JP2008049343A - Organic waste water treatment device - Google Patents

Organic waste water treatment device Download PDF

Info

Publication number
JP2008049343A
JP2008049343A JP2007291512A JP2007291512A JP2008049343A JP 2008049343 A JP2008049343 A JP 2008049343A JP 2007291512 A JP2007291512 A JP 2007291512A JP 2007291512 A JP2007291512 A JP 2007291512A JP 2008049343 A JP2008049343 A JP 2008049343A
Authority
JP
Japan
Prior art keywords
tank
sludge
aerobic treatment
yeast
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007291512A
Other languages
Japanese (ja)
Inventor
Makoto Takatori
信 鷹取
Kenichi Ito
健一 伊藤
Akira Oshita
昭 大下
Hiroko Mase
博子 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2007291512A priority Critical patent/JP2008049343A/en
Publication of JP2008049343A publication Critical patent/JP2008049343A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic waste water treatment device, wherein optimum control can be performed depending on the variation of a BOD (biochemical oxygen)-SS (suspended substances) load and the content of oil, and satisfactory treated water can stably be obtained, and also, efficiency is high with a small scale. <P>SOLUTION: The organic waste water treatment device comprises: an aerobic treatment tank for treating organic waste water using yeast-containing activated sludge; a solid-liquid separation tank for separating the aerobic treating tank mixed liquid into sludge and treated water; a sludge return tube for returning the sludge separated in the solid-liquid separation tank into an aerobic treatment tank; and an electrolytic cell. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機性排水の処理装置に関する。   The present invention relates to an organic wastewater treatment apparatus.

活性汚泥処理
従来、有機性排水の処理は、活性汚泥で処理をすることが一般的であった。しかし、活性汚泥処理のBOD−SS負荷は、0.2〜0.4kg/kg・日であり、高負荷運転ができないため、装置が大型化することが多く、イニシャルコストの面で問題があった。また、油の分解ができないため、高油脂含有排水(例えば、ノルマルヘキサン抽出物質濃度100mg/L以上)の場合、生物処理性能が安定しないという問題点もあった。
Activated sludge treatment Conventionally, the treatment of organic wastewater is generally carried out with activated sludge. However, the BOD-SS load for activated sludge treatment is 0.2 to 0.4 kg / kg · day, and high load operation is not possible. Therefore, the apparatus is often increased in size and there is a problem in terms of initial cost. It was. In addition, since the oil cannot be decomposed, in the case of wastewater containing high fat and oil (for example, normal hexane extract substance concentration of 100 mg / L or more), there is also a problem that biological treatment performance is not stable.

物理化学的処理+活性汚泥処理
これに対して、物理化学的処理と活性汚泥処理を組み合わせることにより、高油脂含有排水の処理が可能となるが、物理化学的処理で油脂分を分離するため、分離された油脂分(廃油フロス)を処分する必要がある。当該処分は、作業上の手間の問題があり、また、廃油フロスが腐敗しやすく、臭気を発生するなど衛生面の問題を有する。さらに、焼却および埋立等を実施するため、ランニングコストが増加する。また、敷地面積は小さくなるが、物理化学的処理を行うためのイニシャルコストが高くなる。
Physicochemical treatment + activated sludge treatment On the other hand, by combining physicochemical treatment and activated sludge treatment, wastewater containing high fats and oils can be treated, but because fats and oils are separated by physicochemical treatment, It is necessary to dispose of the separated oil and fat (waste oil froth). This disposal has problems in terms of work and sanitary problems such as waste oil froth being easily spoiled and generating odor. Furthermore, running costs increase because incineration and landfilling are performed. Moreover, although the site area is reduced, the initial cost for performing the physicochemical treatment is increased.

酵母処理+活性汚泥処理
酵母処理では、酵母の活性を高めるために、硫酸や塩酸等を酵母反応槽へ添加し、pHを3〜6に調整することが一般的であった。また、pH調整と同時または単独で、次亜塩素酸ナトリウムなどの添加により、活性汚泥との競合を避ける方法を採っていた。
Yeast treatment + activated sludge treatment In yeast treatment, in order to increase the activity of yeast, it was common to add sulfuric acid, hydrochloric acid or the like to the yeast reaction tank and adjust the pH to 3-6. In addition, a method of avoiding competition with activated sludge by adding sodium hypochlorite or the like simultaneously with pH adjustment or alone has been adopted.

この組合せでは、高濃度有機性排水や高油脂含有排水を処理することが可能だが、酵母の特性上、酵母処理だけでは、公共水域の放流規制値を満足できない場合がある。また、酵母処理の後段に活性汚泥処理槽を設けても、酵母と活性汚泥中の微生物とは、基質除去速度、増殖速度および最適基質濃度範囲が異なるために、生物反応槽中の酵母と微生物との存在比率は、流入水の性状および水量変動に大きく影響を受けることになり、結果的に処理性能が不安定となる。   With this combination, it is possible to treat high-concentration organic wastewater and wastewater containing high fats and oils, but due to the characteristics of yeast, there are cases in which the discharge restriction value of public water bodies cannot be satisfied by yeast treatment alone. Even if an activated sludge treatment tank is provided after the yeast treatment, the yeast and microorganisms in the bioreactor are different because the microorganisms in the yeast and activated sludge differ in substrate removal rate, growth rate, and optimum substrate concentration range. The abundance ratio is greatly affected by the properties of the influent water and the fluctuation of the water volume, resulting in unstable treatment performance.

また、酵母処理+活性汚泥処理では、窒素を除去することができなかった。   Moreover, nitrogen could not be removed by the yeast treatment + activated sludge treatment.

前述のように、酵母反応槽のpHを3〜6に調整し、酵母の活性を維持するためには、硫酸や塩酸等の薬剤を連続的に添加する必要がある。薬剤の連続的な添加は、大きな薬剤貯蔵タンクを必要とし、設置スペースやイニシャルコストの問題がある。また、ランニングコストの増加や保管時の取扱いに注意を必要とするなどの問題もある。   As described above, in order to adjust the pH of the yeast reaction tank to 3 to 6 and maintain the activity of the yeast, it is necessary to continuously add chemicals such as sulfuric acid and hydrochloric acid. The continuous addition of drugs requires a large drug storage tank, and there are problems of installation space and initial cost. In addition, there are problems such as an increase in running cost and attention to handling during storage.

また、酵母処理+活性汚泥処理で高度処理を行う場合、酵母は硝化能力を有していないため、流入水中の窒素は菌体合成に使用される数%のみしか除去されず、残りの窒素はそのまま放流されていた。後処理の活性汚泥処理をA2O法や間欠曝気法とすることにより窒素除去が可能となるが、広い敷地面積が必要で、運転管理が煩雑になる。さらに、水産加工排水のように、TNが100〜300mg/Lと高濃度に含まれる排水の高度処理は、困難であるなどの問題もあった。   In addition, when performing advanced treatment with yeast treatment + activated sludge treatment, since yeast does not have a nitrification ability, only a few percent of nitrogen in the influent is removed for cell synthesis, and the remaining nitrogen It was released as it was. Nitrogen removal can be performed by using the activated sludge treatment of the post-treatment as the A2O method or the intermittent aeration method, but a large site area is required and the operation management becomes complicated. Furthermore, there is a problem that it is difficult to perform advanced treatment of wastewater containing TN at a high concentration of 100 to 300 mg / L, such as fishery processing wastewater.

さらに、硫酸を添加する場合には、汚泥が嫌気化する部位が存在すると、硫酸イオンが還元され、硫化水素が発生して悪臭源となったり、コンクリートを腐食するなどの不具合が生じる場合があった。   In addition, when sulfuric acid is added, if there is a site where sludge is anaerobic, sulfate ions are reduced, and hydrogen sulfide is generated, which may cause problems such as odor sources and corrosion of concrete. It was.

次に、活性汚泥処理と酵母処理の問題点を同時に解決するために、たとえば、特開2000−246284号公報に記載されるように、酵母と活性汚泥を混在させる処理法がある。しかし、酵母と活性汚泥は、基質除去速度や増殖速度が異なり、また、基質除去に最適な濃度範囲が異なり、増殖に最適な濃度範囲も異なる。このため、汚泥中の酵母と活性汚泥との存在比率は、流入水性状に大きく影響を受け、どのような状態で安定するかを予想することは困難であった。   Next, in order to solve the problems of the activated sludge treatment and the yeast treatment at the same time, for example, there is a treatment method in which yeast and activated sludge are mixed as described in JP-A-2000-246284. However, yeast and activated sludge have different substrate removal rates and growth rates, and the optimum concentration range for substrate removal is different, and the optimum concentration range for growth is also different. For this reason, the abundance ratio of yeast and activated sludge in sludge is greatly influenced by the inflowing water state, and it has been difficult to predict in which state it will be stable.

また、基本的には活性汚泥の増殖速度が酵母の増殖速度よりも大きいため、しばしば活性汚泥が優占するようになり、高負荷運転時の性能が不安定になる事例が多くみられた。   In addition, basically, the activated sludge growth rate is larger than the yeast growth rate, so the activated sludge often prevails, and there were many cases where the performance during high-load operation became unstable.

一方、従来の処理方式では、好気性処理槽から固液分離槽へ移送される好気性処理槽混合液中に含まれる軽い汚泥成分(浮上物)が、固液分離槽の表面に浮く場合があり、これがスカムとして処理水中に流出し、水質悪化をもたらす場合があった。   On the other hand, in the conventional treatment method, light sludge components (floating matter) contained in the aerobic treatment tank mixed liquid transferred from the aerobic treatment tank to the solid-liquid separation tank may float on the surface of the solid-liquid separation tank. There are cases where this scum flows into the treated water and causes deterioration of the water quality.

また、軽い汚泥が多い場合、連続的な汚泥成分の流出により必要な汚泥量が確保できず、処理性能が低下する場合もあった。   Moreover, when there is much light sludge, the amount of sludge required cannot be ensured by the outflow of a continuous sludge component, and processing performance may fall.

これに対して、好気性処理槽と固液分離槽の間に、汚泥に付着した気泡を除去する脱気槽を設ける場合もあるが、軽い汚泥成分を除去する訳ではないので、あまり効果はなかった。
特開2000−246284号公報
On the other hand, there is a case where a deaeration tank for removing bubbles adhering to sludge is provided between the aerobic treatment tank and the solid-liquid separation tank. There wasn't.
JP 2000-246284 A

本発明の目的は、BOD−SS負荷の変動や油の含有率の大小に応じて、最適に制御可能で、安定的に良好な処理水が得られ、かつ、小さい規模で効率のよい有機性排水処理装置を提供することにある。   The object of the present invention is to control optimally according to fluctuations in the load of BOD-SS and the level of oil content, to obtain a stable treated water stably, and to provide an efficient organic on a small scale. It is to provide a wastewater treatment apparatus.

本発明の有機性排水処理装置は、有機性排水を電気分解する電解槽と、酵母含有活性汚泥を用いて好気性で前記電解槽で処理した有機性排水を処理する好気性処理槽と、好気性処理槽混合液を、汚泥と処理水に分離する固液分離槽と、前記固液分離槽で分離した汚泥を、前記好気性処理槽へ返送する汚泥返送管とからなる。   The organic waste water treatment apparatus of the present invention includes an electrolysis tank that electrolyzes organic waste water, an aerobic treatment tank that treats organic waste water that is aerobic and treated with the electrolytic tank using yeast-containing activated sludge, It consists of a solid-liquid separation tank for separating the aerobic treatment tank mixture into sludge and treated water, and a sludge return pipe for returning the sludge separated in the solid-liquid separation tank to the aerobic treatment tank.

あるいは、酵母含有活性汚泥を用いて好気性で有機性排水を処理する好気性処理槽と、好気性処理槽混合液を電気分解する電解槽と、前記電解槽で処理した好気性処理槽混合液を汚泥と処理水に分離する固液分離槽と、前記固液分離槽で分離した汚泥を前記好気性処理槽へ返送する汚泥返送管とからなる。   Alternatively, an aerobic treatment tank for treating aerobic and organic waste water using yeast-containing activated sludge, an electrolytic tank for electrolyzing an aerobic treatment tank mixed solution, and an aerobic treatment tank mixed solution treated in the electrolytic tank And a sludge return pipe for returning the sludge separated in the solid-liquid separation tank to the aerobic treatment tank.

あるいは、酵母含有活性汚泥を用いて好気性で有機性排水を処理する好気性処理槽と、好気性処理槽混合液を汚泥と処理水に分離する固液分離槽と、前記固液分離槽で分離した汚泥を前記好気性処理槽へ返送する汚泥返送管と、前記電解槽で処理した電解処理水を前記好気性処理槽へ返送する電解処理水返送管とからなる。   Alternatively, an aerobic treatment tank that treats organic wastewater aerobically using yeast-containing activated sludge, a solid-liquid separation tank that separates the aerobic treatment tank mixed liquid into sludge and treated water, and the solid-liquid separation tank The sludge return pipe returns the separated sludge to the aerobic treatment tank, and the electrolytic treatment water return pipe returns the electrolytic treatment water treated in the electrolytic tank to the aerobic treatment tank.

さらに、前記汚泥返送管に薬品注入器が設けられていることが望ましい。   Furthermore, it is desirable that a chemical injector is provided in the sludge return pipe.

さらに、前記好気性処理槽に複数の仕切が設けられていることが望ましい。   Furthermore, it is desirable that the aerobic treatment tank is provided with a plurality of partitions.

さらに、浮上汚泥を分離する浮上物分離槽が設けられていることが望ましい。   Furthermore, it is desirable that a levitated substance separation tank for separating levitated sludge is provided.

さらに、前記好気性処理槽に簡易沈殿槽が設けられていることが望ましい。   Furthermore, it is desirable that a simple sedimentation tank is provided in the aerobic treatment tank.

さらに、有機酸を生成する嫌気槽が設けられていることが望ましい。   Furthermore, it is desirable to provide an anaerobic tank for generating organic acids.

(1)酵母含有活性汚泥における酵母の存在割合を調整できるため、従来の処理方法に比べて、排水の濃度や負荷変動などの排水の性質の変化に自在に対応できるので、対応可能な対象排水が増える。 (1) Since the proportion of yeast present in the yeast-containing activated sludge can be adjusted, it is possible to respond freely to changes in wastewater properties such as wastewater concentration and load fluctuations, compared to conventional treatment methods. Will increase.

また、酵母優占または活性汚泥優占の処理を制御することにより、高濃度のノルマルヘキサン抽出物質(100mg/L以上)を含む排水の安定した処理、および、高負荷(BOD−SS負荷が0.5kg/kg・日以上)排水の安定した処理が同時に実現できる。   In addition, by controlling the treatment of dominant yeast or activated sludge, stable treatment of wastewater containing a high concentration of normal hexane extract (100 mg / L or more) and high load (BOD-SS load is 0). Stable treatment of wastewater can be realized at the same time.

(2)酵母含有活性汚泥を顕微鏡や蛍光染色などにより定量化することで、さらに最適運転が可能となり、薬品添加量、空気量および汚水の移送量の調整などの自動化が可能となる。 (2) By quantifying the yeast-containing activated sludge with a microscope or fluorescent staining, it is possible to further optimize the operation, and it is possible to automate the adjustment of the chemical addition amount, the air amount and the transfer amount of sewage.

(3)酵母含有活性汚泥における酵母の存在割合を調整できるため、設定により処理特性−処理水水質を変更でき、対象排水によっては、後処理の活性汚泥部分が不要となる。そのため、1つの好気性処理槽と1つの固液分離槽を設ければよく、小さい敷地面積で処理することができ、イニシャルコストを低く抑えることができる。 (3) Since the yeast abundance ratio in the yeast-containing activated sludge can be adjusted, the treatment characteristics-treated water quality can be changed by setting, and depending on the target wastewater, the activated sludge portion of the post-treatment becomes unnecessary. Therefore, it is only necessary to provide one aerobic treatment tank and one solid-liquid separation tank, and processing can be performed with a small site area, and the initial cost can be kept low.

また、物理化学的処理を行わないため、イニシャルコストを低く抑えることができ、同時に、廃油フロスが発生しないため、その処理のためのランニングコストが不要となり、作業環境の悪化や臭気の問題もない。   In addition, since the physicochemical treatment is not performed, the initial cost can be kept low, and at the same time, no waste oil froth is generated, so there is no need for running costs for the treatment, and there is no problem of deterioration of working environment or odor. .

(4)低pHにより酵母を完全に優占させる場合、好気性処理槽でのpHが流入水により上昇することを利用できる。同時に、処理水側でpHを上げるために添加するアルカリ剤の量も少なくて済む。 (4) When yeast is completely dominated by low pH, it can be utilized that the pH in the aerobic treatment tank is increased by the inflowing water. At the same time, the amount of alkaline agent added to increase the pH on the treated water side can be reduced.

また、酵母含有活性汚泥のフロックは、比重が大きく強固であるため、良好な沈降特性を持ち、安定した処理が可能となる。   Moreover, since the floc of yeast containing activated sludge has a large specific gravity and is strong, it has a favorable sedimentation characteristic and the stable process is attained.

(5)調整槽の後段を中和反応に用いると、薬品の注入量、たとえば、塩素添加量を、十分量とすることができる。このため、確実な不活性化効果を得ることができる。しかも、不活性化の効果の持続による影響を考える必要がなくなり、運転も容易となる。 (5) When the latter stage of the adjustment tank is used for the neutralization reaction, the amount of chemicals injected, for example, the amount of chlorine added can be made sufficient. For this reason, a reliable inactivation effect can be obtained. In addition, it is not necessary to consider the influence due to the persistence of the inactivation effect, and the operation becomes easy.

(6)スカム発生の原因となる浮上物(軽い汚泥成分)が除かれた酵母含有活性汚泥が、固液分離槽に移送されるため、沈殿池でスカムが発生することによる水質悪化を防止できる。また、固液分離槽における固液分離性、すなわち汚泥の沈降が良好になり、処理水に浮遊性物質が含まれないため、安定した良好な処理水が得られる。さらに、固液分離性が良好であるから、返送汚泥が沈降性の良い汚泥となり、好気性処理槽における微生物濃度を高められ、高負荷運転が可能となる。 (6) Since the yeast-containing activated sludge from which floating substances (light sludge components) that cause scum generation are removed is transferred to the solid-liquid separation tank, it is possible to prevent water quality deterioration due to scum generation in the sedimentation basin. . In addition, the solid-liquid separation property in the solid-liquid separation tank, that is, the sedimentation of the sludge is improved, and the suspended water is not contained in the treated water, so that stable and good treated water can be obtained. Furthermore, since the solid-liquid separation property is good, the returned sludge becomes a sludge with good sedimentation, the microorganism concentration in the aerobic treatment tank can be increased, and high-load operation is possible.

(7)浮上物を、好気性処理槽や再曝気槽で再曝気することにより、浮上物に付着した気泡をなくし、浮上物に吸着された未分解の物質を酸化分解でき、汚泥発生量の減少だけでなく、汚泥の比重が大きくなり沈降しやすくなる。したがって、固液分離槽で汚泥の比重が大きくなり沈降しやすくなることで、好気性処理槽から連続的に汚泥が浮上物として流出し好気性処理槽で必要な汚泥量が確保できないという処理性能の低下を、防ぐことができる。 (7) By re-aeration of the levitated matter in the aerobic treatment tank or re-aeration tank, the bubbles adhering to the levitated substance can be eliminated, and the undecomposed substances adsorbed on the levitated substance can be oxidized and decomposed. Not only will it decrease, but the specific gravity of sludge will increase and it will become easier to settle. Therefore, the specific performance of sludge is increased in the solid-liquid separation tank and it becomes easy to settle, so that the sludge flows out continuously from the aerobic treatment tank as floating matter, and the required amount of sludge cannot be secured in the aerobic treatment tank. Can be prevented.

(8)浮上物をそのまま系外排除すれば、浮上物に吸着された未分解の物質を酸化分解する必要がないため、消費エネルギーを減らすことができ、さらに好気性処理槽の汚泥を良好とすることができる。 (8) If the levitated matter is excluded from the system as it is, there is no need to oxidize and decompose the undecomposed substances adsorbed on the levitated matter, so that energy consumption can be reduced and sludge in the aerobic treatment tank is good. can do.

(9)各生物処理ユニット毎に薬品注入器を設けることにより、流入水の負荷および性状に適した好気性処理槽混合液あるいは汚泥を人為的に生み出すことが可能となる。例えば、高、中、低負荷専用の生物活性を適正に制御したユニットが一つ以上個別にあり、急激な負荷変動が発生しても、それぞれの負荷専用ユニットを使用することにより、対応することが可能となる。 (9) By providing a chemical injector for each biological treatment unit, it becomes possible to artificially produce an aerobic treatment tank mixture or sludge suitable for the load and properties of influent water. For example, there are one or more units that appropriately control the biological activity dedicated to high, medium, and low loads, and even if sudden load fluctuations occur, use each load dedicated unit to cope with it. Is possible.

(10)何らかの理由で、流入水量が計画値よりも長期的に少なくなった場合、使用するユニット数を減らして生物処理することが可能となり、使用ブロワ台数薬品使用量等、ランニングコストを削減する効果も期待できる。また、将来、流入水量が増える可能性が出てきた場合でも、後から、ユニットを増設することによって対応することが可能となる。このように顧客に対してイニシャルコスト及びランニングコストの負担を軽減することができる。 (10) If for some reason the amount of inflow water is less than the planned value in the long term, it will be possible to reduce the number of units used and perform biological treatment, reducing the running costs such as the number of chemicals used in the blower. The effect can also be expected. In addition, even if there is a possibility that the amount of inflow water will increase in the future, it is possible to cope with this by adding more units later. Thus, the burden of initial cost and running cost can be reduced for the customer.

(11)設置スペースがない場合でも、例えば図18のように、サークル型にすることにより、スペースを有効に利用することが可能となる。 (11) Even when there is no installation space, for example, as shown in FIG.

(12)タンデム型(直列型)ユニットに比して、サークル型ユニットにした場合、維持管理者の動線が改善され、維持管理し易くなることが挙げられる。これにより、きめ細かな維持管理が可能となることが期待できる。 (12) Compared with a tandem type (series type) unit, when a circle type unit is used, the flow line of the maintenance manager is improved and the maintenance management becomes easier. As a result, it can be expected that detailed maintenance management will be possible.

(13)ユニットの簡易沈殿槽より、酵母含有活性汚泥を含んだ処理水が流出する現象が生じても、後段のユニットでカバーすることが可能な構造にしたので、最終の固液分離槽にて最終的に処理水と汚泥とに分離され、最終処理水は、系外へ排出される。余剰汚泥は汚泥処理設備に移送され、汚泥処分工程に移る。返送汚泥は、汚泥返送管に設けられた薬品注入器にて汚泥中の酵母汚泥と活性汚泥の割合を調整後、流入水に対応した汚泥として、各ユニットに返送および分流させ、各ユニットの特性を維持するようにすることが可能となる。従来、生物指標を用いた生物診断があったが、事後評価にすぎず、急な流入負荷変動等において即時対応が困難であった。本発明においては、生物汚泥をブラックボックスとして捕らえるのではなく、厳密かつ精確に汚泥中の生物を制御することによって、急激な流入水水質変動に対応することが可能となる。 (13) Even if a phenomenon occurs in which treated water containing yeast-containing activated sludge flows out from the simple sedimentation tank of the unit, it has a structure that can be covered by the subsequent unit, so the final solid-liquid separation tank Finally, it is separated into treated water and sludge, and the final treated water is discharged out of the system. The surplus sludge is transferred to the sludge treatment facility and transferred to the sludge disposal process. Return sludge is adjusted to the ratio of yeast sludge and activated sludge in the sludge with a chemical injector installed in the sludge return pipe, and then returned to each unit as a sludge corresponding to the influent water, and the characteristics of each unit. Can be maintained. Conventionally, there has been a biodiagnosis using a biological index, but it is only a post-evaluation, and it is difficult to immediately respond to sudden inflow load fluctuations. In the present invention, the biological sludge is not captured as a black box, but it is possible to cope with a sudden change in the quality of the influent water by controlling the organisms in the sludge strictly and accurately.

(14)各ユニットにpH勾配をつけることによって、生物量、活性を制御することが可能になる。 (14) By providing a pH gradient to each unit, the biomass and activity can be controlled.

酵母汚泥の至適pH域(pH3〜6)と活性汚泥の至適pH域(pH5〜8)との相違を利用して、各ユニット内の好気性処理槽混合液のpHを変化させることにより、各ユニット内の好気性処理槽混合液中の酵母汚泥と活性汚泥との割合を変化させ、生物活性を制御することが可能となる。   By using the difference between the optimum pH range of yeast sludge (pH 3-6) and the optimum pH range of activated sludge (pH 5-8), by changing the pH of the aerobic treatment tank mixture in each unit The biological activity can be controlled by changing the ratio of yeast sludge and activated sludge in the aerobic treatment tank mixed solution in each unit.

(15)酵母汚泥の活性には影響がなく、次亜塩素酸ソーダ、抗生物質の投与等のように、活性汚泥の活性に影響を及ぼす物理化学的手段を用いることによって、各ユニットの酵母汚泥と活性汚泥との割合(存在比)を変化させることによって、生物活性を制御することが可能になる。 (15) The yeast sludge of each unit is not affected by the use of physicochemical means that affect the activity of the activated sludge, such as administration of sodium hypochlorite and antibiotics, without affecting the activity of the yeast sludge. It is possible to control the biological activity by changing the ratio (abundance ratio) between the activated sludge and the activated sludge.

(16)各ユニットに汚泥濃度勾配をつけることによって、生物活性を制御することが可能になる。 (16) Biological activity can be controlled by providing a sludge concentration gradient to each unit.

例えば、流入水水質濃度が極端に高くなった場合、前段ユニットに酵母汚泥濃度を高めた汚泥を保つようにし、後段ユニットに行くに従って、各ユニット内の酵母含有活性汚泥濃度を低下させ、結果的には各ユニットの負荷を一定に保つことが可能となる。   For example, when the influent water quality becomes extremely high, keep the sludge with increased yeast sludge concentration in the previous unit, and decrease the yeast-containing activated sludge concentration in each unit as you go to the subsequent unit. It is possible to keep the load of each unit constant.

(17)各ユニットで目的とする生物活性を制御することができるため、工場生産品目の変更等における排水濃度、性質の変化に対応できる。 (17) Since the target biological activity can be controlled by each unit, it is possible to cope with changes in wastewater concentration and properties due to changes in factory production items.

(18)電気分解は、電流量で制御できるため、目標水質に応じた運転が可能である。 (18) Since electrolysis can be controlled by the amount of current, operation according to the target water quality is possible.

(19)アンモニアと反応した後に、塩素が残留するため好気性処理槽で酵母と活性汚泥の活性を調整するための薬剤(次亜塩素酸ナトリウムなど)添加が不要または少量となる。 (19) Since chlorine remains after reacting with ammonia, the addition of a chemical (such as sodium hypochlorite) for adjusting the activity of yeast and activated sludge in the aerobic treatment tank is unnecessary or small.

(20)運転管理は、電流量の調整と定期的な電極の交換のみで良く、容易である。 (20) The operation management is easy because it is only necessary to adjust the current amount and periodically replace the electrode.

(21)次亜塩素酸ナトリウム等(添加する薬剤として)の使用量が減少するため、貯留タンクの容量が小さくなる。 (21) Since the amount of sodium hypochlorite or the like (as a drug to be added) is reduced, the capacity of the storage tank is reduced.

(22)電気分解に必要な薬品は電解質となる物質のみであり、NaCL等を用いるため、安価で安全である。また、海水を電解質として利用することも可能である。 (22) The only chemical necessary for electrolysis is a substance that serves as an electrolyte. Since NaCL or the like is used, it is inexpensive and safe. It is also possible to use seawater as the electrolyte.

(23)水産加工排水のように電解質が多く含まれる場合は、改めて電解質(NaCL等)の添加も必要ない。 (23) When a large amount of electrolyte is contained as in fishery processing wastewater, it is not necessary to add an electrolyte (NaCL or the like) again.

(24)処理水は流入水と比べ有機物、SS等の汚濁物質が少ないため、処理水の電気分解処理では、生成された次亜塩素酸イオンの大半をアンモニア態窒素の酸化に利用できる。 (24) Since the treated water is less pollutant such as organic matter and SS than the influent water, most of the generated hypochlorite ions can be used for the oxidation of ammonia nitrogen in the electrolysis treatment of the treated water.

(25)処理水の一部を返送することにより、電気分解後の残留塩素が生物反応槽に戻るため、次亜塩素酸ナトリウムなどの添加が不要または少量となる。 (25) Since the residual chlorine after electrolysis returns to the biological reaction tank by returning a part of the treated water, the addition of sodium hypochlorite or the like becomes unnecessary or small.

(26)処理水中に残留塩素があるため、処理水への消毒剤添加が不要または少量となる。 (26) Since there is residual chlorine in the treated water, disinfectant addition to the treated water is unnecessary or small.

(27)処理水を返送することにより、処理水中に放出された酵素(酵母の菌体外酵素)が返送され、生物反応槽の処理能力が上がる。 (27) By returning the treated water, the enzyme (yeast extracellular enzyme) released into the treated water is returned, and the treatment capacity of the biological reaction tank is increased.

(28)電気分解は電流量で制御できるため、目標水質に応じた運転が可能である。たとえば、生物処理に必要な窒素量だけ残すことができる。 (28) Since electrolysis can be controlled by the amount of current, operation according to the target water quality is possible. For example, only the amount of nitrogen necessary for biological treatment can be left.

(29)流入水中の有機物を処理することによって、生物反応槽へ流入する負荷の調整が可能となる。負荷を下げることにより、生物反応槽容量を小さくすることができる。 (29) By treating the organic matter in the inflowing water, the load flowing into the biological reaction tank can be adjusted. By reducing the load, the biological reaction tank capacity can be reduced.

(30)酵母処理だけでは、処理水のBODが200mg/L程度であり、公共用水域に放流するためには、後処理として活性汚泥処理が必要であった。電気分解手段は、アンモニア態窒素だけでなく、有機物も処理できるため、好気性処理槽−固液分解槽の後に電解槽を設けることにより、後処理の活性汚泥槽をなくすことができる。 (30) The BOD of treated water was about 200 mg / L only by yeast treatment, and activated sludge treatment was required as a post-treatment for release into public water areas. Since the electrolysis means can treat not only ammonia nitrogen but also organic matter, by providing an electrolytic cell after the aerobic treatment tank-solid-liquid decomposition tank, the post-treatment activated sludge tank can be eliminated.

(31)さらに、図22に示すように、処理水の一部を電気分解することもできる。 (31) Further, as shown in FIG. 22, a part of the treated water can be electrolyzed.

(32)図23に示すように、好気性処理槽と固液分解槽の間で電気分解する。好気性処理槽の後で好気性処理層混合液を電気分解することにより、汚泥(マイナスに帯電)の電荷が中和され、フロック形成しやすくなる。結果として沈降性が向上する。 (32) As shown in FIG. 23, electrolysis is performed between the aerobic treatment tank and the solid-liquid decomposition tank. By electrolyzing the aerobic treatment layer mixed solution after the aerobic treatment tank, the sludge (negatively charged) charge is neutralized and it becomes easy to form a floc. As a result, the sedimentation property is improved.

(33)酵母の活性を高めるために、pHを3〜6に調整するが、この調整のために、硫酸や塩酸などを好気性処理槽に添加することがないか、少量で済むので、薬液貯留タンクや薬液添加装置等が不要、あるいは小規模となり、イニシャルコストを下げることができる。 (33) In order to increase the activity of the yeast, the pH is adjusted to 3-6. For this adjustment, sulfuric acid, hydrochloric acid or the like is not added to the aerobic treatment tank, or a small amount is sufficient. A storage tank, a chemical solution addition device, etc. are unnecessary or small-scale, and the initial cost can be reduced.

また、継続的に薬品を添加する必要がないので、ランニングコストを下げることができる。   Moreover, since it is not necessary to continuously add chemicals, the running cost can be reduced.

(34)また、従来、pHを3〜6に調整するために硫酸を添加すると、汚泥が嫌気化する部位が存在すると硫酸イオンが還元され硫化水素が発生し、悪臭源となったり、コンクリートを腐食するなどの不具合が生ずる場合があったが、硫酸を使用しないか、少量で済むので、悪臭の発生やコンクリートの腐食を防止することができる。 (34) Conventionally, when sulfuric acid is added to adjust the pH to 3 to 6, if there is a site where the sludge becomes anaerobic, sulfate ions are reduced and hydrogen sulfide is generated, which may be a source of malodor, In some cases, such as corrosion, may occur. However, since sulfuric acid is not used or only a small amount is required, generation of malodor and corrosion of concrete can be prevented.

(35)また、図26に示した構成においては、余剰汚泥の減量化も期待できる。 (35) Moreover, in the structure shown in FIG. 26, the reduction | decrease of excess sludge can also be expected.

本発明における反応槽および沈殿槽などについて、図面を参照して説明する。   The reaction tank and the precipitation tank in the present invention will be described with reference to the drawings.

図1から図5は、本発明の有機性排水処理装置の実施例を示す概略的な構成図である。図6から図9は、本発明の有機性排水処理装置の実施例を示す概略的な構成図であり、好気性処理槽の構成を示した。図10から図12は、本発明の有機性排水処理装置の実施例を示す概略的な構成図である。図13および図14は、生物処理ユニットの実施例を示す概略的な構成図である。図15から図19は、生物処理ユニットの構成の異なる実施例を示す概略的な構成図である。そして、図20から図23が、電解槽を用いた場合の実施例を示す概略的な構成図である。図24から図26は、嫌気槽を備えた場合の実施例を示す概略的な構成図である。   1 to 5 are schematic configuration diagrams showing an embodiment of the organic waste water treatment apparatus of the present invention. 6 to 9 are schematic configuration diagrams showing an embodiment of the organic waste water treatment apparatus of the present invention, and show the configuration of the aerobic treatment tank. 10 to 12 are schematic configuration diagrams showing an embodiment of the organic waste water treatment apparatus of the present invention. 13 and 14 are schematic configuration diagrams showing an embodiment of the biological treatment unit. 15 to 19 are schematic configuration diagrams showing different embodiments of the configuration of the biological treatment unit. FIG. 20 to FIG. 23 are schematic configuration diagrams showing an embodiment in which an electrolytic cell is used. FIG. 24 to FIG. 26 are schematic configuration diagrams showing an embodiment when an anaerobic tank is provided.

(1)構成要素
生物処理ユニット
生物処理ユニットは、好気性処理槽と簡易沈殿槽とからなる。
(1) Components
Biological treatment unit The biological treatment unit comprises an aerobic treatment tank and a simple sedimentation tank.

図13に示した生物処理ユニットでは、好気性処理槽と簡易沈殿槽とが独立した構造であり、図14に示した生物処理ユニットでは、仕切り板により好気性処理槽と簡易沈殿槽とを分けた構造である。仕切り板の底部は開いていて、移送管の役目を果たす。図15から図19に示すように、複数の生物処理ユニットを組み合わせることにより、流入水の水量変動、急激な水質変化に迅速に対応することが可能となり、かつ、各生物処理ユニット毎の酵母汚泥と活性汚泥との存在比を人為的に制御することが可能となる。   In the biological treatment unit shown in FIG. 13, the aerobic treatment tank and the simple sedimentation tank are independent structures. In the biological treatment unit shown in FIG. 14, the aerobic treatment tank and the simple precipitation tank are separated by a partition plate. Structure. The bottom of the partition plate is open and serves as a transfer tube. As shown in FIGS. 15 to 19, by combining a plurality of biological treatment units, it becomes possible to quickly cope with fluctuations in the amount of influent water and sudden changes in water quality, and yeast sludge for each biological treatment unit. It becomes possible to artificially control the abundance ratio between activated sludge and activated sludge.

好気性処理槽と簡易沈殿槽とからなる生物処理ユニット以外にも、生物処理手段と固液分離手段とが組み合わさっていればよい。   In addition to the biological treatment unit composed of the aerobic treatment tank and the simple sedimentation tank, the biological treatment means and the solid-liquid separation means may be combined.

さらに、好気性処理槽、簡易沈殿槽、流入ライン(流入に関する槽構造を含む)、または汚泥返送管(返送に関する槽構造を含む)に、例えばpH調整手段を実施することが可能なように、すなわち結果的には、酵母の増殖を優占的にしたり、活性汚泥の増殖を抑制させたりすることが人為的に可能な薬品注入器を備える。   Further, for example, pH adjustment means can be implemented in the aerobic treatment tank, the simple sedimentation tank, the inflow line (including the tank structure related to inflow), or the sludge return pipe (including the tank structure related to return), That is, as a result, a chemical injector capable of artificially controlling the growth of yeast or suppressing the growth of activated sludge is provided.

簡易沈殿槽
簡易沈殿槽では、好気性処理槽より移流した好気性処理槽混合液中の汚泥を液層から分離し、分離した汚泥を返送できれば、いかなる方法を使用してもよい。
In the simple sedimentation tank , any method may be used as long as the sludge in the aerobic treatment tank mixed liquid transferred from the aerobic treatment tank can be separated from the liquid layer and the separated sludge can be returned.

固液分離槽
固液分離槽は、簡易沈殿槽と同様に好気性処理槽混合液中の汚泥を固液分離して、さらに、汚泥を返送できる。例えば、重力式沈殿槽、スクリーン分離装置、遠心分離装置、ろ布分離装置、ベルト走行式分離装置などが利用可能である。
The solid-liquid separation tank solid-liquid separation tank can solid-liquid separate the sludge in the aerobic treatment tank mixed liquid and return the sludge in the same manner as the simple sedimentation tank. For example, a gravity precipitation tank, a screen separation device, a centrifugal separation device, a filter cloth separation device, a belt traveling separation device, or the like can be used.

好気性処理槽
好気性処理槽は、活性汚泥と有機物資化性の酵母菌との混合系の微生物群を有する反応槽である。低pHに対応できる材質であれば、一般的な反応槽を利用できる。
The aerobic treatment tank The aerobic treatment tank is a reaction tank having a mixed microorganism group of activated sludge and organic substance-utilizing yeast. If it is a material which can respond to low pH, a general reaction tank can be utilized.

好気性処理槽で使用する酵母菌は有機物を資化できるものであれば、どのような属でもよい。たとえば、トリコスポロン(Trichosporon)、キャンディダ(Candida)、ハンゼヌラ(Hansenula)、サッカロマイセス(Saccharomyces)、クルイベロマイセス(Kluyveromyces)属等の酵母菌が利用可能である。   The yeast used in the aerobic treatment tank may be any genus as long as it can assimilate organic matter. For example, yeasts such as Trichosporon, Candida, Hansenula, Saccharomyces, and Kluyveromyces can be used.

好気性処理槽は、図6〜図9に示すように、複数の仕切を設けてあることが好ましい。この構成により、生物活性が制御され、前段では有機物資化性酵母の活性度が高く、後段に行くに従って活性汚泥の活性が高まるようにできる。   As shown in FIGS. 6 to 9, the aerobic treatment tank is preferably provided with a plurality of partitions. With this configuration, the biological activity is controlled, and the activity of the organic substance-assimilating yeast is high in the former stage, and the activity of the activated sludge can be increased as it goes to the latter stage.

散気手段
好気性処理槽内には、槽内を曝気する散気手段が備えられる。散気手段は、曝気工程中に、槽内を適正なDO(溶存酸素)濃度に保持できるものであれば任意である。たとえば、多段式散気装置、ディスク型散気装置、筒状散気装置、ドラフトチューブ型散気装置などが利用可能である。散気手段は、散気手段に空気を送るブロワに接続される。
In the aerobic treatment tank, an aeration means for aerating the inside of the tank is provided. Any diffuser can be used as long as the inside of the tank can be maintained at an appropriate DO (dissolved oxygen) concentration during the aeration process. For example, a multistage diffuser, a disk diffuser, a cylindrical diffuser, a draft tube diffuser, etc. can be used. The air diffuser is connected to a blower that sends air to the air diffuser.

散気手段に接続するブロワは、複数の散気手段に共通して設けてもよい。複数の生物処理ユニットで、使用しないユニットの散気手段を停止することもできる。   The blower connected to the air diffuser may be provided in common for the plurality of air diffusers. In a plurality of biological treatment units, it is also possible to stop the aeration means of the unused units.

汚泥返送管
汚泥返送管は、固液分離槽で処理水と分離された汚泥の一部または全量を好気性処理槽へ返送する。本発明では、図1〜図9に示されるように、汚泥返送管に分配された返送汚泥に対して、殺菌処理および/またはpH調整が行なわれる。また、必要に応じて、図4に示したように、異なる汚泥返送管を設けて薬品の注入は行わず、酵母含有活性汚泥がダメージを受けないように汚泥を返送してもよい。
Sludge return pipe The sludge return pipe returns a part or all of the sludge separated from the treated water in the solid-liquid separation tank to the aerobic treatment tank. In the present invention, as shown in FIGS. 1 to 9, sterilization treatment and / or pH adjustment is performed on the return sludge distributed to the sludge return pipe. In addition, as shown in FIG. 4, if necessary, different sludge return pipes may be provided to inject chemicals and return sludge so that the yeast-containing activated sludge is not damaged.

薬品注入器
薬品注入器は、汚泥返送管の途中あるいは槽に設けられ、返送汚泥の生物活性度を調整し、好気性処理槽に生息する生物活性のバランスを保つための薬品を注入する。スタティックミキサーなどのインラインミキサーなどを用いることができるが、薬品注入量を制御しうるものであれば、その形態は問わない。主として、酸、アルカリあるいは消毒剤、過酸化水素、オゾン、汚泥減容化剤などの薬剤を添加する化学的な方法を利用するが、電気分解、超音波、加温、破砕などの物理的方法を利用する装置に置換することも可能である。
The chemical injector is provided in the middle of the sludge return pipe or in the tank, and adjusts the biological activity of the returned sludge and injects a chemical for maintaining the balance of the biological activity inhabiting the aerobic treatment tank. An in-line mixer such as a static mixer can be used, but the form is not limited as long as the amount of chemical injection can be controlled. Mainly using chemical methods of adding chemicals such as acid, alkali or disinfectant, hydrogen peroxide, ozone, sludge volume reducing agent, but physical methods such as electrolysis, ultrasonic, heating, crushing It is also possible to replace it with a device that uses

制御設備
薬品注入器を制御しうるものであれば、汎用コンピュータを用いるなど、その形態は問わない。好気性処理槽における酵母量と活性汚泥量との比率や酸素利用速度などの定量的、直接的なデータを用いて、好気性処理槽におけるこれらの活性バランスを保つように、薬品注入量を制御する。また、より簡単に、好気性処理槽、調整槽などのpHや溶存酸素濃度などに基づいて間接的に薬品注入量を設定する方法もある。さらに、薬品注入器以外に、曝気における空気量、汚水移送量、返送汚泥量などの調整も管理できるようにするとよい。
As long as the control equipment chemical injector can be controlled, the form is not limited, such as using a general-purpose computer. Using quantitative and direct data such as the ratio between the amount of yeast and activated sludge in the aerobic treatment tank and the oxygen utilization rate, the chemical injection amount is controlled to maintain the balance of these activities in the aerobic treatment tank. To do. There is also a method of indirectly setting a chemical injection amount based on pH, dissolved oxygen concentration, etc. of an aerobic treatment tank, a control tank, and the like. Furthermore, in addition to the chemical injector, it is preferable to be able to manage adjustments such as the amount of air in aeration, the amount of sewage transferred, and the amount of returned sludge.

調整槽
汚泥返送管の途中に調整槽を設けることで、返送汚泥と薬品が撹拌により反応させられ、殺菌剤の効果のよい反応領域とすることができる。また、調整槽で曝気を行い、酵母に付着した基質の酸化を行うこともできる。さらに、調整槽を複数、設けてもよい。
By providing the adjustment tank in the middle of the adjustment tank sludge return pipe, the return sludge and the chemical are reacted by stirring, and a reaction region having a good effect of the bactericide can be obtained. In addition, aeration can be performed in the adjustment tank to oxidize the substrate attached to the yeast. Furthermore, you may provide multiple adjustment tanks.

浮上物分離槽
図10〜図12に示すように、好気性処理槽混合液に含まれる浮上物を分離する浮上物分離槽を設けることで、気泡が付着した汚泥や、未分解の油滴を抱き込んだ汚泥である浮上物を、分離させ、沈降した好気性処理槽混合液のみを固液分離槽に移送することができる。これにより、固液分離槽におけるスカム発生は防止され、固液分離槽の分離特性は良好となる。
Floating matter separation tank As shown in FIGS. 10 to 12, by providing a floating matter separation tank that separates the floating substance contained in the aerobic treatment tank mixed liquid, sludge with bubbles attached thereto and undecomposed oil droplets are removed. The levitated matter that is the sludge that has been embraced can be separated, and only the settled aerobic treatment tank mixed liquid can be transferred to the solid-liquid separation tank. Thereby, scum generation in the solid-liquid separation tank is prevented, and the separation characteristics of the solid-liquid separation tank are improved.

浮上物は、必要に応じて再曝気処理され処理系統に返送されたり、図12に示すように、系外排除されたりする。   The levitated material is re-aerated as necessary and returned to the processing system, or is excluded from the system as shown in FIG.

再曝気槽
図11に示すように、再曝気槽を設けることで、浮上物が抱き込んだ未分解の油滴を分解したり、付着した気泡を壊したりすることができる。
Re-aeration tank As shown in FIG. 11, by providing a re-aeration tank, it is possible to decompose the undecomposed oil droplets entrained by the levitated substance or break the attached bubbles.

嫌気槽
図24〜図26に示すように、嫌気槽を設けることで、流入水中の有機物の一部または全量が嫌気発酵し有機酸を生じさせ、この有機酸を、従来の硫酸や塩酸の代わりに用いることができる。
Anaerobic tank As shown in FIG. 24 to FIG. 26, by providing an anaerobic tank, part or all of the organic matter in the inflowing water undergoes anaerobic fermentation to produce an organic acid, and this organic acid is used in place of conventional sulfuric acid or hydrochloric acid. Can be used.

酵母の活性を高めるために、pHを3〜6に調整するが、この調整のために、硫酸や塩酸などを好気性処理槽に添加することがないか、少量で済むので、薬液貯留タンクや薬液添加装置等が不要、あるいは小規模となり、イニシャルコストを下げることができる。また、継続的に薬品を添加する必要がないので、ランニングコストを下げることができる。   In order to increase the activity of the yeast, the pH is adjusted to 3-6. For this adjustment, sulfuric acid or hydrochloric acid is not added to the aerobic treatment tank, or a small amount is sufficient. A chemical addition device or the like is unnecessary or small-scale, and the initial cost can be reduced. Moreover, since it is not necessary to continuously add chemicals, the running cost can be reduced.

また、従来、pHを3〜6に調整するために硫酸を添加して、汚泥が嫌気化する部位が存在すると硫酸イオンが還元され硫化水素が発生し、悪臭源となったり、コンクリートを腐食するなどの不具合が生ずる場合があったが、硫酸を使用しないか、少量で済むので、悪臭の発生やコンクリートの腐食を、防止することができる。   Conventionally, sulfuric acid is added to adjust the pH to 3 to 6, and if there is a site where the sludge becomes anaerobic, sulfate ions are reduced and hydrogen sulfide is generated, which becomes a source of malodor and corrodes concrete. However, since sulfuric acid is not used or a small amount is sufficient, it is possible to prevent generation of malodor and corrosion of concrete.

また、図26に示した構成においては、余剰汚泥の減量化も期待できる。   Moreover, in the structure shown in FIG. 26, reduction of excess sludge can also be expected.

(2)pH調整・塩素添加
本発明の有機性排水処理装置の一態様では、図1から図5に示すように、好気性で有機性排水を処理する好気性処理槽と、好気性処理槽混合液を汚泥と処理水に分離する固液分離槽と、汚泥を返送する汚泥返送管とからなり、前記好気性処理槽が酵母含有活性汚泥を用いた好気性処理槽であり、かつ、前記汚泥返送管に薬品注入器を備えることを特徴とする。
(2) pH adjustment / chlorine addition In one aspect of the organic wastewater treatment apparatus of the present invention, as shown in FIGS. 1 to 5, an aerobic treatment tank for treating organic wastewater and an aerobic treatment tank. It consists of a solid-liquid separation tank that separates the mixed liquid into sludge and treated water, and a sludge return pipe that returns sludge, wherein the aerobic treatment tank is an aerobic treatment tank using yeast-containing activated sludge, and A sludge return pipe is provided with a chemical injector.

酵母の至適pHは3〜6であり、活性汚泥の至適pHは5〜8である。通常、酵母は増殖速度が活性汚泥よりも小さいため、pH調整などを行わない場合には、活性汚泥が優占することが多い。また、酵母は塩素に対して耐性があるが、活性汚泥は塩素に耐性がない。   The optimum pH of yeast is 3-6, and the optimum pH of activated sludge is 5-8. Usually, the growth rate of yeast is smaller than that of activated sludge, so that activated sludge is often dominant when pH adjustment is not performed. Yeast is resistant to chlorine, but activated sludge is not resistant to chlorine.

したがって、pH調整と塩素添加により、酵母と活性汚泥とが混在している汚泥中において、活性汚泥にダメージ(不活化)を選択的に付与できる。また、このダメージの程度により、活性汚泥の量を制御できる。その他、メタ重亜硫酸カリウムの添加などを用いて、活性汚泥に、ダメージを選択的に与えてもよい。   Therefore, damage (inactivation) can be selectively imparted to the activated sludge in the sludge in which yeast and activated sludge are mixed by adjusting the pH and adding chlorine. Further, the amount of activated sludge can be controlled by the degree of damage. In addition, the activated sludge may be selectively damaged by the addition of potassium metabisulfite.

本発明では、活性汚泥の死滅および不活化手段として、図1から図5に示すように、汚泥返送管に薬品注入器を設け、直接、汚泥返送管に薬品を注入し、pHを調整および/または殺菌処理をする。これは、好気性処理槽に薬品注入を行わないことで、薬品の注入量を、汚泥返送管に十分量投入しても、汚泥と混合した後に好気性処理槽に移流するので、好気性処理槽での生物活性に対する薬品の影響を少なくすることができる。   In the present invention, as shown in FIGS. 1 to 5, as a means for killing and inactivating activated sludge, a chemical injector is provided in the sludge return pipe, the pH is adjusted by directly injecting the chemical into the sludge return pipe. Or sterilize. This is because the chemical is not injected into the aerobic treatment tank, and even if a sufficient amount of chemical is injected into the sludge return pipe, it is transferred to the aerobic treatment tank after mixing with the sludge. The influence of chemicals on the biological activity in the tank can be reduced.

好気性処理槽のpH調整は、流入水のpHが7を超える場合や、流入水のpHが4を下回るような場合などに、必要に応じて行う。pH調整剤としては、硫酸や水酸化ナトリウムなどを使用するが、微生物の生育を阻害しないものであれば任意の薬品を利用できる。   The pH adjustment of the aerobic treatment tank is performed as necessary when the pH of the influent water exceeds 7 or when the pH of the influent water is less than 4. As the pH adjuster, sulfuric acid, sodium hydroxide or the like is used, and any chemical can be used as long as it does not inhibit the growth of microorganisms.

さらに、図2から図5に示すように、汚泥返送管に調整槽を設け、十分に攪拌を行ってもよい。これにより、十分なpH調整および/または殺菌処理を行うことができる。調整槽は必要に応じて複数設けてもよい。また、調整槽を設けた場合、調整槽で曝気を行い、酵母に吸着した基質の酸化を行ってもよい。   Furthermore, as shown in FIGS. 2 to 5, an adjustment tank may be provided in the sludge return pipe, and sufficient stirring may be performed. Thereby, sufficient pH adjustment and / or sterilization treatment can be performed. You may provide multiple adjustment tanks as needed. Moreover, when an adjustment tank is provided, aeration may be performed in the adjustment tank to oxidize the substrate adsorbed on the yeast.

さらに、流入水の性状により必要があれば、好気性処理槽の前段で、夾雑物除去や油分の分散化などの前処理を行う。   Furthermore, if necessary depending on the properties of the influent water, pretreatment such as removal of contaminants and dispersion of oil is performed in the previous stage of the aerobic treatment tank.

固液分離槽で処理水と分離された後の汚泥は、流入状況と処理目標に応じて、汚泥返送管と排出配管とに分配される。汚泥返送管に分配された返送汚泥は、前述の薬品注入器や調整槽で、pHを4付近まで下げられる。これにより、返送汚泥中の活性汚泥は、死滅または不活化する。   The sludge after being separated from the treated water in the solid-liquid separation tank is distributed to the sludge return pipe and the discharge pipe according to the inflow situation and the treatment target. The return sludge distributed to the sludge return pipe can be lowered to a pH of around 4 by the above-described chemical injector and adjustment tank. Thereby, the activated sludge in the returned sludge is killed or inactivated.

また、図4および図5に示すように、異なる汚泥返送管を設け、汚泥の返送を行い、この経路の酵母含有活性汚泥に対しては、pH調整や塩素添加を行わずに、酵母含有活性汚泥がダメージを受けないようにして、好気性処理槽での生物活性のバランスを調整することもできる。   Moreover, as shown in FIG. 4 and FIG. 5, a different sludge return pipe is provided, sludge is returned, and the yeast-containing activity is not adjusted for the yeast-containing activated sludge of this route without adjusting pH or adding chlorine. It is also possible to adjust the balance of biological activity in the aerobic treatment tank so that the sludge is not damaged.

さらに、必要に応じて、図示しないが、異なる汚泥返送管でアリルチオ尿素などを添加することで、亜硝酸菌量の調整を行ってもよい。このことで、pHが低下し過ぎることや、COD対策とすることができる。   Furthermore, although not illustrated, the amount of nitrite bacteria may be adjusted by adding allylthiourea or the like with a different sludge return pipe, if necessary. As a result, the pH can be excessively lowered or COD can be taken as a countermeasure.

次に、本発明の有機性排水処理装置では、酵母含有活性汚泥の不活性化手段として、返送汚泥に対する塩素系薬剤による殺菌処理が行われる。塩素系薬剤の添加により、細菌の細胞壁に多く含まれる脂肪酸が塩素により酸化され、細胞壁に穴があくため殺菌される。したがって、酵母含有活性汚泥中の活性汚泥は不活性化される。しかし、酵母の細胞壁は、キチン、キトサン、グルカンおよびマンナンが主構成成分であるため、塩素では酸化されにくく、酵母は塩素では阻害されない。   Next, in the organic waste water treatment apparatus of the present invention, as a means for inactivating the yeast-containing activated sludge, the return sludge is sterilized with a chlorine-based chemical. Addition of chlorinated chemicals oxidizes fatty acids that are abundant in the cell walls of bacteria and sterilizes because the cell walls have holes. Therefore, the activated sludge in the yeast-containing activated sludge is inactivated. However, since chitin, chitosan, glucan and mannan are the main constituents of the cell wall of yeast, it is difficult to oxidize with chlorine, and yeast is not inhibited with chlorine.

これにより、好気性処理槽における酵母含有活性汚泥中の酵母含有量を自在に変化させることができる。たとえば、流入水の負荷が高い場合や高濃度のノルマルヘキサン抽出物質が含まれる場合、酵母含有量が多くなるように塩素の添加量を多くし、逆に、負荷の低い場合には、酵母含有量が少なくなるように塩素の添加量を少なくする。したがって、好気性処理槽における生物活性のバランスを負荷変動に自在に対応できるようにすることができる。   Thereby, the yeast content in the yeast containing activated sludge in an aerobic processing tank can be changed freely. For example, when the load of influent water is high or when high-concentration normal hexane extract is included, increase the amount of chlorine added to increase the yeast content. Reduce the amount of chlorine added to reduce the amount. Therefore, the balance of the biological activity in the aerobic treatment tank can be freely coped with the load fluctuation.

塩素による殺菌処理は、薬品注入器からたとえば次亜塩素酸ナトリウムのように塩素系殺菌剤を注入することにより行う。   The sterilization treatment with chlorine is performed by injecting a chlorine-based sterilizer such as sodium hypochlorite from a chemical injector.

(3)好気性処理
返送汚泥は、汚泥返送管においてpH調整および/または塩素添加により不活性化処理が施される。このような返送汚泥が投入される好気性処理槽の前段では、酵母の至適pH(3〜6)となり、また、塩素系薬剤の添加により活性汚泥が不活性化しているため、酵母による処理が主になり、濃度の高い流入水に対応できる。複数に仕切られたか、あるいは複数槽の好気性処理槽の場合には、後段に行くに従って、pHが活性汚泥の至適pH(5〜8)に変化し、また、塩素濃度が低くなるため、活性汚泥による処理が主となり、これにより酵母優占では処理しきれないBODがほとんど処理できるようになる。
(3) Aerobic treatment The returned sludge is inactivated by adjusting the pH and / or adding chlorine in the sludge return pipe. In the previous stage of the aerobic treatment tank into which such return sludge is introduced, the pH is optimum (3 to 6) of yeast, and the activated sludge is inactivated by the addition of chlorinated chemicals. Can handle the influent water with high concentration. In the case of a plurality of aerobic treatment tanks divided into a plurality of tanks, the pH changes to the optimum pH (5 to 8) of the activated sludge as it goes to the subsequent stage, and the chlorine concentration decreases, The main treatment is activated sludge, which makes it possible to treat almost all BOD that cannot be treated by yeast-dominated treatment.

好気性処理槽は、流入水質や水量により、単槽で複数の仕切りを入れるか、あるいは複数槽であってもよい。   The aerobic treatment tank may be a single tank or a plurality of tanks depending on the quality of the inflow water and the amount of water.

複数に仕切られたか、あるいは複数槽の好気性処理槽の場合に、各槽における生物活性度をより厳密に調整するために、各槽に薬品を注入できるように薬品注入器を好気性処理槽に設けてもよい。薬品注入器から殺菌剤および/またはpH調整剤を注入することにより、各槽で優占させる生物に最適な殺菌剤および/またはpH調整が可能となる。また、そのため、各槽に設けた薬品注入器を制御することが好ましい。   In the case of a plurality of aerobic treatment tanks divided into a plurality of tanks, in order to more precisely adjust the biological activity in each tank, the chemical injectors can be aerobic treatment tanks so that chemicals can be injected into each tank. May be provided. By injecting a bactericidal agent and / or a pH adjusting agent from a chemical injector, it is possible to adjust the bactericidal agent and / or pH optimum for the organism to be dominant in each tank. Therefore, it is preferable to control the chemical injector provided in each tank.

(4)生物処理ユニットの構成例
図15は、好気性処理槽と簡易沈澱槽とが独立した生物処理ユニットが4ユニット直列に連結した配置を示している。流入水が、好気性処理槽に流入し、ここで、生物処理がなされた後、簡易沈殿槽へ好気性処理槽混合液が移流し、ここで好気性処理槽混合液は、処理水部分と汚泥部分とに固液分離される。このとき、固液分離が完全になされなくてもよく、ある程度のSS成分を含んだ処理水が、次のユニットへ引き継がれ、生物処理が実施される。また、固液分離した汚泥は、汚泥返送管に入り好気性処理槽へ返送される。この汚泥返送管の途中には薬品注入器が設けられ、ここで酵母汚泥と活性汚泥との存在比を人為的に調整し、生物活性を適正に制御した汚泥として各ユニットの好気性処理槽へ返送される。汚泥返送管は、一つまたは複数のユニットに返送および分流することができる構造であれば円筒状の管だけでなく、四角柱状であっても良い。また、流入水あるいは処理水の水量及び負荷変動に応じて、使用するユニット数を変化させたり、あるいは流入水、処理水、返送汚泥を各ユニットへ分流させたりすることで、各種排水に適応した生物処理が可能となる。最終の沈殿槽において、処理水部分と汚泥部分が固液分離され、処理水は系外へと排出される。処理水と分離した汚泥は、各ユニットへ返送されるが、返送途中に薬品注入器を設け、各ユニットに相応しい生物活性になるように調整後、分流および返送されることとなる。
(4) Configuration Example of Biological Treatment Unit FIG. 15 shows an arrangement in which four biological treatment units in which an aerobic treatment tank and a simple precipitation tank are independent are connected in series. The inflow water flows into the aerobic treatment tank, where the aerobic treatment tank mixture is transferred to the simple sedimentation tank after the biological treatment is performed. Solid-liquid separation into sludge part. At this time, solid-liquid separation may not be completely performed, and treated water containing a certain amount of SS component is handed over to the next unit, and biological treatment is performed. The sludge separated into solid and liquid enters the sludge return pipe and is returned to the aerobic treatment tank. A chemical injector is installed in the middle of this sludge return pipe, where the abundance ratio of yeast sludge and activated sludge is artificially adjusted, and the bioactivity is appropriately controlled to the aerobic treatment tank of each unit. Will be returned. The sludge return pipe may be not only a cylindrical pipe but also a quadrangular prism as long as it can return and divert to one or a plurality of units. In addition, it is suitable for various types of wastewater by changing the number of units used according to the amount of influent or treated water and load fluctuations, or by diverting influent, treated water, and return sludge to each unit. Biological treatment becomes possible. In the final settling tank, the treated water portion and the sludge portion are separated into solid and liquid, and the treated water is discharged out of the system. The sludge separated from the treated water is returned to each unit. However, a chemical injector is provided in the middle of the return, and after adjustment is made so that the biological activity is appropriate for each unit, the sludge is diverted and returned.

また、簡易沈殿槽の汚泥はユニットの好気性処理槽に戻される。さらに、簡易沈殿槽の汚泥は固液分離槽からの返送汚泥と合流して、別のユニットに分配できる。これは、いくつかのユニットを1つの運転条件で運転して、流入量や負荷の変動に対応できるような構造である。図16〜図19についても同様に、固液分離槽の汚泥も簡易沈殿槽の汚泥も自在に各ユニットに分配できる構造となっている。   The sludge in the simple sedimentation tank is returned to the aerobic treatment tank of the unit. Furthermore, the sludge in the simple sedimentation tank can be combined with the returned sludge from the solid-liquid separation tank and distributed to another unit. This is a structure in which several units can be operated under one operating condition to cope with variations in inflow and load. Similarly, in FIGS. 16 to 19, the sludge in the solid-liquid separation tank and the sludge in the simple sedimentation tank can be freely distributed to each unit.

しかし、流入水質や制御方法によって、各ユニット毎に汚泥返送管と薬品注入器を設けなくてもよい。例えば、流入水を途中のユニットに入れない場合は、最初に薬品注入管を設けるだけでよい。   However, the sludge return pipe and the chemical injector need not be provided for each unit depending on the influent water quality and the control method. For example, when inflow water is not put into the unit on the way, it is only necessary to provide a chemical injection pipe first.

図16と図15とは、異なる生物処理ユニットを使用している。各生物処理ユニットの固液分離性が低下しても大きな問題とはならないことから、図14に示したような生物処理ユニットの様な構造を有した装置を用いれば、設置スペースの節約となり、イニシャルコストの低減化につながる。   FIG. 16 and FIG. 15 use different biological treatment units. Even if the solid-liquid separation property of each biological treatment unit is lowered, it does not become a big problem. Therefore, if an apparatus having a structure like the biological treatment unit as shown in FIG. It leads to reduction of initial cost.

図17は、各生物処理ユニットにおいて、簡易沈殿槽を対角線上に位置し、各生物処理ユニット間を流体が千鳥状に流れるように構成することもできる。   FIG. 17 can also be configured such that in each biological treatment unit, the simple sedimentation tank is positioned diagonally so that fluid flows between the biological treatment units in a staggered manner.

図18は、同じ4つの生物処理ユニットでも、サークル状に構成することも可能である。これは、流入水をいったん分配手段に受け、各生物処理ユニットのどこへでも流入水を分配することが可能とする。図18では各生物処理ユニットの簡易沈殿部の対角に位置したところに流入水を流入させた。この場合、全生物処理ユニットの流体の流れは、反時計回りとなる。本実施例のメリットは、縦長に設置できない時に有効となる。また施設の運転維持管理者の動線を考えた場合、縦長よりも維持管理上、効率良いといえる。   In FIG. 18, even the same four biological treatment units can be configured in a circle shape. This makes it possible to receive the incoming water once in the distribution means and distribute the incoming water anywhere in each biological treatment unit. In FIG. 18, inflow water was made to flow into the place located in the diagonal of the simple sedimentation part of each biological treatment unit. In this case, the fluid flow of the whole biological treatment unit is counterclockwise. The merit of this embodiment is effective when it cannot be installed vertically. In addition, when considering the flow of the operation and maintenance manager of the facility, it can be said that it is more efficient in terms of maintenance than vertical.

図19は、図14に示した生物処理ユニットの変形で、図17で使用したユニットを複数連結した例を示している。(a)は、1系と2系をそれぞれ独立したものであるが、例えば、1系のみで運転した場合、負荷変動によって、破線の矢印で示したように流入水を2系のユニットに分注させることも可能である。(b)は、図18に示したサークル型ユニットを複数組連結させたものである。破線の矢印で示すように、負荷変動によって流入水を分注させ、適正な負荷に調節し生物処理を実施することが可能となる。   FIG. 19 shows an example in which a plurality of units used in FIG. 17 are connected in a modification of the biological treatment unit shown in FIG. (A) shows that system 1 and system 2 are independent of each other. For example, when operating with system 1 alone, the inflowing water is divided into units of system 2 as indicated by the dashed arrows due to load fluctuations. It is also possible to have a note. (B) is a combination of a plurality of circle-type units shown in FIG. As indicated by the broken arrow, it is possible to dispense inflow water according to load fluctuations, adjust the load appropriately, and perform biological treatment.

(5)電気分解(殺菌)
また、汚泥返送管や調整槽において電気分解によって塩素を発生させることも可能である。水産加工排水や漬け物工場排水などは、塩素イオン濃度が高いため、電気分解による塩素の生成も効率よく行うことができる。電気分解による塩素の発生過程は次の通りである。
(5) Electrolysis (sterilization)
Moreover, it is also possible to generate chlorine by electrolysis in the sludge return pipe and the adjustment tank. Since fishery processing wastewater and pickled factory wastewater have a high chlorine ion concentration, chlorine can be efficiently generated by electrolysis. The generation process of chlorine by electrolysis is as follows.

塩水を電気分解すると、陽極(プラス極)で塩素(Cl2)が発生する。 When salt water is electrolyzed, chlorine (Cl 2 ) is generated at the anode (positive electrode).

(i) 2Cl- ⇒ Cl2 + 2e-
発生する塩素(Cl2)は、溶液のpHによってその形態が変化し、酸性領域では塩素(Cl2)、中性領域では次亜塩素(HClO)や次亜塩素酸イオン(ClO-)が主成分となる。酸性領域においては、塩素(Cl2)の一部は溶液に溶解するが、塩素ガスとして系外に排出される。具体的には、次の平衡反応による。
(i) 2Cl → Cl 2 + 2e
The form of generated chlorine (Cl 2 ) changes depending on the pH of the solution, and chlorine (Cl 2 ) is mainly used in the acidic region, and hypochlorite (HClO) and hypochlorite ions (ClO ) are mainly used in the neutral region. Become an ingredient. In the acidic region, a part of chlorine (Cl 2 ) is dissolved in the solution, but is discharged out of the system as chlorine gas. Specifically, it depends on the following equilibrium reaction.

(ii) Cl2(塩素) + H2O ⇔ HClO(次亜塩素酸) + H+ + Cl-
(iii) HClO(次亜塩素酸) ⇔ H+ + ClO-(次亜塩素酸イオン)
因みに、殺菌性の指標として用いられている“有効塩素濃度”は、溶液中の塩素(Cl2)、次亜塩素(HClO)および次亜塩素酸イオン(ClO-)の総濃度である。
(ii) Cl 2 (chlorine) + H 2 O HCl HClO (hypochlorous acid) + H + + Cl
(iii) HClO (hypochlorous acid) ⇔ H + + ClO - (hypochlorite)
Incidentally, the “effective chlorine concentration” used as an indicator of bactericidal properties is the total concentration of chlorine (Cl 2 ), hypochlorous acid (HClO) and hypochlorite ions (ClO ) in the solution.

なお、実際の電気分解では、(i)の塩素(Cl2)の発生反応の競争反応として、酸素(O2)が発生する。 In actual electrolysis, oxygen (O 2 ) is generated as a competitive reaction of the chlorine (Cl 2 ) generation reaction of (i).

(iv) H2O ⇒ 1/2O2 + 2H+ + 2e-
電気分解により発生した次亜塩素酸は、残留塩素として残るため、処理水を返送し、好気性処理槽に流入させることにより、酵母の活性と活性汚泥の活性とを調整することができる。また、次亜塩素酸の酸化力は、有機物の酸化処理、消毒などにも利用される。
(iv) H 2 O ⇒ 1 / 2O 2 + 2H + + 2e
Since hypochlorous acid generated by electrolysis remains as residual chlorine, the activity of yeast and the activity of activated sludge can be adjusted by returning the treated water and flowing it into the aerobic treatment tank. The oxidizing power of hypochlorous acid is also used for oxidation treatment and disinfection of organic substances.

(6)電気分解(窒素除去)
本発明では、高濃度有機物や油分は、酵母含有活性汚泥により処理する。酵母含有活性汚泥を含む好気性処理槽混合液は固液分離槽で、汚泥と処理水に分離する。分離された処理水を電気分解槽で電気分解処理すると、処理水中には塩化物イオンなどの電解質が含まれているので、次亜塩素酸が発生する。次亜塩素酸は、処理水中のアンモニア態窒素と反応し酸化分解することで、処理水中に含まれるアンモニア態窒素を除去する。電気分解によるアンモニア態窒素の除去は、塩化物イオンが乖離した溶液に、電気エネルギーを与えることによって電子が放出され、塩素が発生する。これが水と反応することによって次亜塩素酸イオンが生成され、その酸化力によりアンモニアが酸化して、脱窒される。下記は電気分解によるアンモニア態窒素の化学反応式である。
(6) Electrolysis (nitrogen removal)
In the present invention, high-concentration organic matter and oil are treated with yeast-containing activated sludge. The aerobic treatment tank mixed liquid containing the yeast-containing activated sludge is separated into sludge and treated water in a solid-liquid separation tank. When the separated treated water is electrolyzed in an electrolysis tank, hypochlorite is generated because the treated water contains electrolytes such as chloride ions. Hypochlorous acid reacts with ammonia nitrogen in the treated water and oxidatively decomposes to remove ammonia nitrogen contained in the treated water. In the removal of ammonia nitrogen by electrolysis, electrons are released by supplying electric energy to a solution in which chloride ions are separated, and chlorine is generated. When this reacts with water, hypochlorite ions are generated and ammonia is oxidized by the oxidizing power to be denitrified. The following is the chemical reaction formula of ammonia nitrogen by electrolysis.

Cl2 + H2O ⇒ HClO + HCl
2NH3 + 3HClO ⇒ N2↑ + 3H2O + 3HCl
これらより、
3Cl2 + 2NH3 + 3H2O ⇒ N2↑ + 3H2O + 6HCl
電気分解により発生した次亜塩素酸は、残留塩素として残るため、処理水を返送し、好気性処理槽に流入、あるいは、汚泥返送管に投入したり、調整槽に投入することにより、酵母と活性汚泥の活性を調整することができる。また、次亜塩素酸の酸化力は、有機物の酸化処理、消毒などにも利用される。
Cl 2 + H 2 O => HClO + HCl
2NH 3 + 3HClO ⇒ N 2 ↑ + 3H 2 O + 3HCl
From these,
3Cl 2 + 2NH 3 + 3H 2 O => N 2 ↑ + 3H 2 O + 6HCl
Hypochlorous acid generated by electrolysis remains as residual chlorine, so return the treated water and flow into the aerobic treatment tank, or put it into the sludge return pipe, or put it into the adjustment tank. The activity of activated sludge can be adjusted. The oxidizing power of hypochlorous acid is also used for oxidation treatment and disinfection of organic substances.

処理水中に電解質が不足している場合は、塩化ナトリウム等の電解質となる薬品を電解槽に必要量添加する。   When the electrolyte is insufficient in the treated water, a necessary amount of chemicals that become an electrolyte such as sodium chloride is added to the electrolytic cell.

(7)有機酸発酵
嫌気槽で有機物は、加水分解・酸生成細菌群の働きにより加水分解され、加水分解により生成された溶解性有機物は、加水分解・酸生成細菌群の働きにより有機酸に転換される。
(7) Organic acid fermentation In an anaerobic tank, organic substances are hydrolyzed by the action of hydrolysis / acid-producing bacteria, and soluble organic substances produced by hydrolysis are converted to organic acids by the action of hydrolysis / acid-producing bacteria. Converted.

嫌気槽での有機酸の生成は、次のような条件が推奨される。   The following conditions are recommended for the production of organic acids in an anaerobic tank.

図25の装置を用いて、嫌気槽のpHは6.3〜8.5、投入アルカリ度3500(mgCaCO3/L)程度、ORPは−300〜−350mV、水温35℃(10℃〜45℃)、SRT20日で運転したところ、有機酸転換率(有機酸濃度/投入基質濃度)59%が得られた。有機酸の組成別濃度では、酢酸の割合が多く、40%以上であった。これにより、pH調整に使う薬剤量を減少でき、さらに、硫酸を少量にできるので悪臭の発生を防ぐことができる。 Using the apparatus of FIG. 25, the pH of the anaerobic tank is 6.3 to 8.5, the input alkalinity is about 3500 (mgCaCO 3 / L), the ORP is −300 to −350 mV, and the water temperature is 35 ° C. (10 ° C. to 45 ° C. ) When operated at SRT for 20 days, an organic acid conversion rate (organic acid concentration / input substrate concentration) of 59% was obtained. In the concentration of organic acid according to composition, the ratio of acetic acid was large and was 40% or more. Thereby, the amount of chemicals used for pH adjustment can be reduced, and furthermore, the generation of malodor can be prevented because sulfuric acid can be made small.

殺菌による活性汚泥の不活性化のための薬品は、塩素に限定されず、たとえば、過酸化水素、オゾンまたは汚泥減容化剤などを使用することもできる。また、薬品だけでなく、超音波、加温、破砕、電解などを用いることもできる。   The chemical | medical agent for inactivation of the activated sludge by disinfection is not limited to chlorine, For example, hydrogen peroxide, ozone, or a sludge volume reducing agent etc. can also be used. In addition to chemicals, ultrasonic waves, heating, crushing, electrolysis, and the like can also be used.

あるいは、好気性処理槽での亜硝酸菌の存在比を、薬品注入器より注入する薬品を変えたり、異なる汚泥返送管を設けてアリルチオ尿素などを添加することにより、亜硝酸菌を殺菌することで、pHの低下を防いだり、亜硝酸によりCODが高くなるのを防いだりすることが可能となる。   Alternatively, nitrite bacteria can be sterilized by changing the chemical ratio of the nitrite bacteria in the aerobic treatment tank, changing the chemicals injected from the chemical injector, or providing different sludge return pipes and adding allylthiourea, etc. Therefore, it is possible to prevent the pH from being lowered or to prevent the COD from becoming high due to nitrous acid.

本発明の有機性排水処理装置では、酵母含有活性汚泥による処理において、酵母と活性汚泥量とを定量化した指標を用いることで、従来、経験的に行ってきた薬品添加量や空気量、流入量などの調整を、定量的に運転管理できる。また、これにより装置の最適運転が可能となる。   In the organic wastewater treatment apparatus of the present invention, in the treatment with yeast-containing activated sludge, by using an index that quantifies the amount of yeast and activated sludge, the amount of chemicals added, the amount of air, the inflow that has been empirically performed conventionally Adjustment of quantity etc. can be managed quantitatively. This also allows for optimal operation of the device.

次のような手段で計測した好気性処理槽における酵母量と活性汚泥量との比率を、定量化された指標とすることができる。   The ratio between the amount of yeast and the amount of activated sludge in the aerobic treatment tank measured by the following means can be used as a quantified index.

・顕微鏡観察により、酵母と活性汚泥の個体数をカウントし、その比を定量化された指標とする。   -By microscopic observation, count the number of yeast and activated sludge, and use the ratio as a quantified index.

・酵母と活性汚泥を別々に蛍光染色し、画像処理によりそれぞれの量を計測し、その比を定量化した指標とする。   -Fluorescent staining of yeast and activated sludge separately, measure each amount by image processing, and use the ratio as a quantified index.

・酵母含有活性汚泥について、未処理の試料と、pH調整や塩素添加を行ない活性汚泥を不活性化させた試料とのそれぞれについて、酸素利用速度を測定し、得られた酸素利用速度を定量化された指標とする。   ・ For the activated sludge containing yeast, measure the oxygen utilization rate for each of the untreated sample and the sample whose pH was adjusted and chlorine was added to deactivate the activated sludge, and the obtained oxygen utilization rate was quantified. Index.

これらの指標は、組み合わせて用いてもよい。また、これらの指標以外にも、酵母の性質と活性汚泥の性質との違いにより、それぞれの量や活性度を区別して表せる指標ならば、すべて使用可能である。試料の採取場所は、好気性処理槽が望ましいが、調整された後の返送汚泥を採取してもよい。   These indicators may be used in combination. In addition to these indicators, any indicators can be used as long as they can distinguish and express their amounts and activities depending on the difference between the properties of yeast and activated sludge. An aerobic treatment tank is desirable as a sample collection place, but return sludge after adjustment may be collected.

たとえば、これらの指標化されたデータを制御設備に入力することで、制御設備が制御する薬品注入量を定量的に管理でき、これにより、pH調整や塩素添加量を適切に変化させることができる。このような、定量化した運転管理により、汚泥返送量や流入水量などの調整も自動化できるようになり、省力化が可能となる。さらに、その時点ごとの好気性処理槽の状態を定量的に把握することができるため、負荷変動などにも容易に対応できるようになる。   For example, by inputting these indexed data into the control facility, the amount of chemical injection controlled by the control facility can be managed quantitatively, and thereby the pH adjustment and the chlorine addition amount can be appropriately changed. . Such quantified operation management makes it possible to automate the adjustment of the sludge return amount, the inflow water amount, and the like, thereby saving labor. Furthermore, since the state of the aerobic treatment tank at each time point can be quantitatively grasped, it becomes possible to easily cope with load fluctuations.

(実施例1)
図1に示すように、好気性で処理する好気性処理槽と、好気性処理槽混合液を汚泥と処理水に分離する固液分離槽と、汚泥を返送する汚泥返送管とからなる有機性排水処理装置において、前記好気性処理槽が酵母含有活性汚泥を用いた好気性処理槽であり、前記汚泥返送管に薬品注入器を備え、前記薬品注入器としてスタティックミキサーを使用し、pHと次亜塩素酸ナトリウムを添加時間で制御した。
(Example 1)
As shown in FIG. 1, an organic material comprising an aerobic treatment tank for aerobic treatment, a solid-liquid separation tank for separating the aerobic treatment tank mixed liquid into sludge and treated water, and a sludge return pipe for returning sludge. In the wastewater treatment apparatus, the aerobic treatment tank is an aerobic treatment tank using yeast-containing activated sludge, the sludge return pipe is provided with a chemical injector, a static mixer is used as the chemical injector, pH and Sodium chlorite was controlled by addition time.

油分含有排水を対象としたので、酵母含有活性汚泥中の酵母比率を高め、活性汚泥にダメージを与えるような操作とした。すなわち、pHを7から4に近づけるようにpH調整剤の添加時間を増やし、次亜塩素酸ナトリウムの添加時間も増やした。   Since the oil-containing wastewater was targeted, the yeast ratio in the yeast-containing activated sludge was increased, and the activated sludge was damaged. That is, the addition time of the pH adjusting agent was increased so that the pH was close to 7 to 4, and the addition time of sodium hypochlorite was also increased.

その結果、良好で安定した処理水質を得ることができた。   As a result, good and stable treated water quality could be obtained.

さらに、図2に示すように、薬品注入器に調整槽を1つ設けて、pH調整剤を添加する時間と、次亜塩素酸ナトリウムを添加する時間とを、調整した。その結果、前述と同様に、安定した処理水質が得られた。   Furthermore, as shown in FIG. 2, the chemical injector was provided with one adjusting tank, and the time for adding the pH adjuster and the time for adding sodium hypochlorite were adjusted. As a result, a stable treated water quality was obtained as described above.

また、図3に示すように、薬品注入器に調整槽を2つ設けて、pH調整槽ではpH調整剤の添加混合反応を行い、調整槽では次亜塩素酸ナトリウムの添加混合反応を行った。その結果、前述と同様に、安定した処理水質が得られた。   Moreover, as shown in FIG. 3, the chemical | medical injector was provided with two adjustment tanks, the pH adjustment tank added and reacted with the pH adjuster, and the adjustment tank added and mixed with sodium hypochlorite. . As a result, a stable treated water quality was obtained as described above.

本実施例のように、中和反応のためのpH調整槽を設けた場合、塩素添加量を十分量とすることができる。このため、確実な不活性化の効果を得ることができる。しかも、不活性化の効果の持続による影響を考える必要が無くなり、運転もさらに容易となった。   When a pH adjustment tank for neutralization reaction is provided as in this example, the amount of added chlorine can be made sufficient. For this reason, a reliable inactivation effect can be obtained. In addition, it is no longer necessary to consider the effect of the inactivation effect, and the operation is further facilitated.

(実施例2)
図4に示すように、好気性で処理する好気性処理槽と、好気性処理槽混合液を汚泥と処理水に分離する固液分離槽と、汚泥を返送する汚泥返送管とからなる有機性排水処理装置において、前記好気性処理槽が酵母含有活性汚泥を用いた好気性処理槽であり、前記汚泥返送管を2つ設け、一方の汚泥返送管に2つの調整槽を備え、該調整槽に薬品注入器を備え、pH調整槽では、pH調整剤の添加混合反応を行わせ、調整槽では、次亜塩素酸ナトリウムの添加混合反応を行った。
(Example 2)
As shown in FIG. 4, an organic material comprising an aerobic treatment tank for aerobic treatment, a solid-liquid separation tank for separating the aerobic treatment tank mixed liquid into sludge and treated water, and a sludge return pipe for returning sludge. In the wastewater treatment apparatus, the aerobic treatment tank is an aerobic treatment tank using yeast-containing activated sludge, the two sludge return pipes are provided, and one of the sludge return pipes is provided with two adjustment tanks. In the pH adjustment tank, a pH adjusting agent was added and mixed in the pH adjusting tank. In the adjusting tank, sodium hypochlorite was added and mixed.

なお、固液分離槽からの返送汚泥を受け入れる調整槽は、次亜塩素酸ナトリウムの添加を、調整槽からの汚泥を受け入れるpH調整槽はpH調整を行う。しかし、固液分離槽からの流出水が酸性の場合はpH調整を調整槽で行うこともできる。また、pH調整槽からの流出水が酵母の比率の大きい槽への返送ならpH調整はわずかか、しなくても良いが、活性汚泥の比率の大きい槽への返送ならpH調整を行うことが良い。   In addition, the adjustment tank which receives the returned sludge from the solid-liquid separation tank performs addition of sodium hypochlorite, and the pH adjustment tank which receives the sludge from the adjustment tank adjusts the pH. However, when the outflow water from the solid-liquid separation tank is acidic, the pH can be adjusted in the adjustment tank. In addition, if the effluent from the pH adjustment tank is returned to a tank with a high yeast ratio, the pH adjustment may be slight or not, but if it is returned to a tank with a large activated sludge ratio, the pH may be adjusted. good.

高濃度有機物含有排水を対象としたので、酵母含有活性汚泥の酵母比率を高め、活性汚泥にダメージを与えるような操作とした。すなわち、pHを7から4に近づけるようにpH調整剤の添加運転時間を増やし、次亜塩素酸ナトリウムの添加時間も増やした。さらに、他方の汚泥返送管には、薬品を注入しないので、活性汚泥にはダメージを与えることがなく、各汚泥返送管からの返送量で好気性処理槽での酵母比率を設定値にすることが容易であった。   Since wastewater containing high-concentration organic matter was targeted, the yeast ratio of the yeast-containing activated sludge was increased, so that the activated sludge was damaged. That is, the addition operation time of the pH adjusting agent was increased so that the pH was close to 7 to 4, and the addition time of sodium hypochlorite was also increased. Furthermore, since chemicals are not injected into the other sludge return pipe, the activated sludge will not be damaged, and the yeast ratio in the aerobic treatment tank should be set to the set value by the return amount from each sludge return pipe. Was easy.

その結果、良好で安定した処理水質を得ることができた。   As a result, good and stable treated water quality could be obtained.

本実施例では、調整槽を2つとしたが、図5に示すように、調整槽を1つとして、pH調整剤を添加する時間と、次亜塩素酸ナトリウムを添加する時間とを調整したところ、前述と同様に、より安定した処理水質が得られた。   In this example, although there were two adjustment tanks, as shown in FIG. 5, when adjusting the time for adding the pH adjusting agent and the time for adding sodium hypochlorite as one adjustment tank. As described above, more stable treated water quality was obtained.

(実施例3)
負荷が低い排水を対象とし、好気性処理槽汚泥中の活性汚泥比率を高めるため、活性汚泥のダメージを減らすような操作を行った以外は、実施例2と同様に行った。すなわち、殺菌剤である次亜塩素酸ナトリウム添加混合反応を少なくするため、当該調整槽への分配割合を減らし、薬品の添加量を調整した。さらに、pHの添加混合反応の割合を減らし、pHを4から7に近づけた。
(Example 3)
The procedure was the same as in Example 2 except that the operation was performed to reduce the damage of activated sludge in order to increase the activated sludge ratio in the aerobic treatment tank sludge for wastewater with a low load. That is, in order to reduce the sodium hypochlorite addition mixing reaction which is a disinfectant, the distribution ratio to the said adjustment tank was reduced and the addition amount of the chemical | medical agent was adjusted. Furthermore, the ratio of the pH addition mixing reaction was reduced, and the pH was brought closer to 4-7.

その結果、良好で安定した処理水質を得ることができ、また、BOD濃度の低い流入水であるので、窒素の硝化も良好に行えた。   As a result, good and stable treated water quality could be obtained, and since the inflow water had a low BOD concentration, nitrogen nitrification could be performed well.

(実施例4)
図5に示す装置を用いて、まず、調整槽にpHの調整のための薬剤である硫酸を加え表1に示す所定のpHに調整をして、次に次亜塩素酸ナトリウムを加え表1に示す所定の塩素濃度として運転した。
Example 4
Using the apparatus shown in FIG. 5, first, sulfuric acid, which is a chemical for pH adjustment, is added to the adjustment tank to adjust to a predetermined pH shown in Table 1, and then sodium hypochlorite is added to add Table 1. It was operated as a predetermined chlorine concentration shown in FIG.

Figure 2008049343
Figure 2008049343

BOD/SS負荷0.8〜1.2(kg/kg)を処理対象とした場合、pHを4〜5に、次亜塩素酸ナトリウムを対象水中の濃度として20〜30(mg−Cl/L)を加えた。汚泥返送量の割合は、調整槽の敷設された側の汚泥返送管Aは80〜100%、汚泥返送管のみの側の汚泥返送管Bは0〜20%とした。   When a BOD / SS load of 0.8 to 1.2 (kg / kg) is a treatment target, the pH is 4 to 5, and sodium hypochlorite is 20 to 30 mg / Cl / L as the concentration in the target water. ) Was added. The ratio of the sludge return amount was 80 to 100% for the sludge return pipe A on the side where the adjustment tank was laid, and 0 to 20% for the sludge return pipe B on the side of the sludge return pipe alone.

BOD/SS負荷0.5〜0.8(kg/kg)を処理対象とした場合、pHを5〜6に、次亜塩素酸ナトリウムを対象水中の濃度として5〜20(mg−Cl/L)を加えた。汚泥返送量の割合は、調整槽の敷設された側の汚泥返送管Aは60〜80%、汚泥返送管のみの側の汚泥返送管Bは20〜40%とした。   When a BOD / SS load of 0.5 to 0.8 (kg / kg) is a treatment target, the pH is 5 to 6, and sodium hypochlorite is a concentration in the target water of 5 to 20 (mg-Cl / L). ) Was added. The ratio of the sludge return amount was 60 to 80% for the sludge return pipe A on the side where the adjustment tank was laid, and 20 to 40% for the sludge return pipe B only on the sludge return pipe side.

BOD/SS負荷0.2〜0.5(kg/kg)を処理対象とした場合、pHを6〜7に、次亜塩素酸ナトリウムを対象水中の濃度として5(mg−Cl/L)以下を加えた。汚泥返送量の割合は、調整槽の敷設された側の汚泥返送管Aは40〜60%、汚泥返送管のみの側の汚泥返送管Bは40〜60%とした。   When a BOD / SS load of 0.2 to 0.5 (kg / kg) is treated, the pH is 6 to 7, and sodium hypochlorite is 5 (mg-Cl / L) or less in the target water. Was added. The ratio of the sludge return amount was 40 to 60% for the sludge return pipe A on the side where the adjustment tank was laid, and 40 to 60% for the sludge return pipe B on the side of the sludge return pipe alone.

その結果、好気性処理槽において、酵母含有活性汚泥中の酵母含有量を自在に変化できたので、負荷の高い場合は、酵母含有量が多くなるように塩素の添加量を高くし、さらに、汚泥返送量も、活性汚泥に多くのダメージを与えるように、そのまま汚泥を返送する側を少なくした。逆に、負荷の低い場合は、酵母含有量が少なくなるように塩素の添加量を低くし、さらに、汚泥返送量も、活性汚泥にダメージを与えないように、そのまま汚泥を返送する側を多くした。以上により、負荷変動に自在に対応できた。   As a result, in the aerobic treatment tank, since the yeast content in the yeast-containing activated sludge could be freely changed, when the load is high, the amount of added chlorine is increased so that the yeast content increases, The amount of sludge returned was also reduced so that the sludge was returned as it was to damage the activated sludge. On the other hand, when the load is low, the amount of chlorine added is reduced so that the yeast content is reduced, and the amount of sludge returned is also increased on the side that returns the sludge as it is so as not to damage the activated sludge. did. As described above, it was possible to respond to load fluctuations freely.

(実施例5)
図6に示した装置を使用し、酵母の至適pH(3〜6)と活性汚泥の至適pH(5〜8)の差を利用した。
(Example 5)
Using the apparatus shown in FIG. 6, the difference between the optimum pH of yeast (3-6) and the optimum pH of activated sludge (5-8) was utilized.

注入する薬品として硫酸を使用し、返送汚泥のpHを3に調整した。好気性処理槽は4槽に仕切り、各槽にpH計を設置した。   Sulfuric acid was used as the chemical to be injected, and the pH of the return sludge was adjusted to 3. The aerobic treatment tank was divided into four tanks, and a pH meter was installed in each tank.

表2に、水産加工排水処理における、仕切られた各槽のpHと、各槽の出口上澄水のBOD濃度(mg/L)、およびノルマルヘキサン抽出物質濃度の平均値(mg/L)を示した。なお、流入水量により仕切りの数は自在である。また、pH計は複数、設置したが、費用の関係で投入式のもので測定することもできる。   Table 2 shows the pH of each partitioned tank, the BOD concentration (mg / L) of the supernatant of the outlet of each tank, and the average value (mg / L) of the normal hexane extractable substance in fishery processing wastewater treatment. It was. In addition, the number of partitions is free according to the amount of inflow water. In addition, although a plurality of pH meters are installed, it can be measured by a charging type because of cost.

Figure 2008049343
Figure 2008049343

酵母の至適pH(3〜6)の範囲にあたる1槽目と2槽目とで、ノルマルヘキサン抽出物質(n−Hex)が22(mg/L)まで処理され、活性汚泥の至適pH(5〜8)にあたる3槽目と4槽目とで、BODが31(mg/L)まで除去された。   In the first and second tanks in the optimum pH range (3 to 6) of yeast, the normal hexane extract (n-Hex) was treated to 22 (mg / L), and the optimum pH of activated sludge ( BOD was removed to 31 (mg / L) in the third and fourth tanks corresponding to 5-8).

(実施例6)
図7に示した装置を使用し、酵母と活性汚泥の耐塩素性の差を利用した。
(Example 6)
Using the apparatus shown in FIG. 7, the difference in chlorine resistance between yeast and activated sludge was utilized.

薬品注入器に次亜塩素酸ナトリウムを使用し、返送汚泥量に対し有効塩素として5〜50(mg−Cl/L)に調整した。   Sodium hypochlorite was used for the chemical injector, and adjusted to 5-50 (mg-Cl / L) as effective chlorine with respect to the amount of returned sludge.

酵母は塩素に耐性があり、50(mg−Cl/L)に調整した場合は、活性汚泥が主に活性を失うので、5〜50(mg−Cl/L)まで変化させることで、酵母が主な生物相となり、濃度の濃い流入水に対応できる。その後は、3槽目、4槽目で塩素が薄くなると、活性汚泥が主な生物相となり、ある程度酵母により処理された水を、実施例6と同様に処理できた。   Yeast is resistant to chlorine, and when adjusted to 50 (mg-Cl / L), activated sludge mainly loses its activity, so by changing it to 5-50 (mg-Cl / L), the yeast It is the main biota and can handle influent water with high concentration. After that, when chlorine became thinner in the third and fourth tanks, activated sludge became the main biota, and water treated to some extent with yeast could be treated in the same manner as in Example 6.

(実施例7)
図8に示した装置を使用し、好気性処理槽でもpH制御を行なった。
(Example 7)
Using the apparatus shown in FIG. 8, pH control was performed even in an aerobic treatment tank.

各槽の生物活性度をより厳密に調整するため、薬品注入器を好気性処理槽の仕切られた各槽のそれぞれにも設けた。また、各槽にpHコントローラーを設けた。薬品としては、硫酸、水酸化ナトリウムを添加して、優占させる生物に最適なpHに調整した。   In order to adjust the biological activity of each tank more strictly, chemical injectors were also provided in each of the tanks separated from the aerobic treatment tank. Each tank was provided with a pH controller. As chemicals, sulfuric acid and sodium hydroxide were added to adjust the pH to be optimal for the organism to be dominant.

実施例5で用いた水産加工排水を処理したが、水質変動に対応した処理ができ、良好な処理水質が得られた。   Although the fishery processing waste water used in Example 5 was processed, the processing corresponding to a water quality change was performed and the favorable treated water quality was obtained.

(実施例8)
図9に示した装置を使用し、薬品注入器通過後の返送汚泥を、各槽に分配した。
(Example 8)
Using the apparatus shown in FIG. 9, the returned sludge after passing through the chemical injector was distributed to each tank.

仕切られた各槽のpHや塩素濃度は、優占させる微生物に適した条件に調整した。   The pH and chlorine concentration of each partitioned tank were adjusted to conditions suitable for the dominant microorganism.

pHを、酵母の至適pH(3〜6)とした返送汚泥を多く返送した槽では、酵母が主な生物相となり、BOD濃度の高い流入水に対応できた。また、濃度の低い流入水に対しては、活性汚泥の至適pH(5〜8)の返送汚泥を返送した。   In a tank that returned a large amount of returned sludge with an optimum pH (3 to 6) of yeast, yeast was the main biota and could cope with influent water with a high BOD concentration. Moreover, the return sludge of the optimal pH (5-8) of activated sludge was returned with respect to inflow water with a low density | concentration.

他の槽では、塩素に耐性のある酵母が主な生物相となるように、次亜塩素酸ナトリウムを50(mg−Cl/L)となるように加えた返送汚泥を返送して、BOD濃度の高い流入水に対応させ、濃度の低い流入水に対しては、活性汚泥が主な生物相となるように、次亜塩素酸ナトリウムが5(mg−Cl/L)となるように加えた返送汚泥を返送した。   In other tanks, return sludge with sodium hypochlorite added to 50 (mg-Cl / L) so that yeast resistant to chlorine becomes the main biota, and BOD concentration In response to high influent water, sodium hypochlorite was added to 5 (mg-Cl / L) so that activated sludge becomes the main biota for low concentration influent water. Returned the returned sludge.

実施例5で用いた水産加工排水を処理したが、水質変動に対応した処理ができ、良好な処理水質が得られた。   Although the fishery processing waste water used in Example 5 was processed, the processing corresponding to a water quality change was performed and the favorable treated water quality was obtained.

(実施例9)
図10に示した装置を使用した。流入水は、好気性処理槽へ導入され、酵母含有活性汚泥と曝気混合した。好気性処理槽で好気性処理された好気性処理槽混合液は、流入水によって押し出され、浮上物分離槽に導入した。
Example 9
The apparatus shown in FIG. 10 was used. The influent water was introduced into the aerobic treatment tank and aerated with the yeast-containing activated sludge. The aerobic treatment tank mixed solution that was aerobically treated in the aerobic treatment tank was pushed out by the inflowing water and introduced into the floating substance separation tank.

浮上物分離槽では、好気性処理槽からの好気性処理槽混合液を静的に保ち、浮上物(軽い汚泥成分)を比重差により分離した。固液分離槽では、浮上物が分離除去された好気性処理槽混合液を移送され、スカム発生が防止され、固液分離槽の分離が良好となった。   In the levitated substance separation tank, the aerobic treatment tank mixed liquid from the aerobic treatment tank was kept static, and the levitated substance (light sludge component) was separated by the difference in specific gravity. In the solid-liquid separation tank, the aerobic treatment tank mixed liquid from which the levitated material was separated and removed was transferred, scum generation was prevented, and separation of the solid-liquid separation tank was improved.

浮上物は、浮上物分離槽から好気性処理槽へ移送されることにより、気泡が付着していたり、未分解の油滴を抱き込んでいたが、好気性処理槽で再度、曝気処理されることにより、汚泥粒子に付着した気泡が抜けたり、油が酸化分解され、比重が大きくなり、沈降しやすくなった。   The levitated substance is transported from the levitated substance separation tank to the aerobic treatment tank, so that bubbles are attached or undegraded oil droplets are embraced, but it is aerated again in the aerobic treatment tank. As a result, bubbles adhering to the sludge particles were removed, the oil was oxidized and decomposed, the specific gravity was increased, and it was easy to settle.

(実施例10)
図11に示した装置を使用した。流入水は、好気性処理槽へ導入され、酵母含有活性汚泥と曝気混合した。好気性処理槽で好気性処理された好気性処理槽混合液は、流入水によって押し出され、浮上物分離槽に導入した。
(Example 10)
The apparatus shown in FIG. 11 was used. The influent water was introduced into the aerobic treatment tank and aerated with the yeast-containing activated sludge. The aerobic treatment tank mixed solution that was aerobically treated in the aerobic treatment tank was pushed out by the inflowing water and introduced into the floating substance separation tank.

浮上物分離槽は、好気性処理槽からの好気性処理槽混合液を静的に保ち、浮上物(軽い汚泥成分)を比重差により分離した。固液分離槽では、浮上物が分離除去された好気性処理槽混合液を移送され、スカム発生が防止され、固液分離槽の分離が良好となった。   The levitated substance separation tank kept the aerobic treatment tank mixed solution from the aerobic treatment tank static, and separated the levitated substance (light sludge component) by the specific gravity difference. In the solid-liquid separation tank, the aerobic treatment tank mixed liquid from which the levitated material was separated and removed was transferred, scum generation was prevented, and separation of the solid-liquid separation tank was improved.

浮上物は、浮上物分離槽から再曝気槽へ移送されることにより、気泡が付着していたり、未分解の油滴を抱き込んでいたが、再曝気槽に導入され、再度、集中的に曝気処理されることにより、汚泥粒子に付着した気泡が抜けたり、油が酸化分解された後に、好気性処理槽へ移送したので、好気性処理槽の汚泥の比重が大きくなり、沈降しやすい汚泥が多くなった。   The levitated substance was transferred from the levitated substance separation tank to the re-aeration tank, so that bubbles were attached or undegraded oil droplets were embraced, but it was introduced into the re-aeration tank and concentrated again. By aeration treatment, air bubbles attached to the sludge particles are removed or oil is oxidatively decomposed and then transferred to the aerobic treatment tank, so that the specific gravity of the sludge in the aerobic treatment tank increases and sludge tends to settle. Increased.

(実施例11)
図12に示した装置を使用した。流入水は、好気性処理槽へ導入され、酵母含有活性汚泥と曝気混合した。好気性処理槽で好気性処理された好気性処理槽混合液は、流入水によって押し出され、浮上物分離槽に流入した。
(Example 11)
The apparatus shown in FIG. 12 was used. The influent water was introduced into the aerobic treatment tank and aerated with the yeast-containing activated sludge. The aerobic treatment tank mixed solution that was aerobically treated in the aerobic treatment tank was pushed out by the inflowing water and flowed into the floating substance separation tank.

浮上物分離槽は、好気性処理槽からの好気性処理槽混合液を静的に保ち、浮上物(軽い汚泥成分)を比重差により分離した。固液分離槽では、浮上物が分離除去された好気性処理槽混合液を移送され、スカム発生が防止され、固液分離槽の分離が良好となった。なお、浮上物分離槽に分離を促進する目的で緩やかに撹拌してもよく、また、不要な汚泥の堆積を防止するために、一定間隔で強く混合してもよい。   The levitated substance separation tank kept the aerobic treatment tank mixed solution from the aerobic treatment tank static, and separated the levitated substance (light sludge component) by the specific gravity difference. In the solid-liquid separation tank, the aerobic treatment tank mixed liquid from which the levitated material was separated and removed was transferred, scum generation was prevented, and separation of the solid-liquid separation tank was improved. In addition, in order to accelerate | stimulate isolation | separation to a levitated substance separation tank, you may stir gently and in order to prevent accumulation of unnecessary sludge, you may mix intensively by a fixed space | interval.

浮上物は、浮上物分離槽からそのまま、系外に排除されることで、好気性処理槽に戻した場合や、あるいは、再曝気して好気性処理槽に戻した場合より、さらに、好気性処理槽の酵母含有活性汚泥が良好となった。   The levitated substance is removed from the levitated substance separation tank as it is, and is returned to the aerobic treatment tank, or aerobic treatment tank is returned to the aerobic treatment tank. The yeast-containing activated sludge in the treatment tank was improved.

(実施例12)
図20に示した構成で、本発明の装置を用いて水産加工排水を処理した。表3に結果を示す。
Example 12
In the configuration shown in FIG. 20, fishery processing wastewater was treated using the apparatus of the present invention. Table 3 shows the results.

電解質を分解して次亜塩素酸を発生させて、処理水中のアンモニアを分解して、窒素除去とCODcrの除去を行うことができた。さらに、電解槽からの流出水に残留する残留塩素を好気性処理槽に戻すことで好気性処理槽の酵母と活性汚泥の活性を調整することができた。あるいは、汚泥返送管に投入することで同様に酵母と活性汚泥の活性の調整をすることができた。   The electrolyte was decomposed to generate hypochlorous acid, and ammonia in the treated water was decomposed to remove nitrogen and remove CODcr. Furthermore, the activity of yeast and activated sludge in the aerobic treatment tank could be adjusted by returning residual chlorine remaining in the effluent from the electrolytic tank to the aerobic treatment tank. Alternatively, the activity of yeast and activated sludge could be adjusted in the same manner by putting it in the sludge return pipe.

あるいは、図22に示すように、処理水の一部を電気分解することでやはり次亜塩素酸を生成して、処理水中のアンモニアを除去して、除去した処理水を好気性処理のラインに戻すことで固液分離後の処理水の窒素も有機物も処理が良好にできた。   Alternatively, as shown in FIG. 22, hypochlorous acid is also generated by electrolyzing part of the treated water, ammonia in the treated water is removed, and the removed treated water is put into the aerobic treatment line. By returning, both nitrogen and organic matter of the treated water after the solid-liquid separation could be treated well.

あるいは、図23に示すように、好気性処理槽の好気性処理槽混合液を電気分解して次亜塩素酸を生成することで、上記の効果に加え、汚泥(マイナスに帯電)の電荷が中和されるので、フロック形成がし易くなり、固液分離槽での沈降性が向上した。   Alternatively, as shown in FIG. 23, the aerobic treatment tank mixed solution in the aerobic treatment tank is electrolyzed to generate hypochlorous acid, and in addition to the above effects, the sludge (negatively charged) charge is reduced. Neutralization facilitated floc formation and improved sedimentation in the solid-liquid separation tank.

Figure 2008049343
Figure 2008049343

(実施例13)
図21に示した構成で、水産加工排水を処理した。電気分解処理は20分間とした。結果を表4に示す。
(Example 13)
In the configuration shown in FIG. 21, the fishery processing wastewater was treated. The electrolysis treatment was 20 minutes. The results are shown in Table 4.

流入水の一部または全部を電気分解処理すると、流入水中には塩化物イオンなどの電解質が含まれているので、次亜塩素酸が発生する。次亜塩素酸は、流入水中のアンモニア態窒素と反応し、酸化分解されて脱窒する。一部の次亜塩素酸は、残留し、残留塩素として検出される。この残留塩素が好気性処理槽に流入することにより、活性汚泥と酵母の活性の調整ができた。   When part or all of the influent water is electrolyzed, hypochlorous acid is generated because the inflow water contains electrolytes such as chloride ions. Hypochlorous acid reacts with ammonia nitrogen in the influent water and is oxidatively decomposed to denitrify. Some hypochlorous acid remains and is detected as residual chlorine. The residual chlorine flowed into the aerobic treatment tank, and the activity of activated sludge and yeast could be adjusted.

その結果、窒素除去と、CODcr除去、ノルマルヘキサン抽出物質の除去も良好であった。   As a result, nitrogen removal, CODcr removal, and normal hexane extractable substance removal were also good.

流入水中に電解質が不足している場合は、塩化ナトリウム等の電解質となる薬品を電解槽に必要量添加する。   If the electrolyte is insufficient in the inflowing water, a necessary amount of chemicals that become electrolytes such as sodium chloride is added to the electrolytic cell.

Figure 2008049343
Figure 2008049343

(実施例14)
図24に示す装置を使用して、流入水の一部または全量を適切な時間だけ嫌気的に保つために、嫌気槽に導き、流入水中の有機物の一部または全量が嫌気発酵し、有機酸を生じさせた。この有機酸を、従来の硫酸や塩酸の代わりに用いることで、薬品量を減少できた。さらに、汚泥が嫌気化する部位でも、硫化水素の発生を減らすことができた。
(Example 14)
In order to keep part or all of the influent water anaerobically for an appropriate period of time using the apparatus shown in FIG. 24, it is led to an anaerobic tank, and part or all of the organic matter in the inflow water undergoes anaerobic fermentation, Gave rise to By using this organic acid instead of conventional sulfuric acid or hydrochloric acid, the amount of chemicals could be reduced. Furthermore, the generation of hydrogen sulfide could be reduced even at the site where sludge was anaerobic.

また、本実施例では、嫌気槽を経由する流入水量と、経由しない流入水量の比は、固定したが、好気性処理槽単独または好気性処理槽と嫌気槽にpH計を設け、嫌気槽を経由する流入水量と経由しない流入水量の比を制御してもよい。   In this example, the ratio of the amount of inflow water passing through the anaerobic tank and the amount of inflow water not passing through was fixed, but a pH meter was installed in the aerobic treatment tank alone or in the aerobic treatment tank and the anaerobic tank, You may control the ratio of the inflow water amount which passes and the inflow water amount which does not pass.

しかし、嫌気槽における有機酸の生成量が必要量に達しない場合、適宜、硫酸や塩酸を添加する場合もある。   However, if the amount of organic acid produced in the anaerobic tank does not reach the required amount, sulfuric acid or hydrochloric acid may be added as appropriate.

(実施例15)
図25に示す装置を使用して、嫌気槽で生じた有機酸を多量に含む流入水を汚泥返送管に導入して、必要な接触時間を確保した後、好気性処理槽に投入したところ、実施例14と同様に薬品量の削減と悪臭の低減ができた。
(Example 15)
Using the apparatus shown in FIG. 25, the inflow water containing a large amount of organic acid generated in the anaerobic tank was introduced into the sludge return pipe, and after securing the necessary contact time, it was put into the aerobic treatment tank. As in Example 14, the amount of chemicals and malodor were reduced.

(実施例16)
図26に示す装置を使用して、嫌気槽へ流入水の一部または全量と、余剰汚泥の一部また全量を嫌気槽へ移送し、発酵を促進したところ、実施例14と同様に薬品量の削減と悪臭の低減ができた上に、余剰汚泥の減量化もできた。
(Example 16)
When the apparatus shown in FIG. 26 was used, a part or all of the inflow water to the anaerobic tank and a part or all of the excess sludge were transferred to the anaerobic tank to promote fermentation. In addition to reducing odor and odor, excess sludge could also be reduced.

本発明は、小規模の下水処理施設や、工場排水処理施設、油脂含有排水処理施設、高濃度有機性排水処理施設などに利用可能である。   The present invention can be used for small-scale sewage treatment facilities, factory wastewater treatment facilities, oil-containing wastewater treatment facilities, high-concentration organic wastewater treatment facilities, and the like.

本発明の有機性排水処理装置の一実施例を示す概略的な構成図である。It is a schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図である。It is a schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図である。It is a schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図である。It is a schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図である。It is a schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図であり、好気性処理槽の構成を示した。It is the schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention, and showed the structure of the aerobic treatment tank. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図であり、好気性処理槽の構成を示した。It is the schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention, and showed the structure of the aerobic treatment tank. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図であり、好気性処理槽の構成を示した。It is the schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention, and showed the structure of the aerobic treatment tank. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図であり、好気性処理槽の構成を示した。It is the schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention, and showed the structure of the aerobic treatment tank. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図を示した。The schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention was shown. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図を示した。The schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention was shown. 本発明の有機性排水処理装置の一実施例を示す概略的な構成図を示した。The schematic block diagram which shows one Example of the organic waste water treatment equipment of this invention was shown. 生物処理ユニットの実施例を示す概略的な構成図(断面)である。It is a schematic block diagram (cross section) which shows the Example of a biological treatment unit. 生物処理ユニットの実施例を示す概略的な構成図(断面)である。It is a schematic block diagram (cross section) which shows the Example of a biological treatment unit. 生物処理ユニットの構成の異なる実施例を示す概略的な構成図(断面)である。It is a schematic block diagram (cross section) which shows the Example from which the structure of a biological treatment unit differs. 生物処理ユニットの構成の異なる実施例を示す概略的な構成図(断面)である。It is a schematic block diagram (cross section) which shows the Example from which the structure of a biological treatment unit differs. 生物処理ユニットの構成の異なる実施例を示す概略的な構成図(平面)である。It is a schematic block diagram (plane) which shows the Example from which the structure of a biological treatment unit differs. 生物処理ユニットの構成の異なる実施例を示す概略的な構成図(平面)である。It is a schematic block diagram (plane) which shows the Example from which the structure of a biological treatment unit differs. 生物処理ユニットの構成の異なる実施例を示す概略的な構成図(平面)である。It is a schematic block diagram (plane) which shows the Example from which the structure of a biological treatment unit differs. 電解槽を用いた場合の実施例を示す概略的な構成図である。It is a schematic block diagram which shows the Example at the time of using an electrolytic vessel. 電解槽を用いた場合の実施例を示す概略的な構成図である。It is a schematic block diagram which shows the Example at the time of using an electrolytic vessel. 電解槽を用いた場合の実施例を示す概略的な構成図である。It is a schematic block diagram which shows the Example at the time of using an electrolytic vessel. 電解槽を用いた場合の実施例を示す概略的な構成図である。It is a schematic block diagram which shows the Example at the time of using an electrolytic vessel. 嫌気槽を備えた場合の実施例を示す概略的な構成図である。It is a schematic block diagram which shows the Example at the time of providing an anaerobic tank. 嫌気槽を備えた場合の実施例を示す概略的な構成図である。It is a schematic block diagram which shows the Example at the time of providing an anaerobic tank. 嫌気槽を備えた場合の実施例を示す概略的な構成図である。It is a schematic block diagram which shows the Example at the time of providing an anaerobic tank.

Claims (8)

有機性排水を電気分解する電解槽と、酵母含有活性汚泥を用いて好気性で前記電解槽で処理した有機性排水を処理する好気性処理槽と、好気性処理槽混合液を、汚泥と処理水に分離する固液分離槽と、前記固液分離槽で分離した汚泥を、前記好気性処理槽へ返送する汚泥返送管とからなることを特徴とする有機性排水処理装置。   An electrolyzer that electrolyzes organic wastewater, an aerobic treatment tank that treats organic wastewater that is aerobic using yeast-containing activated sludge, and a mixture of aerobic treatment tanks and sludge An organic wastewater treatment apparatus comprising: a solid-liquid separation tank that separates into water; and a sludge return pipe that returns the sludge separated in the solid-liquid separation tank to the aerobic treatment tank. 酵母含有活性汚泥を用いて好気性で有機性排水を処理する好気性処理槽と、好気性処理槽混合液を電気分解する電解槽と、前記電解槽で処理した好気性処理槽混合液を汚泥と処理水に分離する固液分離槽と、前記固液分離槽で分離した汚泥を前記好気性処理槽へ返送する汚泥返送管とからなることを特徴とする有機性排水処理装置。   An aerobic treatment tank that treats aerobic and organic wastewater using yeast-containing activated sludge, an electrolytic tank that electrolyzes the aerobic treatment tank mixed liquid, and an aerobic treatment tank mixed liquid that has been treated in the electrolytic tank. And a solid-liquid separation tank that separates into treated water, and a sludge return pipe that returns the sludge separated in the solid-liquid separation tank to the aerobic treatment tank. 酵母含有活性汚泥を用いて好気性で有機性排水を処理する好気性処理槽と、好気性処理槽混合液を汚泥と処理水に分離する固液分離槽と、前記固液分離槽で分離した汚泥を前記好気性処理槽へ返送する汚泥返送管と、前記固液分離槽で分離した処理水を電気分解する電解槽を、前記電解槽で処理した電解処理水を前記好気性処理槽へ返送する電解処理水返送管とからなることを特徴とする有機性排水処理装置。   The aerobic treatment tank that treats aerobic and organic wastewater using activated sludge containing yeast, the solid-liquid separation tank that separates the aerobic treatment tank mixed liquid into sludge and treated water, and the solid-liquid separation tank The sludge return pipe for returning the sludge to the aerobic treatment tank and the electrolytic tank for electrolyzing the treated water separated in the solid-liquid separation tank are returned to the aerobic treatment tank. An organic wastewater treatment apparatus comprising an electrolytically treated water return pipe. 前記汚泥返送管に薬品注入器が設けられていることを特徴とする請求項1から3のいずれかに記載の有機性排水処理装置。   The organic waste water treatment apparatus according to any one of claims 1 to 3, wherein a chemical injector is provided in the sludge return pipe. 前記好気性処理槽に複数の仕切が設けられていることを特徴とする請求項1から4のいずれかに記載の有機性排水処理装置。   The organic waste water treatment apparatus according to any one of claims 1 to 4, wherein a plurality of partitions are provided in the aerobic treatment tank. 浮上汚泥を分離する浮上物分離槽が設けられていることを特徴とする請求項1から5のいずれかに記載の有機性排水処理装置。   The organic waste water treatment apparatus according to any one of claims 1 to 5, further comprising a levitated substance separation tank for separating levitated sludge. 前記好気性処理槽に簡易沈殿槽が設けられていることを特徴とする請求項1から6のいずれかに記載の有機性排水処理装置。   The organic waste water treatment apparatus according to any one of claims 1 to 6, wherein a simple sedimentation tank is provided in the aerobic treatment tank. 有機酸を生成する嫌気槽が設けられていることを特徴とする請求項1から7のいずれかに記載の有機性排水処理装置。   The organic waste water treatment apparatus according to any one of claims 1 to 7, wherein an anaerobic tank for generating an organic acid is provided.
JP2007291512A 2007-11-09 2007-11-09 Organic waste water treatment device Pending JP2008049343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291512A JP2008049343A (en) 2007-11-09 2007-11-09 Organic waste water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291512A JP2008049343A (en) 2007-11-09 2007-11-09 Organic waste water treatment device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003311857A Division JP4351504B2 (en) 2003-09-03 2003-09-03 Organic wastewater treatment equipment

Publications (1)

Publication Number Publication Date
JP2008049343A true JP2008049343A (en) 2008-03-06

Family

ID=39233867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291512A Pending JP2008049343A (en) 2007-11-09 2007-11-09 Organic waste water treatment device

Country Status (1)

Country Link
JP (1) JP2008049343A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000628A (en) * 2011-06-14 2013-01-07 Japan Organo Co Ltd Wastewater treatment apparatus
CN103373796A (en) * 2013-08-14 2013-10-30 中国科学院成都生物研究所 Method for treating oil refining wastewater
CN105174657A (en) * 2015-10-20 2015-12-23 波鹰(厦门)科技有限公司 Treatment device and method for oil extraction wastewater
CN108409025A (en) * 2017-11-13 2018-08-17 南开大学 A kind of ternary composite driving oil field recovered water materialization-biochemistry combined treatment process
CN108821507A (en) * 2018-06-25 2018-11-16 中电环保股份有限公司 For electrolytic oxidation-Aerobic biological process reaction unit and its processing method
JP2022067507A (en) * 2020-10-20 2022-05-06 水ing株式会社 Wastewater treatment method and wastewater treatment apparatus
JP7298784B1 (en) * 2022-03-28 2023-06-27 中国電力株式会社 Sewage purification equipment

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209299A (en) * 1984-04-02 1985-10-21 Nec Corp Treatment of waste water coexisting metallic ion and organic material
JPS62239982A (en) * 1986-04-10 1987-10-20 Nishihara Environ Sanit Res Corp Cultivation of yeast with waste water
JPH01293194A (en) * 1988-05-18 1989-11-27 Yuukishitsu Hiryo Seibutsu Katsusei Riyou Gijutsu Kenkyu Kumiai High load treatment of carbohydrate waste water
JPH0654741U (en) * 1991-03-28 1994-07-26 日研システム株式会社 Portable salt water electrolysis sodium hypochlorite generation and injection unit
JPH06292898A (en) * 1991-06-29 1994-10-21 Nishihara Environ Sanit Res Corp Treatment of waste water
JPH07256263A (en) * 1994-03-23 1995-10-09 Sanden Corp Apparatus for preparation of electrolytically sterilized water
JPH0839095A (en) * 1994-08-03 1996-02-13 Japan Organo Co Ltd Water treatment apparatus
JP2000042557A (en) * 1998-07-28 2000-02-15 Denso Corp Treated raw water to produce electrolytic hypochlorous acid, production of hypochlorous acid and producing device
JP2000126773A (en) * 1998-10-22 2000-05-09 Hitachi Ltd Apparatus for producing hypochlorite solution and water treatment apparatus
JP2000212786A (en) * 1999-01-22 2000-08-02 Hokuetsu Giken Kogyo:Kk Immersion electrolytic device and electrolytic method
JP2000246284A (en) * 1999-02-25 2000-09-12 Nishihara Environ Sanit Res Corp Organic waste water treatment apparatus
JP2001137854A (en) * 1999-11-17 2001-05-22 Tohoku Plant Service Kk Production method of sterilizing water containing hypochlorous acid, production device of high concentration salt water used therein, and device for sterilizing water containing hypochlorous acid using this device
JP2002126782A (en) * 2000-08-17 2002-05-08 Sadaaki Murakami Method for cleaning organic sewage using electrolytic method
JP2002273473A (en) * 2001-03-23 2002-09-24 Toto Ltd Waste water treating system
JP2003062592A (en) * 2001-08-27 2003-03-04 Sadaaki Murakami Method for treating organic waste water containing chloride ion
JP2003145189A (en) * 2001-11-07 2003-05-20 Nd:Kk Method for purification treatment of livestock waste- liquid
JP2003200192A (en) * 2001-12-28 2003-07-15 Nishihara Environment Technology Inc Biological wastewater treatment apparatus
JP2003200191A (en) * 2001-12-28 2003-07-15 Nishihara Environment Technology Inc Organic wastewater treatment apparatus
JP2004275804A (en) * 2003-03-12 2004-10-07 Fuji Photo Film Co Ltd Method for treating photographic waste solution
JP2004314062A (en) * 2003-03-31 2004-11-11 Kansai Paint Co Ltd Method and apparatus for treating waste water containing organic matter
JP2004337683A (en) * 2003-05-14 2004-12-02 Hitachi Maxell Ltd Method for treating organic waste water by electrolysis
JP2005058976A (en) * 2003-08-20 2005-03-10 Hitachi Maxell Ltd Reduction system of waste sludge by electrolytic treatment

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209299A (en) * 1984-04-02 1985-10-21 Nec Corp Treatment of waste water coexisting metallic ion and organic material
JPS62239982A (en) * 1986-04-10 1987-10-20 Nishihara Environ Sanit Res Corp Cultivation of yeast with waste water
JPH01293194A (en) * 1988-05-18 1989-11-27 Yuukishitsu Hiryo Seibutsu Katsusei Riyou Gijutsu Kenkyu Kumiai High load treatment of carbohydrate waste water
JPH0654741U (en) * 1991-03-28 1994-07-26 日研システム株式会社 Portable salt water electrolysis sodium hypochlorite generation and injection unit
JPH06292898A (en) * 1991-06-29 1994-10-21 Nishihara Environ Sanit Res Corp Treatment of waste water
JPH07256263A (en) * 1994-03-23 1995-10-09 Sanden Corp Apparatus for preparation of electrolytically sterilized water
JPH0839095A (en) * 1994-08-03 1996-02-13 Japan Organo Co Ltd Water treatment apparatus
JP2000042557A (en) * 1998-07-28 2000-02-15 Denso Corp Treated raw water to produce electrolytic hypochlorous acid, production of hypochlorous acid and producing device
JP2000126773A (en) * 1998-10-22 2000-05-09 Hitachi Ltd Apparatus for producing hypochlorite solution and water treatment apparatus
JP2000212786A (en) * 1999-01-22 2000-08-02 Hokuetsu Giken Kogyo:Kk Immersion electrolytic device and electrolytic method
JP2000246284A (en) * 1999-02-25 2000-09-12 Nishihara Environ Sanit Res Corp Organic waste water treatment apparatus
JP2001137854A (en) * 1999-11-17 2001-05-22 Tohoku Plant Service Kk Production method of sterilizing water containing hypochlorous acid, production device of high concentration salt water used therein, and device for sterilizing water containing hypochlorous acid using this device
JP2002126782A (en) * 2000-08-17 2002-05-08 Sadaaki Murakami Method for cleaning organic sewage using electrolytic method
JP2002273473A (en) * 2001-03-23 2002-09-24 Toto Ltd Waste water treating system
JP2003062592A (en) * 2001-08-27 2003-03-04 Sadaaki Murakami Method for treating organic waste water containing chloride ion
JP2003145189A (en) * 2001-11-07 2003-05-20 Nd:Kk Method for purification treatment of livestock waste- liquid
JP2003200192A (en) * 2001-12-28 2003-07-15 Nishihara Environment Technology Inc Biological wastewater treatment apparatus
JP2003200191A (en) * 2001-12-28 2003-07-15 Nishihara Environment Technology Inc Organic wastewater treatment apparatus
JP2004275804A (en) * 2003-03-12 2004-10-07 Fuji Photo Film Co Ltd Method for treating photographic waste solution
JP2004314062A (en) * 2003-03-31 2004-11-11 Kansai Paint Co Ltd Method and apparatus for treating waste water containing organic matter
JP2004337683A (en) * 2003-05-14 2004-12-02 Hitachi Maxell Ltd Method for treating organic waste water by electrolysis
JP2005058976A (en) * 2003-08-20 2005-03-10 Hitachi Maxell Ltd Reduction system of waste sludge by electrolytic treatment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000628A (en) * 2011-06-14 2013-01-07 Japan Organo Co Ltd Wastewater treatment apparatus
CN103373796A (en) * 2013-08-14 2013-10-30 中国科学院成都生物研究所 Method for treating oil refining wastewater
CN105174657A (en) * 2015-10-20 2015-12-23 波鹰(厦门)科技有限公司 Treatment device and method for oil extraction wastewater
CN105174657B (en) * 2015-10-20 2017-05-31 波鹰(厦门)科技有限公司 The processing unit and method of a kind of oil extraction waste water
CN108409025A (en) * 2017-11-13 2018-08-17 南开大学 A kind of ternary composite driving oil field recovered water materialization-biochemistry combined treatment process
CN108821507A (en) * 2018-06-25 2018-11-16 中电环保股份有限公司 For electrolytic oxidation-Aerobic biological process reaction unit and its processing method
JP2022067507A (en) * 2020-10-20 2022-05-06 水ing株式会社 Wastewater treatment method and wastewater treatment apparatus
JP7282730B2 (en) 2020-10-20 2023-05-29 水ing株式会社 Wastewater treatment method and wastewater treatment equipment
JP7298784B1 (en) * 2022-03-28 2023-06-27 中国電力株式会社 Sewage purification equipment
WO2023187933A1 (en) * 2022-03-28 2023-10-05 中国電力株式会社 Sewage purification apparatus

Similar Documents

Publication Publication Date Title
US7332084B2 (en) Process for biological treatment of organic wastewater and apparatus therefor
US6802956B2 (en) Electrolytic treatment of aqueous media
CN106396270A (en) High-concentration pharmaceutical wastewater treatment system and treatment method
JP2008049343A (en) Organic waste water treatment device
CN106116031A (en) A kind of efficient treatment process of slaughtering wastewater
CN102249501B (en) Device and method for treating wastewater produced by hair-product manufacturing
JP4907103B2 (en) Sludge treatment method for biological treatment tank
JP2016043281A (en) Purification method, and purification tank
JP2006312124A (en) Sludge treatment method
JP4351504B2 (en) Organic wastewater treatment equipment
KR20180031085A (en) Method and device for biologically treating organic wastewater
JP5073369B2 (en) Sludge treatment method
EP1361198A1 (en) Process for treating water and treatment plant
CN106673306A (en) Treatment method of high-concentration refractory ammonia-containing organic wastewater
JP4237582B2 (en) Surplus sludge reduction device and method
JP4615530B2 (en) Sludge treatment method
JP2008114209A (en) Method for treating sludge
CN206476856U (en) A kind of high concentration medical wastewater processing unit
JP4286580B2 (en) Wastewater treatment method incorporating electrochemical treatment
CN115124116B (en) electro-Fenton device and method for treating high-chloride organic wastewater
CN209522729U (en) A kind of waste water electric floating advanced oxidation processing system
JP2004089916A (en) Treatment method for wastewater containing organic matter
CN214571384U (en) Skid-mounted rural medical institution wastewater treatment system
CN212403799U (en) LAS effluent disposal system to high concentration high salt
KR102004483B1 (en) Treatment Apparatus of Non-biodegradable Organic Wastewater or Anaerobic Digestion Effluent

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308