の貫通孔やスリットを有している。   The sludge return means 28 is erected on the tank bottom 12 a on the downstream side of the carrier tank 12 and has a porous plate 29 having an upper portion that does not reach the water surface, and an inner wall portion on the downstream side of the porous plate 29 and the carrier tank 12. A settling zone 30 set in the vicinity of the tank bottom 12a, a sludge return pump 31 disposed on the tank bottom 12a in the settling zone 30, and the sludge return pump 31 and the water to be treated. A baffle (baffle plate) having a sludge return pipe 32 for connecting the introduction pipe 4, a lower part provided in the vicinity of the inner wall part on the downstream side of the carrier tank 12, and a lower part separated from the tank bottom part 12 a and an upper part protruding upward from the water surface. 33). The perforated plate 29 has a plurality of through holes and slits for allowing air from the air diffuser 13 to pass through the precipitated sludge so as not to make the sludge precipitated in the precipitation zone 30 anaerobic environment. Yes.

汚泥返送ポンプ31は、沈殿ゾーン30内の沈殿汚泥を吸い込む吸引口(図示せず)を有しており、その吸引口(図示せず)は、沈殿汚泥の汚泥界面を乱さないために、当該汚泥界面下に配置されていることが望ましい。なお、この変形例2では、汚泥返送ポンプ31を担体槽18内に配設したが、例えば、吸引口(図示せず)を担体槽18の槽底部18aに配設し、汚泥返送ポンプ31の本体は担体槽18外に配設してもよい。前者の場合(変形例2)には、汚泥返送ポンプ31を担体槽18内に配設することで、汚泥返送ポンプ31自体の容積分に相当する体積分について、水処理システムのコンパクト化を図ることができる。後者の場合には、汚泥返送ポンプ31のメンテナンス性を向上させることができる。   The sludge return pump 31 has a suction port (not shown) for sucking the precipitated sludge in the sedimentation zone 30, and the suction port (not shown) does not disturb the sludge interface of the precipitated sludge. It is desirable to arrange it under the sludge interface. In the second modification, the sludge return pump 31 is disposed in the carrier tank 18. For example, a suction port (not shown) is provided in the tank bottom 18 a of the carrier tank 18, and the sludge return pump 31 The main body may be disposed outside the carrier tank 18. In the former case (Modification 2), the sludge return pump 31 is disposed in the carrier tank 18 so that the water treatment system can be made compact with respect to the volume corresponding to the volume of the sludge return pump 31 itself. be able to. In the latter case, the maintainability of the sludge return pump 31 can be improved.

阻流板33は、微生物担体11から剥離した剥離汚泥や浮遊微生物が多孔板29の上部を通過せずに短絡して多孔板29の貫通孔等を通過し沈殿ゾーン30内に流入してきた場合に備えて、その剥離汚泥や浮遊微生物が沈殿ゾーン30内に沈殿する間もなく凝集沈殿処理装置2側へ流出するのを阻止するための部材である。このような阻流板33と多孔板29との間には、担体槽流出水の沈殿ゾーン30への流入領域34が設定され、阻流板33と担体槽12の下流側の内壁部との間には、担体槽流出水の沈殿ゾーン30からの流出領域35が設定されている。なお、担体槽12の下流側の内壁部の下部内面は、その最下端(内壁部と槽底部12aにより形成される内角部)を沈殿ゾーン30に近づけるように下り勾配となっている。これは、流出領域35を上昇する担体槽流出水中に残存する剥離汚泥や浮遊微生物をその表面で捕捉し、沈殿ゾーン30へ沈降させるためであり、また、沈殿ゾーン30に内壁部を近づけて沈殿ゾーン30を狭くすることで、沈殿汚泥の濃度を高くして沈殿汚泥の返送効率を向上させるためであり、さらに、沈殿ゾーン30を実質的に多孔板29近傍に設定することで、貫通孔等を介して、散気設備13からの空気供給を受け易くして沈殿ゾーン30内の沈殿汚泥の腐敗を防止するためである。   The baffle plate 33 is a case where exfoliated sludge or suspended microorganisms separated from the microorganism carrier 11 are short-circuited without passing through the upper part of the porous plate 29 and pass through the through holes of the porous plate 29 and flow into the precipitation zone 30. This is a member for preventing the exfoliated sludge and suspended microorganisms from flowing out to the coagulation sedimentation treatment apparatus 2 soon before they settle in the sedimentation zone 30. Between such a baffle plate 33 and the perforated plate 29, an inflow region 34 into the sedimentation zone 30 of the carrier tank outflow water is set, and the baffle plate 33 and the inner wall portion on the downstream side of the carrier tank 12 are formed. In the meantime, an outflow region 35 from the precipitation zone 30 of the carrier tank outflow water is set. The lower inner surface of the inner wall portion on the downstream side of the carrier tank 12 has a downward slope so that the lowermost end (inner corner formed by the inner wall portion and the tank bottom portion 12 a) approaches the precipitation zone 30. This is because the sludge and suspended microorganisms remaining in the carrier tank effluent rising up the outflow region 35 are captured on the surface and settled to the precipitation zone 30, and the inner wall is brought close to the precipitation zone 30 for precipitation. This is to narrow the zone 30 to increase the concentration of precipitated sludge and improve the return efficiency of the precipitated sludge. Furthermore, by setting the precipitation zone 30 substantially in the vicinity of the perforated plate 29, through holes, etc. This is to make it easy to receive air supply from the air diffuser 13 through the slag to prevent the settling sludge in the settling zone 30 from decaying.

この変形例2における担体処理装置1では、被処理水は微生物担体11により微生物処理を受けて担体槽流出水として、矢印X2で示すように、多孔板29の上部を通って仕切板31に当たって流れの向きが下方向に変わり、阻流板33に沿って流入領域34を下降する。このとき、担体槽流出水中の剥離汚泥や浮遊微生物は、流入領域34をそのまま下降して沈殿ゾーン30内の槽底部12a上に沈殿する。この沈殿汚泥は、汚泥返送ポンプ31により汚泥返送管32を介して被処理水導入管4へ返送される。一方、沈殿汚泥以外の担体槽流出水は、矢印X3で示すように、阻流板33の最下端から流出領域35を上昇し、連結管5を介して凝集沈殿処理装置2へ移送される。   In the carrier treatment apparatus 1 in this modified example 2, the water to be treated is subjected to microbial treatment by the microbial carrier 11 and flows as carrier tank outflow water through the upper part of the perforated plate 29 and against the partition plate 31 as indicated by the arrow X2. Changes to a downward direction and descends the inflow region 34 along the baffle plate 33. At this time, exfoliated sludge and suspended microorganisms in the carrier tank outflow water descend as they are in the inflow region 34 and settle on the tank bottom 12 a in the precipitation zone 30. The precipitated sludge is returned to the treated water introduction pipe 4 through the sludge return pipe 32 by the sludge return pump 31. On the other hand, the carrier tank effluent other than the precipitated sludge rises from the lowermost end of the baffle plate 33 in the outflow region 35 and is transferred to the coagulation sedimentation processing device 2 through the connecting pipe 5 as indicated by an arrow X3.

以上のように、実施の形態2の水処理システムの変形例2によれば、担体処理装置1内に汚泥返送手段28を設けたので、沈殿ゾーン30内の沈殿汚泥を汚泥返送ポンプ31により被処理水流入側の被処理水導入管4へ返送することにより、微生物担体11上に固着する微生物膜に加えて、担体槽12内に剥離汚泥等を浮遊微生物として保持することが可能となる。このため、被処理水の流入水量や水質に変動がある場合においても、剥離汚泥等の保持量を調整することで担体処理装置1に要求される溶解性成分の吸着能力を容易に設定することが可能となる。   As described above, according to the modified example 2 of the water treatment system of the second embodiment, the sludge return means 28 is provided in the carrier treatment apparatus 1, so that the precipitated sludge in the precipitation zone 30 is covered by the sludge return pump 31. By returning to the treated water introduction pipe 4 on the treated water inflow side, in addition to the microbial film fixed on the microbial carrier 11, it becomes possible to hold the exfoliated sludge and the like in the carrier tank 12 as floating microorganisms. For this reason, even when there are fluctuations in the amount of inflow water and the quality of the water to be treated, it is possible to easily set the adsorption capacity of the soluble component required for the carrier treatment apparatus 1 by adjusting the retention amount of exfoliated sludge and the like Is possible.

なお、実施の形態2の水処理システムの変形例2では、沈殿ゾーン30内の沈殿汚泥を汚泥返送ポンプ31により汚泥返送管32を介して被処理水導入管4へ返送するように構成したが、汚泥の返送先は、これに限られるものではなく、例えば、担体槽12内の上流側へ汚泥を返送してもよい。   In the second modification of the water treatment system of the second embodiment, the sludge in the sedimentation zone 30 is returned to the treated water introduction pipe 4 by the sludge return pump 31 via the sludge return pipe 32. The return destination of the sludge is not limited to this. For example, the sludge may be returned to the upstream side in the carrier tank 12.

実施の形態3.
図7は本発明の実施の形態3による水処理システムの全体を示し、一部を破断して示す概略構成図であり、図1等と同一の構成要素には同一符号を付して重複説明を省略する。
実施の形態3による水処理システムは、例えば、夾雑物を含み、溶解性有機成分を比較的多く含み、BODが高い被処理水を処理する場合などに適用されるもので、被処理水を、その被処理水中に含まれる紙類等の夾雑物を除去する、いわゆる「ロータマット」スクリーンタイプの夾雑物除去設備36に通してから、担体処理装置1に導入するように構成されている。この水処理システムは、夾雑物除去設備36を設けた点と、凝集沈殿処理装置2の混合撹拌槽17を構成する急速撹拌槽19内に多孔板37を設けた点で、図1に示した実施の形態1の水処理システムと異なる。
Embodiment 3 FIG.
FIG. 7 is a schematic configuration diagram showing the entire water treatment system according to Embodiment 3 of the present invention, with a part thereof broken away, and the same components as those in FIG. Is omitted.
The water treatment system according to Embodiment 3 is applied to, for example, the case where treated water containing impurities, containing a relatively large amount of soluble organic components, and having a high BOD is used. It passes through a so-called “rotor mat” screen-type contaminant removal facility 36 that removes contaminants such as paper contained in the water to be treated, and is then introduced into the carrier treatment apparatus 1. This water treatment system is shown in FIG. 1 in that a contaminant removing facility 36 is provided and a porous plate 37 is provided in a rapid stirring tank 19 constituting the mixing and stirring tank 17 of the coagulation sedimentation treatment apparatus 2. Different from the water treatment system of the first embodiment.

夾雑物除去設備36は、被処理水が流れる側溝等の水路P内に例えば35°程度に傾斜させて配設され、かつ、内側から外側へ被処理水を通過させて夾雑物を捕捉するドラム状のスクリーン38と、このスクリーン38内に回転可能に配設され、かつ、スクリーン38によって捕捉された夾雑物を掻き寄せる回転レーキ39と、この回転レーキ39により掻き寄せられた夾雑物を斜め上方に搬送するスクリューコンベア40と、このスクリューコンベア40により搬送された夾雑物を加圧脱水するプレス部41と、このプレス部41により加圧脱水された夾雑物(し渣)を排出する夾雑物搬送管42と、上記回転レーキ39およびスクリューコンベア40を回転駆動する駆動装置43とから概略構成されている。スクリーン38は、複数のスクリーンバー38aを円筒状に配列してなるものであり、このスクリーン38上には、スクリーン38を洗浄し、目詰まり等を解消するための洗浄装置44が設けられている。また、プレス部41には、夾雑物の加圧脱水により発生する排水を排出するためのドレン45が設けられている。このように構成された夾雑物除去設備36は、予め、被処理水中の夾雑物を除去することができるので、夾雑物の多い被処理水が担体処理装置1に直接流入した場合に、夾雑物が微生物担体11に絡んだり引っかかったりして上昇流や気泡の微生物担体11間の通過や自由動を困難にし、溶解性成分と微生物膜の接触を阻害したり余剰汚泥の剥離を阻害するなどの様々な不都合を未然に解消できる。   The contaminant removal equipment 36 is disposed in a water channel P such as a side groove where the treated water flows and is inclined at, for example, about 35 °, and passes the treated water from the inside to the outside to capture the contaminants. , A rotary rake 39 that is rotatably arranged in the screen 38 and scrapes the foreign matter captured by the screen 38, and the foreign matter scraped by the rotary rake 39 is obliquely upward. A screw conveyor 40 that conveys the dust, a press unit 41 that pressurizes and dehydrates the contaminants conveyed by the screw conveyor 40, and a contaminant conveyance that discharges the contaminants (debris) depressurized and dehydrated by the press unit 41. The pipe 42 and a drive device 43 that rotationally drives the rotary rake 39 and the screw conveyor 40 are schematically configured. The screen 38 is formed by arranging a plurality of screen bars 38a in a cylindrical shape, and a cleaning device 44 for cleaning the screen 38 and eliminating clogging and the like is provided on the screen 38. . Further, the press unit 41 is provided with a drain 45 for discharging waste water generated by pressure dehydration of impurities. Since the contaminant removal equipment 36 configured in this way can remove contaminants in the water to be treated in advance, when the water to be treated with a large amount of contaminants flows directly into the carrier treatment apparatus 1, the contaminants are removed. Entangled or caught on the microbial carrier 11, making it difficult for upward flow or bubbles to pass between the microbial carrier 11 and free movement, inhibiting the contact between the soluble component and the microbial membrane or inhibiting the removal of excess sludge, etc. Various inconveniences can be solved beforehand.

多孔板37は、急速撹拌槽19内における無機凝集剤の注入のみを行う専用領域を急速撹拌槽19内の上流側に形成するために、無機凝集剤注入管14bよりも下流側に配設されている。多孔板37は、水面から上方に突出する上部を有するものであり、この多孔板37には、担体槽流出水と無機凝集剤との混和液中の凝集汚泥を下流側へ移流させる複数の貫通孔やスリットが形成されている。このような構成の多孔板37を急速撹拌槽19内に設けたことにより、担体槽流出水と無機凝集剤の接触を促進させることができる。なお、多孔板37を配設することで撹拌翼19aによる担体槽流出水と無機凝集剤の混合が不十分となる場合には、多孔板37の無機凝集剤注入側(急速撹拌槽19内の上流側)で散気撹拌を行ってもよい。   The perforated plate 37 is disposed on the downstream side of the inorganic flocculant injection pipe 14b in order to form a dedicated region only for injecting the inorganic flocculant in the rapid stirring tank 19 on the upstream side in the rapid stirring tank 19. ing. The perforated plate 37 has an upper part protruding upward from the water surface, and the perforated plate 37 has a plurality of penetrations for transferring the coagulated sludge in the mixed liquid of the carrier tank outflow water and the inorganic coagulant to the downstream side. Holes and slits are formed. By providing the porous plate 37 having such a configuration in the rapid stirring tank 19, the contact between the carrier tank effluent and the inorganic flocculant can be promoted. In addition, when mixing of the carrier tank effluent and the inorganic flocculant by the stirring blade 19a becomes insufficient by disposing the porous plate 37, the inorganic flocculant injection side of the porous plate 37 (in the rapid stirring tank 19) Aeration stirring may be performed on the upstream side.

以上のように、実施の形態3によれば、水処理システムへの流入水に含まれる夾雑物を除去する夾雑物除去設備36を設けたので、次のような優れた効果を奏することができる。
(1) 微生物への吸着・分解や凝集分離を必要としない夾雑物が排除され、担体処理装置1や凝集沈殿処理装置2への負荷が低減される。
(2) 夾雑物による微生物担体11の閉塞、破損が防止されるため、担体処理装置1の機能を安定して維持できる。
As described above, according to the third embodiment, since the contaminant removal facility 36 for removing contaminants contained in the inflow water to the water treatment system is provided, the following excellent effects can be obtained. .
(1) Contaminants that do not require adsorption / decomposition to microorganisms or coagulation / separation are eliminated, and the load on the carrier treatment apparatus 1 and the coagulation / precipitation treatment apparatus 2 is reduced.
(2) Since the microorganism carrier 11 is prevented from being blocked or damaged by foreign substances, the function of the carrier processing apparatus 1 can be stably maintained.

なお、実施の形態3では、夾雑物除去設備36として、いわゆる「ロータマット」スクリーンタイプを用いたが、微生物担体11の保護が可能な夾雑物除去設備であれば、これに限らず、例えば図9に示す掻揚げ機能付きバースクリーンを用いてもよい。また、このような夾雑物除去設備は、図1〜図6に示した実施の形態等、および、図10〜図12に示す実施の形態等においても、被処理水中の夾雑物を除去するために設けてもよい。   In the third embodiment, a so-called “rotor mat” screen type is used as the contaminant removal equipment 36, but the present invention is not limited to this, as long as it is a contaminant removal equipment capable of protecting the microorganism carrier 11. A bar screen with a lifting function shown in FIG. 9 may be used. Moreover, in order to remove the contaminants in the to-be-processed water, such contaminant removal equipment also in the embodiment shown in FIGS. 1 to 6 and the embodiment shown in FIGS. May be provided.

実施の形態3の変形例1.
図8は図7に示した実施の形態3の水処理システムの変形例1を示し、一部を破断して示す概略構成図であり、図7等と同一の構成要素には同一符号を付して重複説明を省略する。
この変形例1では、沈降促進材分離回収装置3の分離回収器24から排出され、沈降促進材が回収された後の凝集汚泥を固液分離して濃縮する、いわゆるロータリーフィン(登録商標)タイプの固液分離設備46を設けた点と、この固液分離設備46により分離された分離液を担体処理装置1の担体槽12内の上流側に返送する分離液返送管47を設けた点で、図7に示した実施の形態3の水処理システムと異なる。
Modification 1 of Embodiment 3
FIG. 8 shows a first modification of the water treatment system of the third embodiment shown in FIG. 7 and is a schematic configuration diagram showing a part thereof broken. The same components as those in FIG. Therefore, duplicate explanation is omitted.
In the first modification, the so-called rotary fin (registered trademark) type is used which solid-liquid separates and concentrates the coagulated sludge discharged from the separation / collector 24 of the settling accelerator separation / recovery device 3 and collecting the settling accelerator. And a separation liquid return pipe 47 for returning the separation liquid separated by the solid-liquid separation equipment 46 to the upstream side in the carrier tank 12 of the carrier processing apparatus 1. This is different from the water treatment system of the third embodiment shown in FIG.

固液分離設備46は、中央に向かって下降傾斜する略円錐状の槽底部48aを有する略円筒状の水槽48と、この水槽48内に回転可能に配設された筒状回転体49と、この筒状回転体49の中心部に一体に取り付けられ、かつ、鉛直方向に延在する回転軸(図示せず)と、この回転軸を回転駆動する駆動手段(図示せず)と、筒状回転体49内の上部に同心上に配設された略円筒状のセンターウェル50とから概略構成されている。筒状回転体49は、その円周上に鉛直方向に配設された略短冊状の複数の分離羽根49aから構成されている。分離羽根49aの水平断面形状は、例えば「く」の字状となっており、略短冊状の板体をその長さ方向に屈曲させるように形成されている。複数の分離羽根49aは、各屈曲部分を筒状回転体49の円周面となる円周の接線方向に対して内側に向け、かつ、その屈曲部分と隣接の分離羽根49aとの間に、凝集汚泥のうち、液状成分(分離液)のみを外側に排出できる程度の間隔を有する間隙(図示せず)が形成されるように、隣接して配置されている。センターウェル50の円周面には、凝集汚泥を外側の筒状回転体49へ排出する複数の貫通孔50aが形成されている。   The solid-liquid separation equipment 46 includes a substantially cylindrical water tank 48 having a substantially conical tank bottom part 48a inclined downward toward the center, a cylindrical rotating body 49 rotatably disposed in the water tank 48, A rotating shaft (not shown) which is integrally attached to the central portion of the cylindrical rotating body 49 and extends in the vertical direction, driving means (not shown) for rotationally driving the rotating shaft, and a cylindrical shape It is roughly constituted by a substantially cylindrical center well 50 disposed concentrically at the upper part in the rotating body 49. The cylindrical rotating body 49 is composed of a plurality of substantially strip-shaped separation blades 49a arranged in the vertical direction on the circumference thereof. The horizontal cross-sectional shape of the separation blade 49a is, for example, a “<” shape, and is formed so as to bend a substantially strip-shaped plate body in its length direction. The plurality of separation blades 49a are directed inward with respect to the tangential direction of the circumference serving as the circumferential surface of the cylindrical rotating body 49, and between the bent portion and the adjacent separation blade 49a. The agglomerated sludge is disposed adjacent to each other so as to form a gap (not shown) having an interval enough to discharge only the liquid component (separated liquid) to the outside. On the circumferential surface of the center well 50, a plurality of through-holes 50a for discharging the aggregated sludge to the outer cylindrical rotating body 49 are formed.

このような構成の固液分離設備46では、分離回収器24から排出され、沈降促進材が回収された後の凝集汚泥がセンターウェル50の上方から導入され、その貫通孔50aから外側の筒状回転体49内に排出される。この筒状回転体49の回転によって、凝集汚泥も内部で回転するが、その際に、筒状回転体49の間隙(図示せず)から分離液のみが筒状回転体49外に排出され、分離液返送管47により担体槽12内の上流側に返送される。一方、筒状回転体49内に留まる凝集汚泥は、筒状回転体49内を重力沈降し、水槽48内の槽底部48aの流出口(図示せず)から排出されて汚泥処理へ送られる。この汚泥処理へ送られる凝集汚泥は、液状成分が除去されるので、濃縮されることになる。   In the solid-liquid separation facility 46 having such a configuration, the coagulated sludge discharged from the separation / recovery device 24 and recovered from the settling accelerator is introduced from above the center well 50, and is formed in a cylindrical shape outside the through hole 50a. It is discharged into the rotating body 49. Due to the rotation of the cylindrical rotating body 49, the coagulated sludge also rotates inside. At that time, only the separated liquid is discharged out of the cylindrical rotating body 49 from the gap (not shown) of the cylindrical rotating body 49, It is returned to the upstream side in the carrier tank 12 by the separated liquid return pipe 47. On the other hand, the coagulated sludge staying in the cylindrical rotating body 49 is gravity settled in the cylindrical rotating body 49, discharged from the outlet (not shown) of the tank bottom 48a in the water tank 48, and sent to the sludge treatment. The coagulated sludge sent to this sludge treatment is concentrated because the liquid component is removed.

以上のように、実施の形態3の水処理システムの変形例1によれば、実施の形態3による作用・効果に加えて、分離回収器24から排出され、沈降促進材が回収された後の凝集汚泥を固液分離して濃縮する固液分離設備46を設けたので、当該凝集汚泥の減容化を図ることができ、これにより、汚泥貯留・処理設備(図示せず)の規模の縮小あるいは稼働時間の短縮が可能となる。   As described above, according to the first modification of the water treatment system of the third embodiment, in addition to the actions and effects of the third embodiment, the water is discharged from the separation / collector 24 and the settling accelerator is collected. Since the solid-liquid separation facility 46 for separating and condensing the aggregated sludge is provided, the volume of the aggregated sludge can be reduced, thereby reducing the scale of the sludge storage / treatment facility (not shown). Alternatively, the operation time can be shortened.

なお、実施の形態3の水処理システムの変形例1では、分離回収器24から排出された凝集汚泥を濃縮するための固液分離設備46として、いわゆるロータリーフィン(登録商標)タイプを用いたが、凝集汚泥を固液分離して濃縮できれば、これに限らず、他のタイプ(例えば、図10に示すタイプ)を使用することもできる。また、図1〜図7に示した実施の形態等および図9〜図12に示す実施の形態等においても、分離回収器24から排出された凝集汚泥を濃縮するために、上述のような固液分離設備を設けてもよい。   In the first modification of the water treatment system of the third embodiment, a so-called rotary fin (registered trademark) type is used as the solid-liquid separation facility 46 for concentrating the coagulated sludge discharged from the separation / recovery device 24. As long as the coagulated sludge can be solid-liquid separated and concentrated, other types (for example, the type shown in FIG. 10) can be used. Also in the embodiment shown in FIGS. 1 to 7 and the embodiment shown in FIGS. 9 to 12, in order to concentrate the coagulated sludge discharged from the separation and recovery device 24, the above-described solid A liquid separation facility may be provided.

実施の形態3の変形例2.
図9は図7に示した実施の形態3の水処理システムの変形例2を示し、一部を破断して示す概略構成図であり、図7等と同一の構成要素には同一符号を付して重複説明を省略する。
この変形例2では、この水処理システムに流入する被処理水に含まれる紙類等の夾雑物を除去する、掻揚げ機能付きバースクリーンタイプの夾雑物除去設備51を設けた点と、多孔板37を立設した急速撹拌槽19に連結する連結管5内に無機凝集剤を注入する(ライン注入)ように構成した点と、無機凝集剤と担体槽流出水との混和液が急速撹拌槽19内の槽底部17a近傍に流入するように連結管5を急速撹拌槽19の壁部下側に連結した点で、図7に示した実施の形態3の水処理システムと異なる。
Modification 2 of Embodiment 3
FIG. 9 is a schematic configuration diagram showing a second modification of the water treatment system according to the third embodiment shown in FIG. 7 and is partially cut away. The same components as those in FIG. Therefore, duplicate explanation is omitted.
In the second modification, a bar screen type foreign matter removal facility 51 with a lifting function for removing foreign matters such as paper contained in the water to be treated flowing into the water treatment system, and a perforated plate are provided. 37, the mixture of the inorganic flocculant and the carrier tank effluent is a rapid stirrer tank that is configured to inject the inorganic flocculant (line injection) into the connecting pipe 5 connected to the quick stirring tank 19 provided upright. 7 is different from the water treatment system of the third embodiment shown in FIG. 7 in that the connecting pipe 5 is connected to the lower side of the wall of the rapid stirring tank 19 so as to flow into the vicinity of the tank bottom 17a in the tank 19.

夾雑物除去設備51は、被処理水が流れる側溝等の水路P内に傾斜させて配設されたバースクリーン(図示せず)と、このバースクリーンによって捕捉された夾雑物をバースクリーンの前面に沿って斜め上方に掻き揚げる回転レーキ52と、この回転レーキ52を循環駆動する駆動手段53と、回転レーキ52により掻き揚げられた夾雑物を受け入れるシュート54とから概略構成されている。このように構成された夾雑物除去設備51は、上述の夾雑物除去設備36と同様に、予め、被処理水中の夾雑物を除去することができるので、夾雑物の多い被処理水が担体処理装置1に直接流入した場合に、夾雑物が微生物担体11に絡んだり引っかかったりして上昇流や気泡の微生物担体11間の通過や自由動を困難にし、溶解性成分と微生物膜の接触を阻害したり余剰汚泥の剥離を阻害するなどの様々な不都合を未然に解消できる。   The contaminant removal equipment 51 has a bar screen (not shown) disposed in an inclined manner in a water channel P such as a side groove where water to be treated flows, and contaminants captured by the bar screen on the front surface of the bar screen. The rotary rake 52 is lifted up obliquely upward along the rotary rake 52, the driving means 53 for circulatingly driving the rotary rake 52, and the chute 54 for receiving the foreign matter lifted up by the rotary rake 52. Since the contaminant removal equipment 51 configured in this way can remove in advance the contaminants in the water to be treated in the same manner as the above-described contaminant removal equipment 36, the water to be treated with a large amount of contaminants is treated with the carrier. When directly flowing into the apparatus 1, contaminants get entangled or caught on the microbial carrier 11, making it difficult for upward flow or air bubbles to pass between the microbial carriers 11 and free movement, thereby inhibiting contact between the soluble component and the microbial membrane. It is possible to eliminate various inconveniences such as impeding the removal of excess sludge.

この変形例2では、連結管5内に無機凝集剤を注入する(ライン注入)ことで、担体槽流出水中の未凝集性成分に対する凝集反応を早期に開始することができる。その無機凝集剤により形成された微細な凝集汚泥を含む混和液は、急速撹拌槽19内の槽底部17a近傍に流入することで、多孔板37の上流側の領域内で凝集反応がさらに進行し、その凝集反応が進行した混和液が多孔板37の貫通孔等を通過して多孔板37の下流側の領域へ徐々に移流され、その下流側では高分子凝集剤の注入および沈降促進材の添加を受けて、より強固で沈降性の高い凝集汚泥が形成される。   In this modified example 2, by injecting the inorganic flocculant into the connecting pipe 5 (line injection), the agglomeration reaction for the non-aggregable components in the carrier tank effluent can be started at an early stage. The mixed liquid containing fine flocculated sludge formed by the inorganic flocculant flows into the vicinity of the tank bottom portion 17a in the rapid stirring tank 19 so that the flocculation reaction further proceeds in the upstream region of the porous plate 37. The admixture in which the agglomeration reaction has progressed passes through the through-holes of the perforated plate 37 and is gradually transferred to the downstream region of the perforated plate 37. Upon addition, agglomerated sludge that is stronger and more settled is formed.

以上のように、実施の形態3の水処理システムの変形例2によれば、実施の形態3による作用・効果に加えて、次のような優れた効果を奏することができる。
(1) 多孔板37を立設した急速撹拌槽19に連結する連結管5内に無機凝集剤を注入する(ライン注入)ように構成したので、多孔板37の上流側の領域内において、微細の凝集汚泥を確実に形成でき、多孔板37の下流側の領域内において、その微細の凝集汚泥を含む混和液に高分子凝集剤を注入し、かつ、沈降促進材を添加することにより、より強固で沈降性の高い凝集汚泥を形成できる。
(2) 無機凝集剤と担体槽流出水との混和液が急速撹拌槽19内の槽底部17a近傍に流入するように連結管5を急速撹拌槽19の壁部下側に連結したので、混和液が多孔板37の上流側の下方領域に一時的に貯留されることから、その下方領域内で凝集反応をさらに進行させることができる。
As described above, according to the second modification of the water treatment system of the third embodiment, the following excellent effects can be obtained in addition to the functions and effects of the third embodiment.
(1) Since the inorganic flocculant is injected (line injection) into the connecting pipe 5 connected to the quick stirring tank 19 in which the porous plate 37 is erected, in the region on the upstream side of the porous plate 37, fine In the region on the downstream side of the perforated plate 37, the polymer flocculant is injected into the mixed liquid containing the fine flocculent sludge and the settling accelerator is added. Agglomerated sludge that is strong and has high sedimentation properties can be formed.
(2) Since the connecting pipe 5 is connected to the lower side of the rapid stirring tank 19 so that the mixed liquid of the inorganic flocculant and the water discharged from the carrier tank flows into the vicinity of the tank bottom 17a in the rapid stirring tank 19, the mixed liquid Is temporarily stored in the lower region on the upstream side of the perforated plate 37, the agglutination reaction can be further advanced in the lower region.

なお、実施の形態3の変形例2では、夾雑物除去設備51として、掻揚げ機能付きバースクリーンタイプを用いたが、微生物担体11の保護が可能な夾雑物除去設備であれば、これに限らず、例えば、図7および図8に示した夾雑物除去設備36を用いてもよい。   In the second modification of the third embodiment, a bar screen type with a lifting function is used as the contaminant removal equipment 51, but the present invention is not limited to this as long as the contaminant removal equipment capable of protecting the microorganism carrier 11 is used. For example, the contaminant removal equipment 36 shown in FIGS. 7 and 8 may be used.

また、実施の形態3の変形例2では、急速撹拌槽19の壁部下側に連結管5を接続したが、この連結管5の急速撹拌槽19への接続位置はこれに限られるものではなく、例えば、図2に示した連結管5のように急速撹拌槽19の壁部上側であってもよい。   Moreover, in the modification 2 of Embodiment 3, although the connecting pipe 5 was connected to the wall part lower side of the rapid stirring tank 19, the connection position to the rapid stirring tank 19 of this connecting pipe 5 is not restricted to this. For example, the wall part upper side of the rapid stirring tank 19 may be sufficient like the connection pipe 5 shown in FIG.

実施の形態4.
図10は本発明の実施の形態4による水処理システムの全体を示し、一部を破断して示す概略構成図であり、図1等と同一の構成要素には同一符号を付して重複説明を省略する。
実施の形態4による水処理システムは、例えば、浮遊物質(SS)などの未凝集性成分が多い被処理水を処理する場合などに適用されるもので、担体処理装置1と凝集沈殿処理装置2と沈降促進材分離回収装置3と固液分離設備55とを含み、被処理水を凝集沈殿処理装置2に導入し、この凝集沈殿処理装置2から得られる沈殿槽流出水を担体処理装置1に送出し、この担体処理装置1から得られる担体槽流出水を固液分離設備55に送出し、この固液分離設備55から処理水を排出するように構成されている。この水処理システムでは、被処理水を凝集沈殿処理装置2に導入し、処理水を固液分離設備55から排出する点で、図1〜図9に示した実施の形態等の水処理システムと大きく異なる。
Embodiment 4 FIG.
FIG. 10 is a schematic configuration diagram showing the entire water treatment system according to Embodiment 4 of the present invention, with a part thereof broken away. The same components as those in FIG. Is omitted.
The water treatment system according to the fourth embodiment is applied to, for example, a case where treated water having a large amount of unaggregated components such as suspended matter (SS) is treated. The carrier treatment apparatus 1 and the coagulation sedimentation treatment apparatus 2 are used. A settling accelerator separation / recovery device 3 and a solid-liquid separation facility 55, water to be treated is introduced into the coagulation sedimentation treatment device 2, and the sedimentation tank effluent obtained from the coagulation sedimentation treatment device 2 is supplied to the carrier treatment device 1. The carrier tank outflow water obtained from the carrier processing apparatus 1 is sent out to the solid-liquid separation facility 55, and the treated water is discharged from the solid-liquid separation facility 55. In this water treatment system, the water to be treated is introduced into the coagulation sedimentation treatment device 2 and the treated water is discharged from the solid-liquid separation facility 55, so that the water treatment system according to the embodiment shown in FIGS. to differ greatly.

固液分離設備55は、担体槽流出水に含まれる懸濁物質を除去するディスクフィルタを用いたろ過器であり、上流側の端部から担体槽流出水を受け入れ、かつ、水平方向に延在する回転軸(図示せず)周りに回転可能である回転ドラム56と、この回転ドラム56の外周面上から半径方向外方に延在し、かつ、軸方向に等間隔に配列された複数のディスクフィルタ57と、ディスクフィルタ57の一部が内側に配設され、ディスクフィルタ57を通過したろ過水を受け入れる水槽58と、この水槽58内のろ過水の水面上に上がったときに各ディスクフィルタ57に対して軸方向から洗浄液を噴射する洗浄ノズル59と、回転ドラム56内の上部に配設され、かつ、洗浄ノズル59によりディスクフィルタ57から除去された懸濁物質を含む洗浄廃水を移送する集水樋60とから概略構成されている。各ディスクフィルタ57は、その周方向に沿って複数個に分画されてなる断面略扇状のセグメント(図示せず)から構成されており、各セグメントは、一対の扇状のフィルタ(図示せず)を軸方向に一定の間隙をもって対向させることで両フィルタ間に形成される内部空間を有しており、各セグメントの内側円弧部分には、回転ドラム56の内部空間と連通する開口部(図示せす)が形成されている。このようなろ過による固液分離では、フィルタの目幅を目的の水質に合わせて選定できる点で、有利である。なお、固液分離設備55の水槽58内のろ過水の水位は、水位計(図示せず)により、運転中は常に計測されており、水位が上昇したときにディスクフィルタ57に目詰まりが生じていると判断して、洗浄ノズル59による洗浄が開始されるように構成されている。   The solid-liquid separation equipment 55 is a filter using a disk filter that removes suspended substances contained in the carrier tank effluent, receives the carrier tank effluent from the upstream end, and extends in the horizontal direction. A rotating drum 56 rotatable around a rotating shaft (not shown), and a plurality of drums extending radially outward from the outer peripheral surface of the rotating drum 56 and arranged at equal intervals in the axial direction A disk filter 57, a part of the disk filter 57 disposed inside, a water tank 58 that receives the filtered water that has passed through the disk filter 57, and each disk filter when it rises above the surface of the filtered water in the water tank 58. A cleaning nozzle 59 that injects cleaning liquid from the axial direction to 57 and a suspended substance that is disposed in the upper part of the rotary drum 56 and removed from the disk filter 57 by the cleaning nozzle 59. It is schematically composed of the water collecting trough 60 for transferring the purification wastewater. Each disk filter 57 is constituted by a segment (not shown) having a substantially fan-shaped cross section that is divided into a plurality of pieces along the circumferential direction, and each segment is a pair of fan-shaped filters (not shown). Has an internal space formed between the two filters by facing each other with a certain gap in the axial direction, and an opening (not shown) communicating with the internal space of the rotary drum 56 is formed in the inner circular arc portion of each segment. Is formed. Such solid-liquid separation by filtration is advantageous in that the mesh width of the filter can be selected in accordance with the target water quality. Note that the water level of the filtered water in the water tank 58 of the solid-liquid separation facility 55 is always measured during operation by a water level meter (not shown), and the disk filter 57 is clogged when the water level rises. Therefore, the cleaning by the cleaning nozzle 59 is started.

次に動作について説明する。
まず、被処理水は、凝集沈殿処理装置2の急速撹拌槽(混和槽)26内に導入される。被処理水中の未凝集性成分は、急速撹拌槽(混和槽)26内で無機凝集剤の注入により凝集されて微細な凝集汚泥となり、注入撹拌槽(凝集槽)27内で高分子凝集剤の注入および沈降促進材の添加を受けて、より強固で沈降性の高い凝集汚泥となり、さらに凝集汚泥形成槽20内で凝集汚泥がより強固で沈降性の高い状態に維持されながら、さらに大きく成長する。沈殿槽18内では、凝集汚泥が重力沈降により沈降し、沈殿汚泥として分離され、沈降促進材分離回収装置3により、その沈殿汚泥中の沈降促進材が回収されて再利用される。また、沈殿汚泥から分離された凝集汚泥は、汚泥処理へ送られる。
Next, the operation will be described.
First, the water to be treated is introduced into the rapid stirring tank (mixing tank) 26 of the coagulation sedimentation treatment apparatus 2. Unflocculated components in the water to be treated are agglomerated by injection of the inorganic flocculant in the rapid stirring tank (mixing tank) 26 to become fine agglomerated sludge. By receiving the injection and the addition of the settling accelerator, the coagulated sludge becomes stronger and more settled, and further grows larger while maintaining the coagulated sludge in the coagulated sludge forming tank 20 in a stronger and more settled state. . In the sedimentation tank 18, the coagulated sludge is settled by gravity sedimentation and separated as sedimentation sludge, and the sedimentation promoting material in the sedimentation sludge is recovered and reused by the sedimentation promoting material separation and recovery device 3. Moreover, the coagulated sludge separated from the precipitated sludge is sent to the sludge treatment.

一方、沈殿槽流出水中の溶解性成分は、担体処理装置1の担体槽12内で微生物処理により吸着・酸化処理され、担体槽流出水として固液分離設備55へ送られる。   On the other hand, the soluble component in the precipitation tank effluent is adsorbed and oxidized by microbial treatment in the carrier tank 12 of the carrier treatment apparatus 1 and sent to the solid-liquid separation facility 55 as the carrier tank effluent.

次に、固液分離設備55では、担体槽流出水中に残存する浮遊微生物および剥離汚泥等の懸濁物質が固液分離されることにより、清浄な処理水が得られる。すなわち、担体槽流出水は、固液分離設備55の回転ドラム56内に流入し、開口部(図示せず)からディスクフィルタ57の各セグメント(図示せず)内に流入し、扇状のフィルタ(図示せず)を通過してろ過され、水槽58内に移流する。このろ過水は、凝集処理および微生物処理を経た担体槽流出水から懸濁物質がさらに除去されるので、清浄な処理水として直接、水処理システム外へ排出できるようになる。   Next, the solid-liquid separation equipment 55 obtains clean treated water by solid-liquid separation of suspended microorganisms remaining in the carrier tank outflow water and suspended substances such as exfoliated sludge. That is, the carrier tank outflow water flows into the rotating drum 56 of the solid-liquid separation equipment 55, flows into each segment (not shown) of the disk filter 57 from the opening (not shown), and forms a fan-shaped filter ( It is filtered through (not shown) and is transferred into the water tank 58. Since the suspended water is further removed from the effluent from the carrier tank that has undergone the flocculation process and the microbial process, the filtered water can be directly discharged out of the water treatment system as clean treated water.

一方、担体槽流出水中の懸濁物質は、ディスクフィルタ57の扇状のフィルタ(図示せず)によって捕捉され、そのディスクフィルタ57が水面上に上がったときに、懸濁物質を含む洗浄廃水が開口部(図示せず)から集水樋60内に流下する。この洗浄廃水は、上述のように沈殿汚泥から分離された凝集汚泥と共に、汚泥処理へ送られる。   On the other hand, suspended substances in the carrier tank effluent are captured by a fan-like filter (not shown) of the disk filter 57, and when the disk filter 57 rises above the water surface, cleaning wastewater containing suspended substances is opened. It flows down into the water collecting tank 60 from the section (not shown). This washing wastewater is sent to the sludge treatment together with the coagulated sludge separated from the precipitated sludge as described above.

以上のように、実施の形態4によれば、担体処理装置1と凝集沈殿処理装置2と沈降促進材分離回収装置3と固液分離設備55を設け、被処理水を凝集沈殿処理装置2に導入し、この凝集沈殿処理装置2から得られる沈殿槽流出水を担体処理装置1に送出し、この担体処理装置1から得られる担体槽流出水を固液分離設備55に送出し、この固液分離設備55から処理水を排出するように構成したので、次のような優れた効果を奏することができる。
(1) 例えば、浮遊物質(SS)などの未凝集性成分が多い被処理水を、物理化学的処理を行う凝集沈殿処理装置2に導入し、濁質性成分中の未凝集性成分を沈殿汚泥として分離し、水質負荷が低減された沈殿槽流出水を担体処理装置1で処理し、担体槽流出水に混入する浮遊微生物および剥離汚泥(懸濁物質)を固液分離設備55によって分離して清浄な処理水を得ることができる。
(2) 被処理水をまず凝集沈殿処理装置2に導入することで、例えば一時的に被処理水量が増大し(水量負荷の増大)、これに伴って濁質性成分量が増大(水質負荷の増大)した場合においても、凝集条件を変更することで即時に対応が可能(即応性が高い)である。
As described above, according to the fourth embodiment, the carrier treatment device 1, the coagulation sedimentation treatment device 2, the sedimentation promoting material separation and recovery device 3, and the solid-liquid separation equipment 55 are provided, and the water to be treated is supplied to the coagulation sedimentation treatment device 2. The sedimentation tank effluent obtained from the coagulation sedimentation treatment apparatus 2 is sent to the carrier treatment apparatus 1, and the carrier tank effluent obtained from the carrier treatment apparatus 1 is delivered to the solid-liquid separation facility 55. Since it constituted so that treated water might be discharged from separation equipment 55, the following outstanding effects can be produced.
(1) For example, to-be-treated water with a lot of unagglomerated components such as suspended solids (SS) is introduced into the coagulation sedimentation treatment device 2 that performs physicochemical treatment to precipitate unaggregated components in turbid components The sedimentation tank runoff water separated as sludge and treated with the carrier treatment apparatus 1 is processed by the carrier treatment apparatus 1, and the suspended microorganisms and the separated sludge (suspended substance) mixed in the carrier tank runoff water are separated by the solid-liquid separation equipment 55. Clean treated water can be obtained.
(2) By first introducing the water to be treated into the coagulation sedimentation treatment device 2, for example, the amount of water to be treated temporarily increases (increase in water load), and the amount of turbid components increases accordingly (water quality load) In the case of an increase in (gap), it is possible to respond immediately (high responsiveness) by changing the aggregation conditions.

なお、実施の形態4では、分離回収器24で発生する凝集汚泥と、固液分離設備55で発生する洗浄廃水をそのまま汚泥処理へ送出しているが、例えば、図12に示すように、濃縮装置により、当該凝集汚泥および洗浄廃水を濃縮して減容化を図ってもよい。この場合には、汚泥貯留・処理設備(図示せず)の規模の縮小あるいは稼働時間の短縮が可能となる。   In the fourth embodiment, the coagulated sludge generated in the separation / collector 24 and the cleaning wastewater generated in the solid / liquid separation equipment 55 are sent to the sludge treatment as they are. For example, as shown in FIG. The apparatus may reduce the volume by concentrating the agglomerated sludge and washing wastewater. In this case, it is possible to reduce the scale of the sludge storage / treatment facility (not shown) or shorten the operation time.

また、実施の形態4では、ろ過による固液分離設備を用いたが、固液分離はろ過に限らず、例えば、図11に示すように重力沈殿による固液分離方法でもよい。   In Embodiment 4, solid-liquid separation equipment by filtration is used, but solid-liquid separation is not limited to filtration, and for example, a solid-liquid separation method by gravity precipitation may be used as shown in FIG.

実施の形態4の変形例1.
図11は図10に示した実施の形態4の水処理システムの変形例1を示し、一部を破断して示す概略構成図であり、図10等と同一の構成要素には同一符号を付して重複説明を省略する。
この変形例1は、例えば、沈殿槽流出水に溶解性成分が多く含まれ、担体処理装置1の微生物担体上に保持されている微生物量のみでは十分に目的の処理が行えない場合に、重力沈殿で分離された浮遊微生物や微生物担体11から剥離した微生物膜の、一部もしくは全量を担体処理装置1の沈殿槽流出水流入側に返送し、担体槽での浮遊微生物量を増やして対応できるように構成されている。すなわち、この変形例1は、混合撹拌槽17を急速撹拌槽19および凝集汚泥形成槽20から構成した点と、固液分離設備55に代えて、図8に示した固液分離設備46を設け、この固液分離設備46の水槽48の槽底部48aに汚泥排出管61を設け、この汚泥排出管61から分岐して担体処理装置1の沈殿槽流出水流入側の連結管5まで延在する汚泥返送管62を設け、この汚泥返送管62に汚泥返送ポンプ63を設けた点で、図10に示した実施の形態4の水処理システムと異なる。
Modification 1 of Embodiment 4
FIG. 11 shows a first modification of the water treatment system according to the fourth embodiment shown in FIG. 10 and is a schematic configuration diagram partially broken away. The same components as those in FIG. Therefore, duplicate explanation is omitted.
In this modified example 1, for example, a large amount of soluble components are contained in the sedimentation tank effluent, and the target treatment cannot be sufficiently performed only by the amount of microorganisms held on the microorganism carrier of the carrier treatment apparatus 1. Part or all of the suspended microorganisms separated by precipitation and the microbial membrane peeled from the microorganism carrier 11 can be returned to the precipitation tank effluent inflow side of the carrier treatment apparatus 1 to increase the amount of suspended microorganisms in the carrier tank. It is configured as follows. That is, this modification 1 is provided with the solid-liquid separation facility 46 shown in FIG. 8 instead of the solid-liquid separation facility 55 in that the mixing stirring tank 17 is composed of the rapid stirring tank 19 and the coagulated sludge forming tank 20. The sludge discharge pipe 61 is provided in the tank bottom 48a of the water tank 48 of the solid-liquid separation facility 46, branches from the sludge discharge pipe 61 and extends to the connecting pipe 5 on the sedimentation tank effluent inflow side of the carrier treatment apparatus 1. A sludge return pipe 62 is provided, and the sludge return pipe 62 is provided with a sludge return pump 63, which is different from the water treatment system of the fourth embodiment shown in FIG.

次に動作について説明する。
まず、被処理水は、凝集沈殿処理装置2の急速撹拌槽19内に導入される。被処理水中の未凝集性成分は、無機凝集剤の注入により凝集されて微細な凝集汚泥となり、高分子凝集剤の注入および沈降促進材の添加を受けて、より強固で沈降性の高い凝集汚泥となる。さらに、凝集汚泥形成槽20内で凝集汚泥がより強固で沈降性の高い状態に維持されながら、さらに大きく成長する。沈殿槽18内では、凝集汚泥が重力沈降により沈降し、沈殿汚泥として分離され、沈降促進材分離回収装置3により、その沈殿汚泥中の沈降促進材が回収されて再利用される。また、沈殿汚泥から分離された凝集汚泥は、汚泥処理へ送られる。
Next, the operation will be described.
First, the water to be treated is introduced into the rapid stirring tank 19 of the coagulation sedimentation treatment apparatus 2. Unflocculated components in the water to be treated are agglomerated by the injection of the inorganic flocculant to become fine agglomerated sludge. It becomes. Further, the agglomerated sludge grows larger in the agglomerated sludge forming tank 20 while being maintained in a stronger and more settled state. In the sedimentation tank 18, the coagulated sludge is settled by gravity sedimentation and separated as sedimentation sludge, and the sedimentation promoting material in the sedimentation sludge is recovered and reused by the sedimentation promoting material separation and recovery device 3. Moreover, the coagulated sludge separated from the precipitated sludge is sent to the sludge treatment.

一方、沈殿槽流出水中の溶解性成分は、担体処理装置1の担体槽12内で微生物処理により吸着・酸化処理され、担体槽流出水として固液分離設備46へ送られる。   On the other hand, the soluble component in the precipitation tank effluent is adsorbed and oxidized by microbial treatment in the carrier tank 12 of the carrier treatment apparatus 1 and sent to the solid-liquid separation facility 46 as the carrier tank effluent.

次に、固液分離設備46では、担体槽流出水がセンターウェル50の上方から導入され、その貫通孔50aから外側の筒状回転体49内に排出される。この筒状回転体49の回転によって、担体槽流出水中の凝集汚泥も内部で回転するが、その際に、筒状回転体49の間隙(図示せず)から分離液のみが筒状回転体49外に排出され、清浄な処理水として直接、水処理システム外へ排出される。   Next, in the solid-liquid separation facility 46, the carrier tank effluent is introduced from above the center well 50 and discharged from the through hole 50 a into the outer cylindrical rotating body 49. Due to the rotation of the cylindrical rotating body 49, the coagulated sludge in the carrier tank outflow water also rotates inside. At this time, only the separated liquid is removed from the gap (not shown) of the cylindrical rotating body 49. It is discharged to the outside and discharged directly to the outside of the water treatment system as clean treated water.

一方、筒状回転体49内に留まる凝集汚泥は、筒状回転体49内を重力沈降し、沈殿汚泥として、水槽48内の槽底部48aから汚泥排出管61を介して汚泥処理へ送られる。ここで、例えば、沈殿槽流出水に溶解性成分が多く含まれ、担体処理装置1の担体槽12内の微生物担体11上に保持されている微生物量のみでは十分に目的の処理が行えない場合には、上記沈殿汚泥を、汚泥返送ポンプ63を稼動させることにより、汚泥排出管61から分岐した汚泥返送管62を介して担体処理装置1の沈殿槽流出水流入側の連結管5内に返送し、担体槽12内での微生物処理に供される。   On the other hand, the aggregated sludge remaining in the cylindrical rotating body 49 is gravity settled in the cylindrical rotating body 49 and sent to the sludge treatment from the tank bottom 48a in the water tank 48 through the sludge discharge pipe 61 as the precipitated sludge. Here, for example, the sedimentation tank effluent contains a lot of soluble components, and the target treatment cannot be sufficiently performed only by the amount of microorganisms retained on the microorganism carrier 11 in the carrier tank 12 of the carrier treatment apparatus 1. The sediment sludge is returned into the connecting pipe 5 on the inflow side of the sedimentation tank effluent of the carrier treatment apparatus 1 through the sludge return pipe 62 branched from the sludge discharge pipe 61 by operating the sludge return pump 63. Then, it is used for microbial treatment in the carrier tank 12.

以上のように、実施の形態4の変形例1によれば、担体槽流出水中に含まれる懸濁物質を除去する固液分離設備46を設けたので、次のような優れた効果を奏することができる。
(1) 担体槽流出水から、浮遊微生物や微生物担体11から剥離した微生物膜(剥離汚泥)が分離され、清浄な処理水が得られ、その処理水は水処理システム外に放流が可能となる。
(2) 固液分離設備46によって分離した凝集汚泥中の微生物フロックや剥離汚泥の一部もしくは全部を担体槽12内に戻すように構成することで、処理目的に適した微生物量を担体槽12内に保持することが可能となる。
As described above, according to the first modification of the fourth embodiment, since the solid-liquid separation facility 46 for removing suspended substances contained in the carrier tank effluent is provided, the following excellent effects can be achieved. Can do.
(1) From the carrier tank effluent, suspended microorganisms and microbial membranes (peeled sludge) separated from the microorganism carrier 11 are separated to obtain clean treated water, which can be discharged out of the water treatment system. .
(2) By configuring a part or all of the microbial floc and exfoliated sludge in the coagulated sludge separated by the solid-liquid separation facility 46 to return to the carrier tank 12, the amount of microorganisms suitable for the processing purpose can be reduced to the carrier tank 12. It becomes possible to hold in.

なお、この変形例1では、汚泥返送管62を連結管5に接続するように構成したが、担体処理装置1の担体槽12の上流側に直接、汚泥を返送するように構成してもよい。   In the first modification, the sludge return pipe 62 is connected to the connecting pipe 5, but the sludge may be returned directly to the upstream side of the carrier tank 12 of the carrier processing apparatus 1. .

実施の形態4の変形例2.
図12は図10に示した実施の形態4の水処理システムの変形例2を示し、一部を破断して示す概略構成図であり、図10等と同一の構成要素には同一符号を付して重複説明を省略する。
この変形例2は、分離回収器24で発生する凝集汚泥と、固液分離設備55で発生する洗浄廃水を、図8に示した固液分離設備46により濃縮して汚泥処理へ送り、その分離液を分離液返送管47により急速撹拌槽(混和槽)26内に返送して再利用する点で、図10に示した実施の形態4の水処理システムと異なる。
Modification 2 of Embodiment 4
FIG. 12 is a schematic configuration diagram showing a modification 2 of the water treatment system according to the fourth embodiment shown in FIG. 10, partially broken away, and the same components as those in FIG. Therefore, duplicate explanation is omitted.
In this modified example 2, the coagulated sludge generated in the separator / collector 24 and the washing wastewater generated in the solid / liquid separation facility 55 are concentrated by the solid / liquid separation facility 46 shown in FIG. The liquid is returned to the rapid stirring tank (mixing tank) 26 through the separated liquid return pipe 47 and reused, which is different from the water treatment system of the fourth embodiment shown in FIG.

実施の形態4の変形例2によれば、凝集汚泥および洗浄廃水を濃縮する固液分離設備46を設けると共に、その固液分離設備46からの分離液を分離液返送管47により急速撹拌槽(混和槽)26内に返送するように構成したので、分離回収器24で発生する凝集汚泥と、固液分離設備55で発生する洗浄廃水を濃縮して減容化を図ることができ、汚泥貯留・処理設備(図示せず)の規模の縮小あるいは稼働時間の短縮が可能となる。   According to the second modification of the fourth embodiment, the solid-liquid separation facility 46 for concentrating the coagulated sludge and the washing wastewater is provided, and the separated liquid from the solid-liquid separation facility 46 is rapidly stirred by the separation liquid return pipe 47 ( Since the mixing sludge is returned to the mixing tank 26, the condensed sludge generated in the separator / collector 24 and the washing waste water generated in the solid / liquid separation facility 55 can be concentrated to reduce the volume, and the sludge can be stored. -The processing facility (not shown) can be reduced in scale or operation time.

なお、実施の形態4の変形例2では、濃縮装置として、いわゆるロータリーフィン(登録商標)タイプの固液分離設備46を用いたが、凝集汚泥と洗浄廃水を濃縮できるのであれば、他のタイプ、例えば、周知の遠心脱水装置等の濃縮装置を用いてもよい。   In the second modification of the fourth embodiment, a so-called rotary fin (registered trademark) type solid-liquid separation facility 46 is used as the concentrating device. However, other types can be used as long as the condensed sludge and washing wastewater can be concentrated. For example, a concentration device such as a known centrifugal dehydration device may be used.

実施の形態4の変形例2では、分離液を急速撹拌槽(混和槽)26内に返送するように構成したが、被処理水導入管4内に返送してもよい。
なお、図1〜図12に示した実施の形態1〜4の水処理システムおよびこれらの変形例では、各装置、機器および/または接続配管等の内部に、被処理水、担体槽流出水および/または沈殿槽流出水等のpHを検出するためのpH検出装置(図示せず)を設置してもよい。また、その測定値に応じて、被処理水等にそのpHを調整するためのpH調整剤を投入してもよい。
In the second modification of the fourth embodiment, the separation liquid is returned to the rapid stirring tank (mixing tank) 26, but may be returned to the treated water introduction pipe 4.
In addition, in the water treatment system of Embodiments 1-4 shown in FIGS. 1-12, and these modifications, to-be-processed water, carrier tank effluent, and the inside of each apparatus, apparatus, and / or connection piping etc. A pH detection device (not shown) for detecting the pH of the precipitation tank effluent or the like may be installed. Moreover, you may throw in the pH adjuster for adjusting the pH to to-be-processed water etc. according to the measured value.

実施例1.
図13は、溶解性成分の成分変動の大きい被処理水の処理に、図4に示した実施の形態2による水処理システムを適用したときのBOD処理状況を示すグラフである。このグラフでは、生物学的酸素要求量(BOD)の測定値を溶解性成分の指標としており、縦軸にBOD濃度(mg/L)を示し、横軸に経過時間(週)を示している。また、グラフ中の菱形(◆)は被処理水中のBOD濃度を示し、四角形(■)は処理水中のBOD濃度を示している。被処理水中のBOD濃度は週平均値で示されており、処理水中のBOD濃度は対象となる週で計測されたBOD濃度の最大値で示されている。実施期間(14週間)中の被処理水中のBOD濃度は平均で180mg/Lであった。
Example 1.
FIG. 13 is a graph showing the BOD treatment status when the water treatment system according to the second embodiment shown in FIG. 4 is applied to the treatment of water to be treated having a large component variation of the soluble component. In this graph, the measured value of biological oxygen demand (BOD) is used as an indicator of a soluble component, the BOD concentration (mg / L) is shown on the vertical axis, and the elapsed time (weeks) is shown on the horizontal axis. . Moreover, the rhombus (♦) in the graph indicates the BOD concentration in the treated water, and the square (■) indicates the BOD concentration in the treated water. The BOD concentration in the for-treatment water is shown as a weekly average value, and the BOD concentration in the for-treatment water is shown as the maximum value of the BOD concentration measured in the target week. The BOD concentration in the water to be treated during the implementation period (14 weeks) was 180 mg / L on average.

実施例1では、無機凝集剤としては、ポリ塩化アルミニウム(PAC)を用い、その薬品注入率を5mg/L(Alとして算出した場合における換算値)とした。高分子凝集剤としては、アニオン系ポリマーを用い、その薬品注入率を0.8mg/Lとした。薬品注入率は、いずれも、被処理水1Lに対する注入量である。また、沈殿槽上昇速度は120m/時であった。この沈殿槽上昇速度は、沈殿槽18内への流入速度(m/時)を沈殿槽18内の水面積(m)で除することによって算出される。さらに、循環率は、6%であった。この循環率は、被処理水量に対する汚泥引抜ポンプ23から分離回収器24への沈殿汚泥供給量の割合である。なお、沈降促進材としては、直径が約100〜約400マイクロメートルの範囲であり、比重が2.3〜2.8の範囲の硅砂を用いた。 In Example 1, polyaluminum chloride (PAC) was used as the inorganic flocculant, and the chemical injection rate was 5 mg / L (converted value when calculated as Al 2 O 3 ). An anionic polymer was used as the polymer flocculant, and the chemical injection rate was 0.8 mg / L. The chemical injection rate is an injection amount for 1 L of water to be treated. Moreover, the precipitation tank ascending speed was 120 m / hour. The sedimentation tank ascending speed is calculated by dividing the inflow speed (m 3 / hour) into the sedimentation tank 18 by the water area (m 2 ) in the sedimentation tank 18. Furthermore, the circulation rate was 6%. This circulation rate is the ratio of the amount of precipitated sludge supplied from the sludge extraction pump 23 to the separator / collector 24 with respect to the amount of water to be treated. In addition, as the sedimentation accelerator, dredged sand having a diameter in the range of about 100 to about 400 micrometers and a specific gravity in the range of 2.3 to 2.8 was used.

図13からは、図4に示した実施の形態2による水処理システムが、実施期間中の流入水中のBOD濃度に変動がある場合においても、処理水のBOD濃度が常に15mg/L以下であることが分かる。すなわち、この水処理システムは、BOD濃度が高い被処理水が流入する週があっても、その被処理水に対して適切で良好な水処理を、実施期間中、常に安定して行うことができたことを示している。   From FIG. 13, the BOD concentration of treated water is always 15 mg / L or less even in the case where the water treatment system according to the second embodiment shown in FIG. I understand that. That is, this water treatment system can always perform a suitable and good water treatment stably for the treated water during the implementation period even if there is a week when the treated water with a high BOD concentration flows. It shows that it was possible.

実施例2.
図14は、濁質性成分の成分変動の大きい被処理水の処理に、図10に示した実施の形態4による水処理システムを適用したときのSS処理状況を示すグラフである。このグラフでは、浮遊物質(SS)の測定値を濁質性成分の指標としており、縦軸にSS濃度(mg/L)を示し、横軸に経過時間(週)を示している。また、グラフ中の菱形(◆)は、被処理水中のSS濃度を示し、四角形(■)は処理水中のSS濃度を示している。被処理水および処理水中のSS濃度は、いずれも週平均値で示されている。実施期間(14週間)中の被処理水中のSS濃度は平均で200mg/Lであった。
Example 2
FIG. 14 is a graph showing the SS treatment status when the water treatment system according to the fourth embodiment shown in FIG. 10 is applied to the treatment of water to be treated with large turbidity component fluctuations. In this graph, the measured value of suspended solids (SS) is used as an index of the turbidity component, the SS concentration (mg / L) is shown on the vertical axis, and the elapsed time (weeks) is shown on the horizontal axis. Moreover, the rhombus (♦) in the graph indicates the SS concentration in the treated water, and the square (■) indicates the SS concentration in the treated water. Both SS concentration in to-be-treated water and treated water is shown as a weekly average value. The SS concentration in the water to be treated during the implementation period (14 weeks) averaged 200 mg / L.

実施例2では、実施例1と同一条件、すなわち同一の無機凝集剤および高分子凝集剤、薬品注入率、沈降促進材を用い、同一の沈殿槽上昇速度および循環率となるように、水処理を行った。   In Example 2, using the same conditions as in Example 1, that is, using the same inorganic flocculant and polymer flocculant, chemical injection rate, and sedimentation accelerator, water treatment was performed so that the same precipitation tank ascending rate and circulation rate were obtained. Went.

図14からは、図10に示した実施の形態2による水処理システムが、実施期間中の流入水中のSS濃度に変動がある場合においても、処理水のSS濃度が常に5mg/L以下であることが分かる。すなわち、この水処理システムは、SS濃度が高い被処理水が流入する週があっても、その被処理水に対して適切で良好な水処理を、実施期間中、常に安定して行うことができたことを示している。   From FIG. 14, the SS concentration of the treated water is always 5 mg / L or less even when the SS concentration in the inflowing water during the implementation period of the water treatment system according to the second embodiment shown in FIG. 10 varies. I understand that. In other words, this water treatment system can always perform a stable and appropriate water treatment for the treated water at all times during the implementation period even if there is a week when treated water with a high SS concentration flows. It shows that it was possible.

実施例3.
図15は、同一の処理条件で水処理を行うことを想定した場合における図7に示した実施の形態3による水処理システムと従来の水処理方式(オキシデーションディッチ法)との施設規模の大きさの比較図であり、(A1)は実施の形態3による水処理システムの配置例の平面であり、(A2)は(A1)の水処理システムの側面図であり、(B1)は従来の水処理方式の施設全体の平面図であり、(B2)は(B1)の施設の側面図である。ここで、同一の処理条件として、平均処理水量600m/日、時間最大処理量1,200m/日の処理量を想定している。
Example 3
FIG. 15 shows a large facility scale between the water treatment system according to the third embodiment shown in FIG. 7 and the conventional water treatment method (oxidation ditch method) when water treatment is assumed to be performed under the same treatment conditions. It is a comparison figure, (A1) is a plane of the example of arrangement | positioning of the water treatment system by Embodiment 3, (A2) is a side view of the water treatment system of (A1), (B1) is conventional. It is a top view of the whole facility of a water treatment system, (B2) is a side view of the facility of (B1). Here, as the same treatment condition, an average treatment water amount of 600 m 3 / day and a maximum time treatment amount of 1,200 m 3 / day are assumed.

図7に示した実施の形態3による水処理システムは、図15(A1)および(A2)に示すように、45m(幅10m×奥行き4.5m)の敷地面積の中に担体処理装置1、凝集沈殿処理装置2、沈降促進材分離回収装置3、夾雑物除去設備36および制御盤動力機器の構成機器類を設置可能であり、その設備高さは最大3.7mである。このような水処理システムの構成機器類は、例えば、積載量4トンのトラックの荷台に分散して載せることができるサイズである。また、実施例1と同一の運転条件下で水処理を行ったところ、水処理システム全体のHRTは2時間であった。 As shown in FIGS. 15A1 and 15A2, the water treatment system according to Embodiment 3 shown in FIG. 7 has a carrier treatment apparatus 1 in a site area of 45 m 2 (width 10 m × depth 4.5 m). In addition, constituent devices such as the coagulation sedimentation processing device 2, the sedimentation promoting material separation and recovery device 3, the contaminant removal equipment 36, and the control panel power equipment can be installed, and the height of the equipment is 3.7 m at the maximum. The components of such a water treatment system are, for example, of a size that can be distributed and loaded on the loading platform of a truck with a loading capacity of 4 tons. Moreover, when water treatment was performed under the same operating conditions as in Example 1, the HRT of the entire water treatment system was 2 hours.

一方、従来広く利用されているオキシデーションディッチ法による処理施設では、図15(B1)および(B2)に示すように、361m(幅19m×奥行き19m)の敷地面積を必要とし、設備高さも5.2mであった。また、実施例1で用いた被処理水と同程度のBOD濃度(180mg/L)の被処理水を用いて水処理を行ったところ、HRTは31時間であった。 On the other hand, as shown in FIGS. 15 (B1) and (B2), a processing facility using the oxidation ditch method that has been widely used conventionally requires a site area of 361 m 2 (width 19 m × depth 19 m), and the height of the facility is also high. It was 5.2 m. Moreover, when the water treatment was performed using the water to be treated having the same BOD concentration (180 mg / L) as the water to be treated used in Example 1, the HRT was 31 hours.

実施例1乃至3を総合して検討すると、本発明に係る水処理システムは、従来法のオキシデーションディッチ法と比較して、その水処理能力(BOD処理能力およびSS処理能力)において同等であるが、敷地面積は約8分の1、HRTは約16分の1であることから、短時間で処理できるコンパクトな水処理システムであることを示している。   Comprehensively examining Examples 1 to 3, the water treatment system according to the present invention is equivalent in water treatment capability (BOD treatment capability and SS treatment capability) compared to the conventional oxidation ditch method. However, since the site area is about 1/8 and HRT is about 1/16, it shows that it is a compact water treatment system that can be processed in a short time.

なお、図15(A1)に示した水処理システムでは、夾雑物除去設備36と、担体処理装置1と、凝集沈殿処理装置2と、沈降促進材分離回収装置3と、これら各装置に関連する制御盤・動力機器を略升目状に配設しているが、そのレイアウトはこれに限られるものではなく、任意であり、本発明による水処理システムは設置場所に制限されることがない。また、被処理水の流入場所も任意であり、夾雑物除去設備36等を通さず、被処理水を直接、担体処理装置1に流入した場合は、図1に示した実施の形態1等となり、被処理水を凝集沈殿処理装置2に流入させ、固液分離設備46または55を新たに配設した場合は図10に示した実施の形態4等となるなど、流入水の水量・水質に応じて適切な処理への対応が容易である。   In the water treatment system shown in FIG. 15 (A1), the contaminant removal equipment 36, the carrier treatment device 1, the coagulation sedimentation treatment device 2, the sedimentation promoting material separation / recovery device 3, and these devices are related. Although the control panel and the power equipment are arranged in a substantially square shape, the layout is not limited to this and is arbitrary, and the water treatment system according to the present invention is not limited to the installation location. Moreover, the inflow place of the to-be-treated water is arbitrary, and when the to-be-treated water flows directly into the carrier treatment apparatus 1 without passing through the contaminant removal facility 36 etc., the first embodiment shown in FIG. In the case where the water to be treated is introduced into the coagulation sedimentation treatment apparatus 2 and the solid-liquid separation equipment 46 or 55 is newly arranged, the amount of influent water and the quality of the influent water are improved. Corresponding to appropriate processing is easy.

本発明に係る水処理システムは、溶解性成分を処理する担体処理装置と未凝集性成分を凝集する凝集沈殿処理装置を含むため、下水以外の水にも、例えば地下水および地表水並びに産業排水の処理にも適用が可能となる。   Since the water treatment system according to the present invention includes a carrier treatment device for treating soluble components and a coagulation sedimentation treatment device for aggregating unaggregated components, water other than sewage, for example, groundwater, surface water, and industrial wastewater. Application to processing is also possible.

1 担体処理装置, 2 凝集沈殿処理装置, 3 沈降促進材分離回収装置,
4 被処理水導入管, 5 連結管, 6 排出管, 11 微生物担体,
11a 微生物担体モジュール, 11b 支持フレーム, 11c 支柱,
11d 幹糸固定用フレーム, 12 担体槽, 12a 槽底部,12b 流出口, 13 散気設備, 13a 散気装置, 13b 空気供給管,13c ヘッダー管, 14 無機凝集剤注入設備, 14a 無機凝集剤貯留タンク,
14b 無機凝集剤注入管, 14c 注入ポンプ, 14d,14e 分岐管,
15 高分子凝集剤注入設備, 15a 高分子凝集剤調製装置,
15b 高分子凝集剤注入管, 15c 注入ポンプ,
15d 高分子凝集剤混合タンク, 15e 高分子凝集剤収容タンク,
15f 給水管, 15g バルブ, 15h 撹拌翼, 15i モータ,
16 沈降促進材供給管, 17 混合撹拌槽, 17a 槽底部,
17b,17c,17d 仕切板, 18 沈殿槽, 18a 槽底部,
18b 汚泥ピット, 18c 仕切板, 18d 集水樋,
18e 清澄促進部材, 19 急速撹拌槽, 19a 撹拌翼, 19b モータ, 20 凝集汚泥形成槽(凝集槽), 20a 撹拌翼, 20b モータ,
21 凝集汚泥掻寄機, 22 モータ, 23 汚泥引抜ポンプ, 24 分離回収器, 25 沈殿汚泥返送管, 26 急速撹拌槽(混和槽), 26a 撹拌翼, 26b モータ, 27 注入撹拌槽(凝集槽), 27a 攪拌翼,
27b モータ,28 汚泥返送手段, 29 多孔板, 30 沈殿ゾーン,
31 汚泥返送ポンプ, 32 汚泥返送管, 33 阻流板, 34 流入領域, 35 流出領域, 36 夾雑物除去設備, 37 多孔板37,
38 スクリーン, 39 回転レーキ, 40 スクリューコンベア,
41 プレス部, 42 夾雑物搬送管, 43 駆動装置, 44 洗浄装置,
45 ドレン, 46 固液分離設備, 47 分離液返送管, 48 水槽,
48a 槽底部, 49 筒状回転体, 49a 分離羽根,
50 センターウェル, 50a 貫通孔, 51 夾雑物除去設備,
52 回転レーキ, 53 駆動手段, 54 シュート, 55 固液分離設備,
56 回転ドラム, 57 ディスクフィルタ, 58 水槽, 59 洗浄ノズル,
60 集水樋, 61 汚泥排出管, 62 汚泥返送管, 63 汚泥返送ポンプ,
P 水路, A,X,X1,X2,X3,Y,Z 矢印
1 carrier treatment device, 2 coagulation sedimentation treatment device, 3 sedimentation promoting material separation and recovery device,
4 treated water introduction pipe, 5 connection pipe, 6 discharge pipe, 11 microbial carrier,
11a microbial carrier module, 11b support frame, 11c strut,
11d Frame for fixing stem thread, 12 carrier tank, 12a tank bottom, 12b outlet, 13 air diffuser, 13a air diffuser, 13b air supply pipe, 13c header pipe, 14 inorganic flocculant injection equipment, 14a inorganic flocculant reservoir tank,
14b inorganic flocculant injection pipe, 14c injection pump, 14d, 14e branch pipe,
15 polymer flocculant injection equipment, 15a polymer flocculant preparation device,
15b polymer flocculant injection tube, 15c injection pump,
15d polymer flocculant mixing tank, 15e polymer flocculant storage tank,
15f water supply pipe, 15g valve, 15h stirring blade, 15i motor,
16 Settling accelerator supply pipe, 17 Mixing and stirring tank, 17a Tank bottom,
17b, 17c, 17d partition plate, 18 sedimentation tank, 18a tank bottom,
18b Sludge pit, 18c Partition plate, 18d Catchment,
18e clarification promoting member, 19 rapid stirring tank, 19a stirring blade, 19b motor, 20 coagulation sludge formation tank (coagulation tank), 20a stirring blade, 20b motor,
21 agglomerated sludge scraping machine, 22 motor, 23 sludge extraction pump, 24 separator / collector, 25 precipitation sludge return pipe, 26 rapid agitation tank (mixing tank), 26a agitation blade, 26b motor, 27 injection agitation tank (aggregation tank) 27a stirring blade,
27b motor, 28 sludge return means, 29 perforated plate, 30 sedimentation zone,
31 sludge return pump, 32 sludge return pipe, 33 baffle plate, 34 inflow region, 35 outflow region, 36 contaminant removal equipment, 37 perforated plate 37,
38 screens, 39 rotating rakes, 40 screw conveyors,
41 Press part, 42 Contaminant conveyance pipe, 43 Drive device, 44 Cleaning device,
45 drain, 46 solid-liquid separation equipment, 47 separation liquid return pipe, 48 water tank,
48a tank bottom, 49 cylindrical rotating body, 49a separation blade,
50 center well, 50a through hole, 51 contaminant removal equipment,
52 rotating rakes, 53 driving means, 54 chutes, 55 solid-liquid separation equipment,
56 rotating drum, 57 disc filter, 58 water tank, 59 cleaning nozzle,
60 Catchment, 61 Sludge discharge pipe, 62 Sludge return pipe, 63 Sludge return pump,
P water channel, A, X, X1, X2, X3, Y, Z arrow

Claims (5)

微生物担体が複数配設された担体槽
および
該担体槽内を散気する散気設備
を備えた担体処理装置と、
無機凝集剤を注入する無機凝集剤注入設備、
高分子凝集剤を注入する高分子凝集剤注入設備、
撹拌機が設けられ、沈降促進材が存在する混合撹拌槽
および
該混合撹拌槽から流出する凝集混合液を導入して固液分離し、上澄水を排出する沈殿槽
を備えた凝集沈殿処理装置と、
前記沈殿槽の沈殿汚泥を引き抜く汚泥引抜ポンプ
および
該汚泥引抜ポンプで引き抜いた沈殿汚泥から凝集汚泥を分離し、前記沈降促進材を回収して前記混合撹拌槽へ供給する分離回収器
を備えた沈降促進材分離回収装置と
からなる水処理システムであって、
前記担体処理装置から流出する担体槽流出水から懸濁物質を除去する固液分離設備をさらに備え、
前記水処理システムは、
非凝集性成分が生物学的酸素要求量濃度として導入期間の平均で180mg/L以上である被処理水を前記担体処理装置に導入し、該担体処理装置から流出する担体槽流出水を前記凝集沈殿処理装置に導入し、
未凝集性成分が浮遊物質濃度として導入期間の平均で200mg/L以上である被処理水を前記凝集沈殿処理装置に導入し、該凝集沈殿処理装置から流出する沈殿槽流出水を前記担体処理装置に導入し、該担体処理装置から流出する担体槽流出水を前記固液分離設備に導入するように、
被処理水の流路を変更可能に構成されていることを特徴とする水処理システム。
A carrier tank provided with a plurality of microbial carriers, and a carrier treatment device provided with an air diffuser for diffusing the inside of the carrier tank;
Inorganic flocculant injection equipment for injecting inorganic flocculant,
Polymer flocculant injection equipment for injecting polymer flocculant,
A mixing and stirring tank provided with a stirrer, and a settling tank having a settling tank in which a settling accelerator is present, and a settling tank that introduces a coagulated liquid mixture flowing out of the mixing and stirring tank, separates it into solid and liquid, and discharges supernatant water ,
A sedimentation pump comprising a sludge extraction pump for extracting the sedimentation sludge from the settling tank, and a separation / collector for separating the agglomerated sludge from the sedimentation sludge extracted by the sludge extraction pump, recovering the settling promoting material, and supplying the settling accelerator to the mixing and stirring tank A water treatment system comprising a promoter separation and recovery device,
It further comprises a solid-liquid separation facility for removing suspended substances from the carrier tank effluent flowing out of the carrier treatment device,
The water treatment system comprises:
Water to be treated whose non-aggregating component is biological oxygen demand concentration at an average of 180 mg / L or more during the introduction period is introduced into the carrier treatment device, and the carrier tank effluent flowing out from the carrier treatment device is flocculated. Introduced into the sedimentation processing equipment,
Water to be treated having an unaggregated component concentration of suspended solids of 200 mg / L or more on average during the introduction period is introduced into the coagulation sedimentation treatment device, and the precipitation tank effluent flowing out from the coagulation sedimentation treatment device is treated as the carrier treatment device. So that the carrier tank effluent flowing out from the carrier treatment apparatus is introduced into the solid-liquid separation facility,
A water treatment system configured to be able to change a flow path of water to be treated.
前記混合撹拌槽は、
前記無機凝集剤を注入して撹拌する混和槽と、
前記高分子凝集剤を注入すると共に、前記沈降促進材を供給して撹拌する凝集槽と
からなることを特徴とする請求項1に記載の水処理システム。
The mixing tank is
A mixing tank for injecting and stirring the inorganic flocculant;
2. The water treatment system according to claim 1, comprising a coagulation tank that injects the polymer flocculant and supplies and agitate the settling accelerator. 3.
前記微生物担体は、
両端が固定された幹糸と該幹糸に設けられた複数の枝糸とからなる
ことを特徴とする請求項1または2に記載の水処理システム。
The microbial carrier is
3. The water treatment system according to claim 1, wherein the water treatment system comprises a trunk yarn having both ends fixed and a plurality of branch yarns provided on the trunk yarn.
被処理水から夾雑物を除去する夾雑物除去設備を設け、被処理水を該夾雑物除去設備に導入し、該夾雑物除去設備によって被処理水中の夾雑物を前記担体処理装置に導入する前に予め除去する
ことを特徴とする請求項1から3のいずれか1項に記載の水処理システム。
Before providing a contaminant removal facility for removing contaminants from the treated water, introducing the treated water into the contaminant removal facility, and introducing the contaminants in the treated water into the carrier treatment device by the contaminant removal facility The water treatment system according to any one of claims 1 to 3, wherein the water treatment system is removed in advance .
請求項1から4のいずれか1項に記載の水処理システムの作動方法であって、
非凝集性成分が生物学的酸素要求量濃度として導入期間の平均で180mg/L以上である被処理水を前記担体処理装置に導入し、該担体処理装置から流出する担体槽流出水を前記凝集沈殿処理装置に導入する工程、
未凝集性成分が浮遊物質濃度として導入期間の平均で200mg/L以上である被処理水を前記凝集沈殿処理装置に導入し、該凝集沈殿処理装置から流出する沈殿槽流出水を前記担体処理装置に導入し、該担体処理装置から流出する担体槽流出水を前記固液分離設備に導入する工程、
を含むことを特徴とする水処理システムの作動方法。
A method for operating a water treatment system according to any one of claims 1 to 4,
Water to be treated whose non-aggregating component is biological oxygen demand concentration at an average of 180 mg / L or more during the introduction period is introduced into the carrier treatment device, and the carrier tank effluent flowing out from the carrier treatment device is flocculated. A process to be introduced into the precipitation treatment apparatus,
Water to be treated having an unaggregated component concentration of suspended solids of 200 mg / L or more on average during the introduction period is introduced into the coagulation sedimentation treatment device, and the precipitation tank effluent flowing out from the coagulation sedimentation treatment device is treated as the carrier treatment device. Introducing the carrier tank effluent flowing out from the carrier treatment apparatus into the solid-liquid separation facility,
A method for operating a water treatment system, comprising:
JP2012165508A 2012-07-26 2012-07-26 Water treatment system Expired - Fee Related JP6067268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165508A JP6067268B2 (en) 2012-07-26 2012-07-26 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165508A JP6067268B2 (en) 2012-07-26 2012-07-26 Water treatment system

Publications (2)

Publication Number Publication Date
JP2014024003A JP2014024003A (en) 2014-02-06
JP6067268B2 true JP6067268B2 (en) 2017-01-25

Family

ID=50198188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165508A Expired - Fee Related JP6067268B2 (en) 2012-07-26 2012-07-26 Water treatment system

Country Status (1)

Country Link
JP (1) JP6067268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381872A (en) * 2017-08-25 2017-11-24 淮北庆荣高光建筑科技有限公司 A kind of trade effluent high-efficient treatment device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101828913B1 (en) 2014-11-18 2018-03-29 한국에너지기술연구원 Salinity gradient power system for electrical infrastructures
CN106745980A (en) * 2016-12-15 2017-05-31 北京锦龙科技有限公司 A kind of multi-cavity type integration concentrated water treatment reactor
JP6815917B2 (en) * 2017-03-31 2021-01-20 メタウォーター株式会社 Wastewater treatment system
KR102043280B1 (en) * 2017-10-13 2019-11-11 두산중공업 주식회사 A biological pretreatment apparatus containing disk filter and a separation method therewith
CN113713444A (en) * 2021-09-06 2021-11-30 上海晶宇环境工程股份有限公司 High-density sedimentation tank
CN115286085A (en) * 2022-09-30 2022-11-04 莘县耀霆渔业专业合作社 Breed sewage cycle processor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242198B2 (en) * 1993-03-26 2001-12-25 株式会社資源生物研究所 Purification method of sewage using microbial carrier
JPH11104698A (en) * 1997-10-02 1999-04-20 Teijin Ltd Drainage treatment method
JP2000279982A (en) * 1999-03-29 2000-10-10 Mitsubishi Kakoki Kaisha Ltd Fludized bed type waste water treating device
JP2002282883A (en) * 2001-03-27 2002-10-02 Sanyo Electric Co Ltd Waste water treatment equipment
JP2003047971A (en) * 2001-08-02 2003-02-18 Japan Organo Co Ltd Method for treating wastewater
JP2003300095A (en) * 2002-04-05 2003-10-21 Ebara Corp Method and apparatus for sewage treatment
JP4202207B2 (en) * 2003-07-31 2008-12-24 株式会社西原環境テクノロジー Coagulation separation device
JP2006035221A (en) * 2005-09-12 2006-02-09 Ebara Corp Method and apparatus for high-speed biological treatment of organic sewage
JP2009119406A (en) * 2007-11-16 2009-06-04 Hitachi Plant Technologies Ltd Wastewater treatment method and apparatus
JP5826545B2 (en) * 2011-07-20 2015-12-02 株式会社西原環境 Polluted water treatment system and polluted water treatment method
JP5781401B2 (en) * 2011-08-31 2015-09-24 株式会社西原環境 Waste water treatment apparatus and waste water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381872A (en) * 2017-08-25 2017-11-24 淮北庆荣高光建筑科技有限公司 A kind of trade effluent high-efficient treatment device
CN107381872B (en) * 2017-08-25 2021-02-19 安徽恒宇环保设备制造股份有限公司 Industrial sewage high efficiency processing device

Also Published As

Publication number Publication date
JP2014024003A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP6067268B2 (en) Water treatment system
CN205398192U (en) Mud bed filtering layer sewage purification ware
JP4707752B2 (en) Water treatment method and water treatment system
CN102774992A (en) Integrated cyclone purifier
JP2008246282A (en) Muddy water purifying separator
JP6626888B2 (en) Wastewater clarification method
KR101184653B1 (en) Cyclone type sewage disposal device for removing total phosphorus in treated sewage
CN205061779U (en) Novel deposit depositing reservoir
EP1494525B1 (en) Method for the purification of wastewater in fish farming
CN110204103B (en) Suspension medium layer filtering system based on hydraulic fluidization layering
CN204384990U (en) A kind of recirculated cooling water lime soften for sewage clarification filtration treatment system
JP5249545B2 (en) Water treatment apparatus and water treatment method using microbubbles
CN208200649U (en) Efficient magnetic force floatation purification device
JP2017013029A (en) Flocculation tank and flocculation treatment method
JP2011140003A (en) Turbid water treatment apparatus and turbid water treatment method
KR101694919B1 (en) Powerless mixing flocculation tank and dissolved air flotation device using the same
CN110204104B (en) Suspension medium layer filtration system based on mechanical stirring layering
KR102009674B1 (en) Eco-friendly living sewage treatment system
KR101045878B1 (en) High-efficiency hybrid sedimentation basin for processing water elevation
KR101177679B1 (en) Drum screen for wastewater treatment and advance treatment equipment for filtering phosphorus sludge and fine impurities in sewage water
JP2017159213A (en) Flocculation treatment method and apparatus
KR101223247B1 (en) Integrated sewage disposal device for removing total phosphorus in treated sewage
JP2011189288A (en) Phosphorus recovery device
CN101781057B (en) Treatment method of waste papermaking water
CN105254112A (en) Deep wastewater treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161221

R150 Certificate of patent or registration of utility model

Ref document number: 6067268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees