JP2008264687A - Recovery method of iron from waste liquid - Google Patents

Recovery method of iron from waste liquid Download PDF

Info

Publication number
JP2008264687A
JP2008264687A JP2007111307A JP2007111307A JP2008264687A JP 2008264687 A JP2008264687 A JP 2008264687A JP 2007111307 A JP2007111307 A JP 2007111307A JP 2007111307 A JP2007111307 A JP 2007111307A JP 2008264687 A JP2008264687 A JP 2008264687A
Authority
JP
Japan
Prior art keywords
iron
iii
tank
waste liquid
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007111307A
Other languages
Japanese (ja)
Other versions
JP4790655B2 (en
Inventor
Nobuyuki Ono
信行 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007111307A priority Critical patent/JP4790655B2/en
Publication of JP2008264687A publication Critical patent/JP2008264687A/en
Application granted granted Critical
Publication of JP4790655B2 publication Critical patent/JP4790655B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recovery method of iron from a waste liquid which treats a divalent iron ion-containing acidic waste liquid at a low cost to convert it into iron-containing slurry having improved dewaterability. <P>SOLUTION: The divalent iron ion-containing acidic waste liquid is supplied into a first reaction tank which is loaded with iron-oxidizing bacteria and microorganism carriers and aerated, to oxidize divalent iron ions to trivalent iron ions, and the pH of the first reaction tank is adjusted to 3 or more and 5 or less to generate iron hydroxide (III) particles. Slurry containing the iron hydroxide (III) particles and microorganism carrier after the treatment are settled and separated in a first settling tank, and settled microorganism carriers are returned to the first reaction tank. A polymer coagulant is added to slurry containing the iron hydroxide (III) particles after the treatment in a flocculation tank to generate flocs of the iron hydroxide (III) particles. Slurry containing the flocs of the iron hydroxide (III) particles after the treatment is settled and separated in a second settling tank, and settled slurry containing the iron hydroxide (III) particles is recovered. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼板の酸洗廃液やめっき廃液等の複数の金属を含む廃液や、酸性で重金属を含む金属鉱山排水を処理して、廃液中の鉄分を回収する方法に関する。   The present invention relates to a method for recovering iron in a waste liquid by treating a waste liquid containing a plurality of metals such as pickling waste liquid and plating waste liquid of a steel sheet or a metal mine drainage that is acidic and contains heavy metals.

鋼板の表面に表面処理等を施す際には、前処理として酸洗処理やアルカリ処理を行い、鋼板の表面に生成したスケールの除去を行っている。この酸洗処理では、硫酸、硝酸、硝弗酸等を含む酸性の液を用いるため、鋼板の場合には、鋼板中の鉄、ニッケルなどの金属を溶解した酸性廃液が発生し、めっき鋼板の場合には、めっき液中に含まれるニッケルや亜鉛、母材中の鉄などの金属を溶解した廃液が発生する。つまり、これら廃液は、2価鉄イオンと3価鉄イオンのほかにニッケルイオンと亜鉛イオンなどの金属イオンを含んだ酸性廃液となる。   When surface treatment or the like is performed on the surface of the steel plate, pickling treatment or alkali treatment is performed as pretreatment to remove scale generated on the surface of the steel plate. In this pickling treatment, an acidic liquid containing sulfuric acid, nitric acid, nitric hydrofluoric acid, etc. is used. In the case of a steel sheet, an acidic waste liquid in which a metal such as iron or nickel in the steel sheet is dissolved is generated. In some cases, waste liquid is generated in which metals such as nickel and zinc contained in the plating solution and iron in the base material are dissolved. That is, these waste liquids become acidic waste liquids containing metal ions such as nickel ions and zinc ions in addition to divalent iron ions and trivalent iron ions.

このような酸性廃液は、通常、アルカリ液を加えて中和処理を行った後、凝集剤を添加してシックナーなどの沈殿池を利用して金属水酸化物を沈殿させてスラリーとし、このスラリーを脱水してスラッジケーキに加工することによって処理される。従って、スラッジケーキ中には、鉄以外にニッケル、亜鉛などの金属水酸化物が含まれており、鉄源としてリサイクルするには成分上問題となる。また、これらの金属水酸化物は、粒子が小さいため、スラッジケーキの含水率も高く、鉄源としてリサイクルするには、スラッジケーキの乾燥費用が高くなる。さらに、スラッジケーキの含水率が高いことから、多量に水を含んだ状態で搬送することになるため、輸送費用が増加する等の問題がある。   Such an acidic waste liquid is usually neutralized by adding an alkaline liquid, and then a flocculant is added to precipitate a metal hydroxide using a sedimentation basin such as a thickener to form a slurry. Is dewatered and processed into a sludge cake. Therefore, the sludge cake contains metal hydroxides such as nickel and zinc in addition to iron, which is a component problem for recycling as an iron source. In addition, since these metal hydroxides have small particles, the moisture content of the sludge cake is high, and in order to recycle as an iron source, the drying cost of the sludge cake becomes high. Furthermore, since the moisture content of the sludge cake is high, it is transported in a state containing a large amount of water, which causes problems such as an increase in transportation costs.

また、2価鉄イオンを含んだ酸性廃液としては、他に金属鉱山から発生する鉱山廃水がある。金属鉱山では、主として硫化鉱物を採掘するため、採掘後には黄鉄鉱、黄銅鉱、閃亜鉛鉱などの鉱物が残り、これらが地下水や空気中の酸素と反応して酸性で2価鉄イオンをはじめ、重金属を含んだ鉱山廃水が発生する。   In addition, as acid waste liquid containing divalent iron ions, there is mine waste water generated from metal mines. Metal mines mainly mine sulfide minerals, and after mining, minerals such as pyrite, chalcopyrite, sphalerite remain, and these react with oxygen in groundwater and air to produce acidic divalent iron ions, Mine wastewater containing heavy metals is generated.

特許文献1および特許文献2では、これらの2価鉄イオンを含んだ酸性排水の処理方法が開示されている。これらの特許文献においては、鉄酸化細菌を保持している反応槽に上記廃液を投入し、2価鉄イオンを3価鉄イオンに酸化し、かつ、pHを3〜5に調整し、3価鉄イオンを水酸化鉄(III)として析出させて、その後、高分子凝集剤を添加によりフロックを作成し、それを沈殿池で回収し、その一部を反応槽に戻す方法が提案されている。酸性廃液中の2価鉄イオンを酸化処理するためには、反応槽内の鉄酸化細菌総量(細菌濃度×容量)を保持することが必要である。また、鉄酸化細菌は、析出した水酸化鉄(III)に付着しており、反応槽内の鉄酸化細菌総量を保持するということは、反応槽内に水酸化鉄(III)からなる固形物を保持することである。反応槽内の固形物濃度を大きくすると、粒子同士の緩衝頻度が大きくなり、沈降速度が小さくなるため、沈殿槽を大きくせねばならず、一方、反応槽内の固形物濃度を小さくすると、粒子同士の緩衝頻度は小さくなり、沈降速度は大きくなるが、反応槽容量は大きくなり、攪拌動力も多く必要となるという問題があった。
特開2004−202488号公報 特開2005−296866号公報
In patent document 1 and patent document 2, the processing method of the acidic waste_water | drain containing these bivalent iron ions is disclosed. In these patent documents, the above-mentioned waste liquid is put into a reaction tank holding iron-oxidizing bacteria to oxidize divalent iron ions to trivalent iron ions, and the pH is adjusted to 3 to 5, and trivalent. A method is proposed in which iron ions are precipitated as iron (III) hydroxide, and then a floc is created by adding a polymer flocculant, which is recovered in a sedimentation basin and a part thereof is returned to the reaction vessel. . In order to oxidize the divalent iron ions in the acidic waste liquid, it is necessary to maintain the total amount of iron-oxidizing bacteria (bacterial concentration x volume) in the reaction tank. In addition, the iron-oxidizing bacteria adhere to the precipitated iron hydroxide (III), and the total amount of iron-oxidizing bacteria in the reaction tank is maintained. Is to hold. Increasing the solids concentration in the reaction tank increases the buffering frequency between the particles and decreases the sedimentation rate, so the precipitation tank must be enlarged, while if the solids concentration in the reaction tank is reduced, the particles Although the frequency of buffering between each other is reduced and the sedimentation rate is increased, there is a problem that the reaction tank capacity is increased and a large amount of stirring power is required.
JP 2004-202488 A JP 2005-296866 A

本発明は、上記従来技術の問題点に鑑み、設備コストを抑制し、かつ、反応槽内攪拌動力や高分子凝集剤使用量を抑制しながら安価に、2価の鉄イオンを含む酸性廃液を処理する方法を提供することを第1の目的とする。   In view of the above-mentioned problems of the prior art, the present invention reduces an acidic waste liquid containing divalent iron ions at a low cost while suppressing the equipment cost and suppressing the stirring power in the reaction tank and the amount of the polymer flocculant used. It is a first object to provide a method of processing.

また、回収する水酸化鉄(III)粒子のフロックを含むスラリーを、脱水性を改善した鉄含有スラリーとし、これを脱水して得られる鉄含有脱水ケーキの含水率を低下させることが可能な方法を提供することを第2の目的とする。   Further, a method of reducing the water content of an iron-containing dehydrated cake obtained by dehydrating an iron-containing slurry having improved dehydration property from a slurry containing flocs of recovered iron (III) hydroxide particles. The second object is to provide the above.

さらに、2価鉄イオンを含む酸性廃液中にニッケルイオン、亜鉛イオンの少なくともいずれかを含む場合、ニッケルや亜鉛の濃度が高いケーキを得ることを第3の目的とする。   Furthermore, when the acidic waste liquid containing divalent iron ions contains at least one of nickel ions and zinc ions, a third object is to obtain a cake having a high nickel or zinc concentration.

本発明者は、上記目的を解決するために、2価鉄イオンを含む酸性廃液を、沈降性の良い微生物担体を予め投入してエアレーションにより攪拌している第1の反応槽内に供給するとともに、鉄酸化細菌により2価鉄イオンを酸化しながらアルカリ剤投入により該廃液のpHを3以上5以下に調整し、水酸化鉄(III)主体の粒子を生成させ、まず、沈降性の良い微生物担体を回収した後、高分子凝集剤を添加して水酸化鉄(III)主体の粒子を凝集し、その凝集体を液体より分離・回収し、脱水して鉄含有脱水ケーキを製造する方法を鋭意検討した。その結果、第1の反応槽内に沈降性の良い微生物担体を予め投入し、これより廃液処理の下流側で沈降性の良い微生物担体を回収し、回収した微生物単体の全量を第1の反応槽に再投入し、一方、第1沈殿槽で沈降しなかった水酸化鉄(III)主体の粒子を含むスラリーを凝集槽に投入し、高分子凝集剤によりフロックを形成し、沈降性を改善してから、第2の沈殿槽で水酸化鉄(III)主体の粒子を回収することで、或いは回収した水酸化鉄(III)主体の粒子の一部を再度第1の反応槽に投入することで、スラリーが緻密な水酸化鉄(III)主体の粒子となり、スラリーの脱水性が向上し、残りの水酸化鉄(III)主体の粒子を脱水して低含水率の脱水ケーキを製造できることを見出した。   In order to solve the above-mentioned object, the present inventor supplies an acidic waste liquid containing divalent iron ions into a first reaction vessel in which a microorganism carrier with good sedimentation is previously introduced and stirred by aeration. The pH of the waste liquid is adjusted to 3 or more and 5 or less by adding an alkaline agent while oxidizing divalent iron ions by iron-oxidizing bacteria to produce particles mainly composed of iron (III) hydroxide. After recovering the carrier, a method of adding a polymer flocculant to aggregate iron (III) -based particles, separating and recovering the aggregate from the liquid, and dehydrating to produce an iron-containing dehydrated cake. We studied diligently. As a result, a microbial carrier with good sedimentation is introduced into the first reaction tank in advance, and then the microbial carrier with good sedimentation is recovered downstream of the waste liquid treatment. On the other hand, the slurry containing iron (III) -based particles that did not settle in the first sedimentation tank was introduced into the coagulation tank, and flocs were formed by the polymer coagulant to improve sedimentation. Then, the iron hydroxide (III) -based particles are recovered in the second sedimentation tank, or a part of the recovered iron hydroxide (III) -based particles is charged again into the first reaction tank. Thus, the slurry becomes dense iron (III) hydroxide-based particles, the slurry dewaterability is improved, and the remaining iron (III) hydroxide-based particles can be dehydrated to produce a dehydrated cake with a low water content. I found.

また、沈降速度の大きい微生物担体を採用することで、第1の反応槽中の微生物濃度を上昇でき、その結果、第1の反応槽を小さくでき、これに伴い、攪拌動力を抑制できることを見出した。   In addition, by adopting a microbial carrier having a high sedimentation rate, the microbial concentration in the first reaction tank can be increased, and as a result, the first reaction tank can be made smaller and, accordingly, the stirring power can be suppressed. It was.

更に、第1の反応槽内に沈降速度が大きい微生物担体を投入することで、高分子凝集剤を添加しなくても第1の沈殿槽又は沈降部を備えた第1の反応槽で鉄酸化細菌が付着した微生物担体を回収することができるため、第2の沈殿槽へ送られる水酸化鉄(III)主体のスラリー中のスラリー濃度を低下するこができ、高分子凝集剤の添加量を削減できるとともに、第2の沈殿槽での沈降速度を上昇でき、第2の沈殿槽をコンパクトにできることを見出した。   Furthermore, by introducing a microbial carrier having a high sedimentation rate into the first reaction tank, iron oxidation is performed in the first reaction tank having the first precipitation tank or the sedimentation section without adding a polymer flocculant. Since the microbial carrier to which bacteria are attached can be recovered, the slurry concentration in the iron (III) hydroxide-based slurry sent to the second sedimentation tank can be reduced, and the amount of polymer flocculant added can be reduced. It was found that the second sedimentation tank can be made compact while the sedimentation speed in the second sedimentation tank can be increased.

