JP2010271885A - Vending machine - Google Patents

Vending machine Download PDF

Info

Publication number
JP2010271885A
JP2010271885A JP2009122667A JP2009122667A JP2010271885A JP 2010271885 A JP2010271885 A JP 2010271885A JP 2009122667 A JP2009122667 A JP 2009122667A JP 2009122667 A JP2009122667 A JP 2009122667A JP 2010271885 A JP2010271885 A JP 2010271885A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
internal heat
cooling
vending machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009122667A
Other languages
Japanese (ja)
Other versions
JP5321241B2 (en
Inventor
Michinobu In
道伸 因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2009122667A priority Critical patent/JP5321241B2/en
Publication of JP2010271885A publication Critical patent/JP2010271885A/en
Application granted granted Critical
Publication of JP5321241B2 publication Critical patent/JP5321241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vending machine for reducing power consumption by performing a heat pump operation, even in the vending machine configured by serially connecting in-box heat exchangers. <P>SOLUTION: The vending machine is configured by serially wiring-connecting in-box heat exchangers, and wiring-connecting an expanding means between a condenser and each in-box heat exchanger, and provided with a first by-pass duct for by-passing the condenser; a second by-pass duct for by-passing the expanding means; a third by-pass duct for by-passing the expanding means and the in-box heat exchanger at the upstream side of the lowermost stream; a fourth by-pass duct for by-passing the in-box heat exchanger at the lowermost stream; and a fifth by-pass duct for by-passing the heat exchanger installed outside the box. Thus, a heat pump operation without using any heater is achievable. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷媒回路にて冷却または加熱して販売に供する自動販売機に関する。   The present invention relates to a vending machine that sells a product such as a beverage in a container such as a can, a bottle, a pack, or a plastic bottle after being cooled or heated in a refrigerant circuit.

近年の地球温暖化に対して二酸化炭素の排出量削減が課題となっており、自動販売機も省エネ型が開発されている。その1方式として従来は排熱していた凝縮器の熱を庫内の加熱に利用するヒートポンプ方式の自動販売機が開発されている(例えば、特許文献1参照)。
特許文献1に記載された自動販売機は、複数の商品収納庫にそれぞれ内部熱交換器を設け、商品収納庫外に設けた圧縮機、外部熱交換器と接続して、電動膨張弁の開度調整、電磁弁の切り替えにより、各商品収納庫の冷却もしくは加熱の設定を行い、内部熱交換器を凝縮器として使用するヒートポンプ運転を行っている。
しかしながら、この種の自動販売機は複数の内部熱交換器を並列に接続をしているため、各内部熱交換器への冷媒の分流に偏りが生じて冷却性能が低下する、配管長が長くなることによるコストの上昇などの課題を有している。
Reducing carbon dioxide emissions has become a challenge with recent global warming, and energy-saving vending machines have been developed. As one of the methods, a heat pump type vending machine that uses the heat of the condenser, which has been exhausted in the past, for heating in the cabinet has been developed (for example, see Patent Document 1).
The vending machine described in Patent Document 1 is provided with an internal heat exchanger in each of a plurality of product storages, and is connected to a compressor and an external heat exchanger provided outside the product storage to open an electric expansion valve. By adjusting the degree and switching the electromagnetic valve, each product storage is set for cooling or heating, and a heat pump operation is performed using the internal heat exchanger as a condenser.
However, since this type of vending machine has a plurality of internal heat exchangers connected in parallel, the refrigerant flow to each of the internal heat exchangers is biased to reduce the cooling performance and the piping length is long. There is a problem such as an increase in cost due to becoming.

一方、これらの課題に対処するため、複数の内部熱交換器を直列に接続する自動販売機が知られている(例えば、特許文献2参照)。この種の自動販売機は、商品収納庫内に内部熱交換器とは別に電気ヒータを取設して、加熱運転を行っている。各商品収納庫の冷却加熱の設定モードは、商品収納庫の冷却もしくは加熱の運転をC、Hの記号を用いて示すものであり、正面から見て商品収納庫の左側から順に、例えば、すべてが冷却の場合にはCCCモード、右の商品収納庫のみが加熱の場合にはCCHモードなどと記される。   On the other hand, in order to cope with these problems, a vending machine in which a plurality of internal heat exchangers are connected in series is known (see, for example, Patent Document 2). In this type of vending machine, an electric heater is installed in the product storage box separately from the internal heat exchanger to perform heating operation. The cooling mode setting mode for each product storage is the operation of cooling or heating the product storage using the symbols C and H, for example, all in order from the left side of the product storage as viewed from the front. When C is cooling, the CCC mode is indicated. When only the right product storage is heated, the CCH mode is indicated.

特開2001−109942号公報JP 2001-109942 A 特開2001−167341号公報JP 2001-167341 A

しかしながら、特許文献2に記載された自動販売機は、配管構成が単純になるものの加熱運転を行う場合には庫内熱交換器を休止させて、同室に取設した電気ヒータにより加熱を行うものである。このため、ヒートポンプ運転での加熱運転と比較すると大幅に消費電力が増加するという課題がある。
また、庫内熱交換器を直列に配管接続をしているので、上流側を蒸発器とし、下流側を凝縮器として使用する運転が困難であり、その結果ヒートポンプ運転を利用できないという課題がある。
本発明は上記に鑑みなされたもので、庫内熱交換器を直列に接続した構成の自動販売機においても、ヒートポンプ運転を行い、消費電力を低減できる自動販売機を提供することを目的とする。
However, in the vending machine described in Patent Document 2, when the heating operation is performed although the piping configuration is simplified, the internal heat exchanger is paused and heated by the electric heater installed in the same room. It is. For this reason, there exists a subject that power consumption increases significantly compared with the heating operation by heat pump operation.
In addition, since the internal heat exchanger is connected to the pipe in series, the operation using the upstream side as an evaporator and the downstream side as a condenser is difficult, and as a result, the heat pump operation cannot be used. .
The present invention has been made in view of the above, and it is an object of the present invention to provide a vending machine capable of performing heat pump operation and reducing power consumption even in a vending machine having a configuration in which internal heat exchangers are connected in series. .

上記の目的を達成するために、本発明の請求項1に係る自動販売機は、冷却専用の商品収納庫と複数の冷却加熱兼用の商品収納庫を有し、冷却加熱の設定モードにより選択的に商品収納庫を冷却もしくは加熱する自動販売機であって、冷媒を圧縮する圧縮機と、庫外に設け冷媒を凝縮する凝縮器と、冷媒を膨張させる膨張手段と、各庫内に設け冷媒を蒸発もしくは凝縮される庫内熱交換器と、にて冷却循環回路を構成するとともに、庫内熱交換器を直列に配管接続し、凝縮器と各庫内熱交換器との間にそれぞれ膨張手段を配管接続した自動販売機において、凝縮器の出入口に接続して、電磁弁を介してバイパスさせる第1のバイパス管路と、膨張手段の出入口に接続して、電磁弁を介してバイパスさせる第2のバイパス管路と、最下流より上流側の膨張手段の入口と庫内熱交換器の出口に接続して、電磁弁を介してバイパスさせる第3のバイパス管路と、最下流に設けられた庫内熱交換器の出入口に接続して、電磁弁にてバイパスさせる第4のバイパス管路と、最下流に設けられた庫内熱交換器の出口側と圧縮機の入口側との間で、電磁弁にてバイパスさせ、そのバイパス管路の中間に冷媒を蒸発させる庫外熱交換器を接続させた第5のバイパス管路と、を設けたことを特徴とする。   In order to achieve the above object, a vending machine according to claim 1 of the present invention has a product storage dedicated for cooling and a plurality of product storages combined for cooling and heating, and is selectively selected according to a cooling heating setting mode. A vending machine that cools or heats the product storage, a compressor that compresses the refrigerant, a condenser that condenses the refrigerant provided outside the warehouse, an expansion means that expands the refrigerant, and a refrigerant that is provided in each cabinet The internal heat exchanger that evaporates or condenses the cooling circulation circuit, and the internal heat exchangers are connected in series to expand between the condenser and each internal heat exchanger. In a vending machine with piping means connected, it is connected to the inlet / outlet of the condenser and bypassed via the solenoid valve, and connected to the inlet / outlet of the expansion means and bypassed via the solenoid valve Second bypass line and upstream from the most downstream Connected to the inlet of the expansion means on the side and the outlet of the internal heat exchanger and connected to the third bypass pipe to be bypassed via a solenoid valve, and the inlet / outlet of the internal heat exchanger provided on the most downstream side Then, between the fourth bypass pipe to be bypassed by the solenoid valve and the outlet side of the internal heat exchanger provided at the most downstream side and the inlet side of the compressor, the bypass is made by the solenoid valve. And a fifth bypass pipe connected to an external heat exchanger for evaporating the refrigerant in the middle of the pipe.

本発明の請求項2に係る自動販売機は、請求項1にかかる自動販売機において、庫外熱交換器が凝縮器に近傍に取設したことを特徴とする。
本発明の請求項3に係る自動販売機は、請求項1または2にかかる自動販売機において、上流側の庫内熱交換器に冷媒を流して冷却運転し、下流側の庫内熱交換器に冷媒を流して加熱運転する場合に、いずれか一方の庫内熱交換器に冷媒を流さずに運転を休止させ、次に当該休止させた庫内熱交換器に冷媒を流して冷却もしくは加熱運転することを特徴とする。
The vending machine according to claim 2 of the present invention is characterized in that in the vending machine according to claim 1, an external heat exchanger is installed in the vicinity of the condenser.
A vending machine according to a third aspect of the present invention is the vending machine according to the first or second aspect, wherein the cooling operation is performed by flowing a refrigerant through the upstream internal heat exchanger, and the downstream internal heat exchanger is provided. When a heating operation is performed with a refrigerant flowing in, the operation is stopped without flowing the refrigerant through one of the internal heat exchangers, and then the refrigerant is supplied to the stopped internal heat exchanger for cooling or heating. It is characterized by driving.

本発明に係る請求項1の自動販売機は、冷媒を圧縮する圧縮機と、庫外に設け冷媒を凝縮する凝縮器と、冷媒を膨張させる膨張手段と、各庫内に設け冷媒を蒸発もしくは凝縮される庫内熱交換器と、にて冷却循環回路を構成するとともに、庫内熱交換器を直列に配管接続し、凝縮器と各庫内熱交換器との間にそれぞれ膨張手段を配管接続した自動販売機において、凝縮器の出入口に接続して、電磁弁を介してバイパスさせる第1のバイパス管路と、膨張手段の出入口に接続して、電磁弁を介してバイパスさせる第2のバイパス管路と、最下流より上流側の膨張手段の入口と庫内熱交換器の出口に接続して、電磁弁を介してバイパスさせる第3のバイパス管路と、最下流に設けられた庫内熱交換器の出入口に接続して、電磁弁にてバイパスさせる第4のバイパス管路と、最下流に設けられた庫内熱交換器の出口側と圧縮機の入口側との間で、電磁弁にてバイパスさせ、そのバイパス管路の中間に冷媒を蒸発させる庫外熱交換器を接続させた第5のバイパス管路と、を設けたことにより、冷却加熱運転にて電気ヒータを使用せずに
ヒートポンプ運転を行うことができるので、消費電力を低減することができる。
The vending machine according to claim 1 of the present invention includes a compressor that compresses the refrigerant, a condenser that is provided outside the refrigerator and condenses the refrigerant, an expansion means that expands the refrigerant, and evaporates or evaporates the refrigerant. A cooling circulation circuit is constructed with the internal heat exchanger to be condensed, and the internal heat exchanger is connected in series with piping, and expansion means is connected between the condenser and each internal heat exchanger. In the connected vending machine, a first bypass pipe connected to the inlet / outlet of the condenser and bypassed via the electromagnetic valve, and a second bypass connected to the inlet / outlet of the expansion means and bypassed via the electromagnetic valve A bypass pipe, a third bypass pipe connected to the inlet of the expansion means upstream from the most downstream side and the outlet of the internal heat exchanger to be bypassed via a solenoid valve, and a warehouse provided at the most downstream side Connect to the inlet / outlet of the internal heat exchanger and bypass with a solenoid valve Between the fourth bypass line and the outlet side of the internal heat exchanger provided on the most downstream side and the inlet side of the compressor, a bypass is made by an electromagnetic valve, and the refrigerant is evaporated in the middle of the bypass line. By providing the fifth bypass line connected to the external heat exchanger to be performed, the heat pump operation can be performed without using the electric heater in the cooling heating operation, thereby reducing the power consumption. be able to.

また、本発明に係る請求項2の自動販売機は、請求項1にかかる自動販売機において、庫外熱交換器が凝縮器に近傍に取設したことにより、庫外熱交換器の蒸発効率が向上するので、消費電力を低減することができる。
また、本発明に係る請求項3の自動販売機は、請求項1または2にかかる自動販売機において、上流側の庫内熱交換器に冷媒を流して冷却運転し、下流側の庫内熱交換器に冷媒を流して加熱運転する場合に、いずれか一方の庫内熱交換器に冷媒を流さずに運転を休止させ、次に当該休止させた庫内熱交換器に冷媒を流して冷却もしくは加熱運転することより、上流側の庫内熱交換器が冷却で下流側の庫内熱交換器が加熱であっても、ヒートポンプ運転を行うことができるので、消費電力を低減することができる。
The vending machine according to claim 2 of the present invention is the vending machine according to claim 1, wherein the outside heat exchanger is installed in the vicinity of the condenser so that the evaporation efficiency of the outside heat exchanger is increased. Therefore, power consumption can be reduced.
A vending machine according to a third aspect of the present invention is the vending machine according to the first or second aspect, wherein the refrigerant flows into the upstream internal heat exchanger to perform a cooling operation, and the downstream internal heat is stored. When heating with a refrigerant flowing through the exchanger, the operation is stopped without flowing the refrigerant through one of the internal heat exchangers, and then the refrigerant is flowed through the suspended internal heat exchanger for cooling. Alternatively, by performing the heating operation, even if the upstream side heat exchanger is cooled and the downstream side heat exchanger is heated, the heat pump operation can be performed, so that power consumption can be reduced. .

本発明の実施例に係る自動販売機を示す斜視図である。1 is a perspective view showing a vending machine according to an embodiment of the present invention. 図1に示した自動販売機の断面図である。It is sectional drawing of the vending machine shown in FIG. 本発明の実施例に係る冷媒回路図である。It is a refrigerant circuit figure concerning the example of the present invention. 制御装置のブロック図である。It is a block diagram of a control apparatus. 各設定モードにおける制御テーブルを示す図表である。It is a chart which shows the control table in each setting mode. 本発明の実施例に係るサーモサイクル運転制御の要部フローチャートである。It is a principal part flowchart of the thermocycle operation control which concerns on the Example of this invention. 冷却加熱の設定モードCCCにおける冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant in the setting mode CCC of cooling heating. 冷却加熱の設定モードHHCにおける冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant in the setting mode HHC of cooling heating. 冷却加熱の設定モードCHCにおける冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant in setting mode CHC of cooling heating. 冷却加熱の設定モードCH−における冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant in setting mode CH- of cooling heating. 本発明の別の実施例に係る冷媒回路図である。It is a refrigerant circuit figure concerning another example of the present invention.

以下に添付図面を参照して、本発明に係る自動販売機の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
まず、本発明の実施例に係る自動販売機について図1の斜視図、図2の断面図により説明する。これら図において、自動販売機は、前面が開口した直方状の断熱体として形成された本体キャビネット10と、その前面に設けられた外扉20および内扉30と、本体キャビネット10の内部を上下2段に底板11にて区画形成し、上部を例えば2つの断熱仕切板40wによって仕切られた3つの独立した商品収納庫40a、40b、40cと、下部に商品収納庫40a、40b、40cを冷却もしくは加熱する冷却/加熱ユニット60を収納する機械室50と、外扉20の内側に配設され、商品収納庫40a、40b、40c内の温度センサTa、Tb、Tcにより自動販売機の冷却、加熱運転などを制御する制御装置90と、を有して構成されている。
Exemplary embodiments of a vending machine according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
First, a vending machine according to an embodiment of the present invention will be described with reference to a perspective view of FIG. 1 and a sectional view of FIG. In these drawings, the vending machine includes a main body cabinet 10 formed as a rectangular heat insulator having an open front surface, an outer door 20 and an inner door 30 provided on the front surface, and an interior of the main body cabinet 10 in two directions. The bottom plate 11 is partitioned and formed at the stage, and the upper part is cooled by, for example, three independent product storage units 40a, 40b, and 40c separated by two heat insulating partition plates 40w, and the lower part product storage units 40a, 40b, and 40c are cooled or Cooling / heating of the vending machine by the temperature sensor Ta, Tb, Tc disposed inside the machine room 50 for storing the cooling / heating unit 60 for heating and the outer door 20 and in the product storages 40a, 40b, 40c. And a control device 90 that controls operation and the like.

より詳細に説明すると、外扉20は、本体キャビネット10の前面開口を開閉するためのものであり、図には明示していないが、この外扉20の前面には、販売する商品の見本を展示する商品展示室、販売する商品を選択するための選択ボタン、貨幣を投入するための貨幣投入口、払い出された商品を取り出すための商品取出口21等々、商品の販売に必要となる構成が配置してある。
内扉30は、商品収納庫40a、40b、40cの前面を開閉し、内部の商品を保温するものであり、上下2段に分割され内部に断熱体を有する箱型形状の構造体である。上側の内扉30aは、一端を外扉20に枢軸し、他端を外扉20に係着して、外扉20の開放と同時に上側の内扉30aを開放させて、商品の補充を容易にするものである。下側の内扉30bは、一端を本体キャビネット10に枢軸し、他端を本体キャビネット10に不図示の掛金にて掛着して、外扉20を開放したときには、閉止した状態であり、商品収納庫40a、40b、40c内の冷気もしくは暖気が流出することを防ぎ、メンテナンス時など必要に応じて開放できるものである。
More specifically, the outer door 20 is used to open and close the front opening of the main body cabinet 10 and is not shown in the figure. Product display room, selection button for selecting the product to be sold, money slot for inserting money, product outlet 21 for taking out the paid-out product, etc. Is arranged.
The inner door 30 opens and closes the front surfaces of the product storage units 40a, 40b, and 40c to keep the products in the interior warm. The inner door 30 is a box-shaped structure that is divided into upper and lower stages and has a heat insulator inside. The upper inner door 30a is pivoted at one end to the outer door 20, and the other end is engaged with the outer door 20, and the upper inner door 30a is opened at the same time as the outer door 20 is opened to facilitate replenishment of goods. It is to make. The lower inner door 30b is in a closed state when one end pivots on the main body cabinet 10 and the other end is hooked on the main body cabinet 10 with a latch (not shown) and the outer door 20 is opened. It is possible to prevent the cool air or warm air in the storage cases 40a, 40b, and 40c from flowing out, and to open as necessary during maintenance.

商品収納庫40a、40b、40cは、缶入り飲料やペットボトル入り飲料等の商品を所望の温度に維持した状態で収容するためのものであり、その収納庫の容量は商品収納庫40a、40c、40bの順番に大きな態様で配分されている。本実施例は、商品収納庫40cを冷却専用とし、商品収納庫40a、40bを冷却加熱兼用としている。その商品収納庫40a、40b、40cには、それぞれ、商品を上下方向に沿って並ぶ態様で収納し、販売信号により1個ずつ商品を排出するための商品搬出機構を備えた商品収納ラックR、排出された商品Sを内扉30bに取設された搬出扉31を介して外扉の商品取出口21へ搬出する商品搬出シュート42を有している。
冷却/加熱ユニット60は、機械室50内に圧縮機61、凝縮器62、膨張器63a、63b、63c、庫外熱交換器68、アキュムレータ69を取設し、底板11を跨いで庫内に庫内熱交換器65a、65b、65cを有して各機器を冷媒配管で接続されることにより構成されている。冷却/加熱ユニット60は、冷却加熱の設定モードに応じて、庫内に冷気または暖気を循環させて商品収納ラックR内の商品Sを冷却または加熱するものである。
The product storage units 40a, 40b, and 40c are for storing products such as canned beverages and beverages containing plastic bottles at a desired temperature, and the capacity of the storage units is the product storage units 40a, 40c. , 40b in a large manner. In this embodiment, the product storage case 40c is exclusively used for cooling, and the product storage cases 40a and 40b are also used for cooling and heating. The product storage racks 40a, 40b, and 40c store the products in a manner that they are arranged in the vertical direction, and are provided with a product storage rack R that includes a product delivery mechanism for discharging the products one by one in response to a sales signal. There is a product carry-out chute 42 for carrying out the discharged product S to the product take-out port 21 of the outer door via a carry-out door 31 installed in the inner door 30b.
The cooling / heating unit 60 includes a compressor 61, a condenser 62, expanders 63 a, 63 b, 63 c, an external heat exchanger 68, and an accumulator 69 installed in the machine room 50, straddling the bottom plate 11, It has an internal heat exchanger 65a, 65b, 65c and is configured by connecting each device with a refrigerant pipe. The cooling / heating unit 60 cools or heats the product S in the product storage rack R by circulating cool air or warm air in the cabinet according to the cooling / heating setting mode.

圧縮機61は、冷媒を圧縮して回路内を循環させるためのもので、冷却運転時には、蒸発温度が約−10℃、凝縮温度が約40℃で使用され、加熱運転時には、蒸発温度が約−10℃、凝縮温度が約70℃で使用される。
凝縮器62は、フィンチューブ型の熱交換器であり、冷却運転時に不要な凝縮熱を排出するためのものである。凝縮器62の後部にはファン62fが取設され、ファン62fは機械室50の前面開口部より空気を吸入し、凝縮器62による凝縮熱を吸入するとともに、圧縮機61の排熱を吸収して、機械室50の背面開口部へ排気するためのものである。
膨張器63a、63b、63cは、冷却運転時に通過する冷媒を減圧して断熱膨張させるものであり、たとえばキャピラリ、固定式膨張弁である。また、温度膨張弁、電子膨張弁であってもよい。
The compressor 61 compresses the refrigerant and circulates in the circuit. During the cooling operation, the compressor 61 is used at an evaporation temperature of about −10 ° C. and a condensation temperature of about 40 ° C., and during the heating operation, the evaporation temperature is about Used at −10 ° C. and a condensation temperature of about 70 ° C.
The condenser 62 is a fin tube type heat exchanger, and discharges unnecessary condensation heat during the cooling operation. A fan 62f is installed at the rear of the condenser 62. The fan 62f sucks air from the front opening of the machine chamber 50, sucks heat of condensation by the condenser 62, and absorbs exhaust heat of the compressor 61. Thus, the air is exhausted to the rear opening of the machine room 50.
The expanders 63a, 63b, 63c are for adiabatically expanding the refrigerant that passes through during the cooling operation, and are, for example, capillaries and fixed expansion valves. Moreover, a temperature expansion valve and an electronic expansion valve may be sufficient.

庫内熱交換器65a、65b、65cは、商品収納庫40a、40b、40cを冷却するためのものであり、庫内熱交換器65a、65bは、商品収納庫40a、40bを加熱する庫内熱交換器を兼用している。庫内熱交換器の容量は、商品収納庫の容量に対応して65c、65a、65bの順番に大きな態様で配分されている。また、庫内熱交換器65a、65b、65cは、各商品収納庫の下部に取設され、風胴67で囲繞され、その後方にファン65fが取設され、その後方にダクト67dが取設されている。商品収納庫内の冷却と加熱は、庫内熱交換器65a、65b、65cにより冷却もしくは加熱された空気を商品収納庫内の商品Sに送風し、図2中の矢印で示すようにダクト67dより循環回収することで行われる。
庫外熱交換器68は、フィンチューブ型の熱交換器であり、ヒートポンプ運転時に不要な蒸発熱を排出するためのものである。
The internal heat exchangers 65a, 65b, 65c are for cooling the product storages 40a, 40b, 40c, and the internal heat exchangers 65a, 65b are the interiors for heating the product storages 40a, 40b. It also serves as a heat exchanger. The capacity of the internal heat exchanger is distributed in a large manner in the order of 65c, 65a, 65b corresponding to the capacity of the product storage. The internal heat exchangers 65a, 65b, 65c are installed at the lower part of each product storage, surrounded by a wind tunnel 67, a fan 65f is installed behind them, and a duct 67d is installed behind them. Has been. The cooling and heating in the product storage are performed by blowing the air cooled or heated by the internal heat exchangers 65a, 65b, 65c to the product S in the product storage, and the duct 67d as shown by the arrow in FIG. It is done by more circulating recovery.
The external heat exchanger 68 is a fin tube type heat exchanger, and is for discharging unnecessary evaporation heat during heat pump operation.

アキュムレータ69は、庫内熱交換器65a、65b、65cから蒸発された冷媒を流入し、気液分離させて液冷媒を貯留し、気相冷媒を圧縮機61に戻すための密閉した容器である。また、アキュムレータ69は、回路の冷媒循環に余った冷媒を貯留するための容器でもある。
庫内温センサTa、Tb、Tcは、商品収納庫40a、40b、40c内の風胴67の上面に取設され、商品収納庫40a、40b、40cの庫内温度を検知するためのものである。
三方電磁弁V4は、凝縮器62への冷媒の流入を制御するものであり、三方電磁弁V5は、庫外熱交換器68への冷媒の流入を制御するものであり、三方電磁弁V32は、庫内熱交換器65cへの冷媒の流入を制御するものである。これらは、三方電磁弁の構成でなく電磁弁を組み合わせたものであっても良い。
The accumulator 69 is a sealed container for flowing in the refrigerant evaporated from the internal heat exchangers 65a, 65b, 65c, separating the gas and liquid, storing the liquid refrigerant, and returning the gas-phase refrigerant to the compressor 61. . The accumulator 69 is also a container for storing the refrigerant remaining in the refrigerant circulation of the circuit.
The inside temperature sensors Ta, Tb, Tc are installed on the upper surface of the wind tunnel 67 in the product storage 40a, 40b, 40c, and are used to detect the inside temperature of the product storage 40a, 40b, 40c. is there.
The three-way solenoid valve V4 controls the flow of refrigerant into the condenser 62, the three-way solenoid valve V5 controls the flow of refrigerant into the external heat exchanger 68, and the three-way solenoid valve V32 The refrigerant flow into the internal heat exchanger 65c is controlled. These may be a combination of solenoid valves instead of a three-way solenoid valve.

電磁弁V11、V21、V31は膨張器63a、63b、63cへの冷媒の流入を制御するものであり、電磁弁V12は膨張器63aおよび庫内熱交換器65aへの冷媒の流入を制御するものであり、電磁弁V22は膨張器63bおよび庫内熱交換器65bへの冷媒の流入を制御するものである。
冷却/加熱ユニット60の冷媒回路60Aの構成について、図3の冷媒回路図を用いて詳述する。なお、図中の点線の囲いは、商品収納庫40a、40b、40cを模式的に示している。
冷媒回路60Aの主回路は、図中の太線で示すように圧縮機61から三方電磁弁V4を介して凝縮器62に至り、凝縮器62より膨張器63a、庫内熱交換器65a、膨張器63b、庫内熱交換器65b、膨張器63c、庫内熱交換器65cと直列に配管接続され、三方電磁弁V5、アキュムレータ69を経由して圧縮機61に戻る回路である。
Solenoid valves V11, V21, and V31 control the flow of refrigerant into the expanders 63a, 63b, and 63c, and the electromagnetic valve V12 controls the flow of refrigerant into the expander 63a and the internal heat exchanger 65a. The electromagnetic valve V22 controls the inflow of the refrigerant into the expander 63b and the internal heat exchanger 65b.
The configuration of the refrigerant circuit 60A of the cooling / heating unit 60 will be described in detail with reference to the refrigerant circuit diagram of FIG. In addition, the enclosure of the dotted line in the figure has shown typically goods storage 40a, 40b, 40c.
The main circuit of the refrigerant circuit 60A reaches the condenser 62 from the compressor 61 via the three-way solenoid valve V4 as shown by the thick line in the figure, and the expander 63a, the internal heat exchanger 65a, the expander from the condenser 62 63b, the internal heat exchanger 65b, the expander 63c, and the internal heat exchanger 65c are connected in series and returned to the compressor 61 via the three-way solenoid valve V5 and the accumulator 69.

また、冷媒回路60Aは主回路に対して図中の細線で示すように、凝縮器62の出入口に接続して、三方電磁弁V4を介してバイパスさせる第1のバイパス管路B4と,膨張器63a、63b、63c出入口にそれぞれ接続して、電磁弁V11、V21、V31を介してバイパスさせる第2のバイパス管路B11、B21、B31と、膨張器63aの入口と庫内熱交換器65aの出口に接続して、電磁弁V12を介してバイパスさせる第3のバイパス管路B12と、膨張器63bの入口と庫内熱交換器65bの出口に接続して、電磁弁V22を介してバイパスさせる第3のバイパス管路B22と、最下流に設けられた庫内熱交換器65cの出入口に接続して、三方電磁弁V32にてバイパスさせる第4のバイパス管路B32と、最下流に設けられた前庫内熱交換器65cの出口側と圧縮機61の入口側との間で、三方電磁弁V5にてバイパスさせ、そのバイパス管路の中間に冷媒を蒸発させる庫外熱交換器68を接続させた第5のバイパス管路B5とを有している。   The refrigerant circuit 60A is connected to the inlet / outlet of the condenser 62 and bypassed via the three-way solenoid valve V4, as shown by the thin line in the figure with respect to the main circuit, and the expander 63a, 63b, 63c are respectively connected to the inlets and outlets, and bypassed via the solenoid valves V11, V21, V31, the second bypass pipes B11, B21, B31, the inlet of the expander 63a, and the internal heat exchanger 65a Connected to the outlet and bypassed via the solenoid valve V22, connected to the third bypass pipe B12 bypassed via the solenoid valve V12, the inlet of the expander 63b and the outlet of the internal heat exchanger 65b. A third bypass pipe B22, a fourth bypass pipe B32 connected to the inlet / outlet of the internal heat exchanger 65c provided on the most downstream side and bypassed by the three-way solenoid valve V32, and provided on the most downstream side. An external heat exchanger 68 is connected between the outlet side of the front heat exchanger 65c and the inlet side of the compressor 61 by a three-way solenoid valve V5, and the refrigerant is evaporated in the middle of the bypass pipe. And a fifth bypass line B5.

冷媒は、臨界圧力以下で使用する冷媒、例えばフロン冷媒でR134aを使用している。また、臨界圧力以上で使用する冷媒、例えば二酸化炭素冷媒でもよい。
制御装置90は、商品収納庫40a、40b、40cを冷却加熱の設定モードにより冷却もしくは加熱の制御をするものであり、図4の制御ブロック図に示すように内部にCPU、メモリを有し、商品収納庫40a、40b、40cの冷却加熱を設定する冷却加熱モード設定SW91の設定により冷却加熱の制御を行う。そして、制御装置90は、庫内温センサTa、Tb、Tcにより検知した温度が一定温度範囲内となるように、圧縮機61、三方電磁弁V4、V5、V32、電磁弁V11、V12、V21、V22、V31などをON・OFF制御するサーモサイクル運転により庫内温度を適温に維持する。
サーモサイクル運転は、庫内温度がサーモOFF温度(例えば、冷却の場合は−2℃、加熱の場合は61℃)になったときにはその商品収納庫内の庫内熱交換器に流入する冷媒を遮断するように電磁弁を開閉し、庫内温度がサーモON温度(例えば、冷却の場合は8℃、加熱の場合は41℃)になったときにはその商品収納庫内の庫内熱交換器に冷媒が流入するように電磁弁を開閉することにより回路内に循環する冷媒の経路を適宜切り替えて、庫内を適温に制御するものである。すなわち、庫内温度とサーモOFF温度、サーモON温度とを比較して、各庫内の運転モードを冷却運転、加熱運転、休止の3つの状態に切り替えてサーモサイクル運転を行う。
As the refrigerant, a refrigerant used at a critical pressure or lower, for example, a fluorocarbon refrigerant, R134a is used. Moreover, the refrigerant | coolant used above a critical pressure, for example, a carbon dioxide refrigerant, may be sufficient.
The control device 90 controls the cooling or heating of the product storage boxes 40a, 40b, and 40c in the cooling and heating setting mode, and has a CPU and a memory inside as shown in the control block diagram of FIG. Cooling and heating are controlled by setting a cooling and heating mode setting SW91 that sets cooling and heating of the commodity storages 40a, 40b, and 40c. And the control apparatus 90 is the compressor 61, the three-way solenoid valves V4, V5, V32, and the solenoid valves V11, V12, V21 so that the temperatures detected by the internal temperature sensors Ta, Tb, Tc are within a certain temperature range. , V22, V31, etc., the inside temperature is maintained at an appropriate temperature by thermocycle operation that controls ON / OFF.
In the thermocycle operation, when the internal temperature reaches the thermo OFF temperature (for example, -2 ° C for cooling and 61 ° C for heating), the refrigerant flowing into the internal heat exchanger in the product storage is removed. The solenoid valve is opened and closed to shut off, and when the internal temperature reaches the thermo-ON temperature (for example, 8 ° C for cooling and 41 ° C for heating), the internal heat exchanger in the product storage By opening and closing the electromagnetic valve so that the refrigerant flows in, the path of the refrigerant circulating in the circuit is appropriately switched to control the inside of the cabinet at an appropriate temperature. That is, the internal temperature, the thermo OFF temperature, and the thermo ON temperature are compared, and the operation mode in each storage is switched to the three states of the cooling operation, the heating operation, and the pause, and the thermo cycle operation is performed.

具体的には、制御装置90は、図5で示す制御テーブルを利用して、図6で示す要部フローチャートにて制御を行う。図5の左欄は冷却加熱の設定モードを示し、次の3列は庫内の運転モードで冷却、加熱、休止を示し、「−」は、運転モードで休止モードを示す。この表では、商品収納庫40a、40b、40cを左室、中室、右室を表記し、以下の説明も左室40a、中室40b、右室40cで行う。次列は電磁弁の動作モードを符号で示したものであり、具体的な電磁弁の動作状態は次列からの表で示している。表中の「直」「迂」は三方電磁弁の冷媒の通過方向を示し、「直」は図3で示す主回路(直線方向)を通過する方向に開通する状態を示し、「迂」は各バイパス管路に迂回する態様で通過する方向に開通する状態を示す。
また、冷却加熱の設定モードCHCにおいて、上流側の庫内熱交換器65aに冷媒を流して冷却運転し、下流側の庫内熱交換器65bに冷媒を流して加熱運転、さらに下流側の庫内熱交換器65cに冷媒を流して冷却運転する場合には、第1から第3までの複数の電磁弁動作モードM41a、M41b、M41cが設定されている。また、上流側の庫内熱交換器65aに冷媒を流して冷却運転し、下流側の庫内熱交換器65bに冷媒を流して加熱運転、さらに下流側の庫内熱交換器65cは休止する場合にも、第1から第2までの複数の電磁弁動作モードM44a、M44bが設定されている。これら、上流側の庫内熱交換器に冷媒を流して冷却運転し、下流側の庫内熱交換器に冷媒を流して加熱運転する場合を加熱後順モードと称し、この場合には凝縮の前に蒸発を行うので、通常の冷凍サイクルを形成することができない。そこで、これら、加熱後順モードにおいては、運転すべき庫内熱交換器の一を休止させて運転を行う電磁弁動作モードを複数設け、庫内温度に対応して順次電磁弁動作モードを切替えるで、ヒートポンプ運転を行う。図5の表では、上流側の庫内熱交換器を優先して庫内が適温になるように制御を行っている。
Specifically, the control device 90 performs control according to the main part flowchart shown in FIG. 6 using the control table shown in FIG. The left column of FIG. 5 shows the cooling / heating setting mode, the next three columns indicate the cooling, heating, and pause in the operation mode in the cabinet, and “−” indicates the pause mode in the operation mode. In this table, the product storage boxes 40a, 40b, and 40c are described as the left chamber, the middle chamber, and the right chamber, and the following description is also performed in the left chamber 40a, the middle chamber 40b, and the right chamber 40c. The next column shows the operation mode of the solenoid valve by a code, and the specific operation state of the solenoid valve is shown by a table from the next column. In the table, “straight” and “bypass” indicate the passage direction of the refrigerant of the three-way solenoid valve, “straight” indicates a state of opening in the direction passing through the main circuit (linear direction) shown in FIG. The state which opens in the direction which passes in the aspect which detours to each bypass pipe line is shown.
Further, in the cooling and heating setting mode CHC, the refrigerant is supplied to the upstream internal heat exchanger 65a for cooling operation, the refrigerant is supplied to the downstream internal heat exchanger 65b for heating operation, and the downstream storage is further performed. When cooling operation is performed by flowing a refrigerant through the internal heat exchanger 65c, first to third electromagnetic valve operation modes M41a, M41b, and M41c are set. In addition, the refrigerant is allowed to flow through the upstream internal heat exchanger 65a for cooling operation, the refrigerant is allowed to flow through the downstream internal heat exchanger 65b for heating operation, and the downstream internal heat exchanger 65c is suspended. Even in this case, a plurality of solenoid valve operation modes M44a and M44b from the first to the second are set. The cooling operation is performed by flowing the refrigerant through the upstream internal heat exchanger, and the heating operation is performed by flowing the refrigerant through the downstream internal heat exchanger. Since evaporation is performed before, a normal refrigeration cycle cannot be formed. Therefore, in these post-heating forward modes, a plurality of solenoid valve operation modes are provided in which one of the inside heat exchangers to be operated is stopped and operated, and the solenoid valve operation modes are sequentially switched according to the inside temperature. Then, heat pump operation is performed. In the table of FIG. 5, the upstream side heat exchanger is preferentially controlled so that the inside of the storage is at an appropriate temperature.

次に、図6に示すフローチャートを参照にしつつ制御方法の説明をする。始めに制御装置90は、温度センサTa、Tb、Tcにより各商品収納庫の庫内温度を検出して(S1)、各収納庫内の温度がサーモ温度に達したか、すなわち、サーモOFF温度に達したか、または、サーモON温度の達したかを判定する(S2)。もし、収納庫の温度がサーモ温度に達していなければ(S2;N)、運転を継続して庫内温度の検出(S1)に戻る。収納庫の温度がサーモ温度に達してしていれば(S2;Y)、庫内温度の状態に対応して運転モードが決定され、図5に示す制御テーブルに基づいて電磁弁の動作モードが選択される(S3)。その電磁弁の動作モードが複数のモードを有する加熱後順モードでなければ(S4;N)、選択された動作モードにより電磁弁の開閉指令が行われ(S5)、運転モードが切替えられて庫内温度の検出(S1)に戻る。   Next, the control method will be described with reference to the flowchart shown in FIG. First, the control device 90 detects the internal temperature of each product storage by the temperature sensors Ta, Tb, Tc (S1), and whether the temperature in each storage reaches the thermostat, that is, the thermo OFF temperature. Or whether the thermo-ON temperature has been reached (S2). If the temperature of the storage has not reached the thermostat (S2; N), the operation is continued to return to the detection of the internal temperature (S1). If the temperature of the storage has reached the thermostat (S2; Y), the operation mode is determined corresponding to the state of the internal temperature, and the operation mode of the solenoid valve is determined based on the control table shown in FIG. Selected (S3). If the operation mode of the solenoid valve is not a post-heating forward mode having a plurality of modes (S4; N), an open / close command for the solenoid valve is issued according to the selected operation mode (S5), and the operation mode is switched and stored. The process returns to the internal temperature detection (S1).

選択された電磁弁の動作モードが複数のモードを有する加熱後順モードであれば(S4;Y)、第1の電磁弁の動作モードによる電磁弁の開閉が指令される(S6)。さらに、庫内温度の検出(S7)が行われ、稼動している庫内熱交換器に関する庫内温度がサーモ温度になったかを比較し(S8)、サーモ温度に到達していなければ(S8;N)、運転を継続して庫内温度の検出(S7)が行われる。サーモ温度に到達すれば(S8;Y)、電磁弁の動作モードが最終であるかを判定し(S9)、電磁弁の動作モードが最終でなければ(S9;N)、次の電磁弁の動作モードが選択され、そのモードに対応した電磁弁の開閉操作が指令される(S10)。電磁弁の動作モードが最終であれば(S9;Y)、既に各庫内が適温に達したことになるので、その後に手順をリターンさせる。
例えば、冷却加熱モード設定SW91をCCCモードに設定してあり、3室の商品収納庫40a、40b、40cがサーモ温内の以上であるときには、運転モードを3室ともに冷却モードとし、電磁弁の動作モードにM11を選択して、三方電磁弁V4、V32、V5を主回路に開通する方向に設定し、電磁弁V21、V31を開成し、電磁弁V11、V12、V22を閉止する。このとき図7の太線で示すように圧縮機61で圧縮された高温冷媒は、凝縮器62にて凝縮され液体となり、膨張器63aで膨張して低温低圧の気液二相流となり、庫内熱交換器65aに流入して蒸発し、商品収納庫40aを冷却する。庫内熱交換器65aより流出した冷媒は、バイパス管路B21より庫内熱交換器65bに流入して蒸発し、商品収納庫40bを冷却する。庫内熱交換器65bより流出した冷媒は、バイパス管路B31より庫内熱交換器65cに流入してさらに蒸発し、商品収納庫40cを冷却し、庫内熱交換器65cより流出した冷媒は、液冷媒を貯留するアキュムレータ69に流入し気液に分離されて気相の冷媒のみ圧縮機61に戻る。
If the selected operation mode of the solenoid valve is a post-heating forward mode having a plurality of modes (S4; Y), opening / closing of the solenoid valve in accordance with the operation mode of the first solenoid valve is commanded (S6). Furthermore, detection of the internal temperature (S7) is performed, and it is compared whether the internal temperature related to the operating internal heat exchanger has reached the thermo temperature (S8). If the internal temperature has not reached the thermo temperature (S8) N), the operation is continued and the internal temperature is detected (S7). If the thermostat is reached (S8; Y), it is determined whether the operation mode of the solenoid valve is final (S9). If the operation mode of the solenoid valve is not final (S9; N), the next solenoid valve is operated. An operation mode is selected, and a solenoid valve opening / closing operation corresponding to the mode is commanded (S10). If the operation mode of the solenoid valve is final (S9; Y), each chamber has already reached the appropriate temperature, and then the procedure is returned.
For example, when the cooling / heating mode setting SW91 is set to the CCC mode and the three-room product storage units 40a, 40b, and 40c are at or above the thermo-temperature, the operation mode is set to the cooling mode for all three rooms, M11 is selected as the operation mode, the three-way solenoid valves V4, V32, and V5 are set to open in the main circuit, the solenoid valves V21 and V31 are opened, and the solenoid valves V11, V12, and V22 are closed. At this time, as shown by the thick line in FIG. 7, the high-temperature refrigerant compressed by the compressor 61 is condensed by the condenser 62 to become a liquid, expands by the expander 63a, and becomes a low-temperature low-pressure gas-liquid two-phase flow. It flows into the heat exchanger 65a and evaporates to cool the commodity storage 40a. The refrigerant that has flowed out of the internal heat exchanger 65a flows into the internal heat exchanger 65b from the bypass line B21 and evaporates, thereby cooling the commodity storage 40b. The refrigerant that flows out of the internal heat exchanger 65b flows into the internal heat exchanger 65c from the bypass line B31 and further evaporates, cools the product storage 40c, and the refrigerant that flows out of the internal heat exchanger 65c is Then, it flows into the accumulator 69 that stores the liquid refrigerant, is separated into gas and liquid, and only the gas-phase refrigerant returns to the compressor 61.

また、冷却加熱モード設定SW91をHHCモードに設定してあり、左室40aがサーモON以下の温度であり、中室40bがサーモ温度内であり、右室40cがサーモON以上の温度であるときには、左室40aは加熱モード、中室40bは休止モード、右室40cを冷却モードとして電磁弁の動作モードをM32に選択する。この時、三方電磁弁V4を主回路より迂回する方向に開通する設定し、三方電磁弁V32、V5を主回路に開通する方向に設定し、電磁弁V11、V22を開成し、電磁弁V12、V21、V31を閉止する。このとき図8の太線で示す回路内を冷媒が循環し、圧縮機61で圧縮された高温冷媒は、三方電磁弁V4より凝縮器62を迂回し、さらに膨張器63aを迂回してバイパス管路B11より庫内熱交換器65aに流入する。庫内熱交換器65aに流入した冷媒は、凝縮して商品収納庫40aを加熱し、庫内熱交換器65aに流出した冷媒は、膨張器63b、庫内熱交換器65bを迂回してバイパス管路B22より膨張器63cに流入する。膨張器63cに流入した冷媒は膨張して低温低圧の気液二相流となり庫内熱交換器65cに流入する。庫内熱交換器65cに流入した冷媒は、庫内熱交換器65cで蒸発して商品収納庫40cを冷却し、三方電磁弁V5よりアキュムレータ69を経由して圧縮機61に戻る。このヒートポンプ運転もサーモサイクル運転で庫内が適温に維持される。   Further, when the cooling / heating mode setting SW91 is set to the HHC mode, the left chamber 40a is at a temperature equal to or lower than the thermo-ON, the middle chamber 40b is within the thermo-temperature, and the right chamber 40c is equal to or higher than the thermo-ON. The operation mode of the solenoid valve is selected as M32 with the left chamber 40a as the heating mode, the middle chamber 40b as the pause mode, and the right chamber 40c as the cooling mode. At this time, the three-way solenoid valve V4 is set to open in a direction to bypass the main circuit, the three-way solenoid valves V32, V5 are set to open to the main circuit, the solenoid valves V11, V22 are opened, and the solenoid valves V12, V12, V21 and V31 are closed. At this time, the refrigerant circulates in the circuit indicated by the thick line in FIG. 8, and the high-temperature refrigerant compressed by the compressor 61 bypasses the condenser 62 from the three-way solenoid valve V4, and further bypasses the expander 63a to bypass the bypass line. It flows into the internal heat exchanger 65a from B11. The refrigerant that flows into the internal heat exchanger 65a condenses and heats the product storage 40a, and the refrigerant that flows out to the internal heat exchanger 65a bypasses the expander 63b and the internal heat exchanger 65b. It flows into the inflator 63c from the pipe line B22. The refrigerant flowing into the expander 63c expands to form a low-temperature and low-pressure gas-liquid two-phase flow and flows into the internal heat exchanger 65c. The refrigerant flowing into the internal heat exchanger 65c evaporates in the internal heat exchanger 65c, cools the product storage 40c, and returns to the compressor 61 via the accumulator 69 from the three-way solenoid valve V5. In this heat pump operation, the inside of the cabinet is maintained at an appropriate temperature by the thermocycle operation.

また、冷却加熱モード設定SW91をCHCモードに設定してあり、左室40a、右室40cがサーモON以上の温度であり、中室40bがサーモON以下の温度であるときには、運転モードを左室40a、右室40cが冷却モード、中室40bが加熱モードとして電磁弁の動作モードを最初に第1のM41aに選択する。第1の動作モードM41aは、上流にある庫内熱交換器65aを冷却運転、その下流にある庫内熱交換器65bを休止し、最下流の庫内熱交換器65aを冷却運転する。この時、制御装置90は、三方電磁弁V4、V32、V5を主回路に開通する方向に設定し、電磁弁V12、V21、V31を開成し、電磁弁V11、V22を閉止する。このとき図9(a)の太線で示す回路内を冷媒が循環し、圧縮機61で圧縮された高温冷媒は、凝縮器62にて凝縮をし、膨張器63aにて膨張して低温低圧の気液二相流となり庫内熱交換器65aに流入する。庫内熱交換器65aに流入した冷媒は、庫内熱交換器65aで蒸発して商品収納庫40cを冷却し、膨張器63b、庫内熱交換器65bを迂回してバイパス管路B22を通過し、膨張器63cを迂回してバイパス管路B31に流入したのち、庫内熱交換器65cに流入する。庫内熱交換器65cに流入した冷媒は、庫内熱交換器65cでさらに蒸発して商品収納庫40cを冷却し、三方電磁弁V5、アキュムレータ69を経由して圧縮機61に戻る。   Further, when the cooling / heating mode setting SW91 is set to the CHC mode, the left chamber 40a and the right chamber 40c are at a temperature equal to or higher than the thermo-ON, and the middle chamber 40b is equal to or lower than the thermo-ON, the operation mode is set to the left chamber. 40a, the right chamber 40c is the cooling mode, and the middle chamber 40b is the heating mode, and the operation mode of the solenoid valve is first selected as the first M41a. In the first operation mode M41a, the internal heat exchanger 65a located upstream is cooled, the internal heat exchanger 65b located downstream is paused, and the most downstream internal heat exchanger 65a is cooled. At this time, the control device 90 sets the three-way solenoid valves V4, V32, V5 in a direction to open the main circuit, opens the solenoid valves V12, V21, V31, and closes the solenoid valves V11, V22. At this time, the refrigerant circulates in the circuit indicated by the thick line in FIG. 9A, and the high-temperature refrigerant compressed by the compressor 61 is condensed by the condenser 62 and expanded by the expander 63a to be low-temperature and low-pressure. It becomes a gas-liquid two-phase flow and flows into the internal heat exchanger 65a. The refrigerant flowing into the internal heat exchanger 65a evaporates in the internal heat exchanger 65a to cool the product storage 40c, bypasses the expander 63b and the internal heat exchanger 65b, and passes through the bypass line B22. Then, after bypassing the expander 63c and flowing into the bypass line B31, it flows into the internal heat exchanger 65c. The refrigerant flowing into the internal heat exchanger 65c further evaporates in the internal heat exchanger 65c to cool the product storage 40c, and returns to the compressor 61 via the three-way electromagnetic valve V5 and the accumulator 69.

そして、左室40aの庫内温度がサーモOFF温度になれば、制御装置90は、電磁弁の次の動作モードM41bを選択する。次の動作モードM41bは、上流にある庫内熱交換器65aを休止し、その下流にある庫内熱交換器65bを加熱し、最下流の庫内熱交換器65aを冷却するヒートポンプ運転を行う。三方電磁弁V4を主回路より迂回する方向に開通させ、三方電磁弁V32、V5を主回路に開通する方向に設定し、電磁弁V12、V21を開成し、電磁弁V11、V22,V31を閉止する。左室を休止、中室を加熱モード、右室を冷却モードとするヒートポンプ運転を行う。このとき図9(b)の太線で示す回路内を冷媒が循環し、圧縮機61で圧縮された高温冷媒は、凝縮器62を迂回してバイパス管路B4を通過し、さらに、膨張器63a、庫内熱交換器65aを迂回してバイパス管路B12を通過し、膨張器63bを迂回してバイパス管路B21を通過し、庫内熱交換器65bに流入して凝縮をし、中室40bを加熱する。庫内熱交換器65bで凝縮した冷媒は、膨張器63cにて膨張して低温低圧の気液二相流となり庫内熱交換器65cに流入する。庫内熱交換器65cに流入した冷媒は、庫内熱交換器65cで蒸発して右室40cを冷却し、三方電磁弁V5、アキュムレータ69を経由して圧縮機61に戻る。   And if the chamber internal temperature of the left chamber 40a turns into thermo OFF temperature, the control apparatus 90 will select the next operation mode M41b of a solenoid valve. In the next operation mode M41b, the heat exchanger 65a located upstream is paused, the heat exchanger 65b located downstream is heated, and the heat pump operation is performed to cool the heat exchanger 65a located downstream. . Open the three-way solenoid valve V4 in a direction to bypass the main circuit, set the three-way solenoid valves V32, V5 to the main circuit, open the solenoid valves V12, V21, and close the solenoid valves V11, V22, V31 To do. A heat pump operation is performed in which the left chamber is paused, the middle chamber is in heating mode, and the right chamber is in cooling mode. At this time, the refrigerant circulates in the circuit indicated by the thick line in FIG. 9B, and the high-temperature refrigerant compressed by the compressor 61 bypasses the condenser 62 and passes through the bypass line B4. Further, the expander 63a , Bypasses the internal heat exchanger 65a, passes through the bypass line B12, bypasses the expander 63b, passes through the bypass line B21, flows into the internal heat exchanger 65b, condenses, Heat 40b. The refrigerant condensed in the internal heat exchanger 65b expands in the expander 63c, becomes a low-temperature low-pressure gas-liquid two-phase flow, and flows into the internal heat exchanger 65c. The refrigerant flowing into the internal heat exchanger 65c evaporates in the internal heat exchanger 65c, cools the right chamber 40c, and returns to the compressor 61 via the three-way solenoid valve V5 and the accumulator 69.

そして、中室40bの庫内温度が上昇をしてサーモOFF温度になれば、制御装置90は、電磁弁の最後の動作モードM41cを選択する。このとき、三方電磁弁V4、V32、V5を主回路に開通する方向に設定し、電磁弁V12、V22を開成し、電磁弁V11、V21、V31を閉止する。右室40cのみの冷却運転を行う。このとき図9(c)の太線で示す回路内を冷媒が循環し、圧縮機61で圧縮された高温冷媒は、凝縮器62にて凝縮をし、膨張器63a、庫内熱交換器65a、膨張器63b、庫内熱交換器65bを迂回してバイパス管路B12、B22を通過し、膨張器63c流入して膨張して低温低圧の気液二相流となり庫内熱交換器65c流入にする。庫内熱交換器65cに流入した冷媒は、三方電磁弁V5、アキュムレータ69を経由して圧縮機61に戻る。
また、冷却加熱モード設定SW91をCHCモードに設定してあり、左室40aがサーモON以上の温度であり、中室40bがサーモON以下の温度であり、右室40cがサーモ温度内にあるときには、左室40aを冷却モード、中室40bを加熱モード、右室40cを休止モードとして電磁弁の動作モードを最初にM44aを選択する。最初の動作モードM44aは、上流にある庫内熱交換器65aを冷却運転し、その下流にある庫内熱交換器65b、65cを休止する。
When the internal temperature of the middle chamber 40b rises to the thermo OFF temperature, the control device 90 selects the last operation mode M41c of the solenoid valve. At this time, the three-way solenoid valves V4, V32, V5 are set in a direction to open the main circuit, the solenoid valves V12, V22 are opened, and the solenoid valves V11, V21, V31 are closed. Only the right chamber 40c is cooled. At this time, the refrigerant circulates in the circuit indicated by the thick line in FIG. 9C, and the high-temperature refrigerant compressed by the compressor 61 is condensed by the condenser 62, and the expander 63a, the internal heat exchanger 65a, It bypasses the expander 63b and the internal heat exchanger 65b, passes through the bypass pipes B12 and B22, flows into the expander 63c, expands to become a low-temperature low-pressure gas-liquid two-phase flow, and enters the internal heat exchanger 65c. To do. The refrigerant flowing into the internal heat exchanger 65c returns to the compressor 61 via the three-way solenoid valve V5 and the accumulator 69.
Further, when the cooling / heating mode setting SW 91 is set to the CHC mode, the left chamber 40a is at a temperature equal to or higher than the thermo-ON, the middle chamber 40b is equal to or lower than the thermo-ON, and the right chamber 40c is within the thermo-temperature. First, M44a is selected as the operation mode of the electromagnetic valve, with the left chamber 40a in the cooling mode, the middle chamber 40b in the heating mode, and the right chamber 40c in the pause mode. In the first operation mode M44a, the internal heat exchanger 65a located upstream is cooled, and the internal heat exchangers 65b and 65c located downstream thereof are suspended.

この時、制御装置90は、三方電磁弁V4、V32、V5を主回路に開通する方向に設定し、電磁弁V22、V31を開成し、電磁弁V11、V12、V21を閉止する。このとき図10(a)の太線で示す回路内を冷媒が循環し、圧縮機61で圧縮された高温冷媒は、凝縮器62にて凝縮をし、膨張器63aにて膨張して低温低圧の気液二相流となり庫内熱交換器65aに流入する。庫内熱交換器65aに流入した冷媒は、庫内熱交換器65aで蒸発して商品収納庫40cを冷却する。庫内熱交換器65aで蒸発した冷媒は、膨張器63b、庫内熱交換器65b、膨張器63c、庫内熱交換器65cを迂回してバイパス管路B22、B31、B32を通過し、三方電磁弁V5、アキュムレータ69を経由して圧縮機61に戻る。
そして、左室40aの庫内温度が低下してサーモOFF温度になれば、制御装置90は、電磁弁の動作モードを次のM44bを選択する。次の動作モードM44bは、庫内熱交換器65bと庫外熱交換器68とでヒートポンプ運転を行うモードである。制御装置90は、三方電磁弁V4、V32、V5を主回路より迂回する方向に開通させ、電磁弁V12、V21、V31を開成し、電磁弁V11、V22を閉止する。このとき図10(b)の太線で示す回路内を冷媒が循環し、圧縮機61で圧縮された高温冷媒は、凝縮器62を迂回してバイパス管路B4を通過し、さらに、膨張器63a、庫内熱交換器65a、膨張器63bを迂回してバイパス管路B12、B21を通過し庫内熱交換器65bに流入して凝縮をし、中室40bを加熱する。庫内熱交換器65bで凝縮した冷媒は、膨張器63cにて膨張して低温低圧の気液二相流となり、庫内熱交換器65cを迂回してバイパス管路B32を通過して、三方電磁弁V5を迂回して、庫外熱交換器68にて蒸発をしてアキュムレータ69を経由して圧縮機61に戻る。
At this time, the control device 90 sets the three-way solenoid valves V4, V32, V5 in a direction to open the main circuit, opens the solenoid valves V22, V31, and closes the solenoid valves V11, V12, V21. At this time, the refrigerant circulates in the circuit indicated by the thick line in FIG. 10A, and the high-temperature refrigerant compressed by the compressor 61 condenses in the condenser 62, expands in the expander 63a, and has a low temperature and low pressure. It becomes a gas-liquid two-phase flow and flows into the internal heat exchanger 65a. The refrigerant that has flowed into the internal heat exchanger 65a evaporates in the internal heat exchanger 65a to cool the product storage 40c. The refrigerant evaporated in the internal heat exchanger 65a bypasses the expander 63b, the internal heat exchanger 65b, the expander 63c, and the internal heat exchanger 65c, passes through the bypass pipes B22, B31, and B32, and is three-way. It returns to the compressor 61 via the electromagnetic valve V5 and the accumulator 69.
And if the chamber internal temperature of the left chamber 40a falls and it becomes thermo-off temperature, the control apparatus 90 will select the operation mode of a solenoid valve next M44b. The next operation mode M44b is a mode in which the heat pump operation is performed by the internal heat exchanger 65b and the external heat exchanger 68. The control device 90 opens the three-way solenoid valves V4, V32, and V5 in a direction detouring from the main circuit, opens the solenoid valves V12, V21, and V31, and closes the solenoid valves V11 and V22. At this time, the refrigerant circulates in the circuit indicated by the thick line in FIG. 10B, and the high-temperature refrigerant compressed by the compressor 61 bypasses the condenser 62 and passes through the bypass line B4. Further, the expander 63a The internal heat exchanger 65a and the expander 63b are bypassed, pass through the bypass pipes B12 and B21, flow into the internal heat exchanger 65b, condense, and the middle chamber 40b is heated. The refrigerant condensed in the internal heat exchanger 65b expands in the expander 63c to become a low-temperature low-pressure gas-liquid two-phase flow, bypasses the internal heat exchanger 65c, passes through the bypass line B32, and is three-way. It bypasses the electromagnetic valve V5, evaporates in the external heat exchanger 68, and returns to the compressor 61 via the accumulator 69.

このように、加熱運転を行うモードにおいて、電気ヒータを使用せずにヒートポンプ運転を行うことができるので、消費電力を低減することができる。
また、上流側の庫内熱交換器に冷媒を流して冷却運転し、下流側の庫内熱交換器に冷媒を流して加熱運転する場合においても、一の運転する庫内熱交換器に冷媒を流さずに運転を休止させ、次に当該休止させた庫内熱交換器に冷媒を流して冷却もしくは加熱運転することより、上流側の庫内熱交換器が冷却で下流側の庫内熱交換器が加熱であっても、ヒートポンプ運転を行うことができるので、消費電力を低減することができる。
別の実施例を図11に示す。この実施例は、前述の実施例と比較をすると、庫外熱交換器68aが凝縮器62の近傍に配設されている点であり、その他は前述の実施例と実質的に同一であるので、同じ符号を付してその説明を省略する。
Thus, in the mode in which the heating operation is performed, the heat pump operation can be performed without using the electric heater, so that the power consumption can be reduced.
In addition, even when a cooling operation is performed by flowing a refrigerant in the upstream internal heat exchanger and a heating operation is performed by flowing a refrigerant in the downstream internal heat exchanger, the refrigerant is transferred to the operating internal heat exchanger. Then, the operation is stopped without flowing, and then the refrigerant is passed through the suspended internal heat exchanger to perform cooling or heating operation, whereby the upstream internal heat exchanger is cooled and the downstream internal heat is cooled. Even if the exchanger is heated, heat pump operation can be performed, so that power consumption can be reduced.
Another embodiment is shown in FIG. Compared with the above-described embodiment, this embodiment is that the external heat exchanger 68a is disposed in the vicinity of the condenser 62, and the others are substantially the same as the above-described embodiment. The same reference numerals are given and the description thereof is omitted.

庫外熱交換器68aは、凝縮器62のファン62fの下流側に配設している。かかる構成によれば、凝縮器62の熱がファン62fにより庫外熱交換器68aに送風されるので、庫外熱交換器68aの冷媒を効率良く蒸発させることができる。また、庫外熱交換器68aと凝縮器62の放熱フィンを共通に使用しても良い。この場合には、ファン62fの送風による熱伝達に加えて放熱フィンによる熱伝導にて熱移送が行われるので、より一層効率良く庫外熱交換器68aの冷媒を蒸発させることができる。その結果、消費電力を低減することができる。   The external heat exchanger 68 a is disposed on the downstream side of the fan 62 f of the condenser 62. According to such a configuration, since the heat of the condenser 62 is blown to the external heat exchanger 68a by the fan 62f, the refrigerant of the external heat exchanger 68a can be efficiently evaporated. Further, the heat radiation fins of the external heat exchanger 68a and the condenser 62 may be used in common. In this case, heat transfer is performed by heat conduction by the radiating fins in addition to heat transfer by blowing air from the fan 62f, so that the refrigerant in the external heat exchanger 68a can be evaporated more efficiently. As a result, power consumption can be reduced.

10 本体キャビネット
20 外扉
30 内扉
40a、40b、40c 商品収納庫
60 冷却/加熱ユニット
61 圧縮機
62 凝縮器
63a、63b、63c 膨張器
65a、65b、65c 庫内熱交換器
68 庫外熱交換器
90 制御装置
91 冷却加熱モード設定SW
B4 第1のバイパス管路
B11、B21、B31 第2のバイパス管路
B12、B22 第3のバイパス管路
B32 第4のバイパス管路
B5 第5のバイパス管路
V4、V5、V32 三方電磁弁
V11、V12、V21、V22、V31 電磁弁



DESCRIPTION OF SYMBOLS 10 Main body cabinet 20 Outer door 30 Inner door 40a, 40b, 40c Product storage 60 Cooling / heating unit 61 Compressor 62 Condenser 63a, 63b, 63c Expander 65a, 65b, 65c Internal heat exchanger 68 External heat exchange 90 Control device 91 Cooling and heating mode setting SW
B4 1st bypass line B11, B21, B31 2nd bypass line B12, B22 3rd bypass line B32 4th bypass line B5 5th bypass line V4, V5, V32 Three-way solenoid valve V11 , V12, V21, V22, V31 Solenoid valve



Claims (3)

冷却専用の商品収納庫と複数の冷却加熱兼用の商品収納庫を有し、冷却加熱の設定モードにより選択的に商品収納庫を冷却もしくは加熱する自動販売機であって、
冷媒を圧縮する圧縮機と、庫外に設け冷媒を凝縮する凝縮器と、冷媒を膨張させる膨張手段と、各庫内に設け冷媒を蒸発もしくは凝縮される庫内熱交換器と、にて冷却循環回路を構成するとともに、
前記庫内熱交換器を直列に配管接続し、前記凝縮器と前記各庫内熱交換器との間にそれぞれ前記膨張手段を配管接続した自動販売機において、
前記凝縮器の出入口に接続して、電磁弁を介してバイパスさせる第1のバイパス管路と、
前記膨張手段の出入口に接続して、電磁弁を介してバイパスさせる第2のバイパス管路と、
最下流より上流側の前記膨張手段の入口と前記庫内熱交換器の出口に接続して、電磁弁を介してバイパスさせる第3のバイパス管路と、
最下流に設けられた前記庫内熱交換器の出入口に接続して、電磁弁にてバイパスさせる第4のバイパス管路と、
最下流に設けられた前記庫内熱交換器の出口側と前記圧縮機の入口側との間で、電磁弁にてバイパスさせ、そのバイパス管路の中間に冷媒を蒸発させる庫外熱交換器を接続させた第5のバイパス管路と、を設けたことを特徴とする自動販売機。
A vending machine that has a product storage dedicated to cooling and a plurality of product storages that are also used for cooling and heating, and selectively cools or heats the product storage according to a setting mode of cooling and heating,
Cooled by a compressor that compresses the refrigerant, a condenser that is provided outside the refrigerator and condenses the refrigerant, an expansion means that expands the refrigerant, and an internal heat exchanger that is provided inside each refrigerator and evaporates or condenses the refrigerant. While configuring a circulation circuit,
In the vending machine in which the internal heat exchanger is connected in series and the expansion means is connected between the condenser and each internal heat exchanger,
A first bypass line connected to the outlet of the condenser and bypassed via a solenoid valve;
A second bypass pipe connected to the inlet / outlet of the expansion means and bypassed via a solenoid valve;
A third bypass pipe connected to the inlet of the expansion means upstream from the most downstream and the outlet of the internal heat exchanger to be bypassed via a solenoid valve;
A fourth bypass pipe connected to the inlet / outlet of the internal heat exchanger provided at the most downstream side and bypassed by a solenoid valve;
An external heat exchanger that bypasses by an electromagnetic valve between the outlet side of the internal heat exchanger provided at the most downstream side and the inlet side of the compressor and evaporates the refrigerant in the middle of the bypass pipe line And a fifth bypass pipe connected to the vending machine.
前記庫外熱交換器が前記凝縮器に近傍に取設したことを特徴とする請求項1に記載の自動販売機。 The vending machine according to claim 1, wherein the external heat exchanger is installed in the vicinity of the condenser. 上流側の前記庫内熱交換器に冷媒を流して冷却運転し、下流側の前記庫内熱交換器に冷媒を流して加熱運転する場合に、いずれか一方の前記庫内熱交換器に冷媒を流さずに運転を休止させ、次に当該休止させた庫内熱交換器に冷媒を流して冷却もしくは加熱運転することを特徴とする請求項1または2に記載の自動販売機。 When cooling is performed by flowing a refrigerant through the internal heat exchanger on the upstream side, and when the heating operation is performed by flowing the refrigerant through the internal heat exchanger on the downstream side, the refrigerant is supplied to one of the internal heat exchangers. 3. The vending machine according to claim 1 or 2, wherein the operation is stopped without flowing, and the refrigerant is then flowed to the paused internal heat exchanger for cooling or heating operation.
JP2009122667A 2009-05-21 2009-05-21 vending machine Expired - Fee Related JP5321241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122667A JP5321241B2 (en) 2009-05-21 2009-05-21 vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122667A JP5321241B2 (en) 2009-05-21 2009-05-21 vending machine

Publications (2)

Publication Number Publication Date
JP2010271885A true JP2010271885A (en) 2010-12-02
JP5321241B2 JP5321241B2 (en) 2013-10-23

Family

ID=43419867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122667A Expired - Fee Related JP5321241B2 (en) 2009-05-21 2009-05-21 vending machine

Country Status (1)

Country Link
JP (1) JP5321241B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018383A (en) * 2014-07-08 2016-02-01 サンデンホールディングス株式会社 Automatic vending machine
CN106765571A (en) * 2016-12-22 2017-05-31 青岛海尔空调电子有限公司 Air-conditioning system and apply the air-conditioner indoor terminal in the air-conditioning system
CN113834257A (en) * 2021-08-31 2021-12-24 青岛海尔电冰箱有限公司 Refrigerating system for refrigerating and freezing device and refrigerating and freezing device with refrigerating and freezing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167341A (en) * 1999-12-08 2001-06-22 Kubota Corp Device and method for cooling automatic vending machine
JP2002107000A (en) * 2000-09-29 2002-04-10 Fujitsu General Ltd Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167341A (en) * 1999-12-08 2001-06-22 Kubota Corp Device and method for cooling automatic vending machine
JP2002107000A (en) * 2000-09-29 2002-04-10 Fujitsu General Ltd Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018383A (en) * 2014-07-08 2016-02-01 サンデンホールディングス株式会社 Automatic vending machine
CN106765571A (en) * 2016-12-22 2017-05-31 青岛海尔空调电子有限公司 Air-conditioning system and apply the air-conditioner indoor terminal in the air-conditioning system
CN106765571B (en) * 2016-12-22 2020-04-14 青岛海尔空调电子有限公司 Air conditioning system and air conditioner indoor terminal applied to same
CN113834257A (en) * 2021-08-31 2021-12-24 青岛海尔电冰箱有限公司 Refrigerating system for refrigerating and freezing device and refrigerating and freezing device with refrigerating and freezing system

Also Published As

Publication number Publication date
JP5321241B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2010035512A1 (en) Vending machine
JP2009076028A (en) Vending machine
JP2009193422A (en) Vending machine
WO2009088057A1 (en) Vending machine
JP5375342B2 (en) vending machine
JP5321241B2 (en) vending machine
JP5392491B2 (en) Refrigerant circuit
JP5471563B2 (en) vending machine
JP4924535B2 (en) vending machine
JP5169383B2 (en) vending machine
JP5407621B2 (en) Cooling and heating device
JP5228965B2 (en) vending machine
JP5569634B2 (en) Operation method of cooling heating device
JP5434423B2 (en) vending machine
JP2010152673A (en) Vending machine
JP5229057B2 (en) vending machine
JP5471480B2 (en) vending machine
JP2009169495A (en) Vending machine
JP5240016B2 (en) vending machine
JP5240017B2 (en) vending machine
JP5471518B2 (en) vending machine
JP2009259139A (en) Vending machine
JP5240030B2 (en) vending machine
JP4548540B2 (en) vending machine
JP5056425B2 (en) vending machine

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20111111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees