JP2004314062A - Method and apparatus for treating waste water containing organic matter - Google Patents

Method and apparatus for treating waste water containing organic matter Download PDF

Info

Publication number
JP2004314062A
JP2004314062A JP2004096771A JP2004096771A JP2004314062A JP 2004314062 A JP2004314062 A JP 2004314062A JP 2004096771 A JP2004096771 A JP 2004096771A JP 2004096771 A JP2004096771 A JP 2004096771A JP 2004314062 A JP2004314062 A JP 2004314062A
Authority
JP
Japan
Prior art keywords
treatment
wastewater
oxygen
denitrification
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004096771A
Other languages
Japanese (ja)
Inventor
Naoki Miyata
直紀 宮田
Takahide Takadera
貴秀 高寺
Satoru Maki
哲 槙
Toshimitsu Muramatsu
利光 村松
Shinya Yumoto
慎也 湯元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2004096771A priority Critical patent/JP2004314062A/en
Publication of JP2004314062A publication Critical patent/JP2004314062A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for efficiently and substantially decomposing organic matters in waste water. <P>SOLUTION: The apparatus for treating the waste water containing the organic matters comprises an oxygen dissolving device for dissolving oxygen in the waste water, after a primary treatment wherein hardly decomposable organic matters in the waste water are treated through a flocculation treatment and/or an electrolysis treatment, and a fluidized bed bioreactor for treating the waste water almost saturated with the oxygen and supplied by the oxygen dissolving device. The waste water containing the organic matters is primarily treated through a flocculation treatment device and/or an electrolysis treatment device. The oxygen is dissolved in the primarily treated waste water almost up to saturation by the oxygen dissolving device and subsequently the waste water is supplied to the fluidized bed bioreactor for the biological treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は有機物含有排水の処理装置及び処理方法に関する。   The present invention relates to an apparatus and a method for treating organic-containing wastewater.

従来、塗装工場から排出される塗料排水などの工業排水、農業排水など有機物を多く含む排水は、凝集分離(浮上または沈殿)処理或いは限外濾過等の物理的処理を行ったのち、活性汚泥法により好気下で生物処理されるのが一般的であった(例えば、特許文献1、特許文献2など参照)。しかしながら通常の活性汚泥法では微生物が有機物を分解する能力に限界があり、この手法で難分解性の有機物、例えば窒素を含む水溶性有機物質はそのまま処理水中に残存したり、処理できたとしても非常に長時間処理をする必要があるなどの問題があった。   Conventionally, wastewater containing a large amount of organic substances such as industrial wastewater such as paint wastewater discharged from a coating plant and agricultural wastewater is subjected to physical treatment such as coagulation separation (floating or sedimentation) treatment or ultrafiltration, and then activated sludge method. In general, biological treatment is performed under aerobic conditions (for example, see Patent Documents 1 and 2). However, in the ordinary activated sludge method, there is a limit to the ability of microorganisms to decompose organic substances, and in this method, organic substances that are difficult to decompose, such as water-soluble organic substances containing nitrogen, remain in the treated water as it is or even if it can be treated. There were problems such as the necessity of processing for a very long time.

一方で、このような多量の難分解性物質を含む排水の処理に、生物処理のみでなくオゾン分解法、フェントン法、UV照射法などの物理・化学的処理法を用いる方法も数多く提案されてきた。例えば特許文献3には、光酸化触媒の存在下で紫外線及び/又は可視光線を照射して有機物を含有する排水を酸化分解する処理方法が開示されている。しかしながら、これらの方法では汚染物質を十分に分解することが困難であったり、例え分解できたとしても処理に多大な時間と費用がかかる場合が多かった。塗料排水を例に取ると、排水中には各種顔料、染料、有機樹脂、架橋剤、有機溶剤、界面活性剤、油脂、及びその他の有機成分が含まれるが、その組成や含有量については排水の種類や発生源となる工場、あるいは発生する時間帯によっても変動し、一定ではない。更にこれらの成分は水への溶解性や物理・化学的分解性、生物による分解性なども互いに大きく異なることが該排水の特徴であり、電解処理や凝集処理、オゾン分解法、フェントン法、UV照射法などの物理・化学的処理法、あるいは活性汚泥法などの通常の手法では十分に分解されていない有機物質が処理水中に残存してしまい、処理法として有効とは言えない場合が多かった。   On the other hand, a large number of methods using not only biological treatment but also physical and chemical treatment methods such as ozone decomposition method, Fenton method, and UV irradiation method have been proposed for treating wastewater containing such a large amount of hardly decomposable substances. Was. For example, Patent Document 3 discloses a treatment method of irradiating ultraviolet light and / or visible light in the presence of a photooxidation catalyst to oxidatively decompose wastewater containing organic substances. However, these methods often make it difficult to decompose contaminants sufficiently, and even if they can be decomposed, it often takes a lot of time and cost to treat them. Taking paint wastewater as an example, the wastewater contains various pigments, dyes, organic resins, cross-linking agents, organic solvents, surfactants, oils, and other organic components. It varies depending on the type of plant, the factory that is the source, or the time of day when it occurs, and is not constant. Furthermore, these components are characterized by a large difference in solubility in water, physical / chemical degradability, biodegradability, etc., and are characteristic of the wastewater. Electrolytic treatment, coagulation treatment, ozone decomposition method, Fenton method, UV Organic substances that have not been sufficiently decomposed by physical or chemical treatment methods such as irradiation methods or ordinary methods such as activated sludge methods remain in treated water, and are often not effective as treatment methods. .

本発明の目的は排水中に含まれる有機物を効率的に且つ十分に分解し得る有機物含有排水の処理装置及び処理方法を提供することである。
更に、本発明の目的は排水中に含まれる有機物を効率的に且つ十分に分解し、特に窒素を含む有機物については窒素ガスの形まで分解することのできる有機物含有排水の処理装置及び処理方法を提供することである。
特開平6−55172号公報 特開2003−39078号公報 特開平8−155308号公報
An object of the present invention is to provide a treatment apparatus and a treatment method for organic-containing wastewater, which can efficiently and sufficiently decompose organic substances contained in the wastewater.
Furthermore, an object of the present invention is to provide an organic matter-containing wastewater treatment apparatus and method capable of efficiently and sufficiently decomposing organic substances contained in wastewater and decomposing organic substances containing nitrogen into nitrogen gas. To provide.
JP-A-6-55172 JP-A-2003-39078 JP-A-8-155308

本発明者らは上記問題を解決するために鋭意研究した結果、有機物含有排水をまず電解処理、及び/又は凝集処理によって一次処理を行ったのちに酸素を飽和状態近くまで溶解させるための酸素溶解装置、及び該酸素溶解装置から供給される、酸素を飽和状態近くまで溶解した排水を処理するための流動床式バイオリアクタを具備する排水処理装置を用いて生物処理を行うことにより該排水中の難分解性有機物質を十分に分解し得ることを見出し、本発明を完成するに至った。   The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, the organic-containing wastewater is first subjected to electrolytic treatment and / or primary treatment by coagulation treatment, and then dissolved in oxygen to dissolve oxygen to near saturation. Biological treatment using a wastewater treatment device equipped with a fluidized bed bioreactor for treating wastewater in which oxygen is dissolved to near saturation, supplied from the oxygen dissolving device, and It has been found that a hardly decomposable organic substance can be sufficiently decomposed, and the present invention has been completed.

すなわち本発明は、排水中に含まれる難分解性有機物を、電解処理及び/又は凝集処理で一次処理したのち、酸素溶解のための酸素溶解装置、及び該酸素溶解装置から供給される、酸素を飽和状態近くまで溶解した排水を処理するための流動床式バイオリアクタを具備する有機物含有排水の処理装置、及び有機物含有排水を電解処理装置及び/又は凝集処理装置で1次処理した一次処理排水を酸素溶解装置で酸素を飽和状態近くまで溶解させ、ついで該酸素を飽和状態近くまで溶解した排水を流動床式バイオリアクタに供給し、微生物処理することを特徴とする有機物含有排水の処理方法に関する。   That is, the present invention provides an oxygen dissolving apparatus for dissolving oxygen after subjecting a hardly decomposable organic substance contained in wastewater to primary treatment by electrolytic treatment and / or coagulation treatment, and oxygen supplied from the oxygen dissolving apparatus. An organic matter-containing wastewater treatment device equipped with a fluidized bed bioreactor for treating wastewater that has been dissolved to near saturation, and a primary treatment wastewater obtained by first treating an organic matter-containing wastewater with an electrolytic treatment device and / or a coagulation treatment device. The present invention relates to a method for treating organic matter-containing wastewater, comprising dissolving oxygen to near saturation with an oxygen dissolving apparatus, and then supplying wastewater in which the oxygen is dissolved to near saturation to a fluidized-bed bioreactor for microbial treatment.

更に、本発明者らは上記問題を解決するために鋭意研究した結果、有機物含有排水をまず電解処理、及び/又は凝集処理によって一次処理を行ったのちに酸素を飽和状態近くまで溶解させるための酸素溶解装置、及び該酸素溶解装置から供給される、酸素を飽和状態近くまで溶解した排水を処理するための流動床式バイオリアクタを具備する排水処理装置を用いて生物処理を行うことにより該排水中の難分解性有機物質を十分に分解し得ることを見出し、更にこれとは別に脱窒装置を設けて酸素溶解装置との間で排水を循環させることで硝酸性窒素を十分に分解し得ることを見出して本発明を完成するに至った。   Furthermore, the present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, the organic matter-containing wastewater was first subjected to electrolytic treatment and / or primary treatment by coagulation treatment, and then oxygen was dissolved to near saturation. The biological wastewater is treated by using a wastewater treatment device having an oxygen dissolving device and a fluidized bed bioreactor for treating wastewater that is supplied from the oxygen dissolving device and dissolves oxygen to near a saturated state. Found that it is possible to sufficiently decompose hardly decomposable organic substances in it, and furthermore, it is possible to sufficiently decompose nitrate nitrogen by installing a denitrification device separately and circulating wastewater with an oxygen dissolving device This led to the completion of the present invention.

すなわち本発明は、有機物含有排水を一次処理する一次処理装置、一次処理排水に酸素を飽和状態近くまで溶解させるための酸素溶解装置、該酸素溶解装置から供給される、酸素を飽和状態近くまで溶解した排水を処理するための流動床式バイオリアクタ、及び脱窒装置を具備し、該酸素溶解装置の排水を流動床式バイオリアクタに供給し、バイオリアクタで処理した排水を酸素溶解装置に戻す機構、及び該酸素溶解装置内の排水を脱窒装置に供給し、脱窒処理した排水を酸素溶解装置に戻す機構を有する、有機物含有排水の処理装置、及び該酸素溶解装置内の排水を流動床式バイオリアクタ内及び脱窒装置内の両方を循環させることによって微生物処理及び脱窒処理を行うことを特徴とする有機物含有排水の処理方法に関する。   That is, the present invention provides a primary treatment apparatus for treating organic matter-containing wastewater in a primary treatment, an oxygen dissolving apparatus for dissolving oxygen in the primary treatment wastewater to near a saturated state, and dissolving oxygen supplied from the oxygen dissolving apparatus to near a saturated state. Fluidized-bed bioreactor for treating wastewater treated, and a denitrification device, a mechanism for supplying wastewater from the oxygen dissolving device to the fluidized-bed bioreactor and returning wastewater treated by the bioreactor to the oxygen dissolving device An organic matter-containing wastewater treatment device having a mechanism for supplying wastewater in the oxygen dissolution apparatus to a denitrification apparatus and returning the denitrified wastewater to the oxygen dissolution apparatus; and treating the wastewater in the oxygen dissolution apparatus with a fluidized bed. The present invention relates to a method for treating organic matter-containing wastewater, wherein microorganism treatment and denitrification treatment are performed by circulating both inside a bioreactor and a denitrification apparatus.

本発明において有機物含有排水とは、工場や事業所から排出される工業排水、農業排水、生活廃水などであり、特に塗料排水を含む場合が挙げられる。該塗料排水とは、例えば自動車や各種工業製品などの塗装ライン、板金工場における塗装ブース水、塗料製造工場などから出る塗料成分を含んだ排水や、各種工場における洗浄水などが挙げられる。例えば自動車の塗装ラインの排水の一例を挙げると、沈殿物1〜100g/リットル、CODMn 1,000〜10,000mg/リットル、TOC 1,000〜15,000mg/リットル、BOD 1,000〜5,000mg/リットル、TN 100〜600mg/リットル、及び有機溶剤1〜10,000mg/リットル程度であった。ここでCODMnは化学的酸素要求量を、TOCは全有機炭素量を、BODは生化学的酸素要求量を、TNは全窒素量を意味する。 In the present invention, the organic matter-containing wastewater is industrial wastewater, agricultural wastewater, domestic wastewater, or the like discharged from factories or business establishments, and particularly includes paint wastewater. The paint wastewater includes, for example, paint lines for automobiles and various industrial products, paint booth water in a sheet metal factory, wastewater containing paint components from a paint factory, wash water in various factories, and the like. For example, as an example of the drainage of an automobile coating line, a sediment of 1 to 100 g / liter, a COD Mn of 1,000 to 10,000 mg / liter, a TOC of 1,000 to 15,000 mg / liter, and a BOD of 1,000 to 5 2,000 mg / L, TN 100 to 600 mg / L, and organic solvent 1 to 10,000 mg / L. Here, COD Mn means chemical oxygen demand, TOC means total organic carbon content, BOD means biochemical oxygen demand, and TN means total nitrogen content.

上記有機物含有排水は樹脂や顔料、硬化剤などの固形分を多く含むため、本発明では、まず固形分等を除去する一次処理に供される。該一次処理としては、凝集剤の添加や電解処理等が挙げられ、これらによって凝集、浮遊或いは沈降したものを分離除去できる。   Since the organic matter-containing wastewater contains a large amount of solids such as a resin, a pigment, and a curing agent, in the present invention, the wastewater is first subjected to a primary treatment for removing solids and the like. Examples of the primary treatment include addition of a coagulant, electrolytic treatment, and the like, whereby coagulation, floating or settling can be separated and removed.

凝集剤としては例えば硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄等に代表される無機系凝集剤、界面活性剤等の低分子凝集剤、アニオン性、弱アニオン性、ノニオン性又はカチオン性の高分子凝集剤などを挙げることができ、排水の種類に応じてこれらを単独で、あるいは複数種を組み合わせて用いることができる。   As the coagulant, for example, inorganic coagulants represented by aluminum sulfate, polyaluminum chloride, ferric chloride, etc., low molecular coagulants such as surfactants, anionic, weak anionic, nonionic or cationic high coagulants Molecular coagulants and the like can be mentioned, and these can be used alone or in combination of a plurality of types according to the type of wastewater.

また電解処理は、電極を排水に入れて電流を流し、水の電気分解によって生じた酸素と水素の微細な気泡を用いて排水中の顔料や樹脂等を吸着させ、気泡の浮力でそれらの物質を排水表面に集める方法であり、凝集剤による処理と組み合わせても効果がある。電解処理は通常供給された排水に電解質を投入・溶解し、その水槽内に複数の電極を適当な間隔に配置して、電極間に通電し、電気分解を行うものである。電極としてはアルミ電極を、電解質としては硝酸ナトリウム、塩化ナトリウムなどを使用することが好適である。
上記の凝集剤による処理や電解処理を行った後も親水性の有機溶剤や一部の樹脂、硬化剤等は排水中に残存するため、本発明では、上記処理に続いて二次処理として、酸素を飽和状態近くまで溶解させるための酸素溶解装置、及び該酸素溶解装置から供給される、酸素を飽和状態近くまで溶解した排水を処理するための流動床式バイオリアクタを具備する排水処理装置を用いて生物処理を行う。
In the electrolytic treatment, the electrodes are placed in wastewater and an electric current is applied.The fine bubbles of oxygen and hydrogen generated by the electrolysis of water are used to adsorb pigments and resins etc. Is collected on the drainage surface, and is effective even when combined with a treatment with a coagulant. In the electrolytic treatment, an electrolyte is usually charged and dissolved in supplied wastewater, a plurality of electrodes are arranged at appropriate intervals in the water tank, and electricity is supplied between the electrodes to perform electrolysis. Preferably, an aluminum electrode is used as the electrode, and sodium nitrate, sodium chloride or the like is used as the electrolyte.
Even after performing the treatment with the flocculant and the electrolytic treatment, the hydrophilic organic solvent and some resins, the curing agent, and the like remain in the wastewater.In the present invention, as the secondary treatment following the treatment, An oxygen dissolving apparatus for dissolving oxygen to near saturation, and a wastewater treatment apparatus including a fluidized bed bioreactor for treating wastewater supplied from the oxygen dissolution apparatus for dissolving oxygen to near saturation. To perform biological treatment.

あるいは、上記の凝集剤による処理や電解処理を行った後も親水性の有機溶剤や一部の樹脂、硬化剤等は排水中に残存するため、本発明では、上記処理に続いて二次処理として、酸素を飽和状態近くまで溶解させるための酸素溶解装置、該酸素溶解装置から供給される、酸素を飽和状態近くまで溶解した排水を処理するための流動床式バイオリアクタ、及び脱窒装置を具備し、該酸素溶解装置の排水を流動床式バイオリアクタに供給し、バイオリアクタで処理した排水を酸素溶解装置に戻す機構、及び該酸素溶解装置内の排水を脱窒装置に供給し、脱窒処理した排水を酸素溶解装置に戻す機構を有する、循環式の排水処理装置を用いて生物処理を行う。   Alternatively, even after the treatment with the flocculant or the electrolytic treatment, the hydrophilic organic solvent, some resins, and the curing agent remain in the wastewater. As an oxygen dissolving device for dissolving oxygen to near the saturation state, a fluidized bed bioreactor for treating wastewater supplied from the oxygen dissolution device and dissolving oxygen to near the saturation state, and a denitrification device A mechanism for supplying wastewater from the oxygen dissolving apparatus to the fluidized bed bioreactor and returning wastewater treated by the bioreactor to the oxygen dissolving apparatus; and supplying wastewater in the oxygen dissolving apparatus to the denitrification apparatus to remove the wastewater. Biological treatment is performed using a circulation type wastewater treatment device having a mechanism for returning the wastewater subjected to the nitrification treatment to the oxygen dissolving device.

上記流動床式バイオリアクタは、微生物を付着増殖させた担体による充填層を設け、排水を上向流で通水して充填層を流動床にする生物反応装置であり、一般的な生物処理装置である活性汚泥装置に比べて、水質変動や気候変化に強いので安定した処理水質が得られ、また余剰の汚泥発生量も極端に少なく沈降槽も不要で運転維持管理が簡便であるという利点を有する。さらに装置がコンパクトであるため、小スペースにも設置が可能である。   The fluidized bed bioreactor is a bioreactor which is provided with a packed bed of a carrier on which microorganisms are adhered and grown, and makes the packed bed a fluidized bed by flowing wastewater in an upward flow. Compared to activated sludge equipment, which is more resistant to water quality fluctuations and climate change, stable treated water quality can be obtained, and the amount of excess sludge generated is extremely small, and there is no need for a sedimentation tank. Have. Further, since the device is compact, it can be installed in a small space.

上記バイオリアクタ内に用いられる微生物担体としては、中空状や凹凸状、多孔質状等で単位体積当たりの表面積が大きいもの、或いは水を吸収して膨潤するもので、流動性を持ち容易に流出しない粒径、比重のものが好適であり、担体形状としては、板状体、繊維状体、円筒などの特殊形状体、スポンジ状体、粒・塊状体、立方体状などいずれでも良いが、流動性と表面積を確保しやすい微小な粒状体が好ましい。担体素材としては、従来公知の各種の有機・無機担体を用いることができ、例えば粒状活性炭、破砕活性炭、木炭、ゼオライト、雲母、砂粒;ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂等の樹脂製担体;シリカゲル等の多孔質セラミックス;ポリエチレングリコール系ゲル、ポリビニルアルコール系ゲル、ポリウレタン系ゲル等の高分子含水ゲル;アンスラサイト、これら樹脂製担体に活性炭等を混入したものなどが挙げられ、これらは1種又は2種以上併用して用いることができる。これらのうち、特に有機物を吸着する能力の高い活性炭、もしくは活性炭を混入した樹脂製担体、シリカゲル又は高分子含水ゲルが好ましい。扱い易さと有効表面積の点から担体の粒径は0.3〜15mm、好ましくは0.5〜10mm程度が好適である。   Microbial carriers used in the bioreactor include those having a large surface area per unit volume, such as hollow, irregular, or porous, or those that absorb water and swell, and have fluidity and easily flow out. Particles that do not have a specific gravity are preferred, and the carrier may have any shape such as a plate-like body, a fibrous body, a specially shaped body such as a cylinder, a sponge-like body, a grain / lumpy body, or a cubic body. A fine granular material that easily secures properties and surface area is preferable. As the carrier material, various kinds of conventionally known organic and inorganic carriers can be used, for example, granular activated carbon, crushed activated carbon, charcoal, zeolite, mica, sand grains; polyethylene resin, polypropylene resin, polyester resin, polyurethane resin Resin carriers such as silica gel; Porous ceramics such as silica gel; High molecular weight hydrogel such as polyethylene glycol gel, polyvinyl alcohol gel, polyurethane gel; Anthracite; These can be used alone or in combination of two or more. Among them, particularly preferred is activated carbon having a high ability to adsorb organic substances, a resin carrier mixed with activated carbon, silica gel or a polymer hydrogel. From the viewpoint of ease of handling and effective surface area, the particle size of the carrier is preferably from 0.3 to 15 mm, and more preferably from about 0.5 to 10 mm.

酸素溶解装置は、上記バイオリアクタに循環ポンプで供給される処理水を曝気し、バイオリアクタ内の担体による充填層内で有機物を分解するのに消費された溶存酸素を飽和酸素濃度まで高めるための装置であり、またバイオリアクタ内での充填層の流動を活発化すると同時に坦体表面に生長する微生物膜の過剰部分を剥離して厚さを一定にする役割も有する。   The oxygen dissolving apparatus is for aerating treated water supplied to the bioreactor by a circulation pump, and for increasing dissolved oxygen consumed to decompose organic substances in a packed bed with a carrier in the bioreactor to a saturated oxygen concentration. It is a device that also serves to activate the flow of the packed bed in the bioreactor and at the same time peel off the excess part of the microbial membrane growing on the surface of the carrier to keep the thickness constant.

上記酸素溶解装置としては特に形状等に制限はないが、酸素を効率的に供給する目的で必要に応じて微細な気泡を発生させる装置を用いたり、通常の空気以外に純酸素や、酸素濃度を空気よりも高くした混合気体を通気させることもできる。微細気泡発生装置としては、例えば「ドームディフューザー」(KWI社製)などを挙げることができる。   The oxygen dissolving device is not particularly limited in shape and the like, but a device for generating fine bubbles as necessary for the purpose of efficiently supplying oxygen may be used, or pure oxygen or oxygen concentration other than ordinary air may be used. Can be passed through a mixed gas having a higher air pressure than air. As the fine bubble generating device, for example, "Dome Diffuser" (manufactured by KWI) can be mentioned.

上記バイオリアクタ内の循環速度についてはある程度以上大きい方が好ましく、担体の使用量や大きさ・比重、バイオリアクタの形状、酸素溶解装置の酸素供給能力等によっても大きく異なるが、循環速度(線速度)は1.5〜30m/h、好ましくは5〜20m/hの範囲内が好適である。該循環速度が1.5m/h未満では処理水の水質が悪化し、30m/h以上では担体の流出現象が見られる場合があるので望ましくない。   The circulation speed in the bioreactor is preferably higher than a certain level. The circulation speed (linear velocity) varies greatly depending on the amount, size and specific gravity of the carrier, the shape of the bioreactor, the oxygen supply capacity of the oxygen dissolving device, and the like. ) Is in the range of 1.5 to 30 m / h, preferably 5 to 20 m / h. When the circulation speed is less than 1.5 m / h, the quality of the treated water is deteriorated, and when the circulation speed is 30 m / h or more, a carrier outflow phenomenon may be observed.

本発明では、上記処理後の最終的な処理水中に、窒素を含む有機物が存在する場合には更に必要に応じて脱窒装置を設けることができる。これによって直接河川などの公共水域への放流に適した水質を維持することができる。   In the present invention, if nitrogen-containing organic matter is present in the final treated water after the treatment, a denitrification device can be further provided as necessary. This makes it possible to maintain water quality suitable for discharging directly into public waters such as rivers.

脱窒装置は、通常、排水中の有機性窒素やアンモニアを硝酸根に変換して、これを生物学的に窒素に変換して大気中に放出できるものであれば特に制限なく、従来公知の嫌気性生物処理槽が使用可能である。生物学的脱窒処理としては、例えば脱窒菌を含む汚泥を返送する脱窒菌活性汚泥法、脱窒菌を担体に担持させ、高密度に脱窒槽内に滞留させる方法(固定床式、流動床式など)などが挙げられる。上記酸素溶解装置からの溶存酸素の影響がある場合には、必要に応じて酸素溶解装置と脱窒装置の間に溶存酸素を除去するための槽を別に設けることもできる。   The denitrification device is generally not particularly limited as long as it can convert organic nitrogen and ammonia in wastewater into nitrate, and can biologically convert it into nitrogen and release it into the atmosphere. Anaerobic biological treatment tanks can be used. The biological denitrification treatment includes, for example, a denitrifying bacteria activated sludge method in which sludge containing denitrifying bacteria is returned, and a method in which denitrifying bacteria are supported on a carrier and accumulated at high density in a denitrifying tank (fixed bed type, fluidized bed type). Etc.). If there is an effect of dissolved oxygen from the oxygen dissolving device, a separate tank for removing dissolved oxygen can be provided between the oxygen dissolving device and the denitrification device as necessary.

また本発明では、必要に応じて他の排水処理装置、例えばオゾン分解処理装置、UV処理装置、活性炭による吸着処理装置、更には一般的な活性汚泥処理装置、活性汚泥を含む液中に膜分離装置が設けられた膜分離活性汚泥処理装置などを、適宜併用することが可能である。   In the present invention, if necessary, other wastewater treatment devices, such as an ozone decomposition treatment device, a UV treatment device, an adsorption treatment device using activated carbon, a general activated sludge treatment device, and membrane separation into a liquid containing activated sludge can be used. It is possible to appropriately use a membrane separation activated sludge treatment device provided with the device in combination.

以下、図面を用いて本発明の好適な実施の形態を説明する。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.

図1は本発明の実施の一形態を示すフロー図である。図1において、3は電解処理槽、6は流動床式バイオリアクタ、7は酸素溶解装置、及び8は循環ポンプを夫々示す。   FIG. 1 is a flowchart showing an embodiment of the present invention. In FIG. 1, reference numeral 3 denotes an electrolytic treatment tank, 6 denotes a fluidized bed bioreactor, 7 denotes an oxygen dissolving device, and 8 denotes a circulation pump.

有機物含有排水は、まずポンプ1によって、電極2を備えた電解処理装置3に供給され、ここで電解処理によって析出・浮上する固形分が除去される。   The organic matter-containing wastewater is first supplied by a pump 1 to an electrolytic treatment apparatus 3 provided with an electrode 2, where the solids that precipitate and float by the electrolytic treatment are removed.

次いで電解処理された処理水は、ポンプ4によって、微生物担体5が充填された流動床式バイオリアクタ6にその底部より供給され、バイオリアクタ6内を上向きに流れる間に生物処理に供される。バイオリアクタ6の上部から生物処理された液はオーバーフローし、酸素溶解装置7にその上部より供給される。酸素溶解装置7の底部には酸素や空気を噴出する曝気装置9が設置されており、該酸素溶解装置7において処理水の酸素濃度を飽和状態近くまで上昇させたのち、再び循環ポンプ8によって処理水がバイオリアクタ6内に送り込まれる。   Next, the treated water subjected to the electrolytic treatment is supplied from the bottom to the fluidized bed bioreactor 6 filled with the microorganism carrier 5 by the pump 4, and is subjected to biological treatment while flowing upward in the bioreactor 6. The biologically treated liquid overflows from the upper part of the bioreactor 6 and is supplied to the oxygen dissolving device 7 from the upper part. An aeration device 9 for ejecting oxygen or air is installed at the bottom of the oxygen dissolving device 7. After the oxygen concentration of the treated water is increased to near saturation in the oxygen dissolving device 7, the oxygen is dissolved again by the circulation pump 8. Water is pumped into bioreactor 6.

上記の繰り返しにより、バイオリアクタ6と酸素溶解装置7の間で排水を循環させながら、連続的に排水を供給し、酸素溶解装置7より最終的な処理水が溢流されて排出されるものである。   By repeating the above, the wastewater is continuously supplied while circulating the wastewater between the bioreactor 6 and the oxygen dissolving device 7, and the final treated water overflows and is discharged from the oxygen dissolving device 7. is there.

図2は本発明の実施の他の形態を示すフロー図である。図2において、13は電解処理槽、16は流動床式バイオリアクタ、17は酸素溶解装置、18及び19は循環ポンプ、及び20は脱窒装置を夫々示す。   FIG. 2 is a flowchart showing another embodiment of the present invention. In FIG. 2, 13 is an electrolytic treatment tank, 16 is a fluidized bed bioreactor, 17 is an oxygen dissolving device, 18 and 19 are circulation pumps, and 20 is a denitrification device.

有機物含有排水は、まずポンプ11によって、電極12を備えた電解処理装置13に供給され、ここで電解処理によって析出・浮上する固形分が除去される。   The organic matter-containing wastewater is first supplied by a pump 11 to an electrolytic treatment device 13 provided with an electrode 12, where the solids deposited and floated by the electrolytic treatment are removed.

次いで電解処理された処理水は、ポンプ14によって、微生物担体15が充填された流動床式バイオリアクタ16にその底部より供給され、バイオリアクタ16内を上向きに流れる間に生物処理に供される。バイオリアクタ16の上部から生物処理された液はオーバーフローし、酸素溶解装置17にその上部より供給される。酸素溶解装置17の底部には酸素や空気を噴出する曝気装置21が設置されており、該排酸素溶解装置17において処理水の酸素濃度を飽和状態近くまで上昇させたのち、再び循環ポンプ18によって処理水がバイオリアクタ16内に送り込まれ、酸素溶解装置17とバイオリアクタ16の間で循環される。またこれとは別に酸素溶解装置17から循環ポンプ19によって処理水が脱窒装置20に送り込まれ、酸素溶解装置17と脱窒装置20の間でも循環される。脱窒装置20内では嫌気性の活性汚泥により硝酸性窒素が還元されて窒素ガスの形で大気中に放出される。   Next, the treated water subjected to the electrolytic treatment is supplied from the bottom to a fluidized bed type bioreactor 16 filled with a microorganism carrier 15 by a pump 14, and is subjected to biological treatment while flowing upward in the bioreactor 16. The biologically treated liquid overflows from the upper part of the bioreactor 16 and is supplied to the oxygen dissolving device 17 from the upper part. An aerator 21 for ejecting oxygen or air is installed at the bottom of the oxygen dissolving device 17. After the oxygen concentration of the treated water is raised to near saturation in the exhausted oxygen dissolving device 17, the circulation pump 18 again operates. The treated water is sent into the bioreactor 16 and circulated between the oxygen dissolving device 17 and the bioreactor 16. Separately from this, the treated water is sent from the oxygen dissolving device 17 to the denitrification device 20 by the circulation pump 19 and circulated between the oxygen dissolution device 17 and the denitrification device 20. In the denitrification device 20, nitrate nitrogen is reduced by anaerobic activated sludge and released into the atmosphere in the form of nitrogen gas.

上記循環の繰り返しにより、連続的に排水を供給し、酸素溶解装置17より最終的な処理水が溢流されて排出されるものである。   By repeating the above-mentioned circulation, wastewater is continuously supplied, and the final treated water overflows from the oxygen dissolving device 17 and is discharged.

実施例
以下、実施例及び比較例を挙げて、本発明方法をより具体的に説明する。
Examples Hereinafter, the method of the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
自動車用水性塗料の塗装排水を有機物含有排水として用いた。該有機物含有排水(A)のCODMnは8,500mg/リットル及びTOCは9,200mg/リットルであった。この塗料排水(A)をアルミ電極を備えた電解処理装置で5V、60分間電解処理して、析出・浮上した固形物を取り除いたところ、ほぼ透明な電解処理液(B)が得られた。この電解処理液(B)のCODMnは5,250mg/リットル及びTOCは6,400mg/リットルであった。平均粒子径約0.8mmの粒状活性炭を300g充填した、内容積2.5リットルの流動床式バイオリアクタおよび曝気装置を備えた内容積10リットルの酸素溶解槽を配管で接続し、ポンプによって両者間を循環させる生物処理装置(図1参照)を用い、電解処理液(B)を処理して最終処理水を得た。
Example 1
The coating wastewater of the automotive water-based paint was used as organic matter-containing wastewater. The organic matter-containing wastewater (A) had a COD Mn of 8,500 mg / liter and a TOC of 9,200 mg / liter. This paint wastewater (A) was subjected to electrolytic treatment at 5 V for 60 minutes using an electrolytic treatment device equipped with an aluminum electrode to remove solids that had precipitated and floated. As a result, an almost transparent electrolytic treatment liquid (B) was obtained. The COD Mn of this electrolytic treatment solution (B) was 5,250 mg / L and the TOC was 6,400 mg / L. A fluidized-bed bioreactor with an internal volume of 2.5 liters filled with 300 g of granular activated carbon having an average particle size of about 0.8 mm and an oxygen dissolving tank with an internal volume of 10 liters equipped with an aerator are connected by piping, and both are connected by a pump. The electrolytic treatment liquid (B) was treated using a biological treatment apparatus (see FIG. 1) that circulates the water to obtain final treated water.

有機物含有排水(A)に凝集剤「クリスタックB100」(栗田工業社製)を1,500mg/リットル、「クリスタックB450」(栗田工業社製)を1,500mg/リットル添加したのち一日放置し、凝集物を取り除いたところ凝集処理液(D)が得られた。この凝集処理液(D)のCODMnは5,550mg/リットル及びTOCは6,900mg/リットルであった。凝集処理液(D)について実施例1と同じ条件で生物処理を行って、最終処理水を得た。 The coagulant "Crystack B100" (Kurita Kogyo) and 1,500 mg / L of "Crystak B450" (Kurita Kogyo) are added to the organic matter-containing wastewater (A), and then left for one day. Then, when the aggregate was removed, an aggregation treatment liquid (D) was obtained. The COD Mn of this aggregation treatment liquid (D) was 5,550 mg / liter, and the TOC was 6,900 mg / liter. The coagulation liquid (D) was subjected to biological treatment under the same conditions as in Example 1 to obtain final treated water.

担体として平均粒子径約2mmのシリカゲル粒子を600g用いた以外は実施例1と同様にして処理を行った。   The treatment was performed in the same manner as in Example 1 except that 600 g of silica gel particles having an average particle diameter of about 2 mm were used as a carrier.

担体として直径約4mm、高さ約5mmの粉末活性炭を配合した中空円筒型ポリプロピレン製担体を70g用いた以外は実施例1と同様にして処理を行った。   The treatment was carried out in the same manner as in Example 1 except that 70 g of a hollow cylindrical polypropylene carrier containing powdered activated carbon having a diameter of about 4 mm and a height of about 5 mm was used as the carrier.

比較例1Comparative Example 1

内容積約1リットルの曝気槽を具備する活性汚泥装置によって生物処理を行った以外は実施例1と同様にして処理を行った。   The treatment was performed in the same manner as in Example 1 except that the biological treatment was performed using an activated sludge apparatus having an aeration tank having an internal volume of about 1 liter.

比較例2Comparative Example 2

活性炭による吸着の効果を確認するため、電解処理液(B)2.5リットルに対し、実施例1で用いた粒状活性炭300gを添加して撹拌し、2日間放置して、これを最終処理水とした。   In order to confirm the effect of adsorption by activated carbon, 300 g of the granular activated carbon used in Example 1 was added to 2.5 liters of the electrolytically treated solution (B), stirred, left for 2 days, and added to the final treated water. And

比較例3Comparative Example 3

電解処理を行わない以外は実施例1と同様にして処理を行ったところ、バイオリアクタ内が固形物で目詰まりしたため安定な運転を続けることが出来ず、試験を中止した。   When the treatment was performed in the same manner as in Example 1 except that the electrolytic treatment was not performed, the stable operation could not be continued because the inside of the bioreactor was clogged with solids, and the test was stopped.

上記実施例1−4及び比較例1−3の処理による最終処理水のCODMn及びTOCを下記表1にまとめて示す。 Table 1 below summarizes the COD Mn and TOC of the final treated water obtained by the treatment of Example 1-4 and Comparative Example 1-3.

自動車用水性塗料の塗装排水を有機物含有排水として用いた。該有機物含有排水(E)のCODMnは8,500mg/リットル、TOCは9,200mg/リットル、及びTNは350mg/リットルであった。この塗料排水(E)をアルミ電極を備えた電解処理装置で5V,60分間電解処理して、析出・浮上した固形物を取り除いたところ、ほぼ透明な電解処理液(F)が得られた。この電解処理液(F)のCODMnは5,250mg/リットル、TOCは6,400mg/リットル、及びTNは320mg/リットルであった。平均粒子径約0.8mmの粒状活性炭を300g入れた、内容積2.5リットルのバイオリアクタおよび曝気装置を備えた内容積10リットルの酸素溶解槽を配管で接続し、ポンプによって両者間を循環させ、更に活性汚泥を用いた内容積5リットルの脱窒装置と酸素溶解槽も配管で接続してポンプで両者間を循環させる生物処理装置(図2参照)を用い、電解処理液(F)を処理して最終処理水を得た。 The coating wastewater of the automotive water-based paint was used as organic matter-containing wastewater. The organic matter-containing wastewater (E) had a COD Mn of 8,500 mg / L, a TOC of 9,200 mg / L, and a TN of 350 mg / L. This paint wastewater (E) was subjected to an electrolytic treatment at 5 V for 60 minutes using an electrolytic treatment device equipped with an aluminum electrode to remove precipitated and floating solids. As a result, a substantially transparent electrolytic treatment liquid (F) was obtained. The electrolytic solution (F) had a COD Mn of 5,250 mg / liter, a TOC of 6,400 mg / liter, and a TN of 320 mg / liter. A bioreactor with an internal volume of 2.5 liters containing 300 g of granular activated carbon having an average particle diameter of about 0.8 mm, and an oxygen dissolving tank with an internal volume of 10 liters equipped with an aeration device are connected by pipes, and circulated between the two by a pump. An electrolytic treatment solution (F) is further provided by using a biological treatment apparatus (see FIG. 2) in which a denitrification apparatus having an inner volume of 5 liters using activated sludge and an oxygen dissolving tank are connected by piping and circulated between the two by a pump. To obtain final treated water.

有機物含有排水(E)に凝集剤「クリスタックB100」(栗田工業社製)を1,500mg/リットル、「クリスタックB450」(栗田工業社製)を1,500mg/リットル添加したのち一日放置し、凝集物を取り除いたところ凝集処理液(G)が得られた。この凝集処理液(G)のCODMnは5,550mg/リットル、TOCは6,900mg/リットル、及びTNは330mg/リットルであった。凝集処理液(G)について実施例5と同じ条件で生物処理を行って、最終処理水を得た。 The coagulant "Crystak B100" (Kurita Kogyo) and 1,500 mg / L of "Crystak B450" (Kurita Kogyo) are added to the organic matter-containing wastewater (E), and then left for one day. Then, when the aggregate was removed, an aggregate treatment liquid (G) was obtained. The COD Mn of this aggregation treatment liquid (G) was 5,550 mg / liter, TOC was 6,900 mg / liter, and TN was 330 mg / liter. The coagulation liquid (G) was subjected to biological treatment under the same conditions as in Example 5 to obtain final treated water.

担体として平均粒子径約2mmのシリカゲル粒子を600g用いた以外は実施例5と同様にして処理を行った。   The treatment was carried out in the same manner as in Example 5, except that 600 g of silica gel particles having an average particle diameter of about 2 mm were used as a carrier.

担体として直径約4mm、高さ約5mmの粉末活性炭を配合した中空円筒型ポリプロピレン製担体を70g用いた以外は実施例5と同様にして処理を行った。   The treatment was carried out in the same manner as in Example 5 except that 70 g of a hollow cylindrical polypropylene carrier mixed with powdered activated carbon having a diameter of about 4 mm and a height of about 5 mm was used as the carrier.

比較例4Comparative Example 4

内容積約1リットルの曝気槽を用いて活性汚泥法によって生物処理を行った以外は実施例5と同様にして処理を行った。   The treatment was carried out in the same manner as in Example 5, except that the biological treatment was carried out by the activated sludge method using an aeration tank having an internal volume of about 1 liter.

比較例5Comparative Example 5

活性炭による吸着の効果を確認するため、電解処理液(F)2.5リットルに対し、実施例5で用いた粒状活性炭300gを添加して撹拌し、2日間放置して、これを最終処理水とした。   In order to confirm the effect of adsorption by activated carbon, 300 g of the granular activated carbon used in Example 5 was added to 2.5 liters of the electrolytically treated solution (F), stirred, left for 2 days, and added to the final treated water. And

比較例6Comparative Example 6

電解処理を行わない以外は実施例5と同様にして処理を行ったところ、リアクタ内が固形物で目詰まりしたため安定な運転を続けることが出来ず、試験を中止した。   The treatment was carried out in the same manner as in Example 5 except that the electrolytic treatment was not carried out. As a result, the reactor was clogged with solids, so that stable operation could not be continued and the test was stopped.

比較例7Comparative Example 7

脱窒装置を設けず、バイオリアクタと酸素溶解槽の両者間を循環させるのみの生物処理装置を用いる以外は実施例5と同様にして処理を行った。   The treatment was carried out in the same manner as in Example 5 except that a biological treatment apparatus only circulating between the bioreactor and the oxygen dissolving tank without using a denitrification apparatus was used.

上記実施例5−8及び比較例4−7の処理による最終処理水のCODMn及びTOCを下記表2にまとめて示す。 Table 2 below summarizes the COD Mn and TOC of the final treated water obtained by the treatments in Example 5-8 and Comparative Example 4-7.

本発明方法によれば、塗料排水などの工業排水や農業排水など、有機物含有排水を効率良く、且つ十分に処理することができる。   According to the method of the present invention, organic matter-containing wastewater such as industrial wastewater or agricultural wastewater such as paint wastewater can be efficiently and sufficiently treated.

Figure 2004314062
Figure 2004314062

更に、本発明方法によれば、塗料排水などの工業排水や農業排水など、有機物含有排水を効率良く、且つ十分に処理することができ、有機物のみならず、有機物の分解によって生じる硝酸性窒素も十分に除去することができる。   Further, according to the method of the present invention, wastewater containing organic matter such as industrial wastewater or agricultural wastewater such as paint wastewater can be efficiently and sufficiently treated, and not only organic matter but also nitrate nitrogen generated by decomposition of organic matter can be reduced. It can be sufficiently removed.

Figure 2004314062
Figure 2004314062

本発明の好適な実施の態様を説明する排水処理フロー図である。It is a drainage processing flowchart explaining a suitable embodiment of the present invention. 本発明の好適な実施の他の態様を説明する排水処理フロー図である。It is a drainage processing flowchart explaining the other aspect of the suitable implementation of this invention.

符号の説明Explanation of reference numerals

1、4、8 ポンプ
2 電極
3 電解処理装置
5 担体
6 流動床式バイオリアクタ
7 酸素溶解装置
9 曝気装置
11、14、18、19 ポンプ
12 電極
13 電解処理装置
15 担体
16 流動床式バイオリアクタ
17 酸素溶解装置
20 脱窒装置
21 曝気装置
1, 4, 8 pumps
2 electrodes
Reference Signs List 3 electrolytic treatment device 5 carrier 6 fluidized bed bioreactor 7 oxygen dissolution device 9 aeration device 11, 14, 18, 19 pump
12 electrodes
Reference Signs List 13 electrolytic treatment device 15 carrier 16 fluidized bed bioreactor 17 oxygen dissolution device 20 denitrification device 21 aeration device

Claims (14)

有機物含有排水を一次処理する電解処理装置及び/又は凝集処理装置、一次処理排水に酸素を飽和状態近くまで溶解させるための酸素溶解装置、及び該酸素溶解装置から供給される、酸素を飽和状態近くまで溶解した排水を処理するための微生物担体が内在する流動床式バイオリアクタを具備する有機物含有排水の処理装置。   An electrolytic treatment device and / or a coagulation treatment device for primary treatment of organic matter-containing wastewater, an oxygen dissolution device for dissolving oxygen in a primary treatment wastewater to near a saturated state, and an oxygen dissolution device supplied from the oxygen dissolution unit near a saturated state An apparatus for treating organic-containing wastewater, comprising a fluidized-bed bioreactor having a microbial carrier for treating wastewater that has been dissolved to a maximum. 流動床式バイオリアクタの担体が、活性炭、もしくは活性炭を混入した樹脂製担体、シリカゲル、又は高分子含水ゲルである請求項1記載の処理装置。   The treatment apparatus according to claim 1, wherein the carrier of the fluidized bed bioreactor is activated carbon, a resin carrier containing activated carbon, silica gel, or a polymer hydrogel. 有機物含有排水が、塗料含有排水である請求項1又は2記載の処理装置。   The treatment apparatus according to claim 1, wherein the organic matter-containing wastewater is paint-containing wastewater. 排水を脱窒処理するための脱窒装置をさらに有する請求項1〜3のいずれか1項に記載の処理装置。   The treatment device according to any one of claims 1 to 3, further comprising a denitrification device for denitrification of the wastewater. 有機物含有排水を電解処理装置及び/又は凝集処理装置で1次処理した一次処理排水を酸素溶解装置で酸素を飽和状態近くまで溶解させ、ついで該酸素を飽和状態近くまで溶解した排水を流動床式バイオリアクタに供給し、微生物処理することを特徴とする有機物含有排水の処理方法。   The primary treatment wastewater obtained by first treating organic matter-containing wastewater with an electrolytic treatment device and / or a coagulation treatment device is used to dissolve oxygen to near saturation with an oxygen dissolving device. A method for treating organic matter-containing wastewater, wherein the wastewater is supplied to a bioreactor and treated with microorganisms. 上記微生物処理した排水を、さらに脱窒装置にて脱窒処理することを特徴とする請求項5記載の処理方法。   The treatment method according to claim 5, wherein the wastewater subjected to the microorganism treatment is further subjected to a denitrification treatment by a denitrification device. 有機物含有排水を一次処理する一次処理装置、一次処理排水に酸素を飽和状態近くまで溶解させるための酸素溶解装置、該酸素溶解装置から供給される、酸素を飽和状態近くまで溶解した排水を処理するための微生物担体が内在する流動床式バイオリアクタ、及び脱窒装置を具備し、該酸素溶解装置の排水を流動床式バイオリアクタに供給し、該バイオリアクタで処理した排水を酸素溶解装置に戻す機構、及び該酸素溶解装置内の排水を脱窒装置に供給し、脱窒処理した排水を酸素溶解装置に戻す機構を有する、有機物含有排水の処理装置。   Primary treatment device for primary treatment of organic matter-containing wastewater, oxygen dissolution device for dissolving oxygen in the primary treatment wastewater to near saturation, and treatment of wastewater supplied from the oxygen dissolution device and dissolving oxygen to near saturation A fluidized bed bioreactor having a microbial carrier therein, and a denitrification device, supplying wastewater of the oxygen dissolving device to the fluidized bed bioreactor, and returning wastewater treated by the bioreactor to the oxygen dissolving device An organic matter-containing wastewater treatment device, comprising: a mechanism; and a mechanism for supplying wastewater in the oxygen dissolution device to a denitrification device and returning the denitrified wastewater to the oxygen dissolution device. 排水の一次処理装置が、電解処理装置及び/又は凝集処理装置である請求項7記載の処理装置。   The treatment device according to claim 7, wherein the primary treatment device for the wastewater is an electrolytic treatment device and / or a coagulation treatment device. 流動床式バイオリアクタの担体が、活性炭、もしくは活性炭を混入した樹脂製担体、シリカゲル、又は高分子含水ゲルである請求項7又は8記載の処理装置。   9. The treatment apparatus according to claim 7, wherein the carrier of the fluidized bed bioreactor is activated carbon, a resin carrier containing activated carbon, silica gel, or a polymer hydrogel. 有機物含有排水が、塗料含有排水である請求項7〜9のいずれか一項に記載の処理装置。   The treatment apparatus according to any one of claims 7 to 9, wherein the organic matter-containing wastewater is paint-containing wastewater. (1)有機物含有排水を1次処理する工程、
(2)酸素溶解装置にて一次処理排水に酸素を飽和状態近くまで溶解させる工程、
(3)酸素を飽和状態近くまで溶解させた排水を微生物担体が内在する流動床式バイオリアクタに供給し微生物処理を行う工程、
(4)微生物処理してなる排水を酸素溶解装置に戻すとともに、酸素溶解装置内の排水を脱窒装置に供給し、脱窒装置にて脱窒処理する工程、
(5)脱窒処理した排水を酸素溶解装置に戻す工程、
を有する排水処理方法であって、酸素溶解装置内の排水を流動床式バイオリアクタ内及び脱窒装置内の両方を循環させることによって微生物処理及び脱窒処理を行うことを特徴とする有機物含有排水の処理方法。
(1) primary treatment of organic matter-containing wastewater,
(2) a step of dissolving oxygen in the primary treatment wastewater to near saturation with an oxygen dissolving device;
(3) a step of supplying a wastewater in which oxygen is dissolved to near a saturated state to a fluidized bed bioreactor in which a microorganism carrier is present, and performing a microorganism treatment;
(4) a step of returning the wastewater obtained by the microorganism treatment to the oxygen dissolving apparatus, supplying the wastewater in the oxygen dissolving apparatus to the denitrification apparatus, and performing a denitrification treatment by the denitrification apparatus;
(5) returning the denitrified wastewater to the oxygen dissolving apparatus;
A wastewater treatment method comprising: performing a microorganism treatment and a denitrification treatment by circulating wastewater in an oxygen dissolving apparatus both in a fluidized bed bioreactor and in a denitrification apparatus. Processing method.
排水の一次処理を電解処理装置及び/又は凝集処理装置を用いて行う請求項11記載の処理方法。   The treatment method according to claim 11, wherein the primary treatment of the wastewater is performed using an electrolytic treatment device and / or a coagulation treatment device. 流動床式バイオリアクタの担体が、活性炭、もしくは活性炭を混入した樹脂製担体又はシリカゲルである請求項11又は12記載の処理方法。   The treatment method according to claim 11 or 12, wherein the carrier of the fluidized bed bioreactor is activated carbon, a resin carrier mixed with activated carbon, or silica gel. 有機物含有排水が、塗料含有排水である請求項11〜13のいずれか一項に記載の処理方法。   The treatment method according to any one of claims 11 to 13, wherein the organic matter-containing wastewater is paint-containing wastewater.
JP2004096771A 2003-03-31 2004-03-29 Method and apparatus for treating waste water containing organic matter Pending JP2004314062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096771A JP2004314062A (en) 2003-03-31 2004-03-29 Method and apparatus for treating waste water containing organic matter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003094871 2003-03-31
JP2003094872 2003-03-31
JP2004096771A JP2004314062A (en) 2003-03-31 2004-03-29 Method and apparatus for treating waste water containing organic matter

Publications (1)

Publication Number Publication Date
JP2004314062A true JP2004314062A (en) 2004-11-11

Family

ID=33479630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096771A Pending JP2004314062A (en) 2003-03-31 2004-03-29 Method and apparatus for treating waste water containing organic matter

Country Status (1)

Country Link
JP (1) JP2004314062A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000942A1 (en) * 2005-06-27 2007-01-04 Fujifilm Corporation Method for treatment of ammonia-containing wastewater
JP2008049343A (en) * 2007-11-09 2008-03-06 Nishihara Environment Technology Inc Organic waste water treatment device
JP2009119406A (en) * 2007-11-16 2009-06-04 Hitachi Plant Technologies Ltd Wastewater treatment method and apparatus
CN101898849A (en) * 2010-02-10 2010-12-01 东南大学 Natural reaeration/sedimentation integrated device for pre-treatment of sewage
WO2018100841A1 (en) * 2016-12-01 2018-06-07 栗田工業株式会社 Biologically activated carbon processing device
JP2019135043A (en) * 2018-02-05 2019-08-15 正志 豊岡 Wastewater treatment apparatus and wastewater treatment method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000942A1 (en) * 2005-06-27 2007-01-04 Fujifilm Corporation Method for treatment of ammonia-containing wastewater
JP2008049343A (en) * 2007-11-09 2008-03-06 Nishihara Environment Technology Inc Organic waste water treatment device
JP2009119406A (en) * 2007-11-16 2009-06-04 Hitachi Plant Technologies Ltd Wastewater treatment method and apparatus
CN101898849A (en) * 2010-02-10 2010-12-01 东南大学 Natural reaeration/sedimentation integrated device for pre-treatment of sewage
WO2018100841A1 (en) * 2016-12-01 2018-06-07 栗田工業株式会社 Biologically activated carbon processing device
US11034602B2 (en) 2016-12-01 2021-06-15 Kurita Water Industries Ltd. Biological activated carbon treatment apparatus
JP2019135043A (en) * 2018-02-05 2019-08-15 正志 豊岡 Wastewater treatment apparatus and wastewater treatment method
JP7061473B2 (en) 2018-02-05 2022-04-28 正志 豊岡 Wastewater treatment equipment

Similar Documents

Publication Publication Date Title
US8192626B2 (en) Wastewater chemical/biological treatment method for open water discharge
JP4508694B2 (en) Water treatment method and apparatus
US11667554B2 (en) Wastewater treatment apparatus and process therefor
JP6750930B6 (en) Sewage purification system
JP2014097472A (en) Treatment method and treatment apparatus for organic waste water
JP2007029826A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
JP3323040B2 (en) Ultrapure water production equipment
JP2007029825A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
KR101603540B1 (en) Waste water treatment system for high density nitrogen remove and sludge reduction with anaerobic inter-barrier and fluidized media
JP2002011498A (en) Device for treating leachate
KR100992827B1 (en) Cleaning system for waste-water purifier
AU2009200113A1 (en) Water purification
CN1931750B (en) Petrochemical effluent treating and reusing process
JP4787814B2 (en) Organic wastewater purification method and apparatus
JP2004314062A (en) Method and apparatus for treating waste water containing organic matter
KR20110138668A (en) Sewage treat device for marine use
KR0126883Y1 (en) Facilities for treating waste water on a large scale
KR101019092B1 (en) Advanced water-treating apparatus and method for removing phosphorus
JP2004305892A (en) Treatment apparatus and treatment method for organic substance-containing wastewater
JP2004305890A (en) Treatment apparatus and treatment method for organic substance-containing wastewater
KR20040085061A (en) Organics-containing Waste Water Treatment Apparatus and Treatment Method
Sudhir et al. Treatment of pharmaceutical pollutants from industrial wastewater
KR102670533B1 (en) advanced water-treating system
KR102299760B1 (en) High concentrated organic wastewater treatment system
CN219752071U (en) Biochemical tail water denitrification disinfection integration equipment of plant