JP2009119406A - Wastewater treatment method and apparatus - Google Patents

Wastewater treatment method and apparatus Download PDF

Info

Publication number
JP2009119406A
JP2009119406A JP2007298163A JP2007298163A JP2009119406A JP 2009119406 A JP2009119406 A JP 2009119406A JP 2007298163 A JP2007298163 A JP 2007298163A JP 2007298163 A JP2007298163 A JP 2007298163A JP 2009119406 A JP2009119406 A JP 2009119406A
Authority
JP
Japan
Prior art keywords
fluidized bed
wastewater
hardly decomposable
wastewater treatment
decomposable organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007298163A
Other languages
Japanese (ja)
Inventor
Masayuki Matsuura
雅幸 松浦
Naoki Abe
直樹 安部
Masato Onishi
真人 大西
Yasuyuki Yagi
康之 八木
Naomichi Mori
直道 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007298163A priority Critical patent/JP2009119406A/en
Publication of JP2009119406A publication Critical patent/JP2009119406A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment method and apparatus which enables the efficient removal of hardly decomposable organic substances in the wastewater. <P>SOLUTION: The wastewater treatment apparatus 10 includes a fluidized-bed bioreactor 12 for treating the wastewater containing the hardly decomposable organic substances biologically with organism-deposited carriers 18, and a flocculation-separation tank 14 disposed downstream of the fluidized-bed bioreactor 12 for flocculating and separating the hardly decomposable organic substances by adding a flocculating agent to the treated water obtained in the fluidized-bed bioreactor 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は排水処理方法及び装置に係り、特に塗装工場から排出される塗料排水を処理する排水処理方法及び装置に関する。   The present invention relates to a wastewater treatment method and apparatus, and more particularly to a wastewater treatment method and apparatus for treating paint wastewater discharged from a painting factory.

塗装工場から排出される塗料排水は一般に、凝集分離処理によって排水中の難分解性有機物を除去した後、活性汚泥法によって生物処理している(特許文献1参照)。しかし、近年では、VOC対策として使用塗料が油性から水溶性へ移行し、これに伴って難分解性有機物である樹脂や顔料が疎水性から親水性へ移行したため、塗装排水中には多量の難分解性有機物が溶解されている。このような樹脂や顔料は、塗料に含まれる高分子分散剤や界面活性剤によって分散状態が安定しているため、凝集分離が困難であり、生物分解性も悪い。したがって、近年では、処理後の水質が悪化し、従来の排水処理方法では十分に対応できないという問題があった。   In general, paint wastewater discharged from a coating factory is biologically treated by an activated sludge method after removing hardly decomposable organic substances in the wastewater by coagulation separation treatment (see Patent Document 1). However, in recent years, the paint used has shifted from oily to water-soluble as a measure against VOC, and as a result, resins and pigments, which are hardly decomposable organic substances, have shifted from hydrophobic to hydrophilic. Degradable organic matter is dissolved. Such resins and pigments are stable in dispersion state due to the polymer dispersant and surfactant contained in the paint, and therefore are difficult to agglomerate and separate and have poor biodegradability. Therefore, in recent years, the quality of water after treatment has deteriorated, and there has been a problem that conventional wastewater treatment methods cannot adequately cope with it.

このような問題を解消するため、オゾン分解法、フェントン酸化法、UV照射法などの物理・化学的処理法を用いる方法等が数多く提案されている。例えば特許文献2には、光酸化触媒の存在下で紫外線や可視光線を照射し、有機物を含有する排水を酸化分解する処理方法が示されている。また、特許文献3には金属触媒による酸化法が示されている。
特開2000−84568号公報 特開平8−155308号公報 特開平9−1162号公報
In order to solve such problems, many methods using physical / chemical treatment methods such as an ozonolysis method, a Fenton oxidation method, and a UV irradiation method have been proposed. For example, Patent Document 2 discloses a treatment method for irradiating ultraviolet rays or visible light in the presence of a photooxidation catalyst to oxidatively decompose waste water containing organic matter. Patent Document 3 discloses an oxidation method using a metal catalyst.
JP 2000-84568 A JP-A-8-155308 JP-A-9-1162

しかしながら、これらの方法は、難分解性有機物を十分に分解することが困難であるという問題や、たとえ分解できても処理に多大な費用がかかるという問題があった。   However, these methods have a problem that it is difficult to sufficiently decompose the hard-to-decompose organic substance, and there is a problem that even if it can be decomposed, the processing is very expensive.

本発明はこのような事情に鑑みて成されたもので、排水に含まれる難分解性有機物を効率的に除去することができる排水処理方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a wastewater treatment method and apparatus that can efficiently remove hardly decomposable organic substances contained in wastewater.

請求項1に記載の発明は前記目的を達成するために、排水に含まれる難分解性有機物を除去する排水処理方法において、微生物を固定した担体が添加された流動床式生物反応槽によって前記排水を生物処理し、該生物処理した生物処理水を凝集分離処理することによって、前記難分解性有機物を凝集して前記排水から分離除去することを特徴とする。   In order to achieve the above object, the invention according to claim 1 is a wastewater treatment method for removing hardly decomposable organic substances contained in wastewater, wherein the wastewater is discharged by a fluidized bed biological reaction tank to which a carrier to which microorganisms are fixed is added. The biologically treated water is subjected to a biological treatment, and the biologically treated water is subjected to agglomeration and separation treatment, whereby the hardly decomposable organic matter is agglomerated and separated and removed from the waste water.

本発明の発明者は、上記課題を解決するために鋭意研究した結果、難分解性有機物を含む排水(たとえば水溶性塗装排水)をまず流動床式生物反応槽によって生物処理した後、凝集剤を添加して凝集分離処理を行うことによって、排水中の難分解性有機物を十分且つ容易に分離除去できるという知見を得た。本発明はこのような事情に鑑みて成されたもので、流動床式生物反応槽で生物処理を行った後に凝集分離処理を行うようにしたので、排水中の難分解性有機物を十分且つ容易に分離除去することができる。   The inventor of the present invention has intensively studied to solve the above-mentioned problems. As a result, wastewater containing hardly decomposable organic matter (for example, water-soluble paint wastewater) is first biologically treated in a fluidized bed bioreactor, and then the flocculant is used. It has been found that the addition of the aggregation separation treatment allows the separation and removal of the hardly decomposable organic matter in the waste water sufficiently and easily. The present invention has been made in view of such circumstances, and since the agglomeration and separation treatment is performed after the biological treatment in the fluidized bed biological reaction tank, the persistent organic matter in the wastewater is sufficiently and easily obtained. Can be separated and removed.

請求項2に記載の発明は請求項1の発明において、前記凝集分離処理は、前記流動床式生物反応槽で分解できない難分解性有機物と、前記流動床式生物反応槽から排出した微生物フロックとを同時に凝集沈殿させることを特徴とする。本発明によれば、微生物フロックを凝集の核として難分解性有機物を凝集させることができる。   The invention according to claim 2 is the invention according to claim 1, wherein the agglomeration and separation treatment includes a hardly decomposable organic substance that cannot be decomposed in the fluidized bed bioreactor, and a microbial floc discharged from the fluidized bed bioreactor. Are coagulated and precipitated simultaneously. According to the present invention, it is possible to agglomerate a hardly decomposable organic substance using a microbial floc as a nucleus of aggregation.

請求項3に記載の発明は請求項1又は2の発明において、前記担体は、砂、活性炭、樹脂製担体又は高分子含水ゲルであり、前記流動床式生物反応槽のCODMn容積負荷を1〜2kg/m・dで運転することを特徴とする。本発明によれば、流動床式生物反応槽を上記の条件で運転することによって、排水中の易分解性有機物を分離除去することができると同時に、反応槽中に微細な微生物フロックを生じる。その結果、生物処理の後段の凝集分離処理において、微細な微生物フロックを核とし、難分解性有機物の凝集分離処理を効率よく行うことができる。 The invention according to claim 3 is the invention according to claim 1 or 2, wherein the carrier is sand, activated carbon, a resin carrier or a polymer hydrogel, and the fluidized bed bioreactor has a COD Mn volume load of 1 It is characterized by operating at ˜2 kg / m 3 · d. According to the present invention, by operating the fluidized bed biological reaction tank under the above-mentioned conditions, it is possible to separate and remove easily decomposable organic substances in the waste water, and at the same time, fine microbial flocs are generated in the reaction tank. As a result, in the aggregating and separating process at the latter stage of the biological treatment, it is possible to efficiently perform the aggregating and separating process of the hardly decomposable organic substance using the fine microbial floc as the nucleus.

請求項4に記載の発明は請求項1〜3のいずれか1に記載の発明において、前記流動床式生物反応槽から排出される微生物フロックの径が10μm以下であることを特徴とする。本発明によれば、微生物フロックの径が小さく、凝集の核として使用され、凝集分離処理における凝集効果を向上させることができ、難分解性有機物の分離除去効率を大幅に向上させることができる。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the diameter of the microbial floc discharged from the fluidized bed biological reaction tank is 10 μm or less. According to the present invention, the microbial floc has a small diameter and is used as an agglomeration nucleus, whereby the aggregating effect in the aggregating / separating process can be improved, and the separation and removal efficiency of the hardly decomposable organic matter can be greatly improved.

請求項5に記載の発明は前記目的を達成するために、微生物を固定した担体が添加され、難分解性有機物が含まれる排水を生物処理する流動床式生物反応槽と、前記流動床式生物反応槽の後段に設けられ、前記流動床式生物反応槽で得られた生物処理水に凝集剤を添加し、前記難分解性有機物を凝集させて分離する凝集分離槽と、を備えたことを特徴とする。本発明は請求項1の方法発明を実施するための装置発明であり、流動床式生物反応槽で生物処理を行った後に凝集分離槽で凝集分離処理を行うようにしたので、排水中の難分解性有機物を十分且つ容易に分離除去することができる。   In order to achieve the above object, the invention according to claim 5 is a fluidized bed biological reaction tank for biological treatment of wastewater containing a hard-to-decompose organic substance to which a carrier immobilizing microorganisms is added, and the fluidized bed biological organism. A flocculant separation tank that is provided in a subsequent stage of the reaction tank and adds a flocculant to the biologically treated water obtained in the fluidized bed biological reaction tank, and agglomerates and separates the hardly decomposable organic matter. Features. The present invention is an apparatus invention for carrying out the method invention of claim 1, wherein the flocculation separation treatment is performed in the flocculation separation tank after the biological treatment is performed in the fluidized bed type bioreaction tank, so Decomposable organic substances can be separated and removed sufficiently and easily.

本発明によれば、流動床式生物反応槽で生物処理を行った後に凝集分離処理を行うようにしたので、排水中の難分解性有機物を十分且つ容易に分離除去することができる。   According to the present invention, since the agglomeration separation process is performed after the biological treatment is performed in the fluidized bed biological reaction tank, the hardly decomposable organic matter in the waste water can be separated and removed sufficiently and easily.

以下添付図面に従って本発明に係る排水処理方法及び装置の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of a wastewater treatment method and apparatus according to the present invention will be described with reference to the accompanying drawings.

図1は本実施の形態の排水処理装置の構成を模式的に示している。以下は、水溶性の塗装排水を処理する例で説明するが、本発明はこれに限定するものではなく、難分解性有機物(樹脂や難顔料等成分)を含む排水を処理する装置として使用することができる。なお、塗装排水とは、例えば自動車や各種工業製品などの水溶性塗料の塗装ライン、板金工場における塗装ブース水、塗料製造工場などから出る水溶性塗料成分を含んだ排水が挙げられる。これらの排水はBOD/CODMn比が比較的低く(たとえば自動車の水溶性塗装ラインの排水はBOD/CODMn比が0.3程度)、生物分解性が悪い。 FIG. 1 schematically shows the configuration of the waste water treatment apparatus of the present embodiment. The following will be described with an example of treating water-soluble paint wastewater, but the present invention is not limited to this, and is used as an apparatus for treating wastewater containing hardly decomposable organic substances (components such as resins and hard pigments). be able to. Examples of the paint wastewater include water-soluble paint coating lines for automobiles and various industrial products, paint booth water at sheet metal plants, and wastewater containing water-soluble paint components from paint production plants. These effluents have a relatively low BOD / COD Mn ratio (for example, effluents in water-soluble paint lines of automobiles have a BOD / COD Mn ratio of about 0.3) and are poorly biodegradable.

図1に示すように、排水処理装置10は主として、流動床式生物反応槽12及び凝集分離槽14によって構成される。   As shown in FIG. 1, the waste water treatment apparatus 10 is mainly composed of a fluidized bed biological reaction tank 12 and a coagulation separation tank 14.

流動床式生物反応槽12には原水配管16が接続されており、この原水配管16を介して原水(本実施の形態では塗装排水)が供給され、流動床式生物反応槽12内に貯留される。流動床式生物反応槽12の内部には、微生物が付着固定された担体18が投入されている。担体18としては、中空状のもの、凹凸状のもの、多孔質状等で単位体積当たりの表面積が大きいもの、水を吸収して膨潤するもの等が用いられ、特に、槽内で容易に流動するもの、表面積が大きく付着微生物量が多い担体が好ましい。また、担体18の素材としては、従来公知の各種の有機・無機担体を用いることができ、例えば活性炭、ゼオライト、砂粒、樹脂、セラミックス、ポリエチレングリコールなどの高分子含水ゲルなどが挙げられ、これらは1種又は2種以上併用して用いることができる。   A raw water pipe 16 is connected to the fluidized bed biological reaction tank 12, and raw water (painted wastewater in the present embodiment) is supplied through the raw water pipe 16 and stored in the fluidized bed biological reaction tank 12. The Inside the fluidized bed biological reaction tank 12, a carrier 18 to which microorganisms are adhered and fixed is put. As the carrier 18, a hollow one, a concave-convex one, a porous one having a large surface area per unit volume, a one that swells by absorbing water, and the like can be used. A carrier having a large surface area and a large amount of attached microorganisms is preferred. Further, as the material of the carrier 18, various conventionally known organic and inorganic carriers can be used, for example, activated carbon, zeolite, sand particles, resin, ceramics, polymer hydrous gel such as polyethylene glycol, and the like. One type or two or more types can be used in combination.

流動床式生物反応槽12の底部には、散気管20が配設されている。散気管20にはブロア22が接続されており、このブロア22によって散気管20にエアを送気することができる。散気管20に送気されたエアは無数の気泡となって流動床式生物反応槽12内に散気され、この気泡が上昇することによって担体18が流動され、且つ、担体18の微生物にエアが供給される。これにより、流動床式生物反応槽12内の排水が生物処理される。その際、本実施の形態では、流動床式生物反応槽12におけるCODMn容積負荷を1〜2kg/m・dになるように運転を制御する。これによって、反応槽中で粒子径1〜10μmの微細な微生物フロックが発生し、生物処理後の処理水(以下、生物処理水)にその粒子が含まれる。 An air diffuser 20 is disposed at the bottom of the fluidized bed biological reaction tank 12. A blower 22 is connected to the diffuser tube 20, and air can be supplied to the diffuser tube 20 by the blower 22. The air sent to the air diffuser 20 becomes a myriad of bubbles and is diffused into the fluidized bed bioreactor 12, and the bubbles rise to cause the carrier 18 to flow, and to the microorganisms of the carrier 18. Is supplied. Thereby, the waste water in the fluidized bed biological reaction tank 12 is biologically treated. At this time, in the present embodiment, the operation is controlled so that the COD Mn volumetric load in the fluidized bed biological reaction tank 12 becomes 1 to 2 kg / m 3 · d. As a result, fine microbial floc having a particle diameter of 1 to 10 μm is generated in the reaction tank, and the particles are contained in the treated water after biological treatment (hereinafter, biologically treated water).

流動床式生物反応槽12の出口部には、配管24が接続されるとともに、この配管24との接続部を囲むようにスクリーン26が設けられる。スクリーン26は担体18の流出を防止するものであり、このスクリーン26によって担体18が分離され、生物処理水のみが配管24に流出される。配管24は、凝集分離槽14に接続されており、流動床式生物反応槽12から流出した生物処理水は凝集分離槽14に供給される。   A pipe 24 is connected to the outlet of the fluidized bed biological reaction tank 12, and a screen 26 is provided so as to surround the connection with the pipe 24. The screen 26 prevents the carrier 18 from flowing out, the carrier 18 is separated by the screen 26, and only biologically treated water flows out into the pipe 24. The pipe 24 is connected to the flocculation / separation tank 14, and the biologically treated water flowing out from the fluidized bed biological reaction tank 12 is supplied to the flocculation / separation tank 14.

凝集分離槽14には、二つの攪拌槽14A、14Bと沈殿槽14Cとが設けられ、二つの攪拌槽14A、14Bにはそれぞれ攪拌装置28が設けられる。攪拌槽14Aでは生物処理水に無機凝集剤が添加され、この生物処理水が攪拌装置28によって攪拌され、攪拌槽14Bに供給される。攪拌槽14Bでは生物処理水に高分子ポリマが添加され、この生物処理水が攪拌装置28によって攪拌され、沈殿槽14Cに供給される。このように生物処理水に凝集剤を添加して攪拌することによって、生物処理水中の微細な微生物フロックを核として凝集物が生じ、この凝集物が沈殿槽14Cで沈殿される。沈殿槽14Cの上部には処理水管30が接続されており、この処理水管30から上澄み液が処理水として排出され、凝集物が分離除去される。これにより、排水中に含まれていた難分解性有機物が排水から分離除去される。なお、本実施の形態では、凝集物を沈殿分離するようにしたが、凝集物を浮上分離して除去するようにしてもよい。また、凝集剤は上記の例に限定されるものではなく、例えば硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄等に代表される無機系凝集剤、アニオン性、ノニオン性又はカチオン性の高分子凝集剤などを用いることができ、排水の種類に応じてこれらを単独で、あるいは複数種を組み合わせて用いることができる。   The agglomeration separation tank 14 is provided with two stirring tanks 14A and 14B and a precipitation tank 14C, and the two stirring tanks 14A and 14B are each provided with a stirring device 28. In the stirring tank 14A, an inorganic flocculant is added to the biologically treated water, and this biologically treated water is stirred by the stirring device 28 and supplied to the stirring tank 14B. In the stirring tank 14B, the polymer is added to the biologically treated water, and this biologically treated water is stirred by the stirring device 28 and supplied to the precipitation tank 14C. As described above, the flocculant is added to the biologically treated water and stirred to produce an aggregate with fine microbial flocs in the biologically treated water as a nucleus, and the aggregate is precipitated in the precipitation tank 14C. A treated water pipe 30 is connected to the upper part of the settling tank 14C, and the supernatant liquid is discharged from the treated water pipe 30 as treated water, and aggregates are separated and removed. Thereby, the hardly decomposable organic substance contained in the waste water is separated and removed from the waste water. In this embodiment, the aggregates are separated by precipitation. However, the aggregates may be separated by floating and removed. In addition, the flocculant is not limited to the above-mentioned examples. For example, inorganic flocculants represented by aluminum sulfate, polyaluminum chloride, ferric chloride, etc., anionic, nonionic or cationic polymer flocculants An agent or the like can be used, and these can be used alone or in combination of two or more according to the type of drainage.

次に上記の如く構成された排水処理装置10の作用について説明する。   Next, the operation of the waste water treatment apparatus 10 configured as described above will be described.

上述の流動床式生物反応槽12は、微生物を付着増殖させた担体18を添加することによって流動床で生物処理を行う装置であり、一般的な生物処理装置である活性汚泥装置に比べて、汚泥濃度や状態などの管理が不要であり、維持管理が容易である。その一方で、流動床式生物反応槽12は、高負荷状態になると自然に発生した微生物や、担体18から剥離した微生物膜が処理水とともに流出し、処理水が白濁する現象が発生する。このため、通常は、処理水が白濁しないように低負荷処理の運転を行っている。   The fluidized bed biological reaction tank 12 described above is a device that performs biological treatment in a fluidized bed by adding a carrier 18 on which microorganisms are attached and propagated. Compared to an activated sludge device that is a general biological treatment device, Maintenance such as sludge concentration and condition is not required and maintenance is easy. On the other hand, when the fluidized bed biological reaction tank 12 is in a high load state, a naturally occurring microorganism or a microorganism film peeled off from the carrier 18 flows out together with the treated water, and the treated water becomes cloudy. For this reason, the operation | movement of a low load process is normally performed so that treated water may not become cloudy.

これに対して、本実施の形態の流動床式生物反応槽12では、CODMn容積負荷が1〜2kg/m・dになるような運転を行っている。これによって、排水は易分解性有機物のみが除去され、粒子径1〜10μmの微細フロックが発生し、白濁した状態になる。このように白濁状態を積極的につくった後に白濁の処理水を凝集分離処理することによって、白濁成分が凝集物の核となり、難分解性有機物の分離除去が可能となる。 On the other hand, in the fluidized bed biological reaction tank 12 of the present embodiment, the operation is performed such that the COD Mn volumetric load becomes 1 to 2 kg / m 3 · d. As a result, only easily decomposable organic substances are removed from the wastewater, and fine flocs having a particle diameter of 1 to 10 μm are generated and become cloudy. In this way, when the cloudy water is agglomerated and separated after actively creating a cloudy state, the cloudy component becomes the nucleus of the agglomerated material, and separation and removal of the hardly decomposable organic matter becomes possible.

図2は、凝集分離処理時の汚泥フロック径と、凝集分離処理後のCODMnとの関係を試験によって求めたものである。この試験では、水溶性塗装排水の生物処理水を固液分離して得られた上澄水に、ホモジナイズして粒子径を変化させた活性汚泥をSS濃度500mg/Lとなるように混合し、ポリ塩化アルミニウム溶液(アルミナ11%)1ml/L、強アニオンポリマ2mg/Lを添加して凝集分離させた。図2から分かるように、汚泥フロックの粒子径が大きい場合には、凝集分離水のCODMnは高く、難分解性有機物が残存している。これに対して、汚泥フロックの粒子径が10μm未満の場合には、汚泥フロックの凝集によってCODMnが低下している。これは、粒子径10μm未満の汚泥フロックの場合は通常の(10μm以上の)活性汚泥フロックの場合と異なり、汚泥フロックの粒子の電荷が難分解性有機物の凝集に影響し、汚泥フロックが凝集の核となるためと考えられる。 FIG. 2 shows the relationship between the sludge floc diameter during the coagulation / separation treatment and the COD Mn after the coagulation / separation treatment. In this test, activated sludge whose particle diameter was changed by homogenization was mixed with supernatant water obtained by solid-liquid separation of biologically treated water of water-soluble paint wastewater so that the SS concentration became 500 mg / L, An aluminum chloride solution (alumina 11%) 1 ml / L and a strong anion polymer 2 mg / L were added for aggregation separation. As can be seen from FIG. 2, when the particle size of the sludge floc is large, the COD Mn of the coagulated and separated water is high, and the hardly decomposable organic matter remains. On the other hand, when the particle diameter of the sludge floc is less than 10 μm, COD Mn is reduced due to aggregation of the sludge floc. In the case of sludge floc having a particle diameter of less than 10 μm, unlike the case of normal activated sludge floc (over 10 μm), the charge of the sludge floc particles affects the aggregation of persistent organic substances, and the sludge floc is agglomerated. This is considered to be a nucleus.

本実施の形態の排水処理装置10では、流動床式生物反応槽12によって粒子径1〜10μmの微細フロックを含有する生物処理水が得られる。したがって、この生物処理水を凝集分離処理することによって、微細な微生物フロックを凝集の核として、生物処理水中に残存する難分解性有機物が凝集され、CODMnの少ない処理水を得ることができる。 In the wastewater treatment apparatus 10 of the present embodiment, biologically treated water containing fine floc having a particle diameter of 1 to 10 μm is obtained by the fluidized bed biological reaction tank 12. Therefore, by subjecting this biologically treated water to agglomeration and separation treatment, it is possible to obtain a treated water with a small amount of COD Mn by aggregating the hardly decomposable organic matter remaining in the biologically treated water using fine microbial flocs as the nucleus of aggregation.

以上説明したように、本実施の形態の排水処理装置10によれば、難分解性有機物を含む排水を流動床式生物反応槽12で生物処理することによって、微細なフロックを含有する生物処理水を生成し、これを凝集分離処理するようにしたので、難分解性有機物を十分且つ容易に分離除去することができる。   As described above, according to the wastewater treatment apparatus 10 of the present embodiment, biologically treated water containing fine flocs is obtained by biologically treating wastewater containing hardly decomposable organic matter in the fluidized bed biological reaction tank 12. Is produced, and this is subjected to agglomeration and separation treatment, so that the hardly decomposable organic substance can be separated and removed sufficiently and easily.

自動車用水性塗料の塗装ブースより排出された水溶性塗装排水(CODMn5500mg/L、BOD1400mg/L)を用いて試験を行った。実施例1では生物処理、凝集分離処理の順で行い、比較例1、2では凝集分離処理、生物処理の順に行った。その際の条件及び結果を図3の表に示す。 The test was conducted using water-soluble paint drainage (COD Mn 5500 mg / L, BOD 1400 mg / L) discharged from a paint booth for water-based paint for automobiles. In Example 1, the biological treatment was performed in the order of the aggregating separation process, and in Comparative Examples 1 and 2, the aggregating separation process was performed in the order of the biological treatment. The conditions and results at that time are shown in the table of FIG.

実施例1の生物処理では、実容積2Lの塩化ビニル製の反応槽に、中空円筒型ポリプロピレン担体を10%(対反応槽)添加し、散気ボールにより担体を流動させた流動床式生物反応槽を使用した。処理負荷は1kg−CODMn/m・dとした。この生物処理によって易分解性有機物は処理され、BODは10mg/L以下まで除去された。しかし、難分解性有機物は生物分解できないため、CODMn除去率は約70%と低く、生物処理水にはCODMnが1600mg/L残存した。 In the biological treatment of Example 1, 10% of a hollow cylindrical polypropylene carrier (with respect to the reaction vessel) was added to a reaction vessel made of vinyl chloride having an actual volume of 2 L, and the fluidized bed biological reaction in which the carrier was fluidized by a diffused ball. A tank was used. The treatment load was 1 kg-COD Mn / m 3 · d. By this biological treatment, readily degradable organic substances were treated, and BOD was removed to 10 mg / L or less. However, since the hard-to-decompose organic matter cannot be biodegraded, the COD Mn removal rate is as low as about 70%, and 1600 mg / L of COD Mn remained in the biologically treated water.

生物処理の後、凝集分離処理として、ポリ塩化アルミニウム溶液(アルミナ11%)を1ml/L、強アニオンポリマを2mg/L添加し、撹拌反応させ、凝集沈殿させた。その結果、生物処理水の白濁はなくなり、透明な上澄み分離水が得られた。凝集分離処理水は、図3に示すように、BODが10mg/L未満であり、CODMnも96mg/Lと十分に低い数値が得られた。 After the biological treatment, 1 ml / L of a polyaluminum chloride solution (alumina 11%) and 2 mg / L of a strong anion polymer were added as agglomeration separation treatment, and the mixture was agitated and reacted to cause aggregation precipitation. As a result, there was no white turbidity in the biologically treated water, and a transparent supernatant separation water was obtained. As shown in FIG. 3, the coagulation separation treated water had a BOD of less than 10 mg / L and COD Mn of 96 mg / L, which was sufficiently low.

一方、比較例1では、凝集分離処理として、ポリ塩化アルミニウム溶液(アルミナ11%)(PACと呼ぶ)を1ml/L、強アニオンポリマを2mg/L添加し、撹拌反応させ、凝集沈殿させた。その凝集分離処理水は、CODMnを10%しか除去できなかった。そこで、比較例2として、PACを5ml/Lに増加した。しかし、凝集状況の大きな改善は見られず、CODMn除去率は15%と低かった。その後、これらの凝集分離水を活性汚泥処理した。 On the other hand, in Comparative Example 1, 1 ml / L of a polyaluminum chloride solution (11% alumina) (referred to as PAC) and 2 mg / L of a strong anion polymer were added as agglomeration separation treatment, and the mixture was agitated to cause aggregation precipitation. The coagulation / separation treated water was able to remove only 10% of COD Mn . Therefore, as Comparative Example 2, the PAC was increased to 5 ml / L. However, no significant improvement was observed in the aggregation state, and the COD Mn removal rate was as low as 15%. Thereafter, these coagulated and separated water were treated with activated sludge.

活性汚泥処理は、CODMn容積負荷0.5kg/m・dの条件で処理した。これにより、比較例1、2の処理水のBODは、実施例1と同様に10mg/L未満まで処理できた。しかし、比較例1のCODMnは730mg/Lであり、比較例2のCODMnは500mg/Lと高く、放流処理するには新たに活性炭処理が必要であった。 The activated sludge treatment was performed under the condition of COD Mn volumetric load 0.5 kg / m 3 · d. Thereby, BOD of the treated water of the comparative examples 1 and 2 was able to be processed to less than 10 mg / L similarly to Example 1. However, COD Mn of Comparative Example 1 was 730 mg / L, and COD Mn of Comparative Example 2 was as high as 500 mg / L, and a new activated carbon treatment was required for the discharge treatment.

本実施の形態の排水処理装置の構成を模式的に示す図The figure which shows typically the structure of the waste water treatment equipment of this Embodiment. 本発明の排水処理装置の作用を説明する図The figure explaining the effect | action of the waste water treatment equipment of this invention 実施例の結果を示す図The figure which shows the result of the example

符号の説明Explanation of symbols

10…排水処理装置、12…流動床式生物反応槽、14…凝集分離装置、16…原水配管、18…担体、20…散気管、22…ブロア、24…配管、26…スクリーン、28…攪拌装置、30…処理水管   DESCRIPTION OF SYMBOLS 10 ... Waste water treatment apparatus, 12 ... Fluidized bed type biological reaction tank, 14 ... Coagulation separation apparatus, 16 ... Raw water piping, 18 ... Carrier, 20 ... Aeration pipe, 22 ... Blower, 24 ... Pipe, 26 ... Screen, 28 ... Stirring Equipment, 30 ... treated water pipe

Claims (5)

排水に含まれる難分解性有機物を除去する排水処理方法において、
微生物を固定した担体が添加された流動床式生物反応槽によって前記排水を生物処理し、
該生物処理した生物処理水を凝集分離処理することによって、前記難分解性有機物を凝集して前記排水から分離除去することを特徴とする排水処理方法。
In the wastewater treatment method to remove the hardly decomposable organic matter contained in the wastewater,
The wastewater is biologically treated by a fluidized bed bioreactor to which a carrier immobilizing microorganisms is added,
A wastewater treatment method characterized in that the biologically treated biologically treated water is subjected to coagulation and separation treatment, whereby the hardly decomposable organic matter is aggregated and separated and removed from the wastewater.
前記凝集分離処理は、前記流動床式生物反応槽で分解できない難分解性有機物と、前記流動床式生物反応槽から排出した微生物フロックとを同時に凝集沈殿させることを特徴とする請求項1に記載の排水処理方法。   2. The coagulation separation treatment simultaneously coagulates and precipitates a hardly decomposable organic substance that cannot be decomposed in the fluidized bed biological reaction tank and a microbial floc discharged from the fluidized bed biological reaction tank. Wastewater treatment method. 前記担体は、砂、活性炭、樹脂製担体又は高分子含水ゲルであり、
前記流動床式生物反応槽のCODMn容積負荷を1〜2kg/m・dで運転することを特徴とする請求項1又は2に記載の排水処理方法。
The carrier is sand, activated carbon, a resin carrier or a polymer hydrogel,
The wastewater treatment method according to claim 1 or 2, wherein a COD Mn volumetric load of the fluidized bed type bioreactor is operated at 1 to 2 kg / m 3 · d.
前記流動床式生物反応槽から排出される微生物フロックの径が10μm以下であることを特徴とする請求項1〜3のいずれか1に記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 3, wherein the diameter of the microbial floc discharged from the fluidized bed biological reaction tank is 10 µm or less. 微生物を固定した担体が添加され、難分解性有機物が含まれる排水を生物処理する流動床式生物反応槽と、
前記流動床式生物反応槽の後段に設けられ、前記流動床式生物反応槽で得られた生物処理水に凝集剤を添加し、前記難分解性有機物を凝集させて分離する凝集分離槽と、
を備えたことを特徴とする排水処理装置。
A fluidized bed type bioreactor to which a carrier in which microorganisms are fixed is added and biologically treating waste water containing persistent organic substances,
A flocculent separation tank that is provided downstream of the fluidized bed bioreactor, adds a flocculant to the biologically treated water obtained in the fluidized bed bioreactor, and agglomerates and separates the hardly decomposable organic matter;
A wastewater treatment apparatus comprising:
JP2007298163A 2007-11-16 2007-11-16 Wastewater treatment method and apparatus Withdrawn JP2009119406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298163A JP2009119406A (en) 2007-11-16 2007-11-16 Wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298163A JP2009119406A (en) 2007-11-16 2007-11-16 Wastewater treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2009119406A true JP2009119406A (en) 2009-06-04

Family

ID=40812170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298163A Withdrawn JP2009119406A (en) 2007-11-16 2007-11-16 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2009119406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024003A (en) * 2012-07-26 2014-02-06 Nishihara Environment Co Ltd Water treatment system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413665A (en) * 1977-07-04 1979-02-01 Ebara Infilco Co Ltd Process for treating organic waste water
JPH0330897A (en) * 1989-06-27 1991-02-08 Hitachi Plant Eng & Constr Co Ltd Waste water treatment apparatus
JPH03143599A (en) * 1989-10-26 1991-06-19 Hitachi Plant Eng & Constr Co Ltd Waste water treating device
JPH07323296A (en) * 1994-05-31 1995-12-12 Sekiyu Sangyo Kasseika Center Two-stage waste water treating device
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2003010874A (en) * 2001-06-29 2003-01-14 Ebara Corp Method and apparatus for high-speed biological treatment of organic sewage
JP2003039078A (en) * 2001-07-31 2003-02-12 Kansai Paint Co Ltd Coating wastewater treatment method
JP2004136274A (en) * 2002-06-25 2004-05-13 Kansai Paint Co Ltd Treatment method of paint waste water
JP2004314062A (en) * 2003-03-31 2004-11-11 Kansai Paint Co Ltd Method and apparatus for treating waste water containing organic matter
JP2006035221A (en) * 2005-09-12 2006-02-09 Ebara Corp Method and apparatus for high-speed biological treatment of organic sewage
JP2007029825A (en) * 2005-07-25 2007-02-08 Daiki Ataka Engineering Co Ltd Apparatus for treating waste water and method for treating waste water using the apparatus
WO2007102379A1 (en) * 2006-02-28 2007-09-13 Ebara Corporation Apparatus for treating organic waste water containing microbiologically degradable matters and treatment method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413665A (en) * 1977-07-04 1979-02-01 Ebara Infilco Co Ltd Process for treating organic waste water
JPH0330897A (en) * 1989-06-27 1991-02-08 Hitachi Plant Eng & Constr Co Ltd Waste water treatment apparatus
JPH03143599A (en) * 1989-10-26 1991-06-19 Hitachi Plant Eng & Constr Co Ltd Waste water treating device
JPH07323296A (en) * 1994-05-31 1995-12-12 Sekiyu Sangyo Kasseika Center Two-stage waste water treating device
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2003010874A (en) * 2001-06-29 2003-01-14 Ebara Corp Method and apparatus for high-speed biological treatment of organic sewage
JP2003039078A (en) * 2001-07-31 2003-02-12 Kansai Paint Co Ltd Coating wastewater treatment method
JP2004136274A (en) * 2002-06-25 2004-05-13 Kansai Paint Co Ltd Treatment method of paint waste water
JP2004314062A (en) * 2003-03-31 2004-11-11 Kansai Paint Co Ltd Method and apparatus for treating waste water containing organic matter
JP2007029825A (en) * 2005-07-25 2007-02-08 Daiki Ataka Engineering Co Ltd Apparatus for treating waste water and method for treating waste water using the apparatus
JP2006035221A (en) * 2005-09-12 2006-02-09 Ebara Corp Method and apparatus for high-speed biological treatment of organic sewage
WO2007102379A1 (en) * 2006-02-28 2007-09-13 Ebara Corporation Apparatus for treating organic waste water containing microbiologically degradable matters and treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024003A (en) * 2012-07-26 2014-02-06 Nishihara Environment Co Ltd Water treatment system

Similar Documents

Publication Publication Date Title
JP2007029826A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
JP4323531B2 (en) Coagulated pressure floating separation water treatment method and water treatment apparatus
JP2007130526A (en) Wastewater treatment apparatus and wastewater treatment method
Kan et al. Ultrasonic cleaning of polytetrafluoroethylene membrane fouled by natural organic matter
CN106745971A (en) A kind of processing method of high-leveled and difficult waste water
CN109311711B (en) Removal of heavy metals in ballasting processes
JP6635444B1 (en) Final treatment device for wastewater of high-concentration hardly decomposable organic matter, system using the device, and final treatment method for wastewater of high-concentration hardly decomposable organic matter
JP4997724B2 (en) Organic wastewater treatment method
JP2007029825A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
KR101747525B1 (en) Rapid flocculation and coagulation tank and water treatment apparatus comprising the same
KR101751250B1 (en) Water treatment system using flotation reactor using discharge ozone and ozone reactor
JP2003010874A (en) Method and apparatus for high-speed biological treatment of organic sewage
KR20160085101A (en) A comprehensive method and system of treating sewage and rainwater
KR100801981B1 (en) Swirl-type press apparatus for separation of solids and liquid
JP3676654B2 (en) Method and apparatus for purifying COD-containing water
JP2006035221A (en) Method and apparatus for high-speed biological treatment of organic sewage
Zhu et al. Advanced treatment of microplastics and antibiotic-containing wastewater using integrated modified dissolved air flotation and pulsed cavitation-impinging stream processes
CN208250053U (en) A kind of processing system of wastewater of steel industry reuse
JP2004267855A (en) Water treatment apparatus utilizing photocatalyst
JP2009119406A (en) Wastewater treatment method and apparatus
JP4166881B2 (en) Wastewater treatment method and apparatus
JP2004314062A (en) Method and apparatus for treating waste water containing organic matter
CN114349268A (en) Method for treating industrial wastewater
KR101768989B1 (en) Method for removing titanium oxide in sewage or wastewater
KR101384367B1 (en) Wastewater treatment ultrasonic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110720