WO2023187933A1 - Sewage purification apparatus - Google Patents

Sewage purification apparatus Download PDF

Info

Publication number
WO2023187933A1
WO2023187933A1 PCT/JP2022/015184 JP2022015184W WO2023187933A1 WO 2023187933 A1 WO2023187933 A1 WO 2023187933A1 JP 2022015184 W JP2022015184 W JP 2022015184W WO 2023187933 A1 WO2023187933 A1 WO 2023187933A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
electrolysis
wastewater
sewage purification
chlorine concentration
Prior art date
Application number
PCT/JP2022/015184
Other languages
French (fr)
Japanese (ja)
Inventor
敏治 柳川
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2022/015184 priority Critical patent/WO2023187933A1/en
Priority to JP2022546438A priority patent/JP7298784B1/en
Publication of WO2023187933A1 publication Critical patent/WO2023187933A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to a sewage purification device.
  • Patent Document 1 describes a purification device that uses oyster shells to purify wastewater containing sludge components in stages.
  • ammonia is not easy to remove.
  • ammonia is removed only by microorganisms, there is a problem in that the device becomes large.
  • An object of the present invention is to provide a sewage purification device that can easily remove ammonia.
  • the present invention includes a contact filtration tank for purifying wastewater and an electrolysis tank, the electrolysis tank is disposed upstream of the contact filtration tank, and the contact filtration tank has oyster shells.
  • the electrolysis tank includes an electrolysis section, the wastewater in the electrolysis tank contains sodium chloride and water, and the electrolysis section electrolyzes the wastewater in the electrolysis tank.
  • This invention relates to a sewage purification device that generates sodium hypochlorite by decomposition.
  • the wastewater in the electrolysis tank contains ammonia, and at least a portion of the ammonia reacts with the sodium hypochlorite produced by the electrolysis to produce nitrogen.
  • At least one tank of the electrolytic tank and a tank disposed upstream of the electrolytic tank is equipped with a chlorine concentration measuring section, and the chlorine concentration measuring section is equipped with a chlorine concentration measuring section.
  • At least one of the tanks disposed downstream of the electrolytic tank includes a chlorine concentration measuring section, and the chlorine concentration measuring section is located in the tank provided with the chlorine concentration measuring section.
  • the sewage purification device according to any one of (1) to (3), which measures the chlorine concentration of sewage.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of the water utilization system in which the sewage purification apparatus of this invention is used, and the schematic structure of the sewage purification apparatus of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the schematic structure of the sewage purification apparatus of this invention. It is a sectional view showing the schematic structure of the 1st contact filtration tank of the present invention. It is a top view showing the schematic structure of the 1st contact filtration tank of the present invention.
  • FIG. 3 is a diagram showing a mesh filter medium of the present invention. It is a figure showing the honeycomb filter medium of the present invention.
  • the sewage purification device 1 of the present invention constitutes a part of a water reuse system 100.
  • the water reuse system 100 includes a sewage purification device 1 and water usage equipment 2.
  • the sewage purification device 1 and the water utilization equipment 2 are connected via piping 5, thereby forming a closed water system as a whole. That is, in the water reuse system 100, water circulates between the sewage purification device 1 and the water usage equipment 2, and as a general rule, water is not released to the outside.
  • This water circulation is realized by the sewage purification device 1 purifying the sewage discharged by the water usage equipment 2, and the water usage equipment 2 reusing the purified water.
  • purified water is sometimes referred to as purified water.
  • water may be used to include sewage and purified water.
  • the water utilization facility 2 is a facility that utilizes water and discharges sewage generated by the use of water.
  • Examples of the water usage equipment 2 include toilets, factory cleaning equipment, and aquaculture tanks.
  • the sewage purification device 1 is a device that purifies sewage discharged from the water usage equipment 2 and supplies the purified water to the water usage equipment 2. As shown in FIG. 1, purification of wastewater by the wastewater purification device 1 can be divided into three processes: primary treatment T1, secondary treatment T2, and tertiary treatment T3.
  • the main content of the primary treatment T1 is to separate wastewater into solid and liquid.
  • organic matter is decomposed by anaerobic microorganisms.
  • aeration is not performed in order to efficiently perform solid-liquid separation of wastewater. Therefore, it is preferable to use anaerobic microorganisms rather than aerobic microorganisms for decomposing organic matter.
  • the main content of the secondary treatment T2 is to purify the liquid part of the wastewater separated in the primary treatment using aerobic microorganisms.
  • aeration is performed to promote the decomposition of organic matter by aerobic microorganisms.
  • the main content of the tertiary treatment T3 is to further purify the wastewater purified in the secondary treatment T2.
  • wastewater is purified using oyster shells.
  • aeration is performed to promote the decomposition of organic matter by aerobic microorganisms.
  • disinfection, decolorization, and deodorization of wastewater are also performed.
  • pH adjustment, ammonia nitrification, and denitrification are performed from the primary treatment T1 to the tertiary treatment T3.
  • the tank configuration of the sewage purification device 1 will be explained based on FIGS. 1 and 2.
  • the arrows in Figure 1 indicate the flow of water. Further, in FIG. 2, piping between the tanks may be omitted.
  • the sewage purification device 1 includes, from upstream, a precipitation separation tank 10, a contact oxidation tank 20, a first settling tank 22, a first contact filtration tank 30, a second contact filtration tank 32, a second settling tank 34, and a storage tank 36.
  • the sedimentation separation tank 10 is responsible for primary treatment T1.
  • the contact oxidation tank 20 and the first precipitation tank 22 are responsible for the secondary treatment T2.
  • the first contact filtration tank 30, the second contact filtration tank 32, the second settling tank 34, and the storage tank 36 are responsible for the tertiary treatment T3.
  • the wastewater discharged from the water utilization equipment 2 flows into the sedimentation separation tank 10.
  • the inflowing sewage passes through each tank of the sewage purification device 1 and is purified.
  • the purified wastewater flows from the second settling tank 34 into the storage tank 36 as purified water.
  • the inflowing purified water is supplied to the water utilization equipment 2 from the storage tank 36.
  • the sewage purification device 1 of Embodiment 1 has features in the contact oxidation tank 20 and the first contact filtration tank 30. Specifically, the contact oxidation tank 20 is equipped with an electrolysis section 50 and a chlorine concentration measurement section 52. Further, the first contact filtration tank 30 is equipped with a honeycomb filter medium 76. Hereinafter, each tank will be explained in order from the upstream.
  • ⁇ Sedimentation separation tank> wastewater flowing from the water utilization equipment 2 is separated into solid and liquid by sedimentation. Solid matter, floating matter, etc. contained in the wastewater are precipitated and taken out as precipitate 90. Only liquid flows into the contact oxidation tank 20. Further, in the sedimentation separation tank 10, decomposition of organic matter by anaerobic microorganisms is also performed.
  • ⁇ Contact oxidation tank> organic matter contained in the liquid separated into solid and liquid in the precipitation separation tank 10 is decomposed by aerobic microorganisms.
  • a contact material made of resin is placed in the contact oxidation tank 20 . Aerobic microorganisms are attached to the surface of the contact material. Aeration is also performed to promote the decomposition of organic matter by aerobic microorganisms.
  • the contact oxidation tank 20 is equipped with an electrolysis section 50.
  • the contact oxidation tank 20 is also called an electrolysis tank.
  • the electrolysis section 50 is a part that electrolyzes wastewater in the tank.
  • the electrolysis unit 50 electrolyzes sodium chloride and water contained in the wastewater in the contact oxidation tank 20 to generate sodium hypochlorite.
  • the reaction formula for this electrolysis is as follows. NaCl+ H2O ⁇ NaClO+ H2
  • Sodium hypochlorite generated by electrolysis in the electrolysis unit 50 reacts with ammonia contained in the wastewater in the contact oxidation tank 20 .
  • the reaction formula between ammonia and sodium hypochlorite is as follows. 2NH 3 +3NaOCl ⁇ N 2 ⁇ +3NaCl+3H 2 O This reaction allows ammonia to be removed from the wastewater in the tank. Also, the generated nitrogen gas is released into the atmosphere. Thereby, ammonia nitrogen contained in the wastewater can be removed from the wastewater.
  • Ammonia is a highly toxic substance to microorganisms. By removing ammonia from wastewater, aerobic microorganisms within the contact oxidation tank 20 can be protected. Furthermore, by removing ammonia from the wastewater, it is possible to suppress an increase in the pH of the wastewater in the contact oxidation tank 20 caused by ammonia. Furthermore, there is no need to add sodium hypochlorite from outside the tank. Alternatively, the opportunity for its input can be reduced. Therefore, maintenance and management of the sewage purification device 1 can be simplified. Also, sodium hypochlorite may reduce the activity of microorganisms. Therefore, it is preferable that the wastewater does not contain excessive sodium hypochlorite.
  • sodium hypochlorite is produced by electrolysis. Therefore, it is easier to adjust the amount of sodium hypochlorite contained in wastewater than when sodium hypochlorite is added from outside the tank. Therefore, it becomes easy to suppress the activity of microorganisms from decreasing. Furthermore, when ammonia is removed using microorganisms, for example when ammonia is nitrified using nitrifying bacteria, the processing tank often becomes large. On the other hand, when ammonia is removed using sodium hypochlorite produced by electrolysis, it becomes easy to downsize the treatment tank.
  • the contact oxidation tank 20 often has a high ammonia concentration in the sewage in the tank. Therefore, by arranging the electrolysis unit 50 in the contact oxidation tank 20, ammonia can be efficiently removed in the sewage purification apparatus 1 as a whole. Furthermore, the need for ammonia removal by nitrification can be reduced. Therefore, it is possible to prevent the pH of wastewater from dropping too much due to nitrification. Thereby, the burden on the oyster shells provided downstream of the contact oxidation tank 20 can be reduced. This is because the need for neutralizing wastewater with oyster shells is reduced.
  • the electrolysis unit 50 includes a first electrode and a second electrode (not shown).
  • the first electrode and the second electrode are immersed in waste water in the catalytic oxidation tank 20 for electrolysis.
  • the polarity of the first electrode and the polarity of the second electrode can be reversed.
  • solid substances such as calcium may adhere to the electrode.
  • the contact oxidation tank 20 is equipped with a chlorine concentration measuring section 52.
  • the chlorine concentration measuring section 52 is a section that measures the chlorine concentration of wastewater in the tank.
  • the chlorine concentration measuring section 52 measures the chlorine concentration of the wastewater in the contact oxidation tank 20.
  • Sodium hypochlorite may have an adverse effect on the activity of microorganisms such as aerobic microorganisms, anaerobic microorganisms, and nitrifying bacteria. Therefore, it is preferable to adjust the above-mentioned electrolysis so that it does not become excessive.
  • the electrolysis is preferably controlled so as not to generate an excessive amount of sodium hypochlorite relative to the amount of ammonia contained in the wastewater.
  • the sewage purification device 1 of the first embodiment is equipped with a chlorine concentration measuring section 52.
  • Chlorine concentration is an indicator of the amount of sodium hypochlorite in solution.
  • the time and intensity of electrolysis by the electrolysis section 50 can be adjusted based on the chlorine concentration measured by the chlorine concentration measurement section 52. Thereby, generation of excessive sodium hypochlorite can be suppressed.
  • the chlorine concentration measurement unit 52 can be provided in the contact oxidation tank 20 at a position where wastewater flows from the precipitation separation tank 10. Thereby, it is possible to quickly determine whether or not it is necessary to generate sodium hypochlorite by electrolysis for the inflowing wastewater, and the appropriate amount of generation.
  • the position where the chlorine concentration measuring section 52 is provided is not particularly limited.
  • the chlorine concentration measuring section 52 may be provided at a position close to the contact material to which aerobic microorganisms have adhered. This makes it possible to evaluate the chlorine concentration of wastewater in which the decomposition of organic matter by aerobic microorganisms has progressed, as well as the content of sodium hypochlorite.
  • the electrolysis section 50 can also be provided in a tank other than the catalytic oxidation tank 20. Moreover, two or more electrolyzers 50 can also be provided in the sewage purification apparatus 1.
  • the chlorine concentration measuring section 52 can also be provided in a tank other than the contact oxidation tank 20.
  • a tank other than the contact oxidation tank 20.
  • it can be provided in a settling tank or a contact filtration tank downstream of the contact oxidation tank 20.
  • each tank can be kept clean with sodium hypochlorite while suppressing the adverse effects of sodium hypochlorite on microorganisms.
  • each tank is sterilized with sodium hypochlorite while confirming by measurement by the chlorine concentration measurement unit 52 that the amount of sodium hypochlorite is within a range where no adverse effect on microorganisms is a problem. It can be performed.
  • sterilization of wastewater can be performed using sodium hypochlorite without using the disinfection section 40. This will be discussed later.
  • control of the electrolyzer 50 is not limited to feedback control based on the measurement results of the chlorine concentration measuring section 52, as described above.
  • the water usage equipment 2 is a facility such as a toilet where the amount of sewage discharged can be predicted depending on the number of users
  • the electrolysis unit 50 performs electricity production according to the number of users. The amount of degradation can be controlled.
  • First sedimentation tank 22 In the first sedimentation tank 22, the wastewater purified by aerobic microorganisms in the contact oxidation tank 20 is separated into a supernatant liquid and a precipitate. The separated supernatant liquid flows into the first contact filtration tank 30.
  • First contact filtration tank In the first contact filtration tank 30, the supernatant liquid separated in the first settling tank 22 is treated using microorganisms. In the first contact filtration tank 30, a contact material to which nitrifying bacteria as microorganisms is attached is arranged. In the sewage purification device 1 of the first embodiment, a honeycomb filter medium 76 is provided as this contact material.
  • the first contact filtration tank 30 includes a first porous tube 70, a sheet filter 72, a plastic filter medium 74, a honeycomb filter medium 76, a grating 78, a second porous tube 80, A block 82 is provided. These are, from the top 302 to the bottom 301 of the first contact filtration tank 30, a first porous pipe 70, a sheet filter 72, a plastic filter medium 74, a honeycomb filter medium 76, a grating 78, a second porous pipe 80, and a block 82. They are arranged in order.
  • the side of the upper part 302 may be called the upper side
  • the side of the bottom part 301 may be called the lower side.
  • the first porous pipe 70 is a pipe that supplies the supernatant liquid separated in the first settling tank 22 into the first contact filtration tank 30.
  • the first porous tube 70 has a tube shape.
  • the first porous pipe 70 can be made of metal, resin, or the like, for example.
  • the first porous tube 70 has a plurality of holes 701 on the circumferential surface of the tube.
  • the holes 701 are arranged so as to form a plurality of rows along the longitudinal direction of the first porous pipe 70. Further, this hole 701 opens in the direction of the sheet-like filter 72, that is, in the direction of the bottom 301 of the first contact filtration tank 30.
  • the supernatant liquid separated in the first settling tank 22 is discharged from the holes 701 to the sheet filter 72 while flowing in the direction of the arrow in FIG.
  • the first porous pipe 70 extends from one end to the other end in the length direction of the first contact filtration tank 30. That is, the first porous pipe 70 extends substantially horizontally.
  • three first porous pipes 70 are provided in the first contact filtration tank 30. These three first porous tubes 70 are arranged at approximately equal intervals in the width direction.
  • the supernatant liquid from the first settling tank 22 is dispersed and discharged from the plurality of holes 701 of each of the three first porous pipes 70 . Thereby, the supernatant liquid from the first settling tank 22 is supplied to the entire sheet-like filter 72 .
  • description of the sheet-like filter 72 and the plastic filter medium 74 is omitted for convenience of explanation.
  • the sheet filter 72 is a filter that removes suspended solids of a specific size from wastewater.
  • the sheet-like filter 72 of Embodiment 1 removes suspended matter having a diameter of about 10 ⁇ m or more and less than about 80 ⁇ m.
  • the sheet-like filter 72 can be formed from fibrous resin or the like. Further, the sheet-like filter 72 has a mesh having a size of about 10 ⁇ m.
  • the sheet filter 72 is arranged below the first porous tube 70 . Further, the sheet-like filter 72 extends over almost the entire surface of the first contact filtration tank 30 in plan view. Thereby, the sheet-like filter 72 covers almost the entire surface of the plastic filter medium 74 disposed below it.
  • a plan view refers to viewing the first contact filtration tank 30 from the top 302 toward the bottom 301.
  • the plastic filter medium 74 is a filter medium that spreads the supplied wastewater in a predetermined direction.
  • the plastic filter medium 74 of the first embodiment spreads the wastewater supplied from the sheet filter 72 in a direction parallel to the bottom 301 of the first contact filtration tank 30.
  • the plastic filter medium 74 has a rectangular parallelepiped shape, which is integrally formed by stacking a plurality of mesh filter mediums 741 of about 6 cm square shown in FIG. The wastewater supplied to the plastic filter medium 74 spreads in the plane direction of the mesh filter medium 741.
  • Nitrifying bacteria that nitrify ammonia are attached to the surface of the plastic filter medium 74.
  • nitrifying bacteria have the property of adhering to solid carriers. Therefore, for example, by immersing the plastic filter medium 74 in a sewage tank where nitrifying bacteria exist, the nitrifying bacteria can be attached to the surface of the plastic filter medium 74.
  • a plurality of plastic filter media 74 are arranged below the sheet filter 72 and above the honeycomb filter media 76.
  • the plastic filter media 74 arranged side by side are oriented such that the longitudinal direction of the rectangular parallelepiped shape is parallel to the bottom 301 of the first contact filtration tank 30 .
  • the waste water from the sheet filter 72 that has come into contact with the surface of the plastic filter media 74 flows toward the honeycomb filter media 76 while being transmitted between adjacent plastic filter media 74 . That is, the wastewater that has passed through the plastic filter medium 74 is discharged toward the honeycomb filter medium 76 while being dispersed in a direction parallel to the bottom 301 of the first contact filtration tank 30 .
  • the plastic filter medium 74 nitrifies the waste water from the sheet filter 72 and supplies the waste water almost evenly to the entire honeycomb filter medium 76 .
  • the honeycomb filter medium 76 is a filter medium including a plurality of hollow tubes each having a hexagonal cross section. As shown in FIG. 6, the honeycomb filter medium 76 of Embodiment 1 has a plurality of hollow tubes 761.
  • the hollow tube 761 has a hollow hexagonal column shape. The distance between opposing vertices in the hexagonal cross section of the hollow tube 761 is shown by arrow A in FIG. This distance may be approximately 13 mm, for example. Further, the hollow tube 761 can be made of resin, for example.
  • the honeycomb filter medium 76 is formed by integrally forming a plurality of hollow tubes 761 so as to share an outer surface with each other. In other words, in the honeycomb filter medium 76, the hollow tubes 761 are arranged and fixed so that their outer surfaces are in contact with each other without any gaps.
  • the honeycomb filter medium 76 is arranged in the first contact filtration tank 30 so that the openings at both ends of the hollow tubes 761 that constitute the honeycomb filter medium 76 face the top 302 and bottom 301 of the first contact filtration tank 30, respectively. There is. That is, the hollow tube 761 extends substantially vertically.
  • the honeycomb filter medium 76 has elasticity against forces applied from both ends in the width direction or length direction shown in FIG. 4 . Therefore, the honeycomb filter medium 76 can be fixed to the first contact filtration tank 30, for example, as follows. First, a force that resists the elastic force is applied to bring the honeycomb filter medium 76 into a contracted state. Then, the honeycomb filter medium 76 is placed in the first contact filtration tank 30 in the contracted state. Next, by releasing the force that resists the elastic force, the outer surface of the honeycomb filter medium 76 is pressed against the inner wall of the first contact filtration tank 30. Thereby, the honeycomb filter medium 76 is fixed in the middle part of the first contact filtration tank 30 without any gaps. In addition, although the 1st contact filtration tank 30 is formed of resin, it has a larger specific gravity than sewage.
  • the honeycomb filter medium 76 By arranging the honeycomb filter medium 76 in the first contact filtration tank 30 as described above, the honeycomb filter medium 76 is firmly secured so that it will not move within the first contact filtration tank 30 due to the flow of wastewater, etc. is fixed in the first contact filtration tank 30.
  • the honeycomb filter medium 76 can also be fixed to the first contact filtration tank 30 by a method other than the above-mentioned method.
  • the honeycomb filter medium 76 can be fixed to the first contact filtration tank 30 with an adhesive.
  • Nitrifying bacteria are attached to the inner surface of the hollow tube 761.
  • the nitrifying bacteria may originate from the plastic filter media 74. That is, when wastewater is supplied to the hollow tube 761 from the plastic filter medium 74 to which nitrifying bacteria have adhered, the nitrifying bacteria move to the hollow tube 761 along with the wastewater. The nitrifying bacteria adhere to the inner surface of the hollow tube 761. The attached nitrifying bacteria proliferate on the inner surface of the hollow tube 761. As described above, nitrifying bacteria can be attached to the inner surface of the hollow tube 761 without any special work for attaching the nitrifying bacteria to the inner surface of the hollow tube 761.
  • the cross-sectional shape of the hollow tube 761 is not limited to a hexagonal shape, and may be, for example, a quadrangular shape.
  • the second porous pipe 80 is a pipe that supplies air to the honeycomb filter medium 76.
  • the second porous tube 80 has a tube shape.
  • the second porous pipe 80 can be made of metal, resin, or the like, for example.
  • the second porous pipe 80 has a plurality of holes 801 on its circumferential surface.
  • the holes 801 are arranged so as to form a plurality of rows along the longitudinal direction of the second porous pipe 80.
  • this hole 801 opens in the direction of the honeycomb filter medium 76, that is, in the direction of the upper part 302 of the first contact filtration tank 30.
  • the second porous pipe 80 is disposed below the honeycomb filter medium 76. Furthermore, as shown in FIG. It extends to the end. That is, the second porous pipe 80 extends substantially horizontally. Further, three second porous pipes 80 are provided in the first contact filtration tank 30. These three second porous tubes 80 are arranged at approximately equal intervals in the width direction.
  • Air is fed into the second porous pipe 80 from one end thereof by a blower or the like (not shown). This air is discharged from the hole 801, becomes a bubble 802, and reaches the inside of the hollow tube 761 from the lower side of the hollow tube 761.
  • the air bubbles 802 can suppress the flow of wastewater from the upper side to the lower side within the hollow pipe 761. Furthermore, it is possible to generate a flow of wastewater from the lower side to the upper side within the hollow pipe 761. Furthermore, within the same hollow tube 761 or in adjacent hollow tubes 761, the above-described flow from the upper side to the lower side and the flow from the lower side to the upper side can be generated alternately and repeatedly. .
  • a flow of sewage in a direction from the bottom 301 to the top 302 is generated in a part of the hollow pipe 761 by discharging gas from the hole 801, and , another part of the hollow tube 761 can generate a flow of waste water in the opposite direction from the top 302 to the bottom 301 .
  • the contact time and number of contacts between the inner surface of the hollow tube 761 and the waste water can be increased.
  • ammonia can be efficiently nitrified.
  • oxygen can be supplied to the inside of the hollow tube 761 by the bubbles 802. Thereby, the amount of dissolved oxygen in the wastewater in the hollow pipe 761 can be increased. This makes it possible to maintain an aerobic environment for the nitrifying bacteria, so that ammonia can be efficiently nitrified.
  • the gas sent into the second porous tube 80 is not limited to air, and may be other gas such as nitrogen. Moreover, the gas supply from the second porous pipe 80 may be performed continuously or intermittently. Further, the second porous tube 80 may supply gas to only some of the plurality of hollow tubes 761 .
  • the block 82 is a member that is arranged at the bottom 301 of the first contact filtration tank 30 and serves as the base of the grating 78.
  • the block 82 has a rectangular parallelepiped shape and is made of a material having a higher specific gravity than sewage, such as resin or concrete.
  • a total of four blocks 82 are arranged, one each near the four corners of the bottom 301 of the first contact filtration tank 30.
  • the grating 78 is a hard plate material having a lattice shape.
  • the grating 78 can be made of a material having a higher specific gravity than the waste water, such as resin.
  • Grating 78 is placed over block 82 .
  • a honeycomb filter medium 76 is arranged on the grating 78. That is, the grating 78 supports the honeycomb filter medium 76 from below.
  • the second porous pipe 80 is arranged below the grating 78, that is, between the grating 78 and the bottom 301 of the first contact filtration tank 30.
  • the honeycomb filter medium 76 is arranged above the second porous tube 80 by the block 82 and the grating 78. Thereby, the air discharged from the second porous tube 80 is supplied to the honeycomb filter medium 76. At this time, the air discharged from the second porous tube 80 passes between the gratings of the grating 78.
  • the sewage purification device 1 of the first embodiment includes a honeycomb filter medium 76 to which nitrifying bacteria are attached. Therefore, ammonia can be reliably nitrified and the amount of ammonia in wastewater can be reduced.
  • a second contact filtration tank 32 is arranged downstream of the first contact filtration tank 30. This second contact filtration tank 32 is equipped with oyster shells. Many microorganisms are attached to oyster shells. Furthermore, ammonia is highly toxic to microorganisms.
  • ammonia can be removed in the tank immediately before the second contact filtration tank 32, as described above. Therefore, oyster shells and microorganisms in the second contact filtration tank 32 can be protected from the toxicity of ammonia. Therefore, the amount of oyster shells used and the frequency of replacing oyster shells can be reduced.
  • the microorganisms to be attached to the honeycomb filter medium 76 are not limited to nitrifying bacteria.
  • aerobic microorganisms that decompose organic matter can also be attached to the honeycomb filter medium 76.
  • aerobic microorganisms that decompose organic matter can promote purification of wastewater.
  • burden of oyster shells on the second contact filtration tank can be reduced.
  • ⁇ Second contact filtration tank> wastewater is filtered using oyster shells. Oyster shells are placed in the second contact filtration tank 32 as a contact material. Aeration is also performed to facilitate filtration through the oyster shells. If the removal of ammonia from wastewater and the decomposition of organic matter are progressing in the tanks up to the second contact filtration tank 32, the oyster shells in the second contact filtration tank 32 will mainly absorb pH due to neutralization. It only serves a regulatory function. In this case, the rate of deterioration of oyster shells can be slowed down. This makes it possible to reduce the amount of oyster shells used and to slow down the frequency of replacing oyster shells.
  • the sewage purification device 1 of Embodiment 1 it is possible to achieve both the treatment of ammonia by microorganisms in the first contact filtration tank 30 and the pH stabilization effect by oyster shells in the second contact filtration tank 32 at a high level. I can do it. This makes it easy to downsize the entire sewage purification device 1.
  • the disinfection section 40 is a section that supplies a sterilizing substance for disinfection to the water flowing out from the second settling tank 34 and before flowing into the storage tank 36 .
  • the water flowing out of the second settling tank 34 may require disinfection by sterilization.
  • the sterilizing substance supplied by the sterilizing section 40 sterilizes bacteria contained in the water flowing out from the second settling tank 34 .
  • bacteria to be sterilized include Salmonella typhi, Escherichia coli, Staphylococcus, and Salmonella.
  • a chlorine-based substance such as solid chlorine can be used. Note that the supply of the sterilizing substance to the water flowing out from the second settling tank 34 can be performed manually, not by the disinfection unit 40.
  • ⁇ Storage tank> The supernatant liquid from the second settling tank 34 flows into the storage tank 36 .
  • the water is then stored as purified water for reuse.
  • the storage tank 36 is equipped with activated carbon 62.
  • the activated carbon 62 deodorizes and decolorizes the purified water stored in the storage tank 36.
  • the purified water stored in the storage tank 36 is supplied to the water usage equipment 2, for example, a toilet, and is reused as flushing water for the toilet.
  • sodium hypochlorite generated by the electrolysis unit 50 provided in the contact oxidation tank 20 is used to purify the tank downstream of the contact oxidation tank 20, and to purify the downstream tank.
  • the sewage inside the tank can be disinfected.
  • a slightly larger amount of sodium hypochlorite is generated by electrolysis than the amount of ammonia contained in the wastewater in the wastewater purification device 1.
  • sodium hypochlorite that does not react with ammonia remains.
  • the content of sodium hypochlorite in tanks downstream of the contact oxidation tank 20 so that the remaining sodium hypochlorite does not have a negative effect on oyster shells and microorganisms. . Therefore, it is preferable to include the chlorine concentration measuring section 52 in tanks other than the contact oxidation tank 20. Note that the chlorine concentration measurement unit 52 does not need to be provided in all tanks downstream of the contact oxidation tank 20. As appropriate, the chlorine concentration measuring section 52 can be provided only in necessary tanks.
  • the disinfectant section 40 may not supply disinfectant. can. This is because the sodium hypochlorite contained in wastewater can disinfect the wastewater.
  • the sewage purification device 1 was described in which the contact oxidation tank 20 was equipped with the electrolysis unit 50 and the first contact filtration tank 30 was equipped with the honeycomb filter medium 76.
  • the sewage purification device 1 can be modified in various ways. Other embodiments will be illustrated below.
  • the sewage purification device 1 may be a sewage purification device 1 in which the electrolysis section 50 and the chlorine concentration measurement section 52 are not provided in the contact oxidation tank 20.
  • This sewage purification device 1 is referred to as the sewage purification device 1 of the second embodiment.
  • sodium hypochlorite is introduced from outside the tank in order to remove ammonia in the contact oxidation tank 20. Thereby, ammonia contained in the wastewater can be removed from the wastewater as nitrogen gas.
  • sodium hypochlorite may not be introduced into the contact oxidation tank 20 from outside the tank. In this case, for example, ammonia is removed from the wastewater in the first contact filtration tank 30. This is because the honeycomb filter medium 76 provided in the first contact filtration tank 30 has nitrifying bacteria attached to it.
  • the sewage purification device 1 may be such that the first contact filtration tank 30 is not equipped with the honeycomb filter medium 76.
  • This sewage purification device 1 is referred to as the sewage purification device 1 of the third embodiment.
  • the first contact filtration tank 30 can be made similar to the second contact filtration tank 32. Specifically, oyster shells are also placed in the first contact filtration tank 30. In this case, ammonia cannot be nitrified by the nitrifying bacteria attached to the honeycomb filter medium 76.
  • the catalytic oxidation tank 20 is equipped with the electrolysis section 50, ammonia can be removed in the catalytic oxidation tank 20 as described above.
  • nitrifying bacteria can be nitrified in the first contact filtration tank 30.
  • ammonia concentration in the wastewater in the tank can be reduced. Thereby, the oyster shells provided in the second contact filtration tank 32 can be protected.
  • Sewage purification equipment Water usage equipment 5 Piping 10 Sedimentation separation tank 20 Contact oxidation tank 22 First settling tank 30 First contact filtration tank 301 Bottom of first contact filtration tank 302 Upper part of first contact filtration tank 302 Upper part of first contact filtration tank 302 Upper part of first contact filtration tank 302 Upper part of first contact filtration tank 32 Second contact filtration tank 34 Second settling tank 36 Storage tank 38 Surplus water storage tank 40 Disinfection section 50 Electrolysis section 52 Chlorine concentration measuring section 60 Oyster shell 62 Activated carbon 70 First porous tube 701 Hole 72 Sheet filter 74 Plastic filter medium 741 Mesh filter medium 76 Honeycomb filter medium 761 Hollow tube 78 Grating 80 No. 2-hole pipe 801 Hole 802 Bubbles 82 Block 90 Sediment 100 Water reuse system T1 Primary treatment T2 Secondary treatment T3 Tertiary treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

The purpose of the present invention is to provide a sewage purification apparatus which makes it possible to remove ammonia easily. Provided is a sewage purification apparatus provided with a contact filtration tank for purifying sewage and an electrolysis tank, in which the electrolysis tank is arranged upstream of the contact filtration tank, the contact filtration tank includes oyster shells, the electrolysis tank is provided with an electrolysis unit, the sewage in the electrolysis tank contains sodium chloride and water, and the electrolysis unit electrolyzes the sewage in the electrolysis tank to produce sodium hypochlorite.

Description

汚水浄化装置Sewage purification equipment
 本発明は、汚水浄化装置に関する。 The present invention relates to a sewage purification device.
 特許文献1には、汚泥成分を含有する排水を、カキ殻を用いて段階的に浄化する浄化装置が記載されている。しかし、アンモニアの除去が容易ではないとの問題がある。また、微生物のみによりアンモニアを除去しようとすると、装置が大型化するとの問題がある。 Patent Document 1 describes a purification device that uses oyster shells to purify wastewater containing sludge components in stages. However, there is a problem in that ammonia is not easy to remove. Furthermore, if ammonia is removed only by microorganisms, there is a problem in that the device becomes large.
特開2008-720号公報Japanese Patent Application Publication No. 2008-720
 本発明は、アンモニアの除去が容易な汚水浄化装置を提供することを目的とする。 An object of the present invention is to provide a sewage purification device that can easily remove ammonia.
 (1)本発明は、汚水を浄化するための接触ろ過槽と、電気分解槽と、を備え、前記電気分解槽は、前記接触ろ過槽の上流に配置され、前記接触ろ過槽は、カキ殻を備え、前記電気分解槽は、電気分解部を備え、前記電気分解槽の中の汚水は、塩化ナトリウム及び水、を含有し、前記電気分解部は、前記電気分解槽の中の汚水を電気分解することで、次亜塩素酸ナトリウムを生成させる、汚水浄化装置に関する。 (1) The present invention includes a contact filtration tank for purifying wastewater and an electrolysis tank, the electrolysis tank is disposed upstream of the contact filtration tank, and the contact filtration tank has oyster shells. The electrolysis tank includes an electrolysis section, the wastewater in the electrolysis tank contains sodium chloride and water, and the electrolysis section electrolyzes the wastewater in the electrolysis tank. This invention relates to a sewage purification device that generates sodium hypochlorite by decomposition.
 (2)前記電気分解槽の中の前記汚水は、アンモニアを含有し、前記アンモニアの少なくとも一部は、前記電気分解により生成された前記次亜塩素酸ナトリウムと反応し、窒素を生成する、(1)に記載の汚水浄化装置。 (2) The wastewater in the electrolysis tank contains ammonia, and at least a portion of the ammonia reacts with the sodium hypochlorite produced by the electrolysis to produce nitrogen. The sewage purification device described in 1).
 (3)前記電気分解槽及び前記電気分解槽の上流に配置された槽、のうちの少なくとも1つの槽は、塩素濃度測定部を備え、前記塩素濃度測定部は、当該塩素濃度測定部が備えられた前記槽の中の汚水の塩素濃度を測定する、(1)又は(2)に記載の汚水浄化装置。 (3) At least one tank of the electrolytic tank and a tank disposed upstream of the electrolytic tank is equipped with a chlorine concentration measuring section, and the chlorine concentration measuring section is equipped with a chlorine concentration measuring section. The sewage purification device according to (1) or (2), wherein the chlorine concentration of the sewage in the tank is measured.
 (4)前記電気分解槽の下流に配置された槽のうちの少なくとも1つの槽は、塩素濃度測定部を備え、前記塩素濃度測定部は、当該塩素濃度測定部が備えられた前記槽の中の汚水の塩素濃度を測定する、(1)から(3)の何れかに記載の汚水浄化装置。 (4) At least one of the tanks disposed downstream of the electrolytic tank includes a chlorine concentration measuring section, and the chlorine concentration measuring section is located in the tank provided with the chlorine concentration measuring section. The sewage purification device according to any one of (1) to (3), which measures the chlorine concentration of sewage.
 (5)前記汚水は、大腸菌を含有し、前記大腸菌は、前記電気分解により生成された前記次亜塩素酸ナトリウムにより殺菌される、(1)から(4)の何れかに記載の汚水浄化装置。 (5) The sewage purification device according to any one of (1) to (4), wherein the sewage contains E. coli, and the E. coli is sterilized by the sodium hypochlorite generated by the electrolysis. .
 (6)前記電気分解部は、第1電極と第2電極とを備え、前記第1電極及び前記第2電極は、その極性の反転が可能である、(1)から(5)の何れかに記載の汚水浄化装置。 (6) Any one of (1) to (5), wherein the electrolysis section includes a first electrode and a second electrode, and the first electrode and the second electrode are capable of reversing their polarities. The sewage purification device described in .
 本発明によれば、アンモニアの除去が容易な汚水浄化装置を供給することができる。 According to the present invention, it is possible to provide a sewage purification device that easily removes ammonia.
本発明の汚水浄化装置が用いられる水利用システムの全体構成と、本発明の汚水浄化装置の概略構成とを示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of the water utilization system in which the sewage purification apparatus of this invention is used, and the schematic structure of the sewage purification apparatus of this invention. 本発明の汚水浄化装置の概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the schematic structure of the sewage purification apparatus of this invention. 本発明の第1接触ろ過槽の概略構成を示す断面図である。It is a sectional view showing the schematic structure of the 1st contact filtration tank of the present invention. 本発明の第1接触ろ過槽の概略構成を示す上面図である。It is a top view showing the schematic structure of the 1st contact filtration tank of the present invention. 本発明の網目状ろ材を示す図である。FIG. 3 is a diagram showing a mesh filter medium of the present invention. 本発明のハニカムろ材を示す図である。It is a figure showing the honeycomb filter medium of the present invention.
≪第1実施形態≫
 以下、添付の図面を参照して本発明の第1実施形態について説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付すこととする。
≪First embodiment≫
Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing.
<水再利用システム>
 図1に示すように、本発明の汚水浄化装置1は、水再利用システム100の一部分を構成する。
 水再利用システム100は、汚水浄化装置1と水利用設備2とを備える。汚水浄化装置1と水利用設備2とは、配管5を介して接続され、それにより全体として閉じた水の系を形成する。すなわち、水再利用システム100では、汚水浄化装置1と水利用設備2との間で水が循環し、水は原則として外部に放出されない。この水の循環は、水利用設備2が排出する汚水を汚水浄化装置1が浄化し、浄化された水を水利用設備2が再利用することにより実現される。
 なお、浄化された水を浄水という場合がある。また、水を、汚水と浄水とを含む意味で用いる場合がある。
<Water reuse system>
As shown in FIG. 1, the sewage purification device 1 of the present invention constitutes a part of a water reuse system 100.
The water reuse system 100 includes a sewage purification device 1 and water usage equipment 2. The sewage purification device 1 and the water utilization equipment 2 are connected via piping 5, thereby forming a closed water system as a whole. That is, in the water reuse system 100, water circulates between the sewage purification device 1 and the water usage equipment 2, and as a general rule, water is not released to the outside. This water circulation is realized by the sewage purification device 1 purifying the sewage discharged by the water usage equipment 2, and the water usage equipment 2 reusing the purified water.
Note that purified water is sometimes referred to as purified water. In addition, water may be used to include sewage and purified water.
<水利用設備>
 水利用設備2は、水を利用し、その利用により生じる汚水を排出する設備である。水利用設備2の例としては、トイレ、工場の洗浄設備、養殖用水槽などがある。
<Water usage equipment>
The water utilization facility 2 is a facility that utilizes water and discharges sewage generated by the use of water. Examples of the water usage equipment 2 include toilets, factory cleaning equipment, and aquaculture tanks.
<汚水浄化装置>
 汚水浄化装置1は、水利用設備2から排出される汚水を浄化し、浄化した水を水利用設備2に供給する装置である。
 図1に示すように、汚水浄化装置1による汚水の浄化は、一次処理T1、二次処理T2及び三次処理T3の、3つの処理に分けることができる。
<Sewage purification equipment>
The sewage purification device 1 is a device that purifies sewage discharged from the water usage equipment 2 and supplies the purified water to the water usage equipment 2.
As shown in FIG. 1, purification of wastewater by the wastewater purification device 1 can be divided into three processes: primary treatment T1, secondary treatment T2, and tertiary treatment T3.
<一次処理の概要>
 一次処理T1の主な内容は、汚水を固体と液体とに分離することである。
 また、一次処理T1では、この分離と共に、嫌気性微生物による有機物の分解を行う。
 一次処理T1では、汚水の固液分離を効率的に行うために、ばっ気は行わない。そのため、有機物の分解には、好気性微生物よりも嫌気性微生物を用いることが好ましい。
<Overview of primary processing>
The main content of the primary treatment T1 is to separate wastewater into solid and liquid.
In the primary treatment T1, in addition to this separation, organic matter is decomposed by anaerobic microorganisms.
In the primary treatment T1, aeration is not performed in order to efficiently perform solid-liquid separation of wastewater. Therefore, it is preferable to use anaerobic microorganisms rather than aerobic microorganisms for decomposing organic matter.
<二次処理の概要>
 二次処理T2の主な内容は、一次処理で分離された汚水の液体の部分を、好気性微生物を用いて浄化することである。二次処理T2では、ばっ気を行い、好気性微生物による有機物の分解を促進する。
<Summary of secondary processing>
The main content of the secondary treatment T2 is to purify the liquid part of the wastewater separated in the primary treatment using aerobic microorganisms. In the secondary treatment T2, aeration is performed to promote the decomposition of organic matter by aerobic microorganisms.
<三次処理の概要>
 三次処理T3の主な内容は、二次処理T2で浄化された汚水を、更に浄化することである。三次処理T3では、かき殻を用いて汚水の浄化を行う。その際、ばっ気を行い、好気性微生物による有機物の分解を促進する。
 また、三次処理T3では、汚水の消毒、脱色及び消臭も行う。
 また、一次処理T1から三次処理T3を通じて、pHの調節、アンモニアの硝化及び脱窒を行う。
<Overview of tertiary processing>
The main content of the tertiary treatment T3 is to further purify the wastewater purified in the secondary treatment T2. In the tertiary treatment T3, wastewater is purified using oyster shells. At this time, aeration is performed to promote the decomposition of organic matter by aerobic microorganisms.
Furthermore, in the tertiary treatment T3, disinfection, decolorization, and deodorization of wastewater are also performed.
Further, from the primary treatment T1 to the tertiary treatment T3, pH adjustment, ammonia nitrification, and denitrification are performed.
<汚水浄化装置の槽構成>
 図1及び図2に基づいて、汚水浄化装置1の槽構成について説明する。図1の矢印は、水の流れを示す。また、図2では、各槽の間の配管等は省略されている場合がある。
 汚水浄化装置1は、上流から、沈殿分離槽10、接触酸化槽20、第1沈殿槽22、第1接触ろ過槽30、第2接触ろ過槽32、第2沈殿槽34及び貯留槽36を備える。
 沈殿分離槽10は、一次処理T1を担う。接触酸化槽20及び第1沈殿槽22は、二次処理T2を担う。第1接触ろ過槽30、第2接触ろ過槽32、第2沈殿槽34及び貯留槽36は、三次処理T3を担う。
<Tank configuration of sewage purification equipment>
The tank configuration of the sewage purification device 1 will be explained based on FIGS. 1 and 2. The arrows in Figure 1 indicate the flow of water. Further, in FIG. 2, piping between the tanks may be omitted.
The sewage purification device 1 includes, from upstream, a precipitation separation tank 10, a contact oxidation tank 20, a first settling tank 22, a first contact filtration tank 30, a second contact filtration tank 32, a second settling tank 34, and a storage tank 36. .
The sedimentation separation tank 10 is responsible for primary treatment T1. The contact oxidation tank 20 and the first precipitation tank 22 are responsible for the secondary treatment T2. The first contact filtration tank 30, the second contact filtration tank 32, the second settling tank 34, and the storage tank 36 are responsible for the tertiary treatment T3.
 水利用設備2から排出された汚水は、沈殿分離槽10に流入する。流入した汚水は、汚水浄化装置1の各槽を通って浄化される。浄化された汚水は、浄水として第2沈殿槽34から貯留槽36に流入する。流入した浄水は、貯留槽36から水利用設備2に供給される。 The wastewater discharged from the water utilization equipment 2 flows into the sedimentation separation tank 10. The inflowing sewage passes through each tank of the sewage purification device 1 and is purified. The purified wastewater flows from the second settling tank 34 into the storage tank 36 as purified water. The inflowing purified water is supplied to the water utilization equipment 2 from the storage tank 36.
 実施形態1の汚水浄化装置1は、接触酸化槽20と、第1接触ろ過槽30とに、特徴を有する。具体的には、接触酸化槽20に、電気分解部50と塩素濃度測定部52とが備えられている。また、第1接触ろ過槽30に、ハニカムろ材76が備えられている。以下、上流より順に、各槽について説明する。 The sewage purification device 1 of Embodiment 1 has features in the contact oxidation tank 20 and the first contact filtration tank 30. Specifically, the contact oxidation tank 20 is equipped with an electrolysis section 50 and a chlorine concentration measurement section 52. Further, the first contact filtration tank 30 is equipped with a honeycomb filter medium 76. Hereinafter, each tank will be explained in order from the upstream.
<沈殿分離槽>
 沈殿分離槽10では、水利用設備2から流入した汚水が、沈殿により固体と液体とに分離される。
 汚水に含まれる固形物や浮遊物などは沈殿し、沈殿物90として取り出される。液体のみが接触酸化槽20に流入する。また、沈殿分離槽10では、嫌気性微生物による有機物の分解が併せて行われる。
<Sedimentation separation tank>
In the sedimentation separation tank 10, wastewater flowing from the water utilization equipment 2 is separated into solid and liquid by sedimentation.
Solid matter, floating matter, etc. contained in the wastewater are precipitated and taken out as precipitate 90. Only liquid flows into the contact oxidation tank 20. Further, in the sedimentation separation tank 10, decomposition of organic matter by anaerobic microorganisms is also performed.
<接触酸化槽>
 接触酸化槽20では、沈殿分離槽10で固液分離された液体に含まれる有機物が、好気性微生物により分解される。
 接触酸化槽20の中には、樹脂製の接触材が配置されている。好気性微生物は、接触材の表面に付着している。また、好気性微生物による有機物の分解を促進するために、ばっ気が行われる。
<Contact oxidation tank>
In the contact oxidation tank 20, organic matter contained in the liquid separated into solid and liquid in the precipitation separation tank 10 is decomposed by aerobic microorganisms.
A contact material made of resin is placed in the contact oxidation tank 20 . Aerobic microorganisms are attached to the surface of the contact material. Aeration is also performed to promote the decomposition of organic matter by aerobic microorganisms.
<電気分解部>
 実施形態1の汚水浄化装置1では、接触酸化槽20に、電気分解部50が備えられている。接触酸化槽20は、電気分解槽とも称される
 電気分解部50は、槽内の汚水を電気分解する部分である。電気分解部50は、接触酸化槽20内の汚水に含まれる塩化ナトリウム及び水を電気分解し、次亜塩素酸ナトリウムを生成させる。
 この電気分解の反応式は下の通りである。
  NaCl+HO→NaClO+H
<Electrolysis section>
In the sewage purification device 1 of the first embodiment, the contact oxidation tank 20 is equipped with an electrolysis section 50. The contact oxidation tank 20 is also called an electrolysis tank. The electrolysis section 50 is a part that electrolyzes wastewater in the tank. The electrolysis unit 50 electrolyzes sodium chloride and water contained in the wastewater in the contact oxidation tank 20 to generate sodium hypochlorite.
The reaction formula for this electrolysis is as follows.
NaCl+ H2O →NaClO+ H2
<次亜塩素酸ナトリウム>
 電気分解部50による電気分解で生成された次亜塩素酸ナトリウムは、接触酸化槽20内の汚水に含まれるアンモニアと反応する。
 アンモニアと次亜塩素酸ナトリウムとの反応式は下の通りである。
  2NH+3NaOCl→N↑+3NaCl+3H
 この反応により、槽内の汚水からアンモニアを除去することができる。
 また、生成された窒素ガスは大気中に放出される。これにより、汚水に含まれていたアンモニア態窒素を、汚水から除去することができる。
<Sodium hypochlorite>
Sodium hypochlorite generated by electrolysis in the electrolysis unit 50 reacts with ammonia contained in the wastewater in the contact oxidation tank 20 .
The reaction formula between ammonia and sodium hypochlorite is as follows.
2NH 3 +3NaOCl→N 2 ↑+3NaCl+3H 2 O
This reaction allows ammonia to be removed from the wastewater in the tank.
Also, the generated nitrogen gas is released into the atmosphere. Thereby, ammonia nitrogen contained in the wastewater can be removed from the wastewater.
<接触酸化槽における効果>
 アンモニアは、微生物に対する毒性が高い物質である。汚水からアンモニアを除去することで、接触酸化槽20内の好気性微生物を保護することができる。
 また、汚水からアンモニアを除去することで、アンモニアに起因する接触酸化槽20内の汚水のpHの上昇を抑制することができる。
 また、次亜塩素酸ナトリウムを槽外から投入する必要がなくなる。あるいは、その投入の機会を少なくすることができる。そのため、汚水浄化装置1の維持管理を平易にすることができる。
 また、次亜塩素酸ナトリウムは、微生物の活性を低下させる場合がある。そのため、汚水には、過剰な次亜塩素酸ナトリウムが含まれないことが好ましい。実施形態1の汚水浄化装置1では、電気分解により次亜塩素酸ナトリウムを生成する。そのため、次亜塩素酸ナトリウムを槽外から投入する場合に比べて、汚水に含まれる次亜塩素酸ナトリウムの量を調節しやすい。よって、微生物の活性が低下することを抑制することが容易になる。
 また、微生物によりアンモニアを除去する場合、例えば硝化細菌によりアンモニアの硝化を行う場合、処理槽が大きくなる場合が多い。これに対して、電気分解で生成された次亜塩素酸ナトリウムを用いてアンモニアを除去する場合には、処理槽を小型化することが容易になる。
<Effects in contact oxidation tank>
Ammonia is a highly toxic substance to microorganisms. By removing ammonia from wastewater, aerobic microorganisms within the contact oxidation tank 20 can be protected.
Furthermore, by removing ammonia from the wastewater, it is possible to suppress an increase in the pH of the wastewater in the contact oxidation tank 20 caused by ammonia.
Furthermore, there is no need to add sodium hypochlorite from outside the tank. Alternatively, the opportunity for its input can be reduced. Therefore, maintenance and management of the sewage purification device 1 can be simplified.
Also, sodium hypochlorite may reduce the activity of microorganisms. Therefore, it is preferable that the wastewater does not contain excessive sodium hypochlorite. In the sewage purification device 1 of Embodiment 1, sodium hypochlorite is produced by electrolysis. Therefore, it is easier to adjust the amount of sodium hypochlorite contained in wastewater than when sodium hypochlorite is added from outside the tank. Therefore, it becomes easy to suppress the activity of microorganisms from decreasing.
Furthermore, when ammonia is removed using microorganisms, for example when ammonia is nitrified using nitrifying bacteria, the processing tank often becomes large. On the other hand, when ammonia is removed using sodium hypochlorite produced by electrolysis, it becomes easy to downsize the treatment tank.
<汚水浄化装置の全体における効果>
 接触酸化槽20は、汚水浄化装置1の各槽のなかで、槽内の汚水のアンモニア濃度が高い場合が多い。そのため、電気分解部50を接触酸化槽20に配置することで、汚水浄化装置1の全体として、アンモニアを効率的に除去することができる。
 また、硝化によるアンモニア除去の必要性を低減することができる。そのため、硝化に起因して汚水のpHが低下しすぎることを抑制することができる。それにより、接触酸化槽20の下流に備えられるカキ殻の負担を軽減することができる。カキ殻による汚水の中和の必要性が低減するからである。
<Overall effects of sewage purification equipment>
Among the tanks of the sewage purification device 1, the contact oxidation tank 20 often has a high ammonia concentration in the sewage in the tank. Therefore, by arranging the electrolysis unit 50 in the contact oxidation tank 20, ammonia can be efficiently removed in the sewage purification apparatus 1 as a whole.
Furthermore, the need for ammonia removal by nitrification can be reduced. Therefore, it is possible to prevent the pH of wastewater from dropping too much due to nitrification. Thereby, the burden on the oyster shells provided downstream of the contact oxidation tank 20 can be reduced. This is because the need for neutralizing wastewater with oyster shells is reduced.
<電気分解部の電極>
 電気分解部50は、図示しない第1電極と第2電極とを備える。第1電極及び第2電極は、電気分解のために、接触酸化槽20内の汚水に浸漬されている。
 第1電極の極性と第2電極の極性は、反転させることが可能である。電気分解を行うと、電極にカルシウムなどの固形物が付着する場合がある。第1電極の極性と第2電極の極性とを、例えば定期的に反転させることにより、固形物の電極への付着を抑制したり、又は、電極に付着した固形物を除去することが可能になる。
<Electrode of electrolysis section>
The electrolysis unit 50 includes a first electrode and a second electrode (not shown). The first electrode and the second electrode are immersed in waste water in the catalytic oxidation tank 20 for electrolysis.
The polarity of the first electrode and the polarity of the second electrode can be reversed. When electrolysis is performed, solid substances such as calcium may adhere to the electrode. For example, by periodically reversing the polarity of the first electrode and the polarity of the second electrode, it is possible to suppress the adhesion of solid objects to the electrodes or to remove the solid objects adhering to the electrodes. Become.
<塩素濃度測定部>
 実施形態1の汚水浄化装置1では、接触酸化槽20に、塩素濃度測定部52が備えられている。
 塩素濃度測定部52は、槽内の汚水の塩素濃度を測定する部分である。塩素濃度測定部52は、接触酸化槽20内の汚水の塩素濃度を測定する。
 次亜塩素酸ナトリウムは、好気性微生物、嫌気性微生物及び硝化細菌などの微生物の活性に悪影響を及ぼす場合がある。そのため、上述の電気分解は、過剰にならないように調節することが好ましい。具体的には、電気分解は、汚水中に含まれるアンモニアの量に対して過剰な量の次亜塩素酸ナトリウムを生成しないように、調節することが好ましい。
<Chlorine concentration measuring section>
In the sewage purification device 1 of the first embodiment, the contact oxidation tank 20 is equipped with a chlorine concentration measuring section 52.
The chlorine concentration measuring section 52 is a section that measures the chlorine concentration of wastewater in the tank. The chlorine concentration measuring section 52 measures the chlorine concentration of the wastewater in the contact oxidation tank 20.
Sodium hypochlorite may have an adverse effect on the activity of microorganisms such as aerobic microorganisms, anaerobic microorganisms, and nitrifying bacteria. Therefore, it is preferable to adjust the above-mentioned electrolysis so that it does not become excessive. Specifically, the electrolysis is preferably controlled so as not to generate an excessive amount of sodium hypochlorite relative to the amount of ammonia contained in the wastewater.
<塩素濃度測定部の効果>
 これに関して、実施形態1の汚水浄化装置1には、塩素濃度測定部52が備えられている。塩素濃度は、溶液中の次亜塩素酸ナトリウムの量の指標になる。
 汚水浄化装置1では、塩素濃度測定部52が測定した塩素濃度に基づいて、電気分解部50による電気分解の時間や強度を調節することができる。それにより、過剰な次亜塩素酸ナトリウムの生成を抑制することができる。
<Effects of the chlorine concentration measuring section>
Regarding this, the sewage purification device 1 of the first embodiment is equipped with a chlorine concentration measuring section 52. Chlorine concentration is an indicator of the amount of sodium hypochlorite in solution.
In the sewage purification device 1, the time and intensity of electrolysis by the electrolysis section 50 can be adjusted based on the chlorine concentration measured by the chlorine concentration measurement section 52. Thereby, generation of excessive sodium hypochlorite can be suppressed.
<塩素濃度測定部の配置>
 塩素濃度測定部52は、接触酸化槽20における、沈殿分離槽10から汚水が流入する位置に設けることができる。これにより、流入する汚水に対する、電気分解による次亜塩素酸ナトリウムの生成の要否や、適切な生成量を迅速に判断することができる。
 ただ、塩素濃度測定部52が備えられる位置は、特には限定されない。例えば、好気性微生物が付着した接触材に近い位置に、塩素濃度測定部52を設けることもできる。これにより、好気性微生物による有機物の分解が進行した汚水の塩素濃度、引いては、次亜塩素酸ナトリウムの含有量を評価することができる。これにより、接触酸化槽20内の汚水の実情に即した、電気分解の調節が可能になる。
 また、好気性微生物に近い位置で塩素濃度が測定されるため、好気性微生物への次亜塩素酸ナトリウムの影響に配慮した、電気分解の調節が可能になる。
<Arrangement of chlorine concentration measuring section>
The chlorine concentration measurement unit 52 can be provided in the contact oxidation tank 20 at a position where wastewater flows from the precipitation separation tank 10. Thereby, it is possible to quickly determine whether or not it is necessary to generate sodium hypochlorite by electrolysis for the inflowing wastewater, and the appropriate amount of generation.
However, the position where the chlorine concentration measuring section 52 is provided is not particularly limited. For example, the chlorine concentration measuring section 52 may be provided at a position close to the contact material to which aerobic microorganisms have adhered. This makes it possible to evaluate the chlorine concentration of wastewater in which the decomposition of organic matter by aerobic microorganisms has progressed, as well as the content of sodium hypochlorite. This makes it possible to adjust electrolysis in accordance with the actual situation of the wastewater in the contact oxidation tank 20.
Additionally, since the chlorine concentration is measured at a location close to aerobic microorganisms, it is possible to adjust electrolysis while taking into account the effects of sodium hypochlorite on aerobic microorganisms.
<接触酸化槽以外の槽への配置>
 電気分解部50は、接触酸化槽20以外の槽に設けることもできる。また、2つ以上の電気分解部50を汚水浄化装置1に設けることもできる。
<Placement in a tank other than the contact oxidation tank>
The electrolysis section 50 can also be provided in a tank other than the catalytic oxidation tank 20. Moreover, two or more electrolyzers 50 can also be provided in the sewage purification apparatus 1.
 塩素濃度測定部52は、接触酸化槽20以外の槽に設けることもできる。例えば、接触酸化槽20より下流の沈殿槽や接触ろ過槽に設けることもできる。これにより、次亜塩素酸ナトリウムの微生物への悪影響を抑制しながら、次亜塩素酸ナトリウムにより、各槽を清潔に保つことができる。
 具体的には、次亜塩素酸ナトリウムの量が微生物への悪影響が問題とならない範囲であることを塩素濃度測定部52の測定により確認しながら、次亜塩素酸ナトリウムにより各槽の除菌等を行うことができる。
 また、消毒部40を用いることなく、次亜塩素酸ナトリウムにより、汚水の除菌をすることができる。これについては後述する。
The chlorine concentration measuring section 52 can also be provided in a tank other than the contact oxidation tank 20. For example, it can be provided in a settling tank or a contact filtration tank downstream of the contact oxidation tank 20. Thereby, each tank can be kept clean with sodium hypochlorite while suppressing the adverse effects of sodium hypochlorite on microorganisms.
Specifically, each tank is sterilized with sodium hypochlorite while confirming by measurement by the chlorine concentration measurement unit 52 that the amount of sodium hypochlorite is within a range where no adverse effect on microorganisms is a problem. It can be performed.
Moreover, sterilization of wastewater can be performed using sodium hypochlorite without using the disinfection section 40. This will be discussed later.
 また、電気分解部50の制御は、上述のように、塩素濃度測定部52の測定結果に基づくフィードバック制御には限定されない。
 例えば、水利用設備2が、トイレのように、利用者の人数に応じて排出される汚水の量が予測できる設備である場合、その利用者の人数に応じて、電気分解部50が行う電気分解の量を制御することができる。
Furthermore, the control of the electrolyzer 50 is not limited to feedback control based on the measurement results of the chlorine concentration measuring section 52, as described above.
For example, if the water usage equipment 2 is a facility such as a toilet where the amount of sewage discharged can be predicted depending on the number of users, the electrolysis unit 50 performs electricity production according to the number of users. The amount of degradation can be controlled.
<第1沈殿槽>
 第1沈殿槽22では、接触酸化槽20で好気性微生物により浄化された汚水が、上澄み液と、沈殿物とに分離される。
 分離された上澄み液は、第1接触ろ過槽30に流入する。
<First settling tank>
In the first sedimentation tank 22, the wastewater purified by aerobic microorganisms in the contact oxidation tank 20 is separated into a supernatant liquid and a precipitate.
The separated supernatant liquid flows into the first contact filtration tank 30.
<第1接触ろ過槽>
 第1接触ろ過槽30では、第1沈殿槽22で分離された上澄み液が、微生物を用いて処理される。
 第1接触ろ過槽30の中には、微生物として硝化細菌が付着した接触材が配置されている。実施形態1の汚水浄化装置1では、この接触材として、ハニカムろ材76が備えられている。
<First contact filtration tank>
In the first contact filtration tank 30, the supernatant liquid separated in the first settling tank 22 is treated using microorganisms.
In the first contact filtration tank 30, a contact material to which nitrifying bacteria as microorganisms is attached is arranged. In the sewage purification device 1 of the first embodiment, a honeycomb filter medium 76 is provided as this contact material.
<第1接触ろ過槽の内部構成>
 図3から図6を参照して、第1接触ろ過槽30の内部の構成について説明する。
 図3に示すように、第1接触ろ過槽30には、第1多孔管70と、シート状フィルタ72と、プラスチックろ材74と、ハニカムろ材76と、グレーチング78と、第2多孔管80と、ブロック82とが備えられている。
 これらは、第1接触ろ過槽30の上部302から底部301に向けて、第1多孔管70、シート状フィルタ72、プラスチックろ材74、ハニカムろ材76、グレーチング78、第2多孔管80、ブロック82の順に配置されている。
 なお、以下の説明において、上部302の側を上側といい、底部301の側を下側という場合がある。
<Internal configuration of the first contact filtration tank>
The internal configuration of the first contact filtration tank 30 will be described with reference to FIGS. 3 to 6.
As shown in FIG. 3, the first contact filtration tank 30 includes a first porous tube 70, a sheet filter 72, a plastic filter medium 74, a honeycomb filter medium 76, a grating 78, a second porous tube 80, A block 82 is provided.
These are, from the top 302 to the bottom 301 of the first contact filtration tank 30, a first porous pipe 70, a sheet filter 72, a plastic filter medium 74, a honeycomb filter medium 76, a grating 78, a second porous pipe 80, and a block 82. They are arranged in order.
In addition, in the following description, the side of the upper part 302 may be called the upper side, and the side of the bottom part 301 may be called the lower side.
<第1多孔管>
 第1多孔管70は、第1沈殿槽22で分離された上澄み液を、第1接触ろ過槽30内に供給する管である。
 第1多孔管70は、管形状を有している。第1多孔管70は、例えば金属や樹脂等から形成することができる。
 第1多孔管70は、管の周面に複数の孔701を有している。この孔701は、第1多孔管70の長手方向に沿って複数の列を形成するように配置されている。また、この孔701は、シート状フィルタ72の方向、すなわち、第1接触ろ過槽30の底部301の方向に開口している。
 第1沈殿槽22で分離された上澄み液は、図3の矢印の方向に流れながら、孔701からシート状フィルタ72に排出される。
 図4に示すように、第1多孔管70は、第1接触ろ過槽30の長さ方向において、その一端から他端まで延伸している。すなわち、第1多孔管70は、ほぼ水平方向に延伸している。
 また、第1多孔管70は、第1接触ろ過槽30に3つ設けられている。この3つの第1多孔管70は、幅方向においてほぼ等間隔に配置されている。
 第1沈殿槽22からの上澄み液は、3つの第1多孔管70の各々の複数の孔701から分散して排出される。それにより、シート状フィルタ72の全体に、第1沈殿槽22からの上澄み液が供給される。
 なお、図4では、説明の便宜上、シート状フィルタ72及びプラスチックろ材74の記載を省略している。
<First porous pipe>
The first porous pipe 70 is a pipe that supplies the supernatant liquid separated in the first settling tank 22 into the first contact filtration tank 30.
The first porous tube 70 has a tube shape. The first porous pipe 70 can be made of metal, resin, or the like, for example.
The first porous tube 70 has a plurality of holes 701 on the circumferential surface of the tube. The holes 701 are arranged so as to form a plurality of rows along the longitudinal direction of the first porous pipe 70. Further, this hole 701 opens in the direction of the sheet-like filter 72, that is, in the direction of the bottom 301 of the first contact filtration tank 30.
The supernatant liquid separated in the first settling tank 22 is discharged from the holes 701 to the sheet filter 72 while flowing in the direction of the arrow in FIG.
As shown in FIG. 4, the first porous pipe 70 extends from one end to the other end in the length direction of the first contact filtration tank 30. That is, the first porous pipe 70 extends substantially horizontally.
Further, three first porous pipes 70 are provided in the first contact filtration tank 30. These three first porous tubes 70 are arranged at approximately equal intervals in the width direction.
The supernatant liquid from the first settling tank 22 is dispersed and discharged from the plurality of holes 701 of each of the three first porous pipes 70 . Thereby, the supernatant liquid from the first settling tank 22 is supplied to the entire sheet-like filter 72 .
In addition, in FIG. 4, description of the sheet-like filter 72 and the plastic filter medium 74 is omitted for convenience of explanation.
<シート状フィルタ>
 シート状フィルタ72は、汚水から、特定の大きさの懸濁物質を除去するフィルタである。
 実施形態1のシート状フィルタ72は、直径が約10μm以上、約80μm未満の大きさの懸濁物質を除去する。
 シート状フィルタ72は、繊維状の樹脂等から形成することができる。また、シート状フィルタ72は、約10μmの大きさの網目を有する。
 シート状フィルタ72は、第1多孔管70の下側に配置されている。また、シート状フィルタ72は、平面視において、第1接触ろ過槽30のほぼ全面に広がっている。これにより、シート状フィルタ72は、その下側に配置されているプラスチックろ材74のほぼ全面を覆っている。
 なお、平面視とは、第1接触ろ過槽30を上部302から底部301に向けて見ることをいう。
<Sheet filter>
The sheet filter 72 is a filter that removes suspended solids of a specific size from wastewater.
The sheet-like filter 72 of Embodiment 1 removes suspended matter having a diameter of about 10 μm or more and less than about 80 μm.
The sheet-like filter 72 can be formed from fibrous resin or the like. Further, the sheet-like filter 72 has a mesh having a size of about 10 μm.
The sheet filter 72 is arranged below the first porous tube 70 . Further, the sheet-like filter 72 extends over almost the entire surface of the first contact filtration tank 30 in plan view. Thereby, the sheet-like filter 72 covers almost the entire surface of the plastic filter medium 74 disposed below it.
Note that a plan view refers to viewing the first contact filtration tank 30 from the top 302 toward the bottom 301.
<プラスチックろ材>
 プラスチックろ材74は、供給された汚水を、所定の方向に広げるろ材である。
 実施形態1のプラスチックろ材74は、シート状フィルタ72から供給された汚水を、第1接触ろ過槽30の底部301に平行な方向に広げる。
 プラスチックろ材74は、図5に示す約6cm四方の網目状ろ材741が、複数積み重ねられることにより一体に形成された、直方体形状を有する。プラスチックろ材74に供給された汚水は、網目状ろ材741の平面方向に広がる。
<Plastic filter media>
The plastic filter medium 74 is a filter medium that spreads the supplied wastewater in a predetermined direction.
The plastic filter medium 74 of the first embodiment spreads the wastewater supplied from the sheet filter 72 in a direction parallel to the bottom 301 of the first contact filtration tank 30.
The plastic filter medium 74 has a rectangular parallelepiped shape, which is integrally formed by stacking a plurality of mesh filter mediums 741 of about 6 cm square shown in FIG. The wastewater supplied to the plastic filter medium 74 spreads in the plane direction of the mesh filter medium 741.
 プラスチックろ材74の表面には、アンモニアを硝化する硝化細菌が付着されている。なお、硝化細菌は、固形担体に付着する性質を有している。そのため、例えば硝化細菌が存在する汚水槽内にプラスチックろ材74を浸しておくことで、プラスチックろ材74の表面に硝化細菌を付着させることができる。 Nitrifying bacteria that nitrify ammonia are attached to the surface of the plastic filter medium 74. Note that nitrifying bacteria have the property of adhering to solid carriers. Therefore, for example, by immersing the plastic filter medium 74 in a sewage tank where nitrifying bacteria exist, the nitrifying bacteria can be attached to the surface of the plastic filter medium 74.
 プラスチックろ材74は、シート状フィルタ72の下側であって、ハニカムろ材76の上側に、複数、敷き並べられている。敷き並べられたプラスチックろ材74の向きは、上述の直方体形状の長手方向が、第1接触ろ過槽30の底部301と平行になる向きである。
 以上の配置により、プラスチックろ材74の表面に接触した、シート状フィルタ72からの汚水は、隣り合うプラスチックろ材74の間で互いに伝わり合いながら、ハニカムろ材76に向かって流れる。すなわち、プラスチックろ材74を通過した汚水は、第1接触ろ過槽30の底部301に平行な方向に分散されながら、ハニカムろ材76に向かって排出される。
 これにより、プラスチックろ材74は、シート状フィルタ72からの汚水を硝化するとともに、その汚水をハニカムろ材76の全体に、ほぼ均等となるように供給する。
A plurality of plastic filter media 74 are arranged below the sheet filter 72 and above the honeycomb filter media 76. The plastic filter media 74 arranged side by side are oriented such that the longitudinal direction of the rectangular parallelepiped shape is parallel to the bottom 301 of the first contact filtration tank 30 .
With the above arrangement, the waste water from the sheet filter 72 that has come into contact with the surface of the plastic filter media 74 flows toward the honeycomb filter media 76 while being transmitted between adjacent plastic filter media 74 . That is, the wastewater that has passed through the plastic filter medium 74 is discharged toward the honeycomb filter medium 76 while being dispersed in a direction parallel to the bottom 301 of the first contact filtration tank 30 .
Thereby, the plastic filter medium 74 nitrifies the waste water from the sheet filter 72 and supplies the waste water almost evenly to the entire honeycomb filter medium 76 .
<ハニカムろ材76>
 ハニカムろ材76は、断面が六角形の中空の管を複数本備えるろ材である。
 図6に示すように、実施形態1のハニカムろ材76は、中空管761を複数有している。
<Honeycomb filter medium 76>
The honeycomb filter medium 76 is a filter medium including a plurality of hollow tubes each having a hexagonal cross section.
As shown in FIG. 6, the honeycomb filter medium 76 of Embodiment 1 has a plurality of hollow tubes 761.
 中空管761は、中空の六角柱形状を有している。中空管761の断面の六角形における対向する頂点間の距離を、図4に矢印Aで示す。この距離は、例えば、約13mmとすることができる。また中空管761は、例えば樹脂で形成することができる。
 ハニカムろ材76は、複数の中空管761が、互いに外表面を共有するように一体に形成されたものである。言い換えると、ハニカムろ材76では、中空管761は、その外表面同士が隙間なく接するように配列されて、固定されている。
 ハニカムろ材76は、それを構成する中空管761の両端の開口が、それぞれ第1接触ろ過槽30の上部302と、底部301とを向くように、第1接触ろ過槽30内に配置されている。すなわち、中空管761は、ひいては、ほぼ鉛直方向に延伸している。
The hollow tube 761 has a hollow hexagonal column shape. The distance between opposing vertices in the hexagonal cross section of the hollow tube 761 is shown by arrow A in FIG. This distance may be approximately 13 mm, for example. Further, the hollow tube 761 can be made of resin, for example.
The honeycomb filter medium 76 is formed by integrally forming a plurality of hollow tubes 761 so as to share an outer surface with each other. In other words, in the honeycomb filter medium 76, the hollow tubes 761 are arranged and fixed so that their outer surfaces are in contact with each other without any gaps.
The honeycomb filter medium 76 is arranged in the first contact filtration tank 30 so that the openings at both ends of the hollow tubes 761 that constitute the honeycomb filter medium 76 face the top 302 and bottom 301 of the first contact filtration tank 30, respectively. There is. That is, the hollow tube 761 extends substantially vertically.
 ハニカムろ材76は、図4に示す幅方向又は長さ方向の両端側から加えられる力に対して弾性を有する。そのため、ハニカムろ材76の第1接触ろ過槽30への固定は、例えば、以下のようにすることができる。
 先ず、弾性力に抗する力を加えて、ハニカムろ材76を収縮した状態にする。そして、収縮した状態で、ハニカムろ材76を第1接触ろ過槽30の中に配置する。次に、弾性力に抗する力を解放することで、ハニカムろ材76の外表面が第1接触ろ過槽30の内壁に押し付けられるようにする。これによって、ハニカムろ材76は、第1接触ろ過槽30の中部に隙間なく配置された状態で固定される。
 なお、第1接触ろ過槽30は、樹脂で形成されているが、汚水よりも大きい比重を有している。
The honeycomb filter medium 76 has elasticity against forces applied from both ends in the width direction or length direction shown in FIG. 4 . Therefore, the honeycomb filter medium 76 can be fixed to the first contact filtration tank 30, for example, as follows.
First, a force that resists the elastic force is applied to bring the honeycomb filter medium 76 into a contracted state. Then, the honeycomb filter medium 76 is placed in the first contact filtration tank 30 in the contracted state. Next, by releasing the force that resists the elastic force, the outer surface of the honeycomb filter medium 76 is pressed against the inner wall of the first contact filtration tank 30. Thereby, the honeycomb filter medium 76 is fixed in the middle part of the first contact filtration tank 30 without any gaps.
In addition, although the 1st contact filtration tank 30 is formed of resin, it has a larger specific gravity than sewage.
 以上のようにしてハニカムろ材76を第1接触ろ過槽30の中に配置することにより、ハニカムろ材76は、汚水の流れ等によって第1接触ろ過槽30内を移動することがないように、強固に第1接触ろ過槽30内に固定される。
 なお、ハニカムろ材76の第1接触ろ過槽30への固定は、上述以外の方法で行うこともできる。例えば、ハニカムろ材76は、接着剤によって第1接触ろ過槽30に固定することができる。
By arranging the honeycomb filter medium 76 in the first contact filtration tank 30 as described above, the honeycomb filter medium 76 is firmly secured so that it will not move within the first contact filtration tank 30 due to the flow of wastewater, etc. is fixed in the first contact filtration tank 30.
Note that the honeycomb filter medium 76 can also be fixed to the first contact filtration tank 30 by a method other than the above-mentioned method. For example, the honeycomb filter medium 76 can be fixed to the first contact filtration tank 30 with an adhesive.
<硝化細菌>
 中空管761の内表面には硝化細菌が付着している。硝化細菌は、プラスチックろ材74由来のものとすることができる。
 すなわち、硝化細菌が付着したプラスチックろ材74から、中空管761へ汚水が供給されると、汚水と共に硝化細菌が中空管761に移動する。その硝化細菌が中空管761の内表面に付着する。付着した硝化細菌は、中空管761の内表面で増殖する。
 以上のように、中空管761の内表面に硝化細菌を付着させるための特段の作業をすることなく、中空管761の内表面に硝化細菌を付着させることができる。
<Nitrifying bacteria>
Nitrifying bacteria are attached to the inner surface of the hollow tube 761. The nitrifying bacteria may originate from the plastic filter media 74.
That is, when wastewater is supplied to the hollow tube 761 from the plastic filter medium 74 to which nitrifying bacteria have adhered, the nitrifying bacteria move to the hollow tube 761 along with the wastewater. The nitrifying bacteria adhere to the inner surface of the hollow tube 761. The attached nitrifying bacteria proliferate on the inner surface of the hollow tube 761.
As described above, nitrifying bacteria can be attached to the inner surface of the hollow tube 761 without any special work for attaching the nitrifying bacteria to the inner surface of the hollow tube 761.
<ハニカムろ材による硝化>
 ハニカムろ材76には、プラスチックろ材74から、ハニカムろ材76の全体にほぼ均等に汚水が供給される。そのため、汚水は、多くの中空管761を介して、ハニカムろ材76の上側から下側に向けて流れる。そのため、汚水は、多くの中空管761の内表面に接触する。これにより、汚水中のアンモニアが効率よく硝化される。すなわち、アンモニア態様窒素を効率よく硝酸態窒素とすることができる。これにより、毒性が高く有害なアンモニアを容易に除去することができる。
 なお、中空管761の断面の形状は、六角形には限定されず、例えば、四角形とすることもできる。
<Nitrification using honeycomb filter media>
Sewage is supplied to the honeycomb filter medium 76 almost evenly from the plastic filter medium 74 to the entire honeycomb filter medium 76 . Therefore, the wastewater flows from the upper side of the honeycomb filter medium 76 to the lower side through many hollow pipes 761. Therefore, the dirty water comes into contact with the inner surfaces of many hollow tubes 761. Thereby, ammonia in wastewater is efficiently nitrified. That is, ammonia nitrogen can be efficiently converted into nitrate nitrogen. Thereby, highly toxic and harmful ammonia can be easily removed.
Note that the cross-sectional shape of the hollow tube 761 is not limited to a hexagonal shape, and may be, for example, a quadrangular shape.
<第2多孔管>
 第2多孔管80は、ハニカムろ材76に空気を供給する管である。
 第2多孔管80は、管形状を有している。第2多孔管80は、例えば金属や樹脂等から形成することができる。
 第2多孔管80は、周面に複数の孔801を有している。この孔801は、第2多孔管80の長手方向に沿って複数の列を形成するように配置されている。また、この孔801は、ハニカムろ材76の方向、すなわち、第1接触ろ過槽30の上部302の方向に開口している。
<Second porous pipe>
The second porous pipe 80 is a pipe that supplies air to the honeycomb filter medium 76.
The second porous tube 80 has a tube shape. The second porous pipe 80 can be made of metal, resin, or the like, for example.
The second porous pipe 80 has a plurality of holes 801 on its circumferential surface. The holes 801 are arranged so as to form a plurality of rows along the longitudinal direction of the second porous pipe 80. Moreover, this hole 801 opens in the direction of the honeycomb filter medium 76, that is, in the direction of the upper part 302 of the first contact filtration tank 30.
 第2多孔管80は、ハニカムろ材76の下側に配置されている
 また、図3に示すように、第2多孔管80は、第1接触ろ過槽30の長さ方向において、その一端から他端まで延伸している。すなわち、第2多孔管80は、ほぼ水平方向に延伸している。また、第2多孔管80は、第1接触ろ過槽30に3つ設けられている。この3つの第2多孔管80は、幅方向においてほぼ等間隔に配置されている。
The second porous pipe 80 is disposed below the honeycomb filter medium 76. Furthermore, as shown in FIG. It extends to the end. That is, the second porous pipe 80 extends substantially horizontally. Further, three second porous pipes 80 are provided in the first contact filtration tank 30. These three second porous tubes 80 are arranged at approximately equal intervals in the width direction.
 第2多孔管80には、その一端側から、図示しないブロワ等によって空気が送り込まれる。この空気は、孔801から排出され、気泡802となって、中空管761の下側から、中空管761の内部に至る。
 この気泡802によって、中空管761内の、上側から下側に向かう汚水の流れを抑制することができる。また、中空管761内に、下側から上側へ向かう汚水の流れを発生させることができる。
 さらには、同一の中空管761内、又は隣接する中空管761において、上述の上側から下側に向かう流れと、下側から上側に向かう流れとを、交互に、繰り返し生成することもできる。
Air is fed into the second porous pipe 80 from one end thereof by a blower or the like (not shown). This air is discharged from the hole 801, becomes a bubble 802, and reaches the inside of the hollow tube 761 from the lower side of the hollow tube 761.
The air bubbles 802 can suppress the flow of wastewater from the upper side to the lower side within the hollow pipe 761. Furthermore, it is possible to generate a flow of wastewater from the lower side to the upper side within the hollow pipe 761.
Furthermore, within the same hollow tube 761 or in adjacent hollow tubes 761, the above-described flow from the upper side to the lower side and the flow from the lower side to the upper side can be generated alternately and repeatedly. .
 以上のように、実施形態1の汚水浄化装置1では、孔801からの気体の排出により、一部の中空管761に、底部301から上部302へ向かう方向の汚水の流れを生成し、また、他の一部の中空管761に、それとは逆の、上部302から底部301へ向かう方向の汚水の流れを生成することができる。
 これにより、中空管761の内表面と汚水との接触時間及び接触回数を増やすことができる。それにより、アンモニアを効率よく硝化することができる。
 また、中空管761の内部が閉塞することを抑制することができる。
As described above, in the sewage purification device 1 of the first embodiment, a flow of sewage in a direction from the bottom 301 to the top 302 is generated in a part of the hollow pipe 761 by discharging gas from the hole 801, and , another part of the hollow tube 761 can generate a flow of waste water in the opposite direction from the top 302 to the bottom 301 .
Thereby, the contact time and number of contacts between the inner surface of the hollow tube 761 and the waste water can be increased. Thereby, ammonia can be efficiently nitrified.
Furthermore, it is possible to prevent the inside of the hollow tube 761 from being blocked.
 また、上述の気体が空気である場合、気泡802により、中空管761の内部に酸素を供給することができる。それにより、中空管761内の汚水の溶存酸素量を増やすことができる。これにより、硝化細菌の環境を好気的に保つことができるので、アンモニアを効率よく硝化することができる。 Further, when the above-mentioned gas is air, oxygen can be supplied to the inside of the hollow tube 761 by the bubbles 802. Thereby, the amount of dissolved oxygen in the wastewater in the hollow pipe 761 can be increased. This makes it possible to maintain an aerobic environment for the nitrifying bacteria, so that ammonia can be efficiently nitrified.
 なお、第2多孔管80に送り込まれる気体は、空気には限定されず、窒素などの他の気体とすることもできる。
 また、第2多孔管80からの気体の供給は、連続的に行われていても、断続的に行われていてもよい。また、第2多孔管80は、複数の中空管761のうちの一部の中空管761のみに気体を供給することとしてもよい。
Note that the gas sent into the second porous tube 80 is not limited to air, and may be other gas such as nitrogen.
Moreover, the gas supply from the second porous pipe 80 may be performed continuously or intermittently. Further, the second porous tube 80 may supply gas to only some of the plurality of hollow tubes 761 .
<ブロック>
 ブロック82は、第1接触ろ過槽30の底部301に配置されて、グレーチング78の土台となる部材である。
 ブロック82は、直方体の形状を有し、例えば樹脂やコンクリート等の汚水より比重の大きい材料から形成されている。
 ブロック82は、第1接触ろ過槽30の底部301の4つの角部の近傍に1つずつ、合計4つ配置されている。
<Block>
The block 82 is a member that is arranged at the bottom 301 of the first contact filtration tank 30 and serves as the base of the grating 78.
The block 82 has a rectangular parallelepiped shape and is made of a material having a higher specific gravity than sewage, such as resin or concrete.
A total of four blocks 82 are arranged, one each near the four corners of the bottom 301 of the first contact filtration tank 30.
<グレーチング>
 グレーチング78は、格子形状を有する、硬質の板材である。
 グレーチング78は、汚水より比重の大きい材料、例えば樹脂等で形成することができる。
 グレーチング78は、ブロック82の上に配置されている。そして、グレーチング78の上には、ハニカムろ材76が配置されている。すなわち、グレーチング78は、ハニカムろ材76を下側から支えている。
 一方、第2多孔管80は、グレーチング78の下側、すなわち、グレーチング78と第1接触ろ過槽30の底部301との間に配置されている。
 言い換えると、ハニカムろ材76は、ブロック82及びグレーチング78によって、第2多孔管80の上方に配置されている。それにより、第2多孔管80から排出された空気は、ハニカムろ材76に供給される。その際、第2多孔管80から排出された空気は、グレーチング78の格子の間を通過する。
<Grating>
The grating 78 is a hard plate material having a lattice shape.
The grating 78 can be made of a material having a higher specific gravity than the waste water, such as resin.
Grating 78 is placed over block 82 . A honeycomb filter medium 76 is arranged on the grating 78. That is, the grating 78 supports the honeycomb filter medium 76 from below.
On the other hand, the second porous pipe 80 is arranged below the grating 78, that is, between the grating 78 and the bottom 301 of the first contact filtration tank 30.
In other words, the honeycomb filter medium 76 is arranged above the second porous tube 80 by the block 82 and the grating 78. Thereby, the air discharged from the second porous tube 80 is supplied to the honeycomb filter medium 76. At this time, the air discharged from the second porous tube 80 passes between the gratings of the grating 78.
<ハニカムろ材の効果>
 実施形態1の汚水浄化装置1では、硝化細菌が付着したハニカムろ材76が備えられている。そのため、アンモニアを確実に硝化し、汚水の中のアンモニア量を低減することができる。
 ここで、第1接触ろ過槽30の下流には、第2接触ろ過槽32が配置されている。この第2接触ろ過槽32には、カキ殻が備えられている。カキ殻には多くの微生物が付着している。また、アンモニアは、微生物に対する毒性が強い。
 実施形態1の汚水洗浄装置1では、上述のように、第2接触ろ過槽32の直前の槽でのアンモニアの除去が可能になる。そのため、第2接触ろ過槽32のカキ殻や微生物をアンモニアの毒性から保護することができる。したがって、カキ殻の使用量や、カキ殻の交換頻度を抑制することができる。
<Effects of honeycomb filter media>
The sewage purification device 1 of the first embodiment includes a honeycomb filter medium 76 to which nitrifying bacteria are attached. Therefore, ammonia can be reliably nitrified and the amount of ammonia in wastewater can be reduced.
Here, a second contact filtration tank 32 is arranged downstream of the first contact filtration tank 30. This second contact filtration tank 32 is equipped with oyster shells. Many microorganisms are attached to oyster shells. Furthermore, ammonia is highly toxic to microorganisms.
In the sewage cleaning device 1 of the first embodiment, ammonia can be removed in the tank immediately before the second contact filtration tank 32, as described above. Therefore, oyster shells and microorganisms in the second contact filtration tank 32 can be protected from the toxicity of ammonia. Therefore, the amount of oyster shells used and the frequency of replacing oyster shells can be reduced.
 先に説明した接触酸化槽20に備えられた電気分解部50の作用により、接触酸化槽20でアンモニアの除去が行われていた場合であっても、残存したアンモニアや、その後の槽、例えば第1沈殿槽22で微生物の作用等により発生したアンモニアを、第1接触ろ過槽30で除去することができる。 Due to the action of the electrolysis unit 50 provided in the contact oxidation tank 20 described above, even if ammonia is removed in the contact oxidation tank 20, remaining ammonia and subsequent tanks, for example, the Ammonia generated in the first precipitation tank 22 due to the action of microorganisms, etc. can be removed in the first contact filtration tank 30.
<他の微生物>
 なお、ハニカムろ材76に付着させる微生物は、硝化細菌のみに限定されない。例えば、硝化細菌とともに、有機物を分解するような好気性微生物をハニカムろ材76に付着させることもできる。
 この場合、有機物を分解する好気性微生物により、汚水の浄化を促進することができる。また、それにより、第2接触ろ過槽のカキ殻の負担を軽減することができる。
<Other microorganisms>
Note that the microorganisms to be attached to the honeycomb filter medium 76 are not limited to nitrifying bacteria. For example, in addition to nitrifying bacteria, aerobic microorganisms that decompose organic matter can also be attached to the honeycomb filter medium 76.
In this case, aerobic microorganisms that decompose organic matter can promote purification of wastewater. Moreover, thereby, the burden of oyster shells on the second contact filtration tank can be reduced.
<第2接触ろ過槽>
 第2接触ろ過槽32では、カキ殻による汚水のろ過が行われる。
 第2接触ろ過槽32には、接触材としてカキ殻が配置されている。また、カキ殻によるろ過を促進するために、ばっ気が行われる。
 第2接触ろ過槽32までの槽において、汚水からアンモニアの除去、及び、有機物の分解が進行している場合には、第2接触ろ過槽32のカキ殻は、主に、中和によるpHの調節機能のみを果たす。この場合、カキ殻の劣化の速度を遅くすることができる。
 それによりカキ殻の使用量を減らしたり、カキ殻の交換頻度を遅くすることができる。
<Second contact filtration tank>
In the second contact filtration tank 32, wastewater is filtered using oyster shells.
Oyster shells are placed in the second contact filtration tank 32 as a contact material. Aeration is also performed to facilitate filtration through the oyster shells.
If the removal of ammonia from wastewater and the decomposition of organic matter are progressing in the tanks up to the second contact filtration tank 32, the oyster shells in the second contact filtration tank 32 will mainly absorb pH due to neutralization. It only serves a regulatory function. In this case, the rate of deterioration of oyster shells can be slowed down.
This makes it possible to reduce the amount of oyster shells used and to slow down the frequency of replacing oyster shells.
 実施形態1の汚水浄化装置1では、第1接触ろ過槽30での微生物によるアンモニアの処理化と、第2接触ろ過槽32でのカキ殻によるpH安定化作用とを、高い次元で両立することができる。これにより、汚水浄化装置1全体の小型化を図ることが容易になる。 In the sewage purification device 1 of Embodiment 1, it is possible to achieve both the treatment of ammonia by microorganisms in the first contact filtration tank 30 and the pH stabilization effect by oyster shells in the second contact filtration tank 32 at a high level. I can do it. This makes it easy to downsize the entire sewage purification device 1.
<第2沈殿槽>
 第2沈殿槽34では、第2接触ろ過槽32でろ過された汚水が、上澄み液と、沈殿物とに分離される。分離された上澄み液は、貯留槽36に流入する。
<Second settling tank>
In the second sedimentation tank 34, the wastewater filtered in the second contact filtration tank 32 is separated into a supernatant liquid and a precipitate. The separated supernatant liquid flows into the storage tank 36.
<消毒部>
 消毒部40は、第2沈殿槽34から流出して貯留槽36に流入する前の水に、消毒用の殺菌物質を供給する部分である。
 第2沈殿槽34から流出する水には、殺菌による消毒が必要な場合がある。その場合、消毒部40が供給する殺菌物質により、第2沈殿槽34から流出する水に含まれる菌を殺菌する。殺菌の対象となる菌は、例えば、チフス菌、大腸菌、ブドウ球菌、サルモネラ菌などである。
 また、殺菌物質としては、例えば、固形塩素などの塩素系物質等を用いることができる。
 なお、第2沈殿槽34から流出する水への殺菌物質の供給は、消毒部40によらず、人手により行うことも可能である。
<Disinfection Department>
The disinfection section 40 is a section that supplies a sterilizing substance for disinfection to the water flowing out from the second settling tank 34 and before flowing into the storage tank 36 .
The water flowing out of the second settling tank 34 may require disinfection by sterilization. In that case, the sterilizing substance supplied by the sterilizing section 40 sterilizes bacteria contained in the water flowing out from the second settling tank 34 . Examples of bacteria to be sterilized include Salmonella typhi, Escherichia coli, Staphylococcus, and Salmonella.
Further, as the sterilizing substance, for example, a chlorine-based substance such as solid chlorine can be used.
Note that the supply of the sterilizing substance to the water flowing out from the second settling tank 34 can be performed manually, not by the disinfection unit 40.
<貯留槽>
 貯留槽36には、第2沈殿槽34における上澄み液が流入する。そして、再利用するために、浄水として蓄えられる。
 また、貯留槽36には、活性炭62が備えられている。この活性炭62により、貯留槽36に貯えられた浄水を消臭すると共に、その脱色を行う。
 貯留槽36に貯えられた浄水は、水利用設備2、例えばトイレに供給され、トイレの洗浄水として再利用される。
<Storage tank>
The supernatant liquid from the second settling tank 34 flows into the storage tank 36 . The water is then stored as purified water for reuse.
Furthermore, the storage tank 36 is equipped with activated carbon 62. The activated carbon 62 deodorizes and decolorizes the purified water stored in the storage tank 36.
The purified water stored in the storage tank 36 is supplied to the water usage equipment 2, for example, a toilet, and is reused as flushing water for the toilet.
<余剰水貯留槽>
 余剰水貯留槽38には、貯留槽36から、貯留槽36において余剰となった浄水が流入する。そして、流入した浄水が、水再利用システム100の外部に流出しないように貯える。
 これにより、閉じた系の中での、汚水の循環再利用が可能になる。
<Surplus water storage tank>
The surplus purified water in the storage tank 36 flows into the surplus water storage tank 38 from the storage tank 36 . The inflow purified water is then stored so as not to flow out of the water reuse system 100.
This allows recycling and reuse of wastewater within a closed system.
<次亜塩素酸ナトリウムによる浄化及び消毒>
 第1実施形態の汚水浄化装置1では、接触酸化槽20に備えられた電気分解部50によって生成された次亜塩素酸ナトリウムを用いて、接触酸化槽20より下流の槽の浄化や、下流の槽内の汚水の消毒を行うことができる。
 例えば、汚水浄化装置1の中の汚水に含まれるアンモニアの量に対して、電気分解により、多少多めに次亜塩素酸ナトリウムを生成させる。それにより、アンモニアと反応しない次亜塩素酸ナトリウムを残存させる。
 この次亜塩素酸ナトリウムを下流の槽に流入させることで、各槽の浄化や、各槽内の汚水の殺菌を行うことができる。
<Purification and disinfection with sodium hypochlorite>
In the sewage purification device 1 of the first embodiment, sodium hypochlorite generated by the electrolysis unit 50 provided in the contact oxidation tank 20 is used to purify the tank downstream of the contact oxidation tank 20, and to purify the downstream tank. The sewage inside the tank can be disinfected.
For example, a slightly larger amount of sodium hypochlorite is generated by electrolysis than the amount of ammonia contained in the wastewater in the wastewater purification device 1. Thereby, sodium hypochlorite that does not react with ammonia remains.
By flowing this sodium hypochlorite into the downstream tanks, each tank can be purified and the sewage in each tank can be sterilized.
 この場合、残存した次亜塩素酸ナトリウムが、カキ殻や微生物に悪影響を及ぼさないように、次亜塩素酸ナトリウムの含有用を、接触酸化槽20より下流の槽でも把握しておくことが好ましい。そのため、塩素濃度測定部52を、接触酸化槽20以外の槽にも備えることが好ましい。
 なお、塩素濃度測定部52は、接触酸化槽20の下流のすべての槽に備える必要はない。適宜、必要な槽のみに塩素濃度測定部52を備えることができる。
In this case, it is preferable to know the content of sodium hypochlorite in tanks downstream of the contact oxidation tank 20 so that the remaining sodium hypochlorite does not have a negative effect on oyster shells and microorganisms. . Therefore, it is preferable to include the chlorine concentration measuring section 52 in tanks other than the contact oxidation tank 20.
Note that the chlorine concentration measurement unit 52 does not need to be provided in all tanks downstream of the contact oxidation tank 20. As appropriate, the chlorine concentration measuring section 52 can be provided only in necessary tanks.
 第2沈殿槽34において、その槽内の汚水が、消毒に十分な量の次亜塩素酸ナトリウムを含有している場合には、消毒部40による消毒剤の供給を行わないようにすることができる。汚水に含まれる次亜塩素酸ナトリウムにより、汚水の消毒が可能であるからである。 In the second settling tank 34, if the wastewater in the tank contains a sufficient amount of sodium hypochlorite for disinfection, the disinfectant section 40 may not supply disinfectant. can. This is because the sodium hypochlorite contained in wastewater can disinfect the wastewater.
≪他の実施形態≫
 実施形態1では、接触酸化槽20に電気分解部50が備えられ、又、第1接触ろ過槽30にハニカムろ材76が備えられた汚水浄化装置1について説明した。
 ただし、汚水浄化装置1は種々の変更が可能である。以下、他の実施形態を例示する。
≪Other embodiments≫
In the first embodiment, the sewage purification device 1 was described in which the contact oxidation tank 20 was equipped with the electrolysis unit 50 and the first contact filtration tank 30 was equipped with the honeycomb filter medium 76.
However, the sewage purification device 1 can be modified in various ways. Other embodiments will be illustrated below.
≪実施形態2≫
 汚水浄化装置1を、電気分解部50及び塩素濃度測定部52が、接触酸化槽20に備えられていない汚水浄化装置1とすることができる。この汚水浄化装置1を、実施形態2の汚水浄化装置1とする。
 実施形態2の汚水浄化装置1では、接触酸化槽20において、アンモニアの除去のために、槽外から次亜塩素酸ナトリウムを投入する。これにより、汚水に含まれるアンモニアを、窒素ガスとして、汚水から除去することができる。
 または、接触酸化槽20において、槽外から次亜塩素酸ナトリウムを投入しないこととすることもできる。この場合は、例えば、第1接触ろ過槽30で、汚水からアンモニアを除去する。第1接触ろ過槽30に備えられるハニカムろ材76には、硝化細菌が付着しているからである。
Embodiment 2≫
The sewage purification device 1 may be a sewage purification device 1 in which the electrolysis section 50 and the chlorine concentration measurement section 52 are not provided in the contact oxidation tank 20. This sewage purification device 1 is referred to as the sewage purification device 1 of the second embodiment.
In the sewage purification device 1 of the second embodiment, sodium hypochlorite is introduced from outside the tank in order to remove ammonia in the contact oxidation tank 20. Thereby, ammonia contained in the wastewater can be removed from the wastewater as nitrogen gas.
Alternatively, sodium hypochlorite may not be introduced into the contact oxidation tank 20 from outside the tank. In this case, for example, ammonia is removed from the wastewater in the first contact filtration tank 30. This is because the honeycomb filter medium 76 provided in the first contact filtration tank 30 has nitrifying bacteria attached to it.
≪実施形態3≫
 他の実施形態として、汚水浄化装置1を、第1接触ろ過槽30にハニカムろ材76が備えられていない汚水浄化装置1とすることができる。この汚水浄化装置1を、実施形態3の汚水浄化装置1とする。
 実施形態3の汚水浄化装置1では、第1接触ろ過槽30を、第2接触ろ過槽32と同様にすることができる。具体的には、第1接触ろ過槽30にも、カキ殻を配置する。
 この場合、ハニカムろ材76に付着した硝化細菌によるアンモニアの硝化は得られない。
 しかしながら、接触酸化槽20に電気分解部50が備えられている場合には、上述の通り、接触酸化槽20で、アンモニアの除去が可能である。
≪Embodiment 3≫
As another embodiment, the sewage purification device 1 may be such that the first contact filtration tank 30 is not equipped with the honeycomb filter medium 76. This sewage purification device 1 is referred to as the sewage purification device 1 of the third embodiment.
In the sewage purification device 1 of Embodiment 3, the first contact filtration tank 30 can be made similar to the second contact filtration tank 32. Specifically, oyster shells are also placed in the first contact filtration tank 30.
In this case, ammonia cannot be nitrified by the nitrifying bacteria attached to the honeycomb filter medium 76.
However, when the catalytic oxidation tank 20 is equipped with the electrolysis section 50, ammonia can be removed in the catalytic oxidation tank 20 as described above.
 カキ殻の表面に、硝化細菌を付着させることも可能である。例えば、第1接触ろ過槽30のカキ殻に硝化細菌を付着させることにより、第1接触ろ過槽30でのアンモニアの硝化が可能になる。この場合、第2接触ろ過槽32の直前の槽において、槽内の汚水の中のアンモニア濃度を低下させることができる。これにより、第2接触ろ過槽32に備えられるカキ殻を保護することができる。 It is also possible to attach nitrifying bacteria to the surface of oyster shells. For example, by attaching nitrifying bacteria to oyster shells in the first contact filtration tank 30, ammonia can be nitrified in the first contact filtration tank 30. In this case, in the tank immediately before the second contact filtration tank 32, the ammonia concentration in the wastewater in the tank can be reduced. Thereby, the oyster shells provided in the second contact filtration tank 32 can be protected.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更及び変形が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various changes and modifications can be made.
 1 汚水浄化装置
 2 水利用設備
 5 配管 
 10 沈殿分離槽
 20 接触酸化槽
 22 第1沈殿槽
 30 第1接触ろ過槽
 301 第1接触ろ過槽の底部
 302 第1接触ろ過槽の上部
 32 第2接触ろ過槽
 34 第2沈殿槽
 36 貯留槽
 38 余剰水貯留槽
 40 消毒部
 50 電気分解部
 52 塩素濃度測定部
 60 カキ殻
 62 活性炭
 70 第1多孔管
 701 孔
 72 シート状フィルタ
 74 プラスチックろ材
 741 網目状ろ材
 76 ハニカムろ材
 761 中空管
 78 グレーチング
 80 第2多孔管
 801 孔
 802 気泡
 82 ブロック
 90 沈殿物
 100 水再利用システム
 T1 一次処理
 T2 二次処理
 T3 三次処理
1 Sewage purification equipment 2 Water usage equipment 5 Piping
10 Sedimentation separation tank 20 Contact oxidation tank 22 First settling tank 30 First contact filtration tank 301 Bottom of first contact filtration tank 302 Upper part of first contact filtration tank 32 Second contact filtration tank 34 Second settling tank 36 Storage tank 38 Surplus water storage tank 40 Disinfection section 50 Electrolysis section 52 Chlorine concentration measuring section 60 Oyster shell 62 Activated carbon 70 First porous tube 701 Hole 72 Sheet filter 74 Plastic filter medium 741 Mesh filter medium 76 Honeycomb filter medium 761 Hollow tube 78 Grating 80 No. 2-hole pipe 801 Hole 802 Bubbles 82 Block 90 Sediment 100 Water reuse system T1 Primary treatment T2 Secondary treatment T3 Tertiary treatment

Claims (6)

  1.  汚水を浄化するための接触ろ過槽と、電気分解槽と、を備え、
     前記電気分解槽は、前記接触ろ過槽の上流に配置され、
     前記接触ろ過槽は、カキ殻を備え、
     前記電気分解槽は、電気分解部を備え、
     前記電気分解槽の中の汚水は、塩化ナトリウム及び水、を含有し、
     前記電気分解部は、前記電気分解槽の中の汚水を電気分解することで、次亜塩素酸ナトリウムを生成させる、
     汚水浄化装置。
    Equipped with a contact filtration tank and an electrolysis tank for purifying wastewater,
    The electrolysis tank is arranged upstream of the contact filtration tank,
    The contact filtration tank includes oyster shells,
    The electrolysis tank includes an electrolysis section,
    The wastewater in the electrolyzer contains sodium chloride and water,
    The electrolysis unit generates sodium hypochlorite by electrolyzing wastewater in the electrolysis tank,
    Sewage purification equipment.
  2.  前記電気分解槽の中の前記汚水は、アンモニアを含有し、
     前記アンモニアの少なくとも一部は、前記電気分解により生成された前記次亜塩素酸ナトリウムと反応し、窒素を生成する、
     請求項1に記載の汚水浄化装置。
    The wastewater in the electrolyzer contains ammonia,
    At least a portion of the ammonia reacts with the sodium hypochlorite produced by the electrolysis to produce nitrogen.
    The sewage purification device according to claim 1.
  3.  前記電気分解槽及び前記電気分解槽の上流に配置された槽、のうちの少なくとも1つの槽は、塩素濃度測定部を備え、
     前記塩素濃度測定部は、当該塩素濃度測定部が備えられた前記槽の中の汚水の塩素濃度を測定する、
     請求項1又は2に記載の汚水浄化装置。
    At least one tank of the electrolytic tank and a tank disposed upstream of the electrolytic tank includes a chlorine concentration measuring section,
    The chlorine concentration measuring unit measures the chlorine concentration of wastewater in the tank provided with the chlorine concentration measuring unit,
    The sewage purification device according to claim 1 or 2.
  4.  前記電気分解槽の下流に配置された槽のうちの少なくとも1つの槽は、塩素濃度測定部を備え、
     前記塩素濃度測定部は、当該塩素濃度測定部が備えられた前記槽の中の汚水の塩素濃度を測定する、
     請求項1から3の何れか一項に記載の汚水浄化装置。
    At least one of the tanks arranged downstream of the electrolysis tank includes a chlorine concentration measuring section,
    The chlorine concentration measuring unit measures the chlorine concentration of wastewater in the tank provided with the chlorine concentration measuring unit,
    The sewage purification device according to any one of claims 1 to 3.
  5.  前記汚水は、大腸菌を含有し、
     前記大腸菌は、前記電気分解により生成された前記次亜塩素酸ナトリウムにより殺菌される、
     請求項1から4の何れか一項に記載の汚水浄化装置。
    The wastewater contains E. coli,
    The E. coli is sterilized by the sodium hypochlorite produced by the electrolysis.
    The sewage purification device according to any one of claims 1 to 4.
  6.  前記電気分解部は、第1電極と第2電極とを備え、
     前記第1電極及び前記第2電極は、その極性の反転が可能である、
     請求項1から5の何れか一項に記載の汚水浄化装置。
    The electrolysis section includes a first electrode and a second electrode,
    The first electrode and the second electrode are capable of reversing their polarities;
    The sewage purification device according to any one of claims 1 to 5.
PCT/JP2022/015184 2022-03-28 2022-03-28 Sewage purification apparatus WO2023187933A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/015184 WO2023187933A1 (en) 2022-03-28 2022-03-28 Sewage purification apparatus
JP2022546438A JP7298784B1 (en) 2022-03-28 2022-03-28 Sewage purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015184 WO2023187933A1 (en) 2022-03-28 2022-03-28 Sewage purification apparatus

Publications (1)

Publication Number Publication Date
WO2023187933A1 true WO2023187933A1 (en) 2023-10-05

Family

ID=86900590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015184 WO2023187933A1 (en) 2022-03-28 2022-03-28 Sewage purification apparatus

Country Status (2)

Country Link
JP (1) JP7298784B1 (en)
WO (1) WO2023187933A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000720A (en) * 2006-06-23 2008-01-10 Eiwa Kokudo Kankyo Kk Purification apparatus
JP2008049343A (en) * 2007-11-09 2008-03-06 Nishihara Environment Technology Inc Organic waste water treatment device
JP2021126089A (en) * 2020-02-14 2021-09-02 株式会社クラハシ Water purification device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000720A (en) * 2006-06-23 2008-01-10 Eiwa Kokudo Kankyo Kk Purification apparatus
JP2008049343A (en) * 2007-11-09 2008-03-06 Nishihara Environment Technology Inc Organic waste water treatment device
JP2021126089A (en) * 2020-02-14 2021-09-02 株式会社クラハシ Water purification device

Also Published As

Publication number Publication date
JPWO2023187933A1 (en) 2023-10-05
JP7298784B1 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
KR100938463B1 (en) Biochemical sewage treatment system for marine use
JP5028566B2 (en) Seawater purification device for surviving marine seafood and seawater purification method
KR102170601B1 (en) Advanced sewage and wastewater separation membrane device using low temperature plasma
WO2003033420A9 (en) Soil water purifier
JP4578278B2 (en) Sewage treatment apparatus and treatment method
KR0180853B1 (en) Ultrapure water production system having pretreatment system for paper forming both anerobic and aerobic organism treatment
KR100784509B1 (en) Photocata lytic wastewater treatment unit and gas mixing type wastewater treatment apparatus having the same unit
JP2019068772A (en) Water treatment device and water treatment method
JP2002011498A (en) Device for treating leachate
KR20140114586A (en) Sludge and Waste Water Treatment Apparatus of High Density and nitrogen treatment process using the same
KR100992827B1 (en) Cleaning system for waste-water purifier
WO2023187933A1 (en) Sewage purification apparatus
KR101649112B1 (en) Fenton Oxidation means of electrolysis water treatment device
WO2023187932A1 (en) Waste water purification device
RU141341U1 (en) BIOLOGICAL WASTE WATER TREATMENT PLANT
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
CN204644026U (en) A kind of device adopting PhotoelectrochemicalTechnique Technique to remove ammonia nitrogen in water
JP2020025952A (en) Water purification treatment apparatus
JP3230742U (en) Water purification equipment
KR100745974B1 (en) Apparatus for on-site treating night soil and waste water in vessels
CN214528493U (en) Hospital wastewater treatment system
US10820579B2 (en) Water quality purification device, water purifier and aquarium using the same
KR20030013491A (en) Sewage treatment system utilized bio-ball, bio-tank and lock-filter
WO2023187881A1 (en) Wastewater cleaning device and water recycling system
CN214218415U (en) Integrated sewage treatment device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022546438

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935086

Country of ref document: EP

Kind code of ref document: A1