更にまた、2価鉄イオンを含む酸性廃液中にニッケルイオンおよび/又は亜鉛イオンを含む場合、第2の沈殿槽で水酸化鉄(III)粒子のフロックを沈降分離した後の上澄み(以下、「1次処理水」という場合がある)を、第3の反応槽に供給し、かつ、第3の反応槽内の該処理液を攪拌し、該処理液のpHを6以上10以下に調整して、ニッケルおよび/又は亜鉛の金属水酸化物粒子を生成させ、該金属水酸化物粒子を含むスラリーを固液分離して濃縮し、その後、脱水してケーキを得ることで、ニッケルおよび/又は亜鉛濃度の高いケーキを得ることができることを見出した。   Furthermore, in the case where nickel ions and / or zinc ions are contained in the acidic waste liquid containing divalent iron ions, the supernatant after the precipitation of the flocs of iron (III) hydroxide particles in the second settling tank (hereinafter, “ The first treatment water ”may be supplied to the third reaction tank, and the treatment liquid in the third reaction tank is stirred to adjust the pH of the treatment liquid to 6 or more and 10 or less. To produce nickel and / or zinc metal hydroxide particles, solid-liquid separation and concentration of the slurry containing the metal hydroxide particles, and then dehydrating to obtain a cake, whereby nickel and / or It has been found that a cake with a high zinc concentration can be obtained.

すなわち、本発明は、上記知見に基づいてなされたものであり、その要旨は以下のとおりである。   That is, the present invention has been made based on the above findings, and the gist thereof is as follows.

(1)鉄酸化細菌と、コークス粉、活性炭、石炭粉、軽石粉、及び発泡スラグからなる群から選ばれたいずれか1つ以上からなり、水中で沈降する前記鉄酸化細菌の微生物担体とが投入され、且つ、エアレーションにより攪拌されている第1の反応槽内に、2価鉄イオンを含む酸性廃液を供給して、前記鉄酸化細菌により前記2価鉄イオンを3価鉄イオンに酸化すると共に、前記第1の反応槽内のpHを3以上5以下に調整して水酸化鉄(III)粒子を生成する水酸化鉄(III)粒子の生成工程と、
前記水酸化鉄(III)粒子の生成工程から排出された前記水酸化鉄(III)粒子及び前記微生物担体を含むスラリーを、第1の沈殿槽で沈降分離し、沈降した微生物担体を前記第1の反応槽に返送する微生物担体の沈降分離工程と、
前記微生物担体の沈降分離工程から排出された前記水酸化鉄(III)粒子を含むスラリーを凝集槽に送液し、高分子凝集剤を添加して、前記水酸化鉄(III)粒子のフロックを形成するフロック形成工程と、
前記フロック形成工程から排出された前記水酸化鉄(III)粒子のフロックを含むスラリーを、第2の沈殿槽で沈降分離し、沈降した前記水酸化鉄(III)粒子のフロックを含むスラリーを回収する鉄分回収工程とを有することを特徴とする廃液からの鉄分の回収方法である。
(1) Iron-oxidizing bacteria and any one or more selected from the group consisting of coke powder, activated carbon, coal powder, pumice powder, and foamed slag, and a microbial carrier of the iron-oxidizing bacteria that settles in water An acidic waste liquid containing divalent iron ions is supplied into the first reaction tank that is charged and stirred by aeration, and the divalent iron ions are oxidized into trivalent iron ions by the iron oxidizing bacteria. And the production | generation process of the iron (III) hydroxide particle | grain which adjusts the pH in the said 1st reaction tank to 3-5 and produces | generates an iron (III) hydroxide particle,
The slurry containing the iron (III) hydroxide particles and the microbial carrier discharged from the production step of the iron (III) hydroxide particles is settled and separated in a first settling tank, and the settled microbial carrier is converted into the first microbial carrier. Sedimentation and separation step of the microbial carrier to be returned to the reaction tank,
The slurry containing the iron (III) hydroxide particles discharged from the sedimentation and separation step of the microorganism carrier is fed to a coagulation tank, and a polymer flocculant is added to flock the iron (III) hydroxide particles. A flock forming step to be formed;
The slurry containing the flocs of the iron (III) hydroxide particles discharged from the floc forming step is settled and separated in a second settling tank, and the slurry containing the flocs of the precipitated iron (III) particles is recovered. And a method for recovering iron from a waste liquid.

(2)前記第1の反応槽における槽内の後段に前記微生物担体の沈降部を設け、当該沈降部で前記微生物担体を沈降させ、沈降により分離された前記水酸化鉄(III)粒子を含むスラリーを前記第1の反応槽から排出することで、前記第1の反応槽が前記第1の沈殿槽を兼ねることを特徴とする前記(1)記載の廃液からの鉄分の回収方法である。   (2) A sedimentation part of the microbial carrier is provided at a subsequent stage in the tank in the first reaction tank, the microbial carrier is sedimented in the sedimentation part, and the iron (III) hydroxide particles separated by sedimentation are included. The method for recovering iron from the waste liquid according to (1), wherein the slurry is discharged from the first reaction tank so that the first reaction tank also serves as the first precipitation tank.

(3)前記第1の反応槽において、前記微生物担体の質量と前記水酸化鉄(III)粒子の質量の合計量に対する、前記微生物担体の質量を、70質量%以上95質量%以下とすることを特徴とする前記(1)又は(2)記載の廃液からの鉄分の回収方法である。   (3) In the first reaction tank, the mass of the microbial carrier relative to the total mass of the microbial carrier and the iron (III) hydroxide particles is 70% by mass to 95% by mass. A method for recovering iron from waste liquid according to (1) or (2) above.

(4)前記鉄分回収工程において前記第2の沈殿槽で沈降した前記水酸化鉄(III)粒子のフロックを含むスラリーの一部を、前記第1の反応槽に戻すことを特徴とする前記(1)〜(3)のいずれか1つに記載の廃液からの鉄分の回収方法である。   (4) A part of the slurry containing flocs of the iron (III) hydroxide particles settled in the second sedimentation tank in the iron recovery step is returned to the first reaction tank. It is a method for recovering iron from the waste liquid according to any one of 1) to (3).

(5)前記(1)〜(4)のいずれか1つに記載の廃液からの鉄分の回収方法において、前記2価鉄イオンを含む酸性廃液は、更に、ニッケルイオン、又は亜鉛イオンの少なくともいずれか1種を含んでなり、前記鉄分回収工程の第2の沈殿槽で水酸化鉄(III)粒子のフロックを沈降分離した後の上澄みを第3の反応槽に供給し、pHを6以上10以下に調整して、ニッケル、又は亜鉛の少なくともいずれかを含む金属水酸化物粒子を生成する金属水酸化物粒子の生成工程と、
前記金属水酸化物粒子の生成工程から排出された前記金属水酸化物粒子を含むスラリーを沈降分離し、沈降した前記金属水酸化物粒子を含むスラリーを回収する金属水酸化物粒子回収工程とを、更に有することを特徴とする廃液からの鉄分の回収方法である。
(5) In the method for recovering iron content from the waste liquid according to any one of (1) to (4), the acidic waste liquid containing the divalent iron ions is further at least one of nickel ions and zinc ions. The supernatant after the flocs of iron (III) particles are settled and separated in the second precipitation tank of the iron recovery step is supplied to the third reaction tank, and the pH is 6 or more and 10 Adjusting to the following, the production step of metal hydroxide particles to produce metal hydroxide particles containing at least one of nickel or zinc, and
A metal hydroxide particle recovery step of settling and separating the slurry containing the metal hydroxide particles discharged from the production step of the metal hydroxide particles and recovering the slurry containing the precipitated metal hydroxide particles; And a method for recovering iron from waste liquid.

(6)前記(1)〜(5)のいずれか1つに記載の廃液からの鉄分の回収方法において、前記回収した水酸化鉄(III)粒子のフロックを含むスラリー、又は、前記回収した水酸化鉄(III)粒子のフロックを含むスラリー及び金属水酸化物粒子を含むスラリーを、更に脱水処理してケーキとすることを特徴とする廃液からの鉄分の回収方法である。   (6) In the method for recovering iron content from the waste liquid according to any one of (1) to (5), a slurry containing flocs of the recovered iron hydroxide (III) particles, or the recovered water A method for recovering iron from waste liquid, characterized in that a slurry containing flocs of iron (III) oxide particles and a slurry containing metal hydroxide particles are further dehydrated to form a cake.

本発明の方法によれば、設備コストを抑制し、かつ、反応槽内攪拌動力や高分子凝集剤使用量を抑制しながら安価に、2価の鉄イオンを含む酸性廃液を処理することができる。
また、本発明の方法によれば、回収する水酸化鉄(III)粒子のフロックを含むスラリーを、脱水性を改善した鉄含有スラリーとし、これを脱水して得られる鉄含有脱水ケーキの含水率を低下させることが可能となる。
更に、本発明の方法によれば、2価鉄イオンを含む酸性廃液中にニッケルイオン、又は亜鉛イオンの少なくともいずれかを含む場合においては、ニッケルや亜鉛の濃度が高いケーキを得ることが可能となる。
According to the method of the present invention, it is possible to treat an acidic waste liquid containing divalent iron ions at a low cost while suppressing the equipment cost and suppressing the stirring power in the reaction tank and the amount of the polymer flocculant used. .
Moreover, according to the method of the present invention, the slurry containing iron hydroxide (III) particles to be recovered is made into an iron-containing slurry having improved dewaterability, and the water content of the iron-containing dehydrated cake obtained by dehydrating the slurry. Can be reduced.
Furthermore, according to the method of the present invention, it is possible to obtain a cake having a high nickel or zinc concentration when the acidic waste liquid containing divalent iron ions contains at least one of nickel ions and zinc ions. Become.

本発明の全体プロセスについて、説明する。
予め鉄酸化細菌とこの鉄酸化細菌の微生物担体とが投入され、エアレーションにより攪拌されている第1の反応槽内に2価鉄イオンを含む酸性廃液を供給する。このうち、微生物担体については、コークス粉、活性炭、石炭粉、軽石粉、及び発泡スラグからなる群から選ばれたいずれか1つ以上からなり、これらはいずれも沈降速度が大きく、水中で沈降する。第1の反応槽内では鉄酸化細菌により2価鉄イオンを3価鉄イオンに酸化すると共に、更にアルカリを第1の反応槽に投入することにより、第1の反応槽内のpHを3以上5以下に調整して、鉄イオンを水酸化鉄(III)として析出させる。そして、水酸化鉄(III)粒子及び前記微生物担体を含むスラリーを第1の沈殿槽に送り、この第1の沈殿槽で微生物担体を回収し、回収した微生物担体を第1の反応槽に投入する。一方、第1の沈殿槽からオーバーフローした水酸化鉄(III)主体の粒子を含むオーバーフロースラリーを凝集槽に送り、高分子凝集剤を添加してフロックを形成する。その後、水酸化鉄(III)粒子のフロックを含むスラリーを第2の沈殿槽で固液分離してスラリーを濃縮し、沈降した前記水酸化鉄(III)粒子のフロックを含むスラリーを回収する。この際、好ましくは、沈降した水酸化鉄(III)粒子のフロックを含むスラリーの一部を第1の反応槽に返送し、余剰のスラリーを脱水して鉄含有脱水ケーキを得るようにしてもよい。
The overall process of the present invention will be described.
An iron waste bacterium and a microbial carrier of the iron oxidization bacterium are charged in advance, and an acidic waste liquid containing divalent iron ions is supplied into a first reaction tank that is stirred by aeration. Among these, the microorganism carrier is composed of any one or more selected from the group consisting of coke powder, activated carbon, coal powder, pumice powder, and foamed slag, all of which have a high sedimentation rate and settle in water. . In the first reaction tank, iron oxide bacteria oxidize divalent iron ions to trivalent iron ions, and by adding alkali to the first reaction tank, the pH in the first reaction tank is 3 or more. Adjust to 5 or less to precipitate iron ions as iron (III) hydroxide. Then, a slurry containing iron (III) hydroxide particles and the microbial carrier is sent to the first precipitation tank, the microbial carrier is recovered in the first precipitation tank, and the recovered microbial carrier is put into the first reaction tank. To do. On the other hand, an overflow slurry containing iron hydroxide (III) -based particles overflowed from the first sedimentation tank is sent to the aggregation tank, and a polymer flocculant is added to form a floc. Thereafter, the slurry containing the flocs of iron (III) hydroxide particles is subjected to solid-liquid separation in a second precipitation tank to concentrate the slurry, and the slurry containing the flocs of the precipitated iron (III) hydroxide particles is recovered. At this time, preferably, a part of the slurry containing flocs of precipitated iron hydroxide (III) particles is returned to the first reaction tank, and the excess slurry is dehydrated to obtain an iron-containing dehydrated cake. Good.

あるいは、第1の反応槽内の後段(反応槽における廃液処理の下流側)に微生物担体を沈降させる沈殿部を設け、第1の反応槽が前記第1の沈殿槽を兼ねるようにしてもよい。すなわち、2価鉄イオンを含む酸性廃液を、鉄酸化細菌と、沈降速度の大きいコークス粉、活性炭、石炭粉、軽石粉、及び発泡スラグからなる群から選ばれたいずれか1つ以上の微生物担体を予め投入してエアレーションにより攪拌している第1の反応槽兼沈殿槽内に供給し、鉄酸化細菌により2価鉄イオンを3価鉄イオンに酸化すると共に更にアルカリを第1の反応槽兼沈殿槽に投入することにより、第1の反応槽兼沈殿槽内のpHを3以上5以下に調整して鉄イオンを水酸化鉄(III)として析出させ、微生物担体を第1の反応槽兼沈殿槽内で保持したまま、第1の反応槽兼沈殿槽から水酸化鉄(III)主体の粒子を含むスラリーを凝集槽に投入し、高分子凝集剤を添加しフロックを形成した後、第2の沈殿槽で固液分離してスラリーを濃縮し、その後、該濃縮したスラリーを脱水してケーキを得る。   Alternatively, a sedimentation section for precipitating the microbial carrier may be provided at the latter stage in the first reaction tank (downstream of waste liquid treatment in the reaction tank), and the first reaction tank may also serve as the first sedimentation tank. . That is, the acidic waste liquid containing divalent iron ions is any one or more microorganism carriers selected from the group consisting of iron-oxidizing bacteria, coke powder having a high sedimentation rate, activated carbon, coal powder, pumice powder, and foamed slag. Is added to the first reaction tank / precipitation tank which is previously stirred and aerated by aeration, and the iron-oxidizing bacteria oxidize divalent iron ions to trivalent iron ions, and further, alkali is used as the first reaction tank / precipitation tank. By introducing it into the precipitation tank, the pH in the first reaction tank / precipitation tank is adjusted to 3 or more and 5 or less to precipitate iron ions as iron (III) hydroxide, and the microorganism carrier is used as the first reaction tank / The slurry containing iron (III) hydroxide-based particles from the first reaction tank / precipitation tank while being held in the precipitation tank is added to the coagulation tank, and after adding a polymer flocculant to form a floc, Solid-liquid separation in 2 precipitation tank and concentrate slurry Then obtain a cake dewatering the slurry the concentration.

ところで、2価鉄イオンの酸化方法として、オゾンや過酸化水素などを用いた化学処理もあるが、コスト高となるため、本発明では、微生物処理を行う。   By the way, as a method for oxidizing divalent iron ions, there is a chemical treatment using ozone, hydrogen peroxide, or the like. However, since the cost is increased, in the present invention, a microbial treatment is performed.

まず、微生物担体として沈降速度の大きいものを用いた場合の効果について述べる。
第1の反応槽における2価鉄イオンの酸化能力は、反応槽内の鉄酸化細菌の総量(微生物濃度×反応槽容量)が重要な要因である。特許文献1では、鉄酸化細菌が付着している水酸化鉄(III)主体の粒子を含むスラリーを沈殿槽で分離・回収し、大量のスラリーを反応槽へ返送することが必要であった。そのためには、高分子凝集剤を多用する必要があり、かつ、スラリー濃度が高いため、沈降速度が小さくなり、それに伴い沈殿槽の大きさが大きくなる。
First, the effect of using a microorganism carrier having a high sedimentation rate will be described.
An important factor for the ability to oxidize divalent iron ions in the first reaction tank is the total amount of iron-oxidizing bacteria in the reaction tank (microorganism concentration x reaction tank capacity). In Patent Document 1, it is necessary to separate and collect a slurry containing iron (III) -based particles to which iron-oxidizing bacteria are attached in a sedimentation tank, and to return a large amount of slurry to the reaction tank. For this purpose, it is necessary to use a large amount of a polymer flocculant, and since the slurry concentration is high, the sedimentation rate is reduced, and the size of the sedimentation tank is increased accordingly.

これに対して、本発明の第1の実施形態では、沈降速度の大きい微生物担体を第1の反応槽内に投入し、鉄酸化細菌を微生物担体に付着させることによって、高分子凝集剤を投入することなしに第1の沈殿槽で回収し、それを第1の反応槽内に返送することで、その微生物担体を第1の反応槽内に保持することができ、所要の2価鉄イオン酸化能力を保持できる。微生物担体の沈殿槽中の沈降速度としては、200〜2000m/Dが好ましい。微生物担体の大きさに置き換えると、微生物担体の比重にもよるが、300〜2000μm程度になる。300μm未満であれば、沈降速度が小さくなり、第1の沈殿槽で回収できなくなる。2000μm超であれば、第1の反応槽内の微生物担体の流動化に要する撹拌動力が大きくなり経済的でない。   On the other hand, in the first embodiment of the present invention, a microbial carrier having a high sedimentation rate is introduced into the first reaction tank, and iron-oxidizing bacteria are attached to the microbial carrier, thereby introducing the polymer flocculant. The microbial carrier can be retained in the first reaction tank by collecting it in the first sedimentation tank without returning to the first reaction tank, and the required divalent iron ions. Can retain oxidation ability. The sedimentation rate of the microorganism carrier in the sedimentation tank is preferably 200 to 2000 m / D. When it is replaced with the size of the microbial carrier, it becomes about 300 to 2000 μm, although it depends on the specific gravity of the microbial carrier. If it is less than 300 μm, the sedimentation speed becomes small and it cannot be recovered in the first sedimentation tank. If it exceeds 2000 μm, the stirring power required for fluidizing the microorganism carrier in the first reaction tank becomes large, which is not economical.

微生物担体の材料としては、水酸化鉄(III)の付着性が良く且つ水中で沈降する、活性炭、コークス粉、石炭粉、軽石、発泡スラグなどがあげられる。これらを混合して用いても構わない。   Examples of the material for the microbial carrier include activated carbon, coke powder, coal powder, pumice, and foamed slag that have good adhesion to iron (III) hydroxide and precipitate in water. You may mix and use these.

酸性領域において、水酸化鉄(III)はプラスに帯電するのに対し、前記微生物担体はマイナスに帯電するため付着性がよく、かつ、比表面積が大きいため、多くの水酸化鉄(III)を付着させることができる。微生物担体の比表面積については0.5〜500m2/g(BET値)が好ましい。0.5m2/g未満であれば、単位質量あたりの2価鉄イオンの酸化速度は小さくなり、第1の反応槽での2価鉄イオンの酸化能力は低下する。これは、微生物担体単位質量あたりの水酸化鉄(III)の付着量が低下し、鉄酸化細菌が少なくなるためと考える。また、500m2/g超の場合、単位質量あたりの2価鉄イオンの酸化速度はあまり大きくならず、第1の反応槽での2価鉄イオンの酸化能力は向上しない。これは、超微細な孔は、微生物担体表面に析出する水酸化鉄(III)相により、塞がれてしまいやすいために、2価鉄イオン酸化能力に大きく寄与しないものと推定する。 In the acidic region, iron (III) hydroxide is positively charged, whereas the microbial carrier is negatively charged, so it has good adhesion and has a large specific surface area. Can be attached. The specific surface area of the microbial carrier is preferably 0.5 to 500 m 2 / g (BET value). If it is less than 0.5 m < 2 > / g, the oxidation rate of the bivalent iron ion per unit mass will become small, and the oxidation capability of the bivalent iron ion in a 1st reaction tank will fall. This is considered to be because the amount of iron (III) hydroxide per unit mass of the microbial carrier is reduced and iron oxidizing bacteria are reduced. Moreover, when it exceeds 500 m < 2 > / g, the oxidation rate of the bivalent iron ion per unit mass does not become so large, and the oxidation capability of the divalent iron ion in the first reaction tank does not improve. This is presumed that the ultrafine pores are not easily contributed to the ability to oxidize divalent iron ions because they are likely to be blocked by the iron (III) hydroxide phase deposited on the surface of the microorganism carrier.

第1の反応槽内の微生物担体が流動化するためには、微生物担体濃度は60質量%以下が適当である。例えば500〜1000μmの篩で選別したコークス粉の沈降速度とコークス粉濃度との関係を示したのが図2である。コークス粉濃度が上昇するにつれて、コークス粉同士が干渉するため、沈降速度は小さくなる。鉄酸化細菌自体は、別途馴養したものを投入しても良いし、本発明を適用する廃液中に存在する鉄酸化細菌を増殖させて用いても良い。   In order to fluidize the microbial carrier in the first reaction tank, the microbial carrier concentration is suitably 60% by mass or less. For example, FIG. 2 shows the relationship between the sedimentation speed of coke powder selected with a 500 to 1000 μm sieve and the coke powder concentration. As the coke powder concentration increases, the coke powders interfere with each other, so the sedimentation rate decreases. As the iron-oxidizing bacterium itself, a separately conditioned one may be added, or the iron-oxidizing bacterium present in the waste liquid to which the present invention is applied may be grown and used.

第1の反応槽内の鉄酸化細菌によって2価鉄イオンは3価鉄イオンに酸化されるが、pH3〜5の領域では、水酸化鉄(III)として析出する。析出した水酸化鉄(III)主体の粒子にも鉄酸化細菌は付着する。析出した水酸化鉄(III)は、後述する造粒操作および高分子凝集剤添加によっても沈降速度は改善する。そのスラリー濃度と沈降速度の関係として、図3がある。図3から明らかなように、スラリー濃度が小さいほど、粒子同士の干渉は少なく、沈降速度が大きくなる。   Although the divalent iron ions are oxidized to trivalent iron ions by the iron oxidizing bacteria in the first reaction tank, they are precipitated as iron (III) hydroxide in the pH 3-5 region. Iron-oxidizing bacteria also adhere to the precipitated iron hydroxide (III) -based particles. The precipitated iron hydroxide (III) is improved in the sedimentation rate by the granulation operation and polymer flocculant addition described later. FIG. 3 shows the relationship between the slurry concentration and the sedimentation speed. As is apparent from FIG. 3, the smaller the slurry concentration, the less the interference between particles and the greater the sedimentation speed.

第1の反応槽内に沈降速度の大きい微生物担体を添加することで、高分子凝集剤を添加することなしに、第1の沈殿槽で鉄酸化細菌が付着した微生物担体を回収できる。第1の沈殿槽で析出した水酸化鉄(III)主体の粒子は第1の沈殿槽ではほとんど沈殿しない。第1の沈殿槽で沈降しなかった水酸化鉄(III)主体の粒子を含むオーバーフロースラリーは凝集槽で高分子凝集剤を添加し、凝集体を形成させることで、沈降速度が大きくなり、第2の沈殿槽で沈降する。第1の沈殿槽からのオーバーフロースラリーのスラリー濃度を3.5質量%以下にすることで、沈降速度を100〜350m/Dまで上昇させることができる。   By adding a microbial carrier having a high sedimentation rate in the first reaction tank, the microbial carrier to which iron-oxidizing bacteria adhere in the first precipitation tank can be recovered without adding a polymer flocculant. Particles mainly composed of iron hydroxide (III) precipitated in the first precipitation tank hardly precipitate in the first precipitation tank. The overflow slurry containing particles mainly composed of iron hydroxide (III) that has not settled in the first settling tank is added with a polymer flocculant in the coagulation tank to form aggregates. Sedimentation in 2 sedimentation tanks. By setting the slurry concentration of the overflow slurry from the first sedimentation tank to 3.5% by mass or less, the sedimentation speed can be increased to 100 to 350 m / D.

次に、第2の沈殿槽で回収した水酸化鉄(III)主体の粒子を第1の反応槽に戻す量について述べる。
第2の沈殿槽で、沈殿し回収した水酸化鉄(III)主体の粒子は単独、もしくは、ファンデルスワールス力により凝集し、さらに、凝集槽で添加した高分子凝集剤により、ゆるく凝集している。その回収した水酸化鉄(III)主体の粒子群(水酸化鉄(III)粒子のフロックを含むスラリー)の一部を第1の反応槽に返送すると、水酸化鉄(III)主体の粒子の表面上に水酸化鉄(III)が析出し、それぞれの粒子が大きくなり、または、凝集している粒子が一体化することで緻密な粒子となり粒子径は大きくなる。緻密で粒子径が大きくなると、第2の沈殿槽の下部から引き抜くスラリーの脱水性は向上し、第1の反応槽に返送しない残りの水酸化鉄(III)主体の粒子を脱水して低含水率の脱水ケーキを製造できる。
Next, the amount of iron (III) -based particles recovered in the second sedimentation tank is returned to the first reaction tank.
The iron hydroxide (III) -based particles precipitated and recovered in the second sedimentation tank are aggregated alone or by van der Waals force, and further loosely aggregated by the polymer flocculant added in the aggregation tank. Yes. When a part of the recovered iron hydroxide (III) -based particles (slurry containing flocs of iron (III) hydroxide particles) is returned to the first reactor, the iron hydroxide (III) -based particles Iron (III) hydroxide precipitates on the surface and the respective particles become larger, or the aggregated particles are integrated to become dense particles and the particle diameter is increased. As the particle size becomes larger and the particle size becomes larger, the dewaterability of the slurry drawn from the lower part of the second sedimentation tank is improved, and the remaining iron (III) -based particles not returned to the first reaction tank are dehydrated to reduce the water content. Rate dehydrated cake can be produced.

そこで、第1の反応槽内の水酸化鉄(III)主体の固形物量をA(kg)とし、2価鉄イオンに加えて少なくともニッケルイオン、又は亜鉛イオンのいずれか1つ以上を含む酸性廃液中の2価鉄イオンを鉄酸化細菌により酸化し、アルカリ剤を投入して、水酸化鉄(III)主体の粒子が新たに析出する量、すなわち、第1の反応槽に投入する前記2価鉄イオンを含む酸性廃液中の2価鉄イオンおよび3価鉄イオンの総量をB(kg/日)としたとき、A÷B(日)と脱水圧力0.5MPaで脱水した際の脱水ケーキ中の水分との関係を図4に示す。図4からA÷Bが0.6日以上であれば、低含水率の脱水ケーキを得られることがわかる。また、A÷Bが2.0日以上としても脱水ケーキ中の水分には差異があまりなく、A÷Bを2.0日以上するのは、第2の沈殿槽からのスラリーの返送量が多くなり、経済的ではない。
なお、A(kg)=第1の反応槽内Fe濃度(kg/m3)×第1の反応槽液量(m3
B(kg/日)=酸性廃液のFe濃度(kg/m3)×酸性廃液投入量(m3/日)
とする。
Therefore, the amount of solid matter mainly composed of iron (III) hydroxide in the first reaction tank is set to A (kg), and the acidic waste liquid contains at least one of nickel ions and zinc ions in addition to divalent iron ions. The amount of divalent iron ions contained therein is oxidized by iron-oxidizing bacteria, an alkali agent is added, and the amount of iron (III) -based particles newly precipitated, that is, the divalent charged in the first reaction tank. In the dehydrated cake when dehydrated at A ÷ B (day) and a dehydration pressure of 0.5 MPa, where B (kg / day) is the total amount of divalent iron ions and trivalent iron ions in the acidic waste liquid containing iron ions FIG. 4 shows the relationship between the water content and water content. FIG. 4 shows that when A ÷ B is 0.6 days or more, a dehydrated cake having a low water content can be obtained. Also, even if A ÷ B is 2.0 days or more, there is not much difference in moisture in the dehydrated cake, and A ÷ B is 2.0 days or more because the amount of returned slurry from the second settling tank is Increased and not economical.
A (kg) = Fe concentration in first reaction tank (kg / m 3 ) × first reaction tank liquid amount (m 3 )
B (kg / day) = Fe concentration of acidic waste liquid (kg / m 3 ) × Amount of acidic waste liquid input (m 3 / day)
And

次に、予め篩い分けを行った300〜2000μmの微生物担体を第1の反応槽に投入した場合を例に、第1の反応槽内に存在する微生物担体および第2の沈殿槽から返送された水酸化鉄(III)主体の粒子の表面上に付着している鉄酸化細菌による2価鉄イオンの酸化能力について述べる。   Next, it was returned from the microbial carrier existing in the first reaction tank and the second sedimentation tank, taking as an example the case where a 300-2000 μm microbial carrier previously screened was put into the first reaction tank. The oxidation ability of divalent iron ions by iron-oxidizing bacteria adhering to the surface of iron (III) hydroxide-based particles will be described.

第1の反応槽内から得たスラリーを目開き300μmにより篩分けし、篩上の微生物担体を回収した。また、篩下のスラリーを目開き74μmにより篩分けし、篩下の水酸化鉄(III)主体の粒子からなるスラリーを回収した。微生物担体および水酸化鉄(III)主体の粒子からなるスラリーを、2価鉄イオンを含む酸性廃液に添加し、水酸化ナトリウム溶液でpH4に調整しながら、エアレーションで攪拌を行った状態で、2価鉄イオン濃度の経時変化を測定し、単位質量あたりの2価鉄イオンの酸化速度を調べた。その結果、微生物担体では、平均0.12g-Fe2+/g-dry/日であり、水酸化鉄(III)主体の粒子では、平均0.15g-Fe2+/g-dry/日であった。 The slurry obtained from the inside of the first reaction vessel was sieved with an opening of 300 μm, and the microorganism carrier on the sieve was recovered. Further, the under-slurry slurry was sieved with an aperture of 74 μm, and the slurry composed of iron (III) -based particles under the sieving was recovered. In a state in which a slurry composed of microbial carrier and iron (III) hydroxide-based particles is added to an acidic waste liquid containing divalent iron ions and adjusted to pH 4 with a sodium hydroxide solution while stirring by aeration, 2 The change with time in the iron ion concentration was measured, and the oxidation rate of divalent iron ions per unit mass was examined. As a result, the average for microbial carriers was 0.12 g-Fe 2+ / g-dry / day, and the average for iron (III) hydroxide particles was 0.15 g-Fe 2+ / g-dry / day. .

以上の知見より、単位質量あたりの酸化速度は微生物担体より水酸化鉄(III)主体の粒子の方が2〜3割大きいが、同じスラリー濃度での沈降速度は、微生物担体の方が50〜300倍大きいことが判明した。そこで、第1の反応槽内の固形物のうち、つまり、微生物担体質量と水酸化鉄(III)主体の粒子の総質量のうち、微生物担体質量の比率を70〜95質量%にすることで、第1の沈殿槽からのオーバーフロースラリーのスラリー濃度は低下できる。そのスラリー濃度を3.5質量%以下とすることで、凝集槽で高分子凝集剤添加後、沈降速度を100〜350m/Dまで上昇させることができ、第2の沈殿槽をコンパクト化できる。3.5質量%超の場合、沈降速度は小さくなり、第2の沈殿槽はコンパクトにできない。また、前記のA÷Bを0.6〜2.0日にすれば、脱水性に大きな差異は生じないので、第2の沈殿槽から第1の反応槽への返送スラリー量をさらに低減しても影響がなく、第1の反応槽内の水酸化鉄(III)主体の粒子の濃度を1質量%程度まで下げられ、さらに第2の沈殿槽を小さくできることが判明した。1質量%未満にすると、脱水性が悪化する。また、凝集槽から第2の沈殿槽へ流入する水酸化鉄(III)主体の固形物を低下することで、凝集槽で添加する高分子凝集剤の量を減少させることができることが判明した。   From the above findings, the oxidation rate per unit mass is 20 to 30% larger for the iron (III) hydroxide-based particles than the microbial carrier, but the sedimentation rate at the same slurry concentration is 50 to 50 for the microbial carrier. It was found to be 300 times larger. Therefore, by setting the ratio of the microbial carrier mass to 70-95% by mass in the solid matter in the first reaction tank, that is, the total mass of the microbial carrier mass and the iron (III) hydroxide-based particles. The slurry concentration of the overflow slurry from the first sedimentation tank can be reduced. By setting the slurry concentration to 3.5% by mass or less, after the addition of the polymer flocculant in the coagulation tank, the sedimentation rate can be increased to 100 to 350 m / D, and the second precipitation tank can be made compact. If it exceeds 3.5% by mass, the sedimentation rate becomes small, and the second sedimentation tank cannot be made compact. If A ÷ B is 0.6 to 2.0 days, there will be no significant difference in dewaterability, so the amount of slurry returned from the second settling tank to the first reaction tank can be further reduced. It was found that the concentration of particles mainly composed of iron (III) in the first reaction tank can be reduced to about 1% by mass and the second precipitation tank can be further reduced. When it is less than 1% by mass, the dehydrating property is deteriorated. It was also found that the amount of the polymer flocculant added in the coagulation tank can be reduced by reducing the solid matter mainly composed of iron (III) flowing from the coagulation tank to the second precipitation tank.

次に、元素分離について、述べる。
2価鉄イオン、3価鉄イオン、ニッケルイオンおよび亜鉛イオンを、それぞれ400mg/L、400mg/L、30mg/L、30mg/Lを含む溶液のpHと排水中元素の残存比率の関係を示したのが図1である。図1より、3価鉄イオンはpH3〜5において析出し、亜鉛イオン、ニッケルイオンおよび2価鉄イオンはpH6〜10で析出する。
Next, element separation will be described.
The relationship between the pH of solutions containing 400 mg / L, 400 mg / L, 30 mg / L, and 30 mg / L of divalent iron ions, trivalent iron ions, nickel ions, and zinc ions and the residual ratio of elements in wastewater was shown. This is shown in FIG. From FIG. 1, trivalent iron ions are precipitated at pH 3 to 5, and zinc ions, nickel ions and divalent iron ions are precipitated at pH 6 to 10.

亜鉛イオンおよびニッケルイオンを鉄イオンから分離するためには、まず、2価鉄イオンを化学的酸化もしくは生物学的酸化により3価鉄イオンに酸化し、その後、pHを3〜5に調整することで、水酸化鉄(III)が析出する。このスラリーから固液分離操作によって、固体部と液体部を分離し、固体部を回収する。その後、液体部のpHを6〜10にすることで、水酸化亜鉛、水酸化ニッケルが析出する。このスラリーから固液分離操作によって、液体部のみを分離し、固体部を回収する。このようにすることで、鉄イオンはニッケルイオン、亜鉛イオンから分離できることになる。
つまり、金属化合物を析出させる過程において、pHで数段階に制御し、各段階で析出する金属化合物を抜き取ることにより、元素分離を行うことができる。
In order to separate zinc ions and nickel ions from iron ions, divalent iron ions are first oxidized to trivalent iron ions by chemical oxidation or biological oxidation, and then the pH is adjusted to 3-5. Thus, iron (III) hydroxide precipitates. The solid part and the liquid part are separated from the slurry by solid-liquid separation operation, and the solid part is recovered. Then, zinc hydroxide and nickel hydroxide precipitate by making pH of a liquid part into 6-10. Only the liquid part is separated from the slurry by solid-liquid separation, and the solid part is recovered. By doing so, iron ions can be separated from nickel ions and zinc ions.
In other words, in the process of precipitating the metal compound, the element separation can be performed by controlling the pH to several stages and extracting the metal compound precipitated at each stage.

続いて、本発明を具体化した実施の形態について説明する。
図5には、本発明の廃液からの鉄含有脱水ケーキの製造方法(廃液からの鉄分の回収方法)に係る処理装置の一例を示す。図5に示すように、本発明の一実施の形態に係る鉄含有脱水ケーキの製造方法に適用される排水処理装置10は、例えば、薄鋼板を硫酸、硝酸、硝弗酸等の酸液で酸洗処理した後の廃液の一例である酸洗排水、または、表面処理した後のめっき廃液からなる酸洗めっき排水、または、金属鉱山を採掘した後に発生する酸性で重金属を含んだ鉱山排水などの2価鉄イオンを含む酸性廃液を処理する第1の反応槽12と、第1の反応槽12内をエアレーションにより攪拌するとともに鉄酸化細菌へ酸素を供給する散気装置14と、鉄酸化細菌を付着させる微生物担体13と、第1の反応槽12内のpHを測定するpH計15と、第1の反応槽12内の液のpHを調整する中和剤17の投入制御する中和剤用バルブ16と、微生物担体を回収する第1の沈殿槽18と、回収した微生物担体を第1の反応槽12へ戻す微生物担体返送ポンプ19と、第1の沈殿槽18からのオーバーフロースラリー中の水酸化鉄(III)主体の粒子をフロック化させる高分子凝集剤21と、それを受ける凝集槽20と、攪拌する攪拌機22と、凝集槽20でフロック化したスラリーを沈殿させる第2の沈殿槽23と、沈殿したスラリーを返送スラリー27として第1の反応槽12に戻したり引抜きスラリー26として脱水機へ引き抜いたりするスラリーポンプ24とからなる。
Next, an embodiment embodying the present invention will be described.
In FIG. 5, an example of the processing apparatus which concerns on the manufacturing method (the recovery method of the iron content from a waste liquid) of the iron containing dehydrated cake from the waste liquid of this invention is shown. As shown in FIG. 5, a wastewater treatment apparatus 10 applied to a method for producing an iron-containing dehydrated cake according to an embodiment of the present invention includes, for example, a thin steel plate made of an acid solution such as sulfuric acid, nitric acid, or nitric hydrofluoric acid. Pickling wastewater that is an example of waste liquid after pickling treatment, pickling plating wastewater consisting of plating waste liquid after surface treatment, or acid and heavy metal-containing mine drainage generated after mining a metal mine, etc. A first reaction tank 12 for treating an acidic waste liquid containing divalent iron ions, an air diffuser 14 for stirring the inside of the first reaction tank 12 by aeration and supplying oxygen to the iron-oxidizing bacteria, and iron-oxidizing bacteria A microbial carrier 13 for adhering, a pH meter 15 for measuring the pH in the first reaction tank 12, and a neutralizing agent for controlling the input of a neutralizing agent 17 for adjusting the pH of the liquid in the first reaction tank 12. Valve 16 and the first to recover the microorganism carrier , The microbial carrier return pump 19 for returning the recovered microbial carrier to the first reaction tank 12, and the iron (III) hydroxide-based particles in the overflow slurry from the first precipitation tank 18 are flocked. The polymer flocculant 21 to be received, the agglomeration tank 20 to receive it, the stirrer 22 to stir, the second sedimentation tank 23 to precipitate the slurry flocked in the aggregation tank 20, and the precipitated slurry as the return slurry 27 The slurry pump 24 is returned to one reaction tank 12 or drawn out as a drawn slurry 26 to a dehydrator.

第1の反応槽12内の水酸化鉄(III)主体の粒子および微生物担体の固形物濃度は10〜30質量%である。微生物担体の質量と水酸化鉄(III)粒子の質量の合計量に対する微生物担体の質量は、70〜95質量%である。残りの固形物は、2価鉄イオンを含む酸性廃液11の中和処理時に発生した水酸化鉄(III)主体の粒子とスラリーポンプ24によって、第1の反応槽12に返送した返送スラリー27中の水酸化鉄(III)主体の粒子であり、反応槽12内のスラリー中に1〜3.5質量%含んでいる。微生物担体の大きさは、微生物担体の比重にもよるが、300〜2000μmに篩い分けし、鉄酸化細菌の付着性が良い活性炭、コークス粉、石炭粉、軽石、発泡スラグなどである。第1の沈殿槽18におけるOFR(over flow rate、処理水量÷沈殿槽水面積)は200〜2000m/Dの範囲で設定することが好ましい。また、第2の沈殿槽に流入するスラリー濃度は1〜3.5質量%なので、第2の沈殿槽23におけるOFRは50〜350m/Dの範囲で設定できる。図3からは、OFR100m/D以上となるが、余裕率を考慮し、50m/Dとしている。なお、第1の反応槽12内の微生物担体濃度としては、予め第1の反応槽12内に投入する微生物担体の質量を測定することで管理できる。もしくは、第1の反応槽12内の浮遊固形物質を目開き300μmの篩いで300μm以上の粒子群を分離し、その固形物量を測定することでも管理することができる。   The solid concentration of the particles mainly composed of iron (III) and the microorganism carrier in the first reaction tank 12 is 10 to 30% by mass. The mass of the microbial carrier with respect to the total mass of the microbial carrier and the iron (III) hydroxide mass is 70 to 95% by mass. The remaining solid matter is contained in the return slurry 27 returned to the first reaction tank 12 by the iron (III) hydroxide-based particles generated during the neutralization treatment of the acidic waste liquid 11 containing divalent iron ions and the slurry pump 24. 1 to 3.5% by mass in the slurry in the reaction vessel 12. The size of the microbial carrier is activated carbon, coke powder, coal powder, pumice, foamed slag, etc., which is sieved to 300 to 2000 μm and has good adhesion to iron-oxidizing bacteria, depending on the specific gravity of the microbial carrier. The OFR (over flow rate, treated water amount / precipitation tank water area) in the first sedimentation tank 18 is preferably set in the range of 200 to 2000 m / D. Moreover, since the slurry density | concentration which flows in into a 2nd sedimentation tank is 1-3.5 mass%, OFR in the 2nd sedimentation tank 23 can be set in 50-350 m / D. From FIG. 3, although it becomes OFR100m / D or more, it is set to 50m / D in consideration of a margin rate. The microbial carrier concentration in the first reaction tank 12 can be managed by measuring the mass of the microbial carrier charged into the first reaction tank 12 in advance. Alternatively, the suspended solid substance in the first reaction tank 12 can be managed by separating a particle group of 300 μm or more with a sieve having an opening of 300 μm and measuring the amount of the solid matter.

次に、図5に基づいて、本発明である鉄含有脱水ケーキの製造方法の一実施形態について説明する。
薄鋼板を酸洗処理した後の酸洗廃液やめっき廃液からなる酸洗めっき排水、または鉱山排水等の2価鉄イオンを含む酸性廃液11を第1の反応槽12内に連続して供給する。一般的な酸性廃液11は、pHが2以下で、Fe、Zn、Ni等の金属を総量で0.01〜1質量%溶解しており、これらの金属のほとんどは金属イオンとして存在しているが、少量は懸濁粒子として存在している。
Next, based on FIG. 5, one Embodiment of the manufacturing method of the iron containing dewatering cake which is this invention is described.
Acid waste liquid 11 containing divalent iron ions, such as pickling wastewater or pickling wastewater after pickling treatment of a thin steel plate, or mine wastewater is continuously supplied into the first reaction tank 12. . The general acidic waste liquid 11 has a pH of 2 or less and dissolves 0.01 to 1 mass% of metals such as Fe, Zn, and Ni, and most of these metals exist as metal ions. However, a small amount is present as suspended particles.

第1の反応槽12内には、スラリー中の微生物担体13濃度が7〜28質量%になるように添加し、馴養させた鉄酸化細菌を添加しておき、その中に酸性廃液11を連続して供給し、第1の反応槽12内で散気装置14により攪拌する。酸性廃液11中に含まれる2価鉄イオンは鉄酸化細菌によって酸化され、水酸化鉄(III)を生成する。pH計15で第1反応槽12内のpHを連続測定しながら、中和剤用バルブ16を調整してNaOH、Ca(OH)2、あるいは、Mg(OH)2溶液からなる中和剤17を第1の反応槽12に添加して、第1の反応槽12内のpHを3〜5に調整する。ここで、pH3未満になると、酸性めっき廃液中の3価鉄イオンの析出が悪くなる。一方、pHが5超になると、ニッケルや亜鉛等の金属水酸化物が析出し易くなり、鉄の金属水酸化物を分離することができにくくなる。つまり、この第1回目の中和処理によって、図1に示すように、水酸化鉄(III)を主体とした粒子が析出し、酸性廃液11中から3価鉄イオンを分離することができる。 In the 1st reaction tank 12, it added so that the microorganisms carrier 13 density | concentration in a slurry might be 7-28 mass%, the acclimatized iron oxidation bacterium was added, and the acidic waste liquid 11 was continued in it. And stirred by the air diffuser 14 in the first reaction tank 12. The divalent iron ions contained in the acidic waste liquid 11 are oxidized by iron-oxidizing bacteria to produce iron (III) hydroxide. While continuously measuring the pH in the first reaction tank 12 with the pH meter 15, the neutralizer valve 16 is adjusted to neutralize the neutralizer 17 made of NaOH, Ca (OH) 2 or Mg (OH) 2 solution. Is added to the 1st reaction tank 12, and pH in the 1st reaction tank 12 is adjusted to 3-5. Here, when the pH is less than 3, precipitation of trivalent iron ions in the acidic plating waste liquid becomes worse. On the other hand, when the pH exceeds 5, metal hydroxides such as nickel and zinc are likely to be precipitated, and it becomes difficult to separate iron metal hydroxides. That is, by the first neutralization treatment, as shown in FIG. 1, particles mainly composed of iron (III) hydroxide are precipitated, and trivalent iron ions can be separated from the acidic waste liquid 11.

第1の反応槽12から第1の沈殿槽18に、微生物担体13と水酸化鉄(III)主体の粒子が流れ込む。高分子凝集剤が添加されていないので、フロック化しておらず、水酸化鉄(III)主体の粒子は沈降速度が10m/D以下と非常に小さい。また、第1の沈殿槽18のOFRは、200〜2000m/Dであるため、沈降速度の大きい微生物担体は第1の沈殿槽18で沈殿するが、水酸化鉄(III)が主体の粒子のほとんどは沈降せずに、次の凝集槽20に送液される。第1の沈降槽18で沈殿し回収した微生物担体13は、微生物担体返送ポンプ19によって、第1の沈降槽18中の一部のスラリーと共に第1の反応槽12に返送される。   Microorganism carrier 13 and iron (III) hydroxide-based particles flow from first reaction tank 12 to first precipitation tank 18. Since no polymer flocculant is added, it is not flocked, and the particles mainly composed of iron (III) hydroxide have a very low sedimentation speed of 10 m / D or less. Moreover, since the OFR of the first sedimentation tank 18 is 200 to 2000 m / D, the microbial carrier having a high sedimentation rate is precipitated in the first sedimentation tank 18, but the particles mainly composed of iron (III) hydroxide are used. Most of the liquid does not settle and is sent to the next agglomeration tank 20. The microorganism carrier 13 precipitated and collected in the first sedimentation tank 18 is returned to the first reaction tank 12 together with a part of the slurry in the first sedimentation tank 18 by a microorganism carrier return pump 19.

第1の沈殿槽18から凝集槽20にオーバーフローした水酸化鉄(III)主体の粒子を含むオーバーフロースラリーに、高分子凝集剤21を添加し、攪拌機22で攪拌することにより、沈降性のよいフロックを形成させる。凝集槽20で形成したフロックは第2の沈殿槽23に送液され、沈殿槽23で沈殿する。沈殿槽上部からは、1次処理水25が排出される。1次処理水25はpHが3〜5で、ニッケル、亜鉛などの金属イオンを含んでいる。第2の沈殿槽の下部に沈積した水酸化鉄(III)主体のフロックは、スラリーポンプ24によって第1の反応槽12に返送スラリー27として返送される。返送量は、第1の反応槽12内のFe量をA(kg)とし、2価鉄イオンを含む酸性廃液中のFe量をB(kg/日)としたとき、A÷Bを0.6〜2.0日にするのが好ましい。余剰となった水酸化鉄(III)主体のスラリーは引抜きスラリー26として間欠的に引き抜かれ、後述の方法で脱水される。   By adding a polymer flocculant 21 to an overflow slurry containing particles mainly composed of iron (III) hydroxide that has overflowed from the first sedimentation tank 18 to the coagulation tank 20, and stirring with a stirrer 22, floc having good sedimentation To form. The flocs formed in the aggregation tank 20 are sent to the second precipitation tank 23 and settled in the precipitation tank 23. The primary treated water 25 is discharged from the upper part of the precipitation tank. The primary treated water 25 has a pH of 3 to 5 and contains metal ions such as nickel and zinc. The flocs mainly composed of iron (III) hydroxide deposited in the lower part of the second sedimentation tank are returned to the first reaction tank 12 as the return slurry 27 by the slurry pump 24. The return amount is set such that A ÷ B is 0.00 when the Fe amount in the first reaction tank 12 is A (kg) and the Fe amount in the acidic waste liquid containing divalent iron ions is B (kg / day). 6 to 2.0 days are preferred. The surplus slurry of iron (III) hydroxide is withdrawn intermittently as a drawing slurry 26 and dehydrated by a method described later.

第2の沈殿槽23からの1次処理水25は、図示していないが、後段の中和槽で中和剤を投入しpH6〜10に調整し、1次処理水中のニッケル・亜鉛などの金属イオンを水酸化物として析出させた後、さらに後段の凝集槽で高分子凝集剤を加えフロック状態にし、さらに後段の沈殿槽でニッケル・亜鉛などの水酸化物を含有するスラリーを分離する。分離されたスラリーは後述の方法で脱水される。   Although the primary treatment water 25 from the second sedimentation tank 23 is not shown in the drawing, a neutralizing agent is introduced into the subsequent neutralization tank to adjust the pH to 6 to 10, and nickel, zinc, etc. in the primary treatment water After the metal ions are precipitated as hydroxides, a polymer flocculant is added to the floc state in a subsequent agglomeration tank, and further, a slurry containing hydroxides such as nickel and zinc is separated in the subsequent agglomeration tank. The separated slurry is dehydrated by the method described below.

第2の沈殿槽23で分離した水酸化鉄(III)主体のスラリーおよび図示していないニッケル・亜鉛などの水酸化物を含有するスラリーを分離する沈殿槽からのスラリーは、それぞれ脱水されて、スラッジケーキに加工する。脱水方法としては、フィルタープレス、真空脱水機、遠心脱水機などの脱水機を使用して脱水する方法や天日乾燥によって脱水する方法がある。この脱水されたスラッジケーキは、それぞれ資源として有効活用することができる。なお、脱水方法によって脱水後の水分は大きく異なるが、フィルタープレスで脱水した場合、第2の沈殿槽23から回収される水酸化鉄(III)主体の脱水ケーキは、水分40〜50質量%であり、図示していない沈殿槽から回収されるニッケル・亜鉛などの金属水酸化物からなる脱水ケーキは、水分65〜85質量%である。水分に大きな差が生じるのは、回収される金属水酸化物に結晶水を含むためである。   The slurry from the precipitation tank separating the slurry mainly composed of iron hydroxide (III) separated in the second precipitation tank 23 and the slurry containing hydroxides such as nickel and zinc (not shown) are dehydrated, respectively. Process into sludge cake. Examples of the dehydration method include a method of dehydrating using a dehydrator such as a filter press, a vacuum dehydrator, and a centrifugal dehydrator, and a method of dehydrating by sun drying. Each dehydrated sludge cake can be effectively used as a resource. Although the moisture after dehydration varies greatly depending on the dehydration method, when dehydrated with a filter press, the dehydrated cake mainly composed of iron (III) hydroxide recovered from the second settling tank 23 has a moisture content of 40 to 50% by mass. In addition, the dehydrated cake made of metal hydroxide such as nickel and zinc recovered from a precipitation tank (not shown) has a moisture content of 65 to 85% by mass. The large difference in moisture occurs because the recovered metal hydroxide contains crystal water.

以上、本発明の実施の形態を説明したが、本発明は上記した形態に限定されるものではなく、要旨を逸脱しない条件の変更等は全て本発明の範囲である。   Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.

例えば、図5では、第1の沈殿槽18と微生物担体返送ポンプ19で微生物担体13を回収し、第1の反応槽12に返送しているが、図6に示すように、反応槽と沈殿槽を一体型にした第1の反応槽兼沈殿槽30を用いることができる。すなわち、第1の反応槽兼沈殿槽30は、反応部31と沈降部32を有し、反応部31の下部に反応部31内を攪拌する散気装置34があり、酸性廃液11と微生物担体13を混合している。沈降部32のOFRは200〜2000m/Dで、沈降終末速度以下に設定しているため、沈降速度の大きい微生物担体13のみ沈降し、再度、反応部31に自動的に戻る。   For example, in FIG. 5, the microbial carrier 13 is recovered by the first sedimentation tank 18 and the microbial carrier return pump 19 and returned to the first reaction tank 12, but as shown in FIG. A first reaction / precipitation tank 30 in which the tank is integrated can be used. That is, the first reaction / precipitation tank 30 has a reaction part 31 and a sedimentation part 32, and there is an aeration device 34 for stirring the reaction part 31 at the lower part of the reaction part 31. 13 is mixed. Since the OFR of the sedimentation section 32 is 200 to 2000 m / D and is set to be equal to or less than the sedimentation end speed, only the microorganism carrier 13 having a large sedimentation speed is sedimented and automatically returns to the reaction section 31 again.

また、図5では、第1の沈降槽18の下部に微生物担体回収用にポンプ19および返送配管を設置しているが、その代わりに沈殿物を掻き揚げる装置、例えばスクリュー型、コンベヤ型などの装置を設置してもよい。更に、第1の反応槽12内の混合として、散気装置14のかわりに散気装置と攪拌機を併用して用いても良い。   In FIG. 5, a pump 19 and a return pipe are installed in the lower part of the first sedimentation tank 18 for recovering the microorganism carrier. Instead, a device for lifting the sediment, such as a screw type or a conveyor type, is used. A device may be installed. Further, as the mixing in the first reaction tank 12, a diffuser and a stirrer may be used in combination instead of the diffuser 14.

また、2価鉄イオンを含む酸性廃液中に3価のクロムイオンを含む場合、3価のクロムは鉄酸化細菌によって酸化された3価鉄イオンとともに第1の反応槽12で析出し、高分子凝集剤21を添加する凝集槽20でフロックを形成し、第2の沈殿槽23で沈殿・分離される。   Further, in the case where trivalent chromium ions are contained in the acidic waste liquid containing divalent iron ions, the trivalent chromium is precipitated in the first reaction tank 12 together with the trivalent iron ions oxidized by the iron-oxidizing bacteria. A floc is formed in the coagulation tank 20 to which the coagulant 21 is added, and the flocs are precipitated and separated in the second precipitation tank 23.

[実施例]
次に、本発明の廃液からの鉄含有脱水ケーキの製造方法の実施例を挙げるが、本発明は以下の実施例に限定されるものではない。
なお、本実施例は、実廃水と相関関係を取りながら、室内実験で行った実施例であり、この実験結果は、スラッジリサイクル上、望ましい結果であり、実廃水と何ら相違ないものと考える。
[Example]
Next, although the Example of the manufacturing method of the iron containing dehydrated cake from the waste liquid of this invention is given, this invention is not limited to a following example.
In addition, a present Example is an Example conducted by the indoor experiment, taking a correlation with actual wastewater, and this experimental result is a desirable result on sludge recycling, and is considered to be no different from actual wastewater.

(実施例1)
酸洗めっき廃液として、表1に示す2価鉄イオン、ニッケルイオン、亜鉛イオンを含む溶液を使用し、図5の処理装置を用いて、この酸洗めっき模擬排水の処理を行った。また、微生物担体13として500〜1000μmに粒度調整したコークス粉(40kg)を第1の反応槽に添加した。コークス粉の沈降速度は、おおよそ1700m/Dであった。
Example 1
A solution containing divalent iron ions, nickel ions, and zinc ions shown in Table 1 was used as the pickling plating waste solution, and this pickling plating simulated waste water was processed using the processing apparatus of FIG. Further, coke powder (40 kg) whose particle size was adjusted to 500 to 1000 μm as the microbial carrier 13 was added to the first reaction vessel. The sedimentation speed of the coke powder was approximately 1700 m / D.

第1の反応槽12および凝集槽20の容量はそれぞれ、270L、15Lであり、第1の沈殿槽18の水表面積は154cm2でOFRは800m/D、第2の沈殿槽23の水表面積は324cm2でOFRは227m/Dである。なお、第1の反応槽12内には、予め、鉄酸化細菌を投入している。 The capacities of the first reaction tank 12 and the coagulation tank 20 are 270 L and 15 L, respectively, the water surface area of the first precipitation tank 18 is 154 cm 2 , the OFR is 800 m / D, and the water surface area of the second precipitation tank 23 is The OFR is 227 m / D at 324 cm 2 . Note that iron-oxidizing bacteria are previously introduced into the first reaction tank 12.

酸洗めっき廃液を第1の反応槽12に5.1L/分で連続的に供給するとともに、苛性ソーダ水溶液を中和剤17として添加し、第1の反応槽12内のpHを4で制御し、さらに、第1の反応槽12の底部に設置した散気装置14から空気を20NL/分で吹き込み、第1の反応槽12内の攪拌を行った。   While pickling plating waste liquid is continuously supplied to the first reaction tank 12 at 5.1 L / min, an aqueous caustic soda solution is added as a neutralizing agent 17, and the pH in the first reaction tank 12 is controlled at 4. Furthermore, air was blown at a rate of 20 NL / min from an air diffuser 14 installed at the bottom of the first reaction tank 12 to stir the first reaction tank 12.

第1の反応槽12に投入された酸洗めっき廃水中の2価鉄イオンは、コークス粉表面上および第2の沈殿槽23から返送したスラリー中に含まれる水酸化鉄(III)主体の粒子表面上に付着している鉄酸化細菌によって3価鉄イオンにほぼ全量酸化され、水酸化鉄(III)として水酸化鉄(III)主体の粒子表面上およびコークス粉の表面上に析出し、粒子を大きくさせた。第1の沈殿槽18でコークス粉は沈降し微生物担体返送ポンプ19によって、第1の反応槽12に戻し、水酸化鉄(III)主体の粒子を含む上澄水は、凝集槽20に投入され、高分子凝集剤21(アニオン系)により水酸化鉄(III)主体の粒子はフロックを形成し、第2の沈殿槽23で分離した。分離したスラリーのスラリー濃度は9〜11質量%であり、第1の反応槽12内のスラリー濃度が16質量%(15.5〜16.5質量%)になるように、スラリーポンプ24にて、約0.7L/分で第1の反応槽兼沈殿槽30に返送スラリー27として返送した。第1の反応槽12内のスラリーのうち、コークス粉に起因するものが約92質量%である。余剰となったスラリーは、間欠的に引抜きスラリー26として引抜き、0.5MPaの加圧力を有するフィルタープレス脱水機で脱水して、脱水ケーキとした。なお、前述のA÷Bは、約0.72日であった。   The divalent iron ions in the pickling plating wastewater charged into the first reaction tank 12 are particles of iron hydroxide (III) mainly contained on the coke powder surface and in the slurry returned from the second settling tank 23. The iron-oxidizing bacteria adhering to the surface oxidize almost the entire amount to trivalent iron ions, and precipitate as iron hydroxide (III) on the surface of iron hydroxide (III) -based particles and on the surface of coke powder. Was made larger. The coke powder settles in the first sedimentation tank 18 and is returned to the first reaction tank 12 by the microorganism carrier return pump 19, and the supernatant water containing iron (III) hydroxide-based particles is charged into the aggregation tank 20, The particles mainly composed of iron (III) hydroxide formed flocs by the polymer flocculant 21 (anionic), and were separated in the second precipitation tank 23. The slurry concentration of the separated slurry is 9 to 11% by mass, and the slurry concentration in the first reaction tank 12 is 16% by mass (15.5 to 16.5% by mass). The returned slurry 27 was returned to the first reaction / precipitation tank 30 at about 0.7 L / min. Of the slurry in the first reaction vessel 12, the amount resulting from the coke powder is about 92% by mass. The surplus slurry was intermittently drawn as a drawn slurry 26 and dehydrated with a filter press dehydrator having a pressure of 0.5 MPa to obtain a dehydrated cake. The above-mentioned A ÷ B was about 0.72 days.

第2の沈殿槽23で分離した上澄水(1次処理水25)は、ニッケルイオンおよび亜鉛イオンを含んでいる。図示していないが、後段の中和槽で中和剤を投入しpH9に調整し、1次処理水25中のニッケル・亜鉛の金属イオンを水酸化物として析出させた後、さらに後段の凝集槽で高分子凝集剤(アニオン系)を加えフロック状態にし、さらに後段の沈殿槽でニッケル・亜鉛の水酸化物を含有するスラリーを分離した。   The supernatant water (primary treated water 25) separated in the second sedimentation tank 23 contains nickel ions and zinc ions. Although not shown in the figure, a neutralizing agent is introduced into the subsequent neutralization tank to adjust the pH to 9, and the nickel / zinc metal ions in the primary treated water 25 are precipitated as hydroxides. A polymer flocculant (anionic) was added in the tank to form a floc state, and a slurry containing nickel / zinc hydroxide was separated in a subsequent precipitation tank.

この際の1次処理水25中の成分を表1に、第2の沈殿槽23から引き抜いた引抜きスラリー26を脱水した後の脱水ケーキの成分を表2に示す。表1の1次処理水水質より2価鉄イオンが主体に析出しており、表2のケーキ成分からも水酸化鉄(III)主体の成分になり、かつ、水分は48質量%(含水ケーキ[wet]中の水分量の割合)と低いため、水分の低い他原料との混練等の操作を加えることで、鉄源として利用できるようになった。また、ケーキ成分中のC分は少し含まれているが、後述する比較例とほぼ同レベルであり、微生物担体として添加したコークス粉はほとんど流出していない。   The components in the primary treated water 25 at this time are shown in Table 1, and the components of the dewatered cake after the drawing slurry 26 drawn from the second settling tank 23 is dehydrated are shown in Table 2. Divalent iron ions are mainly precipitated from the quality of the primary treated water in Table 1. The cake component in Table 2 is also a component mainly composed of iron (III) hydroxide, and the water content is 48% by mass (hydrous cake). Since the ratio of the amount of water in [wet] is low, it can be used as an iron source by adding operations such as kneading with other raw materials having low water content. Moreover, although C content in a cake component is contained a little, it is substantially the same level as the comparative example mentioned later, and the coke powder added as a microorganisms carrier has flowed out little.

なお、スラリーポンプ24にて、第1の反応槽12に返送しなかった場合も実施したが、その場合は、第2の沈殿槽23で分離したスラリーを0.5MPaの加圧力を有するフィルタープレス脱水機で脱水した脱水ケーキ中の水分が57質量%になり、スラリーポンプ24にて、第1の反応槽12に返送した場合と比較して、脱水性は低下した。   In addition, although it implemented also when not returning to the 1st reaction tank 12 with the slurry pump 24, in that case, the filter press which has the applied pressure of 0.5 Mpa for the slurry isolate | separated with the 2nd sedimentation tank 23 The water content in the dewatered cake dehydrated by the dehydrator became 57% by mass, and the dewaterability decreased compared with the case where the slurry pump 24 returned to the first reaction tank 12.

(実施例2)
酸洗めっき廃液として、表1に示す2価鉄イオン、ニッケルイオン、亜鉛イオンを含む溶液を使用し、図6の処理装置を用いて、この酸洗めっき模擬排水の処理を行った。また、微生物担体13として500〜1000μmに粒度調整したコークス粉(40kg)を第1の反応槽兼沈殿槽に添加した。コークス粉の沈降速度は、おおよそ1700m/Dであった。
(Example 2)
A solution containing divalent iron ions, nickel ions, and zinc ions shown in Table 1 was used as the pickling plating waste liquid, and this pickling plating simulated waste water was processed using the processing apparatus of FIG. Further, coke powder (40 kg) having a particle size adjusted to 500 to 1000 μm as microbial carrier 13 was added to the first reaction / precipitation tank. The sedimentation speed of the coke powder was approximately 1700 m / D.

反応部31および凝集槽20の容量はそれぞれ、270L、15Lであり、沈降部32の水表面積は154cm2でOFRは800m/D、第2の沈殿槽23の水表面積は324cm2でOFRは227m/Dである。なお、第1の反応槽兼沈殿槽30内には、予め、鉄酸化細菌を投入している。 The capacities of the reaction section 31 and the coagulation tank 20 are 270 L and 15 L, respectively, the water surface area of the settling section 32 is 154 cm 2 and OFR is 800 m / D, the water surface area of the second settling tank 23 is 324 cm 2 and OFR is 227 m. / D. In addition, in the 1st reaction tank and precipitation tank 30, iron oxidation bacteria are thrown in beforehand.

酸洗めっき廃液を第1の反応槽兼沈殿槽30に5.1L/分で連続的に供給するとともに、苛性ソーダ水溶液を中和剤17として添加し、第1の反応槽兼沈殿槽30内のpHを4で制御し、さらに、反応部31の底部に設置した散気装置14から空気を20NL/分で吹き込み、反応部31内の攪拌を行った。   While the pickling plating waste liquid is continuously supplied to the first reaction / precipitation tank 30 at 5.1 L / min, an aqueous caustic soda solution is added as the neutralizing agent 17, and the inside of the first reaction / precipitation tank 30 is added. The pH was controlled at 4, and air was blown from the air diffuser 14 installed at the bottom of the reaction unit 31 at 20 NL / min to stir the reaction unit 31.

第1の反応槽兼沈殿槽30に投入された酸洗めっき廃水中の2価鉄イオンは、コークス粉表面上および第2の沈殿槽23から返送したスラリー中に含まれる水酸化鉄(III)主体の粒子表面上に付着している鉄酸化細菌によって3価鉄イオンにほぼ全量酸化され、水酸化鉄(III)として水酸化鉄(III)主体の粒子表面上およびコークス粉の表面上に析出し、粒子を大きくさせた。沈降部32でコークス粉は沈降し反応部31内に戻り、水酸化鉄(III)主体の粒子を含む上澄水は、凝集槽20に投入され、高分子凝集剤21(アニオン系)により水酸化鉄(III)主体の粒子はフロックを形成し、第2の沈殿槽23で分離した。分離したスラリーのスラリー濃度は9〜11質量%であり、第1の反応槽兼沈殿槽30内のスラリー濃度が16質量%(15.5〜16.5質量%)になるように、スラリーポンプ24にて、約0.7L/分で第1の反応槽兼沈殿槽30に返送スラリー27として返送した。第1の反応槽兼沈殿槽内のスラリーのうち、コークス粉に起因するものが約92質量%である。余剰となったスラリーは、間欠的に引抜きスラリー26として引抜き、0.5MPaの加圧力を有するフィルタープレス脱水機で脱水して、脱水ケーキとした。なお、前述のA÷Bは、約0.72日であった。   The divalent iron ions in the pickling plating wastewater charged into the first reaction / precipitation tank 30 are iron hydroxide (III) contained in the slurry returned on the coke powder surface and from the second precipitation tank 23. The iron oxide bacteria adhering to the main particle surface are almost completely oxidized to trivalent iron ions and deposited as iron hydroxide (III) on the iron hydroxide (III) main particle surface and coke powder surface. The particles were made larger. The coke powder settles in the settling section 32 and returns to the reaction section 31, and the supernatant water containing particles mainly composed of iron (III) hydroxide is put into the coagulation tank 20 and is hydroxylated by the polymer coagulant 21 (anionic system). The iron (III) -based particles formed flocs and were separated in the second sedimentation tank 23. The slurry concentration of the separated slurry is 9 to 11% by mass, and the slurry pump is set so that the slurry concentration in the first reaction / precipitation tank 30 is 16% by mass (15.5 to 16.5% by mass). In 24, it returned to the 1st reaction tank and precipitation tank 30 as the return slurry 27 at about 0.7 L / min. Of the slurry in the first reaction / precipitation tank, about 92% by mass is attributed to coke powder. The surplus slurry was intermittently drawn as a drawn slurry 26 and dehydrated with a filter press dehydrator having a pressure of 0.5 MPa to obtain a dehydrated cake. The above-mentioned A ÷ B was about 0.72 days.

第2の沈殿槽23で分離した上澄水(1次処理水25)は、ニッケルイオンおよび亜鉛イオンを含んでいる。図示していないが、後段の中和槽で中和剤を投入しpH9に調整し、1次処理水25中のニッケル・亜鉛の金属イオンを水酸化物として析出させた後、さらに後段の凝集槽で高分子凝集剤(アニオン系)を加えフロック状態にし、さらに後段の沈殿槽でニッケル・亜鉛の水酸化物を含有するスラリーを分離した。   The supernatant water (primary treated water 25) separated in the second sedimentation tank 23 contains nickel ions and zinc ions. Although not shown in the figure, a neutralizing agent is introduced into the subsequent neutralization tank to adjust the pH to 9, and the nickel / zinc metal ions in the primary treated water 25 are precipitated as hydroxides. A polymer flocculant (anionic) was added in the tank to form a floc state, and a slurry containing nickel / zinc hydroxide was separated in a subsequent precipitation tank.

この際の1次処理水25中の成分を表1に、第2の沈殿槽23から引き抜いた引抜きスラリー26を脱水した後の脱水ケーキの成分を表2に示す。表1の1次処理水水質より2価鉄イオンが主体に析出しており、表2のケーキ成分からも水酸化鉄(III)主体の成分になり、かつ、水分は47質量%(含水ケーキ[wet]中の水分量の割合)と低いため、水分の低い他原料との混練等の操作を加えることで、鉄源として利用できるようになった。また、ケーキ成分中のC分は少し含まれているが、後述する比較例とほぼ同レベルであり、微生物担体として添加したコークス粉はほとんど流出していない。   The components in the primary treated water 25 at this time are shown in Table 1, and the components of the dewatered cake after the drawing slurry 26 drawn from the second settling tank 23 is dehydrated are shown in Table 2. Divalent iron ions are mainly precipitated from the quality of the primary treated water in Table 1. The cake components in Table 2 are also mainly composed of iron (III) hydroxide, and the water content is 47% by mass (water-containing cake). Since the ratio of the amount of water in [wet] is low, it can be used as an iron source by adding operations such as kneading with other raw materials having low water content. Moreover, although C content in a cake component is contained a little, it is substantially the same level as the comparative example mentioned later, and the coke powder added as a microorganisms carrier has flowed out little.

なお、スラリーポンプ24にて、第1の反応槽兼沈殿槽30に返送しなかった場合も実施したが、その場合は、第2の沈殿槽23で分離したスラリーを0.5MPaの加圧力を有するフィルタープレス脱水機で脱水した場合、脱水ケーキ中の水分が57質量%になり、スラリーポンプ24にて、第1の反応槽兼沈殿槽30に返送した場合と比較して、脱水性は低下した。   In addition, although it implemented also when not returning to the 1st reaction tank and precipitation tank 30 with the slurry pump 24, in that case, the applied pressure of 0.5 MPa is applied to the slurry separated in the 2nd precipitation tank 23. When dewatering with a filter press dehydrator, the water content in the dewatered cake becomes 57% by mass, and the dewaterability is reduced as compared with the case where the slurry pump 24 returns to the first reaction tank / precipitation tank 30. did.

(比較例1)
酸洗めっき廃液として、表1に示す2価鉄イオン、ニッケルイオン、亜鉛イオンを含む溶液を使用し、図7の処理装置を用いて、この酸洗めっき模擬排水の処理を行った。微生物担体は添加していない。
(Comparative Example 1)
A solution containing divalent iron ions, nickel ions, and zinc ions shown in Table 1 was used as the pickling plating waste liquid, and this pickling plating simulated waste water was processed using the processing apparatus of FIG. No microbial carrier is added.

第1の反応槽12および凝集槽20の容量はそれぞれ、730L、15Lであり、第2の沈殿槽23の水表面積は2,190cm2でOFRは34m/Dである。なお、第1の反応槽12内には、予め、鉄酸化細菌を投入している。 The capacities of the first reaction tank 12 and the coagulation tank 20 are 730 L and 15 L, respectively, the water surface area of the second sedimentation tank 23 is 2,190 cm 2 , and the OFR is 34 m / D. Note that iron-oxidizing bacteria are previously introduced into the first reaction tank 12.

酸洗めっき廃液を第1の反応槽12に5.1L/分で連続的に供給するとともに、苛性ソーダ水溶液を中和剤17として添加し、第1の反応槽12内のpHを4で制御し、さらに、第1の反応槽12の底部に設置した散気装置14から空気を55NL/分で吹き込み、第1の反応槽12内の攪拌を行った。   While pickling plating waste liquid is continuously supplied to the first reaction tank 12 at 5.1 L / min, an aqueous caustic soda solution is added as a neutralizing agent 17, and the pH in the first reaction tank 12 is controlled at 4. Further, air was blown at 55 NL / min from the air diffuser 14 installed at the bottom of the first reaction tank 12 to stir the first reaction tank 12.

第1の反応槽12に投入された酸洗めっき廃水中の2価鉄イオンは、第2の沈殿槽23から返送した返送スラリー27中に含まれる水酸化鉄(III)主体の粒子表面上に付着している鉄酸化細菌によって3価鉄イオンにほぼ全量酸化され、酸洗めっき廃液中に含まれていた鉄イオンが水酸化鉄(III)として水酸化鉄(III)主体の粒子表面上に析出し、粒子を大きくさせた。第1の反応槽12から水酸化鉄(III)主体の粒子を含むスラリーは、凝集槽20に投入され、高分子凝集剤21により水酸化鉄(III)主体の粒子はフロックを形成し、第2の沈殿槽23で分離した。分離したスラリーのスラリー濃度は9〜11質量%であり、第1の反応槽12内のスラリー濃度が5〜6質量%になるように、スラリーポンプ24にて、約2.6L/分で第1の反応槽12に返送スラリー27として返送した。余剰となったスラリーは、間欠的に引抜きスラリー26として引抜き、0.5MPaの加圧力を有するフィルタープレス脱水機で脱水して、脱水ケーキとした。なお、前述のA÷Bは、約9.1日であった。   The divalent iron ions in the pickling plating wastewater charged into the first reaction tank 12 are on the surface of particles of iron hydroxide (III) mainly contained in the return slurry 27 returned from the second settling tank 23. Almost all of the iron ions are oxidized to trivalent iron ions by the attached iron-oxidizing bacteria, and the iron ions contained in the pickling plating waste liquid become iron (III) hydroxide on the surface of the iron hydroxide (III) -based particles. Precipitates and enlarges the particles. The slurry containing the iron (III) hydroxide-based particles from the first reaction tank 12 is put into the coagulation tank 20, and the iron (III) hydroxide-based particles form flocs by the polymer flocculant 21. 2 was separated in the precipitation tank 23. The slurry concentration of the separated slurry is 9 to 11% by mass, and the slurry concentration in the slurry pump 24 is about 2.6 L / min so that the slurry concentration in the first reaction tank 12 is 5 to 6% by mass. It returned to the reaction tank 12 of 1 as the return slurry 27. The surplus slurry was intermittently drawn as a drawn slurry 26 and dehydrated with a filter press dehydrator having a pressure of 0.5 MPa to obtain a dehydrated cake. The aforementioned A ÷ B was about 9.1 days.

第2の沈殿槽23で分離した上澄水(1次処理水25)は、ニッケルイオンおよび亜鉛イオンを含んでいる。図示していないが、中和槽で中和剤を投入しpH9に調整し、1次処理水中のニッケル・亜鉛の金属イオンを水酸化物として析出させた後、凝集槽で高分子凝集剤を加えフロック状態にし、沈殿槽でニッケル・亜鉛の水酸化物を含有するスラリーを分離した。   The supernatant water (primary treated water 25) separated in the second sedimentation tank 23 contains nickel ions and zinc ions. Although not shown, a neutralizing agent is added in a neutralizing tank to adjust pH to 9, and after depositing nickel / zinc metal ions in the primary treated water as hydroxides, a polymer flocculant is added in the coagulating tank. In addition, a floc state was obtained, and a slurry containing nickel / zinc hydroxide was separated in a precipitation tank.

この際の1次処理水25中の表1に、第2の反応槽23から引き抜いたスラリーを脱水した後の脱水ケーキの成分を表2に示す。表1の1次処理水水質よりFe2+イオンが主体に析出しており、表2のケーキ成分からも水酸化鉄(III)主体の成分になり、かつ、水分は49質量%と低いため、水分の低い他原料との混練等の操作を加えることで、鉄源として利用できる。 Table 1 in the primary treated water 25 at this time shows the components of the dewatered cake after the slurry extracted from the second reaction tank 23 is dewatered. Fe 2+ ions are mainly precipitated from the quality of the primary treated water in Table 1. The cake components in Table 2 are also mainly composed of iron (III) hydroxide, and the water content is as low as 49% by mass. It can be used as an iron source by adding operations such as kneading with other raw materials having low moisture.

Figure 2008264687
Figure 2008264687

Figure 2008264687
Figure 2008264687

実施例と比較例ともに、脱水性に大きさ差異はない。しかしながら、それを具現化するのに必要な反応槽と凝集槽の容量は、実施例1および2:281L、 比較例1:745Lとなり、また、沈殿槽の水表面積は、実施例1および2:478cm2、 比較例1:2,190cm2 となり、実施例の方が槽容量および水表面積が小さく、設備コストは抑制できる。 There is no difference in dehydration between the examples and comparative examples. However, the capacity of the reaction vessel and the coagulation vessel required to realize it is as follows: Examples 1 and 2: 281L, Comparative Example 1: 745L, and the water surface area of the precipitation vessel is as in Examples 1 and 2: 478 cm 2 , Comparative Example 1: 2,190 cm 2 The tank capacity and water surface area are smaller in the example, and the equipment cost can be suppressed.

また、高分子凝集剤使用量は、実施例1:21g−dry/D、実施例2:19g−dry/D、比較例1:73g−dry/Dであり、高分子凝集剤使用量は低減できる。   The amount of the polymer flocculant used is Example 1: 21 g-dry / D, Example 2: 19 g-dry / D, and Comparative Example 1: 73 g-dry / D, and the amount of the polymer flocculant used is reduced. it can.

更に、攪拌動力として投入した反応槽(12と30)内への空気吹き込み量は、実施例1:20NL/分、実施例2:20NL/分、比較例1:55NL/分 であり、攪拌動力も削減できる。
表1記載の2価鉄を含んだ酸洗廃液(5m3/分)を処理した場合の設備費・ランニングコストの試算を行ったのが表3(比較例1を100として、相対比較)である。表3より、設備費およびランニングコストともに、実施例が優れていることがわかる。
Furthermore, the amount of air blown into the reaction tanks (12 and 30) charged as stirring power was Example 1: 20 NL / min, Example 2: 20 NL / min, and Comparative Example 1: 55 NL / min. Can also be reduced.
Table 3 (relative comparison, assuming Comparative Example 1 as 100) is a trial calculation of equipment costs and running costs when pickling waste liquid (5 m 3 / min) containing divalent iron shown in Table 1 is treated. is there. From Table 3, it can be seen that both the equipment cost and the running cost are excellent in the examples.

Figure 2008264687
Figure 2008264687

廃液のpHと廃液中の金属イオンの残存比率(質量比)の関係を示した図である。It is the figure which showed the relationship between the pH of a waste liquid, and the residual ratio (mass ratio) of the metal ion in a waste liquid. コークス粉(500〜850μm)の沈降速度とスラリー濃度との関係を示した図である。It is the figure which showed the relationship between the sedimentation speed | velocity | rate of coke powder (500-850 micrometers), and slurry concentration. 水酸化鉄(III)主体の粒子の沈降速度とスラリー濃度との関係を示した図である。It is the figure which showed the relationship between the sedimentation rate of the particle | grains of iron (III) main body, and slurry concentration. 第1の反応槽12内の水酸化鉄(III)主体の固形物量をA(kg)とし、鉄イオンと他の複数の金属イオンを含む酸性廃液にアルカリ剤を投入して、水酸化鉄(III)主体の粒子が新たに析出する量をB(kg/日)としたとき、A÷B(日)と脱水圧力0.5MPaで脱水した際の脱水ケーキ中の水分との関係を示した図である。The amount of solid matter mainly composed of iron (III) hydroxide in the first reaction tank 12 is set to A (kg), an alkaline agent is added to an acidic waste liquid containing iron ions and other metal ions, and iron hydroxide ( III) When B (kg / day) is the amount of newly precipitated main particles, the relationship between A ÷ B (day) and the moisture in the dehydrated cake when dehydrated at a dehydration pressure of 0.5 MPa was shown. FIG. 本発明の廃水からの鉄含有脱水ケーキの製造方法に係る処理装置の一例である。It is an example of the processing apparatus which concerns on the manufacturing method of the iron containing dewatering cake from the wastewater of this invention. 反応槽兼沈殿槽を利用した本発明の廃水からの鉄含有脱水ケーキの製造方法に係る処理装置の一例である。It is an example of the processing apparatus which concerns on the manufacturing method of the iron containing dehydrated cake from the wastewater of this invention using a reaction tank and a sedimentation tank. 比較例で適用した処理装置である。It is the processing apparatus applied by the comparative example.

符号の説明Explanation of symbols

10・・・鉄含有脱水ケーキの製造方法に適用される排水処理装置
11・・・2価鉄イオンを含む酸性廃液
12・・・第1の反応槽
13・・・微生物担体
14・・・散気装置
15・・・pH計
16・・・中和剤用バルブ
17・・・中和剤
18・・・第1の沈殿槽
19・・・微生物担体返送ポンプ
20・・・凝集槽
21・・・高分子凝集剤
22・・・攪拌機
23・・・第2の沈殿槽
24・・・スラリーポンプ
25・・・1次処理水
26・・・引抜スラリー
27・・・返送スラリー
30・・・第1の反応槽兼沈殿槽
31・・・反応部
32・・・沈降部
DESCRIPTION OF SYMBOLS 10 ... Waste water treatment apparatus 11 applied to the manufacturing method of an iron containing dewatering cake ... Acidic waste liquid 12 containing a bivalent iron ion ... First reaction tank 13 ... Microorganism carrier 14 ... Spatter Ventilator 15 ... pH meter 16 ... Neutralizer valve 17 ... Neutralizer 18 ... First sedimentation tank 19 ... Microbial carrier return pump 20 ... Agglomeration tank 21 ... · Polymer flocculant 22 ··· Stirrer 23 ··· Second settling tank 24 · · · Slurry pump 25 · · · Primary treated water 26 · · · Drawing slurry 27 · · · Return slurry 30 · · · 1 reaction tank / precipitation tank 31 ... reaction part 32 ... sedimentation part

Claims (6)

鉄酸化細菌と、コークス粉、活性炭、石炭粉、軽石粉、及び発泡スラグからなる群から選ばれたいずれか1つ以上からなり、水中で沈降する前記鉄酸化細菌の微生物担体とが投入され、且つ、エアレーションにより攪拌されている第1の反応槽内に、2価鉄イオンを含む酸性廃液を供給して、前記鉄酸化細菌により前記2価鉄イオンを3価鉄イオンに酸化すると共に、前記第1の反応槽内のpHを3以上5以下に調整して水酸化鉄(III)粒子を生成する水酸化鉄(III)粒子の生成工程と、
前記水酸化鉄(III)粒子の生成工程から排出された前記水酸化鉄(III)粒子及び前記微生物担体を含むスラリーを、第1の沈殿槽で沈降分離し、沈降した微生物担体を前記第1の反応槽に返送する微生物担体の沈降分離工程と、
前記微生物担体の沈降分離工程から排出された前記水酸化鉄(III)粒子を含むスラリーを凝集槽に送液し、高分子凝集剤を添加して、前記水酸化鉄(III)粒子のフロックを形成するフロック形成工程と、
前記フロック形成工程から排出された前記水酸化鉄(III)粒子のフロックを含むスラリーを、第2の沈殿槽で沈降分離し、沈降した前記水酸化鉄(III)粒子のフロックを含むスラリーを回収する鉄分回収工程とを有することを特徴とする廃液からの鉄分の回収方法。
Iron oxidizing bacteria and any one or more selected from the group consisting of coke powder, activated carbon, coal powder, pumice powder, and foamed slag, and a microbial carrier of the iron oxidizing bacteria that settles in water are charged, In addition, an acidic waste liquid containing divalent iron ions is supplied into the first reaction vessel stirred by aeration to oxidize the divalent iron ions to trivalent iron ions by the iron oxidizing bacteria, Adjusting the pH in the first reaction tank to 3 or more and 5 or less to produce iron (III) hydroxide particles;
The slurry containing the iron (III) hydroxide particles and the microbial carrier discharged from the production step of the iron (III) hydroxide particles is settled and separated in a first settling tank, and the settled microbial carrier is converted into the first microbial carrier. Sedimentation and separation step of the microbial carrier to be returned to the reaction tank,
The slurry containing the iron (III) hydroxide particles discharged from the sedimentation and separation step of the microorganism carrier is fed to a coagulation tank, and a polymer flocculant is added to flock the iron (III) hydroxide particles. A flock forming step to be formed;
The slurry containing the flocs of the iron (III) hydroxide particles discharged from the floc forming step is settled and separated in a second settling tank, and the slurry containing the flocs of the precipitated iron (III) particles is recovered. And a method for recovering iron from waste liquid.
前記第1の反応槽における槽内の後段に前記微生物担体の沈降部を設け、当該沈降部で前記微生物担体を沈降させ、沈降により分離された前記水酸化鉄(III)粒子を含むスラリーを前記第1の反応槽から排出することで、前記第1の反応槽が前記第1の沈殿槽を兼ねることを特徴とする請求項1記載の廃液からの鉄分の回収方法。   A settling portion of the microbial carrier is provided at a subsequent stage in the tank in the first reaction tank, the microbial carrier is allowed to settle in the settling portion, and the slurry containing the iron (III) hydroxide particles separated by settling is used. The method for recovering iron from waste liquid according to claim 1, wherein the first reaction tank also serves as the first precipitation tank by discharging from the first reaction tank. 前記第1の反応槽において、前記微生物担体の質量と前記水酸化鉄(III)粒子の質量の合計量に対する、前記微生物担体の質量を、70質量%以上95質量%以下とすることを特徴とする請求項1又は2記載の廃液からの鉄分の回収方法。   In the first reaction tank, the mass of the microbial carrier with respect to the total mass of the microbial carrier and the iron (III) hydroxide particles is 70% by mass to 95% by mass. A method for recovering iron from the waste liquid according to claim 1 or 2. 前記鉄分回収工程において前記第2の沈殿槽で沈降した前記水酸化鉄(III)粒子のフロックを含むスラリーの一部を、前記第1の反応槽に戻すことを特徴とする請求項1〜3のいずれか1項に記載の廃液からの鉄分の回収方法。   A part of the slurry containing flocs of the iron (III) hydroxide particles settled in the second settling tank in the iron collecting step is returned to the first reaction tank. The method for recovering iron from the waste liquid according to any one of the above. 請求項1〜4のいずれか1項に記載の廃液からの鉄分の回収方法において、前記2価鉄イオンを含む酸性廃液は、更に、ニッケルイオン、又は亜鉛イオンの少なくともいずれか1種を含んでなり、前記鉄分回収工程の第2の沈殿槽で水酸化鉄(III)粒子のフロックを沈降分離した後の上澄みを第3の反応槽に供給し、pHを6以上10以下に調整して、ニッケル、又は亜鉛の少なくともいずれかを含む金属水酸化物粒子を生成する金属水酸化物粒子の生成工程と、
前記金属水酸化物粒子の生成工程から排出された前記金属水酸化物粒子を含むスラリーを沈降分離し、沈降した前記金属水酸化物粒子を含むスラリーを回収する金属水酸化物粒子回収工程とを、更に有することを特徴とする廃液からの鉄分の回収方法。
The method for recovering iron from waste liquid according to any one of claims 1 to 4, wherein the acidic waste liquid containing divalent iron ions further contains at least one of nickel ions and zinc ions. The supernatant after the floc of iron (III) hydroxide particles is settled and separated in the second sedimentation tank of the iron recovery step is supplied to the third reaction tank, and the pH is adjusted to 6 or more and 10 or less, A production step of metal hydroxide particles for producing metal hydroxide particles containing at least one of nickel and zinc;
A metal hydroxide particle recovery step of settling and separating the slurry containing the metal hydroxide particles discharged from the production step of the metal hydroxide particles and recovering the slurry containing the precipitated metal hydroxide particles; And a method for recovering iron from waste liquid.
前記請求項1〜5のいずれか1項に記載の廃液からの鉄分の回収方法において、前記回収した水酸化鉄(III)粒子のフロックを含むスラリー、又は、前記回収した水酸化鉄(III)粒子のフロックを含むスラリー及び金属水酸化物粒子を含むスラリーを、更に脱水処理してケーキとすることを特徴とする廃液からの鉄分の回収方法。   The method for recovering iron from waste liquid according to any one of claims 1 to 5, wherein the recovered iron (III) particles contain a floc slurry or the recovered iron (III) hydroxide. A method for recovering iron from a waste liquid, characterized in that a slurry containing particle floc and a slurry containing metal hydroxide particles are further dehydrated to form a cake.
JP2007111307A 2007-04-20 2007-04-20 Method for recovering iron from waste liquid Expired - Fee Related JP4790655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111307A JP4790655B2 (en) 2007-04-20 2007-04-20 Method for recovering iron from waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111307A JP4790655B2 (en) 2007-04-20 2007-04-20 Method for recovering iron from waste liquid

Publications (2)

Publication Number Publication Date
JP2008264687A true JP2008264687A (en) 2008-11-06
JP4790655B2 JP4790655B2 (en) 2011-10-12

Family

ID=40044954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111307A Expired - Fee Related JP4790655B2 (en) 2007-04-20 2007-04-20 Method for recovering iron from waste liquid

Country Status (1)

Country Link
JP (1) JP4790655B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274180A (en) * 2009-05-27 2010-12-09 Toshiaki Ochiai Water treatment method and water treatment system
JP2012188725A (en) * 2011-03-14 2012-10-04 Jx Nippon Mining & Metals Corp Method for oxidation treatment of acid solution including iodide ion and iron (ii) ion
KR101360501B1 (en) * 2012-08-20 2014-02-11 재단법인 포항산업과학연구원 Equipment for recovering valuables from byproducts of nickel extraction process
KR101500140B1 (en) * 2013-09-11 2015-03-09 주식회사 포스코 Apparatus for recovering iron ore and acid from byproducts of nickel hydrometallurgical extraction process
CN105130041A (en) * 2015-06-26 2015-12-09 中钢集团马鞍山矿山研究院有限公司 Improved treatment method of acidic waste water containing heavy metals
CN108179273A (en) * 2018-01-19 2018-06-19 重庆康普化学工业股份有限公司 A kind of method using solvent-extracted back extraction iron

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888511B (en) * 2012-10-12 2014-01-29 中南大学 Iron removal method of hydrometallurgical acidic leaching solution
CN103011514A (en) * 2012-12-13 2013-04-03 杭州绿色环保技术开发有限公司 Coking wastewater biochemical treatment process and device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142860A (en) * 1975-04-30 1976-12-08 Dowa Mining Co Ltd Method for oxidation treatment of fe2+ in waste liquor
JPS59209700A (en) * 1983-05-13 1984-11-28 Dowa Mining Co Ltd Treatment of conc. waste water containing heavy metal using iron-oxidizing bacteria
JPS6084196A (en) * 1983-05-31 1985-05-13 Dowa Mining Co Ltd Treatment of high concentration heavy metal containing waste water
JPS62282698A (en) * 1986-05-30 1987-12-08 Mitsubishi Metal Corp Treatment of waste water
JPS63278592A (en) * 1987-05-12 1988-11-16 Dowa Koei Kk Treatment of waste water containing ferrous sulfate
JPH04305295A (en) * 1991-04-03 1992-10-28 Denka Consult & Eng Co Ltd Biological treating method and device for organic acidic waste water
JPH0751684A (en) * 1993-08-19 1995-02-28 Kankyo Eng Kk Treatment of waste water containing dissolved iron
JPH08173990A (en) * 1994-12-27 1996-07-09 Nippon Steel Corp Treatment method for drainage containing divalent iron
JPH09314165A (en) * 1996-05-23 1997-12-09 Denka Consult & Eng Co Ltd Treatment method for waste water containing organic substance
JP2001191091A (en) * 2000-01-13 2001-07-17 Hitachi Plant Eng & Constr Co Ltd Removing method of iron ion included in water and apparatus therefor
JP2003071201A (en) * 2001-09-05 2003-03-11 Nippon Steel Corp Method for disposing waste liquid containing a plurality of metals
JP2004188269A (en) * 2002-12-09 2004-07-08 Nippon Steel Corp Method of treating liquid waste containing several metals and method of recovering valuable metal
JP2005238181A (en) * 2004-02-27 2005-09-08 Nippon Steel Corp Method for treating wastewater to recover valuable metal and plating solution manufacturing method
JP2005296866A (en) * 2004-04-14 2005-10-27 Nippon Steel Corp Method for making cake containing iron from waste liquid
JP2005313017A (en) * 2004-04-27 2005-11-10 Dowa Techno Engineering Co Ltd Oxidizing/neutralizing method using iron oxidizing bacteria and neutralizer
JP2008006384A (en) * 2006-06-29 2008-01-17 Dowa Techno Engineering Co Ltd METHOD FOR BACTERIA OXIDIZING FERROUS ION CONTAINED IN LOW-pH WASTE WATER WITH

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142860A (en) * 1975-04-30 1976-12-08 Dowa Mining Co Ltd Method for oxidation treatment of fe2+ in waste liquor
JPS59209700A (en) * 1983-05-13 1984-11-28 Dowa Mining Co Ltd Treatment of conc. waste water containing heavy metal using iron-oxidizing bacteria
JPS6084196A (en) * 1983-05-31 1985-05-13 Dowa Mining Co Ltd Treatment of high concentration heavy metal containing waste water
JPS62282698A (en) * 1986-05-30 1987-12-08 Mitsubishi Metal Corp Treatment of waste water
JPS63278592A (en) * 1987-05-12 1988-11-16 Dowa Koei Kk Treatment of waste water containing ferrous sulfate
JPH04305295A (en) * 1991-04-03 1992-10-28 Denka Consult & Eng Co Ltd Biological treating method and device for organic acidic waste water
JPH0751684A (en) * 1993-08-19 1995-02-28 Kankyo Eng Kk Treatment of waste water containing dissolved iron
JPH08173990A (en) * 1994-12-27 1996-07-09 Nippon Steel Corp Treatment method for drainage containing divalent iron
JPH09314165A (en) * 1996-05-23 1997-12-09 Denka Consult & Eng Co Ltd Treatment method for waste water containing organic substance
JP2001191091A (en) * 2000-01-13 2001-07-17 Hitachi Plant Eng & Constr Co Ltd Removing method of iron ion included in water and apparatus therefor
JP2003071201A (en) * 2001-09-05 2003-03-11 Nippon Steel Corp Method for disposing waste liquid containing a plurality of metals
JP2004188269A (en) * 2002-12-09 2004-07-08 Nippon Steel Corp Method of treating liquid waste containing several metals and method of recovering valuable metal
JP2005238181A (en) * 2004-02-27 2005-09-08 Nippon Steel Corp Method for treating wastewater to recover valuable metal and plating solution manufacturing method
JP2005296866A (en) * 2004-04-14 2005-10-27 Nippon Steel Corp Method for making cake containing iron from waste liquid
JP2005313017A (en) * 2004-04-27 2005-11-10 Dowa Techno Engineering Co Ltd Oxidizing/neutralizing method using iron oxidizing bacteria and neutralizer
JP2008006384A (en) * 2006-06-29 2008-01-17 Dowa Techno Engineering Co Ltd METHOD FOR BACTERIA OXIDIZING FERROUS ION CONTAINED IN LOW-pH WASTE WATER WITH

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274180A (en) * 2009-05-27 2010-12-09 Toshiaki Ochiai Water treatment method and water treatment system
JP4707752B2 (en) * 2009-05-27 2011-06-22 壽昭 落合 Water treatment method and water treatment system
JP2012188725A (en) * 2011-03-14 2012-10-04 Jx Nippon Mining & Metals Corp Method for oxidation treatment of acid solution including iodide ion and iron (ii) ion
KR101360501B1 (en) * 2012-08-20 2014-02-11 재단법인 포항산업과학연구원 Equipment for recovering valuables from byproducts of nickel extraction process
KR101500140B1 (en) * 2013-09-11 2015-03-09 주식회사 포스코 Apparatus for recovering iron ore and acid from byproducts of nickel hydrometallurgical extraction process
CN105130041A (en) * 2015-06-26 2015-12-09 中钢集团马鞍山矿山研究院有限公司 Improved treatment method of acidic waste water containing heavy metals
CN108179273A (en) * 2018-01-19 2018-06-19 重庆康普化学工业股份有限公司 A kind of method using solvent-extracted back extraction iron

Also Published As

Publication number Publication date
JP4790655B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP4790655B2 (en) Method for recovering iron from waste liquid
JP5005225B2 (en) Treatment method of fluorine-containing waste liquid
JP4235094B2 (en) Metal mine drainage treatment method and valuable metal recovery method
JP4589748B2 (en) Treatment of acidic waste liquid containing iron and chromium
CN104803504B (en) Novel desulfurization waste water treatment method
JP6486877B2 (en) Waste water treatment device and waste water treatment method using the waste water treatment device
JP5509927B2 (en) Metal-containing water treatment method and metal-containing water treatment apparatus
CN105540988A (en) Effluent treatment technology and system based on combination of super magnetic separation and microwave energy technology
CN103755075A (en) Technical method for treating silicon carbide acidic wastewater
JP4518893B2 (en) Wastewater treatment method and apparatus containing heavy metal
JP4272122B2 (en) Coagulated water treatment method and apparatus
CN101466855B (en) Nickel sulphide precipitation process
CN112158896A (en) Efficient wet desulphurization wastewater treatment water purifying agent and application thereof
JP4369793B2 (en) Method for producing iron-containing dehydrated cake from waste liquid
US20210379605A1 (en) Method and arrangement for process water treatment
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2006263703A (en) Treatment method and treatment apparatus of selenium-containing water
JP7117101B2 (en) Water treatment method and device
JP5730660B2 (en) Method for treating wastewater containing metal ions
CN112723581B (en) Process water treatment method
JP2004188269A (en) Method of treating liquid waste containing several metals and method of recovering valuable metal
CN118045599A (en) Preparation method of modified micro-sand and chemical wastewater hardness-reducing TOC-removing and phosphorus-removing treatment method
Younger et al. Active treatment of polluted mine waters
CN117964150A (en) Comprehensive recovery method for gold cyanide wastewater resources from high copper and high silver cyanide
JP2010142681A (en) Wastewater treatment system and wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4790655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees