JP2009076028A - Vending machine - Google Patents

Vending machine Download PDF

Info

Publication number
JP2009076028A
JP2009076028A JP2008002876A JP2008002876A JP2009076028A JP 2009076028 A JP2009076028 A JP 2009076028A JP 2008002876 A JP2008002876 A JP 2008002876A JP 2008002876 A JP2008002876 A JP 2008002876A JP 2009076028 A JP2009076028 A JP 2009076028A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
vending machine
heating
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008002876A
Other languages
Japanese (ja)
Other versions
JP4557010B2 (en
Inventor
Toshiaki Tsuchiya
敏章 土屋
Yukihiro Takano
幸裕 高野
Yuuji Fujimoto
裕地 藤本
Koji Takiguchi
浩司 滝口
Hisanori Ishita
尚紀 井下
Makoto Ishida
真 石田
Yasutaka Sanuki
育孝 讃岐
Takeshi Matsubara
健 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2008002876A priority Critical patent/JP4557010B2/en
Priority to TW097150191A priority patent/TWI437512B/en
Priority to PCT/JP2009/050172 priority patent/WO2009088057A1/en
Priority to CN2009801012268A priority patent/CN101884057B/en
Publication of JP2009076028A publication Critical patent/JP2009076028A/en
Application granted granted Critical
Publication of JP4557010B2 publication Critical patent/JP4557010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vending machine which suppresses a decrease in a cooling/heating capability due to a reduction in the amount of a circulating refrigerant for a refrigeration cycle as a leaked refrigerant is caused to flow into a heating heat exchanger and stay therein when a refrigerant leaks from a closed solenoid valve while a heating operation stops. <P>SOLUTION: In the vending machine having a compressor 61, a condenser 62 provided outside a cabinet, an expanding means 63, a distributor 64 for distributing a refrigerant from the expanding means, heating heat exchangers 66b and 66c which form a refrigeration cycle in a plurality of evaporators 65a, 65b and 65c, are connected between an inlet of the compressor and an inlet of the condenser and are provided in the cabinet to condense the refrigerant, and first solenoid valves 68b and 68c between the compressor and the heating heat exchangers, a bypass circuit that connects second solenoid valves 73b and 73c and a second expanding means 72 is provided between the first solenoid valves and the distributor to collect the leaked refrigerant in the refrigeration cycle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷媒回路にて冷却または加熱して販売に供する自動販売機に関する。   The present invention relates to a vending machine that sells a product such as a beverage in a container such as a can, a bottle, a pack, or a plastic bottle after being cooled or heated in a refrigerant circuit.

近年の地球温暖化に対して二酸化炭素の排出量削減が課題となっており、自動販売機も省エネ型が開発されている。その1方式として従来は排熱していた凝縮器の熱を庫内の加熱に利用するヒートポンプ方式の自動販売機が注目されている(例えば、特許文献1参照)。
しかしながら、この自動販売機は、庫内側の熱交換器を冷却時には蒸発器として使用し、加温時には凝縮器として使用するため、自動販売機の冷却加熱の運転モードによって、冷媒の流し方を変更させる必要がある結果、冷凍回路の配管が複雑になりコスト高を招来するという問題がある。
また、CO2冷媒を使用して、製造コストを低減させるために1つの商品収納庫に冷却用熱交換器と加熱用熱交換器を2つの配管回路を設けて冷媒回路を構成することが知られている(例えば、特許文献2参照)。
特開2002−298210号公報 特開2006−11493号公報
Reducing carbon dioxide emissions has become a challenge with recent global warming, and energy-saving vending machines have been developed. As one of the methods, a heat pump type vending machine that uses the heat of the condenser, which has been exhausted in the past, to heat the inside of the cabinet has attracted attention (for example, see Patent Document 1).
However, this vending machine uses the internal heat exchanger as an evaporator during cooling and as a condenser during heating, so the flow of refrigerant changes depending on the cooling and heating operation mode of the vending machine. As a result, there is a problem that the piping of the refrigeration circuit becomes complicated, resulting in high costs.
In addition, in order to reduce the manufacturing cost by using CO 2 refrigerant, it is known that a refrigerant circuit is configured by providing two piping circuits for a cooling heat exchanger and a heating heat exchanger in one commodity storage. (For example, refer to Patent Document 2).
JP 2002-298210 A JP 2006-11493 A

しかしながら、特許文献2に記載の冷媒回路を臨界内の温度で使用する場合には下記の問題点がある。
1)加熱運転の休止中に閉鎖している電磁弁から冷媒が漏洩すると漏洩冷媒は加熱熱交換器に流入する。このとき、商品収納庫は冷却雰囲気にあるので、加熱熱交換器に流入した漏洩冷媒は凝縮して液となるので、循環している冷媒量が減少し、冷却加熱能力が低下する。
2)特に3室運転で2室を加熱する運転モードを変更するとき、商品収納庫内の加熱熱交換器で熱交換能力が不足するので、冷媒温度が十分に下がらない。その結果、冷却能力が不足し、消費電力が増加する。
3)冷却と加熱の運転モードを変えると、冷却側と加熱側の使用する熱交換器の割合が変わるため、運転モードで適正な冷媒量が異なる。このため、各運転モードで最適化ができないので、全体としての消費電力が増加する。
本発明は、上記実情に鑑みて、1)の課題を解決して、効率的にヒートポンプ運転を行い、消費電力の少ない自動販売機を提供することを目的とする。
また、本発明の他の目的は、1)の課題を解決するとともに、2)、3)の課題を解決して、さらに効率的にヒートポンプ運転を行い、消費電力の少ない自動販売機を提供することを目的とする。
However, when the refrigerant circuit described in Patent Document 2 is used at a temperature within the criticality, there are the following problems.
1) When the refrigerant leaks from the solenoid valve that is closed during the suspension of the heating operation, the leaked refrigerant flows into the heating heat exchanger. At this time, since the product storage is in a cooling atmosphere, the leaked refrigerant that has flowed into the heating heat exchanger is condensed into a liquid, so that the amount of circulating refrigerant is reduced and the cooling heating capacity is reduced.
2) Especially when changing the operation mode for heating the two chambers in the three-chamber operation, the heat exchange capacity is insufficient in the heating heat exchanger in the product storage, and therefore the refrigerant temperature does not fall sufficiently. As a result, the cooling capacity is insufficient and the power consumption increases.
3) Since the ratio of the heat exchangers used on the cooling side and the heating side changes when the cooling and heating operation modes are changed, the appropriate amount of refrigerant varies depending on the operation mode. For this reason, since it cannot optimize in each operation mode, the power consumption as a whole increases.
In view of the above circumstances, an object of the present invention is to solve the problem 1), to efficiently perform a heat pump operation, and to provide a vending machine with low power consumption.
Another object of the present invention is to solve the problem 1), solve the problems 2) and 3), perform a heat pump operation more efficiently, and provide a vending machine with low power consumption. For the purpose.

上記の目的を達成するために、本発明の請求項1に係る自動販売機は、複数の商品収納庫を有し、運転モードにより商品収納庫を冷却もしくは加熱するための自動販売機であって、冷媒を圧縮する圧縮機と、庫外に設け冷媒を凝縮する凝縮器と、冷媒を膨張させる膨張手段と、膨張手段より膨張した冷媒を分配する分配器と、庫内に設け冷媒を蒸発する複数の蒸発器と、にて冷凍サイクルを構成し、前記圧縮機の入口と前記凝縮器の入口との間で接続され、庫内に設けて冷媒を凝縮する加熱熱交換器と、前記圧縮機と前記加熱熱交換器との間に第1の電磁弁と、を有する自動販売機において、前記加熱熱交換器と前記膨張手段出口側管路との間を第2の膨張手段を介して接続する減圧管路を有することを特徴とする。
また、本発明の請求項2に係る自動販売機は、請求項1において、前記減圧管路は、前記加熱熱交換器の入口側と前記膨張手段出口側とを第2の電磁弁を介して接続したバイパス管路であることを特徴とする。
また、本発明の請求項3に係る自動販売機は、請求項1において、前記減圧管路は、第3の電磁弁を介して前記加熱熱交換器出口側管路と前記膨張手段出口側との間に接続したバイパス管路であることを特徴とする。
In order to achieve the above object, a vending machine according to claim 1 of the present invention is a vending machine having a plurality of product storages for cooling or heating the product storage in an operation mode. A compressor that compresses the refrigerant, a condenser that is provided outside the refrigerator and condenses the refrigerant, an expansion means that expands the refrigerant, a distributor that distributes the refrigerant expanded by the expansion means, and a refrigerant that is provided inside the refrigerator and evaporates the refrigerant A heating heat exchanger that constitutes a refrigeration cycle with a plurality of evaporators, is connected between an inlet of the compressor and an inlet of the condenser, and is provided in a warehouse to condense the refrigerant; and the compressor In the vending machine having a first solenoid valve between the heating heat exchanger and the heating heat exchanger, the heating heat exchanger and the expansion means outlet side pipe line are connected via a second expansion means. It has the pressure-reduction pipe line which carries out.
The vending machine according to a second aspect of the present invention is the vending machine according to the first aspect, wherein the pressure reducing pipe connects the inlet side of the heating heat exchanger and the outlet side of the expansion means via a second electromagnetic valve. It is a connected bypass line.
The vending machine according to a third aspect of the present invention is the vending machine according to the first aspect, wherein the pressure reducing pipe is connected to the heating heat exchanger outlet side pipe and the expansion means outlet side via a third electromagnetic valve. It is characterized by being a bypass line connected between.

また、本発明の請求項4に係る自動販売機は、請求項1において、商品収納庫の外に庫外熱交換器を設け、前記減圧管路は、前記庫外熱交換器を介して前記加熱熱交換器出口側管路と前記膨張手段出口側との間に接続した管路であることを特徴とする。
また、本発明の請求項5に係る自動販売機は、請求項4において、前記庫外熱交換器は、前記凝縮器と一体の構造であることを特徴とする。
また、本発明の請求項6に係る自動販売機は、請求項5において、前記庫外熱交換器は、前記凝縮器より風上側に配置したことを特徴とする。
また、本発明の請求項7に係る自動販売機は、請求項4において、凝縮器と庫外熱交換器の下流側に第4または/かつ第5の電磁弁と、当該電磁弁の開閉を制御する制御手段を有し、当該制御手段は、前記第4または/かつ第5の電磁弁の開閉により冷媒循環量を制御することを特徴とする。
また、本発明の請求項8に係る自動販売機は、請求項7において、前記第2の膨張手段が電子膨張弁であって、前記制御手段は、加熱冷却同時運転の始動時、または、冷却単独運転から加熱冷却同時運転への切換時、または、加熱冷却同時運転中の一定時間運転後に、前記電子膨張弁を所定の開度に設定をし、前記加熱熱交換器の入口側の第1の電磁弁を開けて、その後、凝縮器入口の電磁弁を閉成するようにして冷媒循環量を制御することを特徴とする。
The vending machine according to claim 4 of the present invention is the vending machine according to claim 1, wherein an external heat exchanger is provided outside the product storage, and the decompression pipe is connected to the external heat exchanger via the external heat exchanger. It is a pipe line connected between the heating heat exchanger outlet side pipe line and the expansion means outlet side.
According to a fifth aspect of the present invention, the vending machine according to the fourth aspect is characterized in that the external heat exchanger has a structure integrated with the condenser.
In addition, the vending machine according to claim 6 of the present invention is characterized in that, in claim 5, the external heat exchanger is arranged on the windward side of the condenser.
A vending machine according to claim 7 of the present invention is the vending machine according to claim 4, wherein the fourth and / or fifth electromagnetic valve is opened and closed on the downstream side of the condenser and the external heat exchanger. Control means for controlling is provided, and the control means controls the refrigerant circulation amount by opening and closing the fourth and / or fifth electromagnetic valve.
The vending machine according to an eighth aspect of the present invention is the vending machine according to the seventh aspect, wherein the second expansion means is an electronic expansion valve, and the control means is at the start of simultaneous heating / cooling operation or cooling. When switching from single operation to simultaneous heating / cooling operation or after a certain time of operation during simultaneous heating / cooling operation, the electronic expansion valve is set to a predetermined opening, and the first side on the inlet side of the heating heat exchanger is set. The amount of refrigerant circulating is controlled by opening the solenoid valve and then closing the solenoid valve at the condenser inlet.

また、本発明の請求項9に係る自動販売機は、請求項7において、前記第2の膨張手段が電子膨張弁であって、前記制御手段は、冷却単独運転の開始時、または、加熱冷却同時運転中から冷却単独運転への切換時、または、冷却単独運転中の一定時間運転後に、前記凝縮器入口側の電磁弁を開成し、その後、前記加熱熱交換器の入口側の第1の電磁弁を閉成し、第4の電磁弁を閉成し、前記電子膨張弁を全開にして冷媒循環量を制御することを特徴とする。
また、本発明の請求項10に係る自動販売機は、請求項7において、前記加熱熱交換器の凝縮温度を検出する凝縮温検出手段を設け、前記制御手段は、前記凝縮温検出手段が検知した凝縮温度により、前記第4または/かつ第5の電磁弁の開閉により冷媒循環量を制御することを特徴とする。
また、本発明の請求項11に係る自動販売機は、請求項10において、前記制御手段は、前記凝縮温検出手段が検知した凝縮温度が所定の温度により高い場合には、前記第4の電磁弁の閉成し、前回の操作時間以下の時間で前記凝縮器入口側の電磁弁を開成することにより冷媒循環量を制御することを特徴とする。
また、本発明の請求項12に係る自動販売機は、請求項10において、前記制御手段は、前記凝縮温検出手段が検知した凝縮温度が所定の温度により低い場合には、前記第4の電磁弁を所定時間の開成することにより冷媒循環量を制御することを特徴とする。
The vending machine according to claim 9 of the present invention is the vending machine according to claim 7, wherein the second expansion means is an electronic expansion valve, and the control means is at the start of the cooling single operation or is heated and cooled. At the time of switching from simultaneous operation to cooling single operation, or after a certain time operation during cooling single operation, the solenoid valve on the inlet side of the condenser is opened, and then the first solenoid valve on the inlet side of the heating heat exchanger is opened. The solenoid valve is closed, the fourth solenoid valve is closed, and the electronic expansion valve is fully opened to control the refrigerant circulation amount.
The vending machine according to claim 10 of the present invention is the vending machine according to claim 7, further comprising condensation temperature detection means for detecting the condensation temperature of the heating heat exchanger, and the control means is detected by the condensation temperature detection means. The refrigerant circulation amount is controlled by opening / closing the fourth and / or fifth electromagnetic valve based on the condensed temperature.
The vending machine according to claim 11 of the present invention is the vending machine according to claim 10, wherein when the condensing temperature detected by the condensing temperature detecting means is higher than a predetermined temperature, the control means The refrigerant circulation amount is controlled by closing the valve and opening the electromagnetic valve on the condenser inlet side in a time shorter than the previous operation time.
According to a twelfth aspect of the present invention, in the vending machine according to the tenth aspect, when the condensing temperature detected by the condensing temperature detecting means is lower than a predetermined temperature, the control means is the fourth electromagnetic wave. The refrigerant circulation amount is controlled by opening the valve for a predetermined time.

本発明に係る請求項1−3の自動販売機は、複数の商品収納庫を有し、運転モードにより商品収納庫を冷却もしくは加熱するための自動販売機であって、冷媒を圧縮する圧縮機と、庫外に設け冷媒を凝縮する凝縮器と、冷媒を膨張させる膨張手段と、膨張手段より膨張した冷媒を分配する分配器と、庫内に設け冷媒を蒸発する複数の蒸発器と、にて冷凍サイクルを構成し、前記圧縮機の入口と前記凝縮器の入口との間で接続され、庫内に設けて冷媒を凝縮する加熱熱交換器と、前記圧縮機と前記加熱熱交換器との間に第1の電磁弁と、を有する自動販売機において、前記加熱熱交換器と前記膨張手段出口側管路との間を第2の膨張手段を介して接続する減圧管路を有する、または、前記減圧管路は、前記加熱熱交換器の入口側と前記膨張手段出口側とを第2の電磁弁を介して接続したバイパス管路である、または、前記減圧管路は、第3の電磁弁を介して前記加熱熱交換器出口側管路と前記膨張手段出口側との間に接続したバイパス管路であることにより、加熱運転休止時に、閉成した第1の電磁弁から漏れる冷媒が第3の電磁弁、第3の膨張手段を介して、蒸発器に流入するので、冷媒循環量が減少することがない結果、冷却の効率を高く維持できる。
本発明に係る請求項4の自動販売機は、請求項1において、商品収納庫の外に庫外熱交換器を設け、前記減圧管路は、前記庫外熱交換器を介して前記加熱熱交換器出口側管路と前記膨張手段出口側との間に接続した管路である構成であるので、上記の効果の他に、庫外熱交換器が冷凍サイクルの加熱放熱量を補間する結果、冷却能力が低下することを抑制する。
The vending machine according to the first to third aspects of the present invention is a vending machine having a plurality of merchandise storage boxes for cooling or heating the merchandise storage boxes according to the operation mode, and compressing the refrigerant. A condenser provided outside the refrigerator for condensing the refrigerant, an expansion means for expanding the refrigerant, a distributor for distributing the refrigerant expanded by the expansion means, and a plurality of evaporators provided inside the storage for evaporating the refrigerant. A refrigeration cycle, connected between the inlet of the compressor and the inlet of the condenser, and provided in the warehouse to condense the refrigerant, the compressor and the heating heat exchanger, In a vending machine having a first solenoid valve between the heating heat exchanger and the expansion means outlet side pipe, the pressure reducing pipe connecting the expansion means outlet side pipe via a second expansion means, Alternatively, the decompression pipe is connected to the inlet side of the heating heat exchanger and the expansion means outlet. A bypass pipe connected to the mouth side via a second electromagnetic valve, or the pressure reducing pipe is connected to the heating heat exchanger outlet side pipe and the expansion means outlet via a third solenoid valve. Because of the bypass line connected between the refrigerant and the refrigerant, the refrigerant leaking from the closed first electromagnetic valve when the heating operation is stopped passes through the third electromagnetic valve and the third expansion means to the evaporator. Since the refrigerant flows in, the refrigerant circulation rate does not decrease, so that the cooling efficiency can be maintained high.
A vending machine according to a fourth aspect of the present invention is the vending machine according to the first aspect, wherein an external heat exchanger is provided outside the product storage, and the pressure reducing line is connected to the heating heat via the external heat exchanger. Since it is a configuration that is a conduit connected between the exchanger outlet side conduit and the expansion means outlet side, in addition to the above effects, the external heat exchanger interpolates the heating heat radiation amount of the refrigeration cycle , It is possible to suppress a decrease in cooling capacity.

本発明に係る請求項5−6の自動販売機は、請求項4において、前記庫外熱交換器は、前記凝縮器と一体の構造であること、また、前記庫外熱交換器は、前記凝縮器より風上側に配置したことにより、前記凝縮器は、共通の放熱フィン82を有しているので、庫外熱交換配管、および凝縮配管を流れる冷媒の放熱効率が向上する。
本発明に係る請求項7の自動販売機は、請求項4において、凝縮器と庫外熱交換器の下流側に第4または/かつ第5の電磁弁と、当該電磁弁の開閉を制御する制御手段を有し、当該制御手段は、前記第4または/かつ第5の電磁弁の開閉により冷媒循環量を制御することにより、各運転モードにおいて、冷媒の循環量を適正に調整することが出来るので、高効率で冷却・加熱運転をすることができる。
本発明に係る請求項8−9の自動販売機は、請求項7において、前記第2の膨張手段が電子膨張弁であって、前記制御手段は、加熱冷却同時運転の始動時、または、冷却単独運転から加熱冷却同時運転への切換時、または、加熱冷却同時運転中の一定時間運転後に、前記電子膨張弁を所定の開度に設定をし、前記加熱熱交換器の入口側の第1の電磁弁を開けて、その後、凝縮器入口の電磁弁を閉成するようにして冷媒循環量を制御する、また、前記第2の膨張手段が電子膨張弁であって、前記制御手段は、冷却単独運転の開始時、または、加熱冷却同時運転中から冷却単独運転への切換時、または、冷却単独運転中の一定時間運転後に、前記凝縮器入口側の電磁弁を開成し、その後、前記加熱熱交換器の入口側の第1の電磁弁を閉成し、第4の電磁弁を閉成し、前記電子膨張弁を全開にして冷媒循環量を制御する。このことにより、冷却単独運転中に凝縮器62、蒸発器65a、65b、65cに貯留されていた冷媒を加熱熱交換器66b、66c側に供給し、または、冷却単独運転中に寝込み回収漏れになった冷媒を回収するとともに、冷却単独運転に必要な冷媒循環量を確保するので、冷却加熱同時運転、冷却単独運転など各運転モードで適正な冷媒循環量が得られ、冷却・加熱運転を高効率で行うことができる。
The vending machine according to claim 5-6 according to the present invention is the vending machine according to claim 4, wherein the external heat exchanger has a structure integrated with the condenser, and the external heat exchanger has the structure described above. Since the condenser has the common heat radiation fin 82 by being arranged on the windward side from the condenser, the heat radiation efficiency of the refrigerant flowing through the external heat exchange pipe and the condenser pipe is improved.
A vending machine according to a seventh aspect of the present invention is the vending machine according to the fourth aspect, wherein the fourth or / and fifth electromagnetic valve is controlled downstream of the condenser and the external heat exchanger, and the opening and closing of the electromagnetic valve is controlled. Control means, and the control means can appropriately adjust the refrigerant circulation amount in each operation mode by controlling the refrigerant circulation amount by opening and closing the fourth and / or fifth electromagnetic valve. Since it is possible, cooling and heating operation can be performed with high efficiency.
The vending machine according to claim 8-9 according to the present invention is the vending machine according to claim 7, wherein the second expansion means is an electronic expansion valve, and the control means is at the start of simultaneous heating / cooling operation or cooling. When switching from single operation to simultaneous heating / cooling operation or after a certain time of operation during simultaneous heating / cooling operation, the electronic expansion valve is set to a predetermined opening, and the first side on the inlet side of the heating heat exchanger is set. And then the refrigerant circulation amount is controlled by closing the solenoid valve at the condenser inlet, and the second expansion means is an electronic expansion valve, and the control means includes: Opening the solenoid valve on the condenser inlet side at the start of the cooling single operation, or when switching from the simultaneous heating and cooling operation to the cooling single operation, or after a certain time operation during the cooling single operation, Close the first solenoid valve on the inlet side of the heating heat exchanger, Closed electromagnetic valve to control the refrigerant circulation amount in the fully open the electronic expansion valve. As a result, the refrigerant stored in the condenser 62 and the evaporators 65a, 65b, and 65c during the single cooling operation is supplied to the heating heat exchangers 66b and 66c, or the stagnation and recovery leakage occurs during the single cooling operation. In addition to collecting the refrigerant, the refrigerant circulation amount necessary for the single cooling operation is ensured, so that an appropriate refrigerant circulation amount can be obtained in each operation mode such as the simultaneous cooling and heating operation and the single cooling operation, and the cooling and heating operation is enhanced. Can be done with efficiency.

本発明に係る請求項10の自動販売機は、請求項7において、加熱熱交換器の凝縮温度を検出する凝縮温検出手段を設け、制御手段は、凝縮温検出手段が検知した凝縮温度に応じて第4の電磁弁の開閉により徐々に冷媒循環量を制御するので、適正な冷媒循環量が得られ、冷却・加熱運転が高効率で行うことができる。
本発明に係る請求項11−12の自動販売機は、請求項10において、制御手段は、凝縮温検出手段が検知した凝縮温度が所定の温度により高い場合には、第4の電磁弁を閉成し、前回の操作時間以下の時間で凝縮器の入口側の電磁弁68を開成することにより冷媒循環量を制御し、また、凝縮温検出手段が検知した凝縮温度が所定の温度により低い場合には、第4の電磁弁を所定時間の閉成することにより冷媒循環量を微量増加させて制御する。このことにより、運転モード切替後においても、冷媒循環量を微調整して、冷却・加熱運転を高効率で行うことができる。
A vending machine according to a tenth aspect of the present invention is the vending machine according to the seventh aspect, wherein a condensation temperature detecting means for detecting a condensation temperature of the heating heat exchanger is provided, and the control means is in accordance with the condensation temperature detected by the condensation temperature detecting means. Since the refrigerant circulation amount is gradually controlled by opening and closing the fourth solenoid valve, an appropriate refrigerant circulation amount can be obtained, and the cooling / heating operation can be performed with high efficiency.
The vending machine according to claim 11-12 of the present invention is the vending machine according to claim 10, wherein the control means closes the fourth solenoid valve when the condensation temperature detected by the condensation temperature detection means is higher than a predetermined temperature. The refrigerant circulation amount is controlled by opening the solenoid valve 68 on the inlet side of the condenser in a time shorter than the previous operation time, and the condensation temperature detected by the condensation temperature detection means is lower than the predetermined temperature. First, the fourth solenoid valve is closed for a predetermined time to control the refrigerant circulation amount to be slightly increased. Thus, even after the operation mode is switched, the refrigerant circulation amount can be finely adjusted, and the cooling / heating operation can be performed with high efficiency.

以下に添付図面を参照して、本発明に係る自動販売機の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
(実施例1)
まず、本発明の実施例1に係る自動販売機について説明する。なお、図1は本発明の実施例1に係る自動販売機を示す斜視図、図2は、図1に示した自動販売機の断面図であり、図3は、本発明の実施例1に係る冷媒回路図である。図4は制御装置のブロック図を示し、図5は、図3の冷媒回路図における冷媒の流れを示し、(a)は運転モードCCCの冷媒の流れを示す回路図であり、(b)は運転モードCCHの冷媒の流れを示す回路図であり、(c)は運転モードCHHの冷媒の流れを示す回路図である。
これら図において、自動販売機は、前面が開口した直方状の断熱体として形成された本体キャビネット10と、その前面に設けられた外扉20および内扉30と、本体キャビネット10の内部を上下2段に底板11にて区画形成し、上部を例えば2つの断熱仕切板40wによって仕切られた3つの独立した商品収納庫40a、40b、40cと、下部に商品収納庫40a、40b、40cを冷却もしくは加熱する冷却/加熱ユニット60を収納する機械室50と、外扉20の内側に配設され、商品収納庫40a、40b、40c内の温度センサTにより自動販売機の冷却、加熱運転などを制御する制御手段90と、を有して構成されている。
Exemplary embodiments of a vending machine according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
Example 1
First, a vending machine according to the first embodiment of the present invention will be described. 1 is a perspective view showing the vending machine according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view of the vending machine shown in FIG. 1, and FIG. 3 shows the first embodiment of the present invention. It is the refrigerant circuit figure which concerns. 4 shows a block diagram of the control device, FIG. 5 shows a refrigerant flow in the refrigerant circuit diagram of FIG. 3, (a) is a circuit diagram showing a refrigerant flow in the operation mode CCC, and (b) is a circuit diagram. It is a circuit diagram which shows the flow of the refrigerant | coolant of operation mode CCH, (c) is a circuit diagram which shows the flow of the refrigerant | coolant of operation mode CHH.
In these drawings, the vending machine has a main body cabinet 10 formed as a rectangular heat insulator having an open front surface, an outer door 20 and an inner door 30 provided on the front surface, and an interior of the main body cabinet 10 in two directions. The bottom plate 11 is partitioned and formed at the stage, and the upper part is cooled by, for example, three independent product storage units 40a, 40b, and 40c separated by two heat insulating partition plates 40w, and the lower part product storage units 40a, 40b, and 40c are cooled or The machine room 50 for storing the cooling / heating unit 60 to be heated and the temperature sensor T in the product storage 40a, 40b, 40c are arranged inside the outer door 20 to control the cooling and heating operation of the vending machine. And a control means 90.

より詳細に説明すると、外扉20は、本体キャビネット10の前面開口を開閉するためのものであり、図には明示していないが、この外扉20の前面には、販売する商品の見本を展示する商品展示室、販売する商品を選択するための選択ボタン、貨幣を投入するための貨幣投入口、払い出された商品を取り出すための商品取出口21等々、商品の販売に必要となる構成が配置してある。
内扉30は、商品収納庫40a、40b、40cの前面を開閉し、内部の商品を保温するものであり、上下2段に分割され内部に断熱体を有する箱型形状の構造体である。上側の内扉30aは、一端を外扉20に枢軸し、他端を外扉20に係着して、外扉20の開放と同時に上側の内扉30aを開放させて、商品の補充を容易にするものである。下側の内扉30bは、一端を本体キャビネット10に枢軸し、他端を本体キャビネット10に不図示の掛金にて掛着して、外扉20を開放したときには、閉止した状態であり、商品収納庫40a、40b、40c内の冷気もしくは暖気が流出することを防ぎ、メンテナンス時など必要に応じて開放できるものである。
商品収納庫40a、40、40は、缶入り飲料やペットボトル入り飲料等の商品を所望の温度に維持した状態で収容するためのものであり、その収納庫の容量は商品収納庫40a、40c、40bの順番に大きな態様で配分されている。本実施例は、商品収納庫40aを冷却専用とし、商品収納庫40c、40bを冷却加熱兼用としている。その商品収納庫40a、40b、40cには、それぞれ、商品を上下方向に沿って並ぶ態様で収納し、販売信号により1個ずつ商品を排出するための商品搬出機構を備えた商品収納ラックR、排出された商品Sを内扉30bに取設された搬出扉31を介して外扉の販売口21へ搬出する商品搬出シュート42を有している。
More specifically, the outer door 20 is used to open and close the front opening of the main body cabinet 10 and is not shown in the figure. Product display room, selection button for selecting the product to be sold, money slot for inserting money, product outlet 21 for taking out the paid-out product, etc. Is arranged.
The inner door 30 opens and closes the front surfaces of the product storage units 40a, 40b, and 40c to keep the products in the interior warm. The inner door 30 is a box-shaped structure that is divided into upper and lower stages and has a heat insulator inside. The upper inner door 30a is pivoted at one end to the outer door 20, and the other end is engaged with the outer door 20, and the upper inner door 30a is opened at the same time as the outer door 20 is opened to facilitate replenishment of goods. It is to make. The lower inner door 30b is in a closed state when one end pivots on the main body cabinet 10 and the other end is hooked on the main body cabinet 10 with a latch (not shown) and the outer door 20 is opened. It is possible to prevent the cool air or warm air in the storage cases 40a, 40b, and 40c from flowing out, and to open as necessary during maintenance.
The product storage units 40a, 40, 40 are for storing products such as canned beverages and beverages containing plastic bottles while maintaining the desired temperature, and the capacity of the storage units is the product storage units 40a, 40c. , 40b in a large manner. In this embodiment, the product storage case 40a is exclusively used for cooling, and the product storage cases 40c and 40b are also used for cooling and heating. The product storage racks 40a, 40b, and 40c store the products in a manner that they are arranged in the vertical direction, and are provided with a product storage rack R that includes a product delivery mechanism for discharging the products one by one in response to a sales signal. There is a product carry-out chute 42 for carrying the discharged product S to the sales port 21 of the outer door through a carry-out door 31 installed in the inner door 30b.

冷却/加熱ユニット60は、冷凍サイクルを構成する圧縮機61、凝縮器62、膨張弁63、分流器64と、底板11を跨いで庫内の蒸発器65a、65b、65cとを冷媒配管で連結した冷却部と、圧縮機61から加熱熱交換器66b、66cとを冷媒配管で連結した加熱部から構成され、運転モードに応じて、庫内に冷風または温風を循環させて商品収納ラックR内の商品Sを冷却または加熱するものである。
凝縮器62の後部にはファン62fが取設され、ファン62fは機械室50の前面開口部より空気を吸入し、凝縮器62による凝縮熱を吸入するとともに、圧縮機61の排熱を吸収して、機械室50の背面開口部へ排気するためのものである。
蒸発器65a、65b、65cは、商品収納庫40a、40b、40cを冷却するためのものであり、各商品収納庫の下部に取設されている。また、加熱熱交換器66b、66cは、蒸発器65b、65cの前に取設され、商品収納庫40b、40cを加熱するためのものである。蒸発器65a、65b、65c、加熱熱交換器66b、66cは、各商品収納庫40a、40b、40cにおいて、風胴67で囲繞され、その前方にファン65fが取設され、後方にはダクト67dが取設されている。商品収納庫内の冷却/加熱は、蒸発器65a、65b、65c、加熱熱交換器66b、66cにより冷却もしくは加熱された空気を商品収納庫内の商品Sに送風し、ダクト67dより回収することで行われる。
The cooling / heating unit 60 connects the compressor 61, the condenser 62, the expansion valve 63, the flow divider 64, and the evaporators 65a, 65b, 65c in the warehouse across the bottom plate 11 with refrigerant pipes that constitute the refrigeration cycle. The cooling unit and a heating unit in which the compressor 61 and the heating heat exchangers 66b and 66c are connected by a refrigerant pipe, and depending on the operation mode, cool air or hot air is circulated in the cabinet to store the product storage rack R. The product S inside is cooled or heated.
A fan 62f is installed at the rear of the condenser 62. The fan 62f sucks air from the front opening of the machine chamber 50, sucks heat of condensation by the condenser 62, and absorbs exhaust heat of the compressor 61. Thus, the air is exhausted to the rear opening of the machine room 50.
The evaporators 65a, 65b, and 65c are for cooling the product storages 40a, 40b, and 40c, and are installed at the lower part of each product storage. The heating heat exchangers 66b and 66c are installed in front of the evaporators 65b and 65c, and are for heating the product storage boxes 40b and 40c. The evaporators 65a, 65b, 65c and the heating heat exchangers 66b, 66c are surrounded by a wind tunnel 67 in each product storage 40a, 40b, 40c, a fan 65f is installed in front of them, and a duct 67d is installed in the rear. Is installed. For cooling / heating in the product storage, the air cooled or heated by the evaporators 65a, 65b, 65c and the heating heat exchangers 66b, 66c is blown to the product S in the product storage and collected from the duct 67d. Done in

冷却/加熱ユニット60の冷媒回路構成について図3を用いて詳述する。図3に示すように圧縮機61から出た配管は電磁弁68、69を介して凝縮器62に接続され、凝縮器62から出た配管は逆止弁71を介して膨張弁63(キャピラリ)に接続されている。膨張弁63(膨張手段、キャピラリでも良い)から出た配管は分流器64に接続し、分流器64より電磁弁70a、70b、70cを介して蒸発器65a、65b、65cに接続されて、蒸発器65a、65b、65cからの配管は集合して圧縮機61に接続されている。
一方、圧縮機61から出た配管は第1の電磁弁68b、68cを介して加熱熱交換器66b、66cに接続され、加熱熱交換器66b、66cを出た配管は、逆止弁71、71を介して集合し、電磁弁68に接続されている。また、電磁弁68から出た配管は、電磁弁74を介して凝縮器62と並列となるバイパス管70に接続されている。
また、第1の電磁弁68b、68cと加熱熱交換器66b、66cとを接続する配管からバイパス管75b、75cが接続され、第2の電磁弁73b、73cを介して集合し、第2の膨張弁72(第2の膨張手段)を介して膨張弁63と分流器64との間の配管に接続されている。なお、このバイパス管75b,75cと、第2の電磁弁73b、73cおよび、第2の膨張弁72(第2の膨張手段)からなるバイパス管路が減圧管路を構成している。
The refrigerant circuit configuration of the cooling / heating unit 60 will be described in detail with reference to FIG. As shown in FIG. 3, the piping exiting from the compressor 61 is connected to a condenser 62 via electromagnetic valves 68 and 69, and the piping exiting from the condenser 62 is connected to an expansion valve 63 (capillary) via a check valve 71. It is connected to the. The piping from the expansion valve 63 (which may be an expansion means or a capillary) is connected to the flow divider 64, and is connected from the flow divider 64 to the evaporators 65a, 65b, and 65c via the electromagnetic valves 70a, 70b, and 70c. The pipes from the containers 65a, 65b, and 65c are gathered and connected to the compressor 61.
On the other hand, the piping exiting from the compressor 61 is connected to the heating heat exchangers 66b and 66c via the first electromagnetic valves 68b and 68c, and the piping exiting the heating heat exchangers 66b and 66c is connected to the check valve 71, Collected via 71 and connected to a solenoid valve 68. In addition, the piping from the electromagnetic valve 68 is connected to a bypass pipe 70 in parallel with the condenser 62 via the electromagnetic valve 74.
Further, bypass pipes 75b and 75c are connected from pipes connecting the first electromagnetic valves 68b and 68c and the heating heat exchangers 66b and 66c, and are gathered via the second electromagnetic valves 73b and 73c. It is connected to the piping between the expansion valve 63 and the flow divider 64 via the expansion valve 72 (second expansion means). The bypass pipes 75b and 75c, the second electromagnetic valves 73b and 73c, and the bypass pipe composed of the second expansion valve 72 (second expansion means) constitute a decompression pipe.

冷媒は、臨界圧力内で使用する冷媒、例えばフロン冷媒でR134aを使用している。
制御手段90は、商品収納庫40a、40b、40cの運転モードにより冷却もしくは加熱を制御するものであり、内部にCPU、メモリを有し、運転モード設定SW91の設定により冷媒回路の電磁弁開閉の制御を行う。
かかる構成で運転モードを商品収納庫40a、40b、40cがすべて冷却するモード(以下、CCCモードという)に設定すると、制御手段90は、電磁弁68、69、70a、70b、70c、73b、73cを開成し、電磁弁68b、68c、74を閉成する。図5(a)で示すように圧縮機61で圧縮された高温冷媒は、凝縮器62に凝縮され液冷媒となり、膨張弁63で膨張して低温の気液2相流となり、分流器64で3方に分流され蒸発器65a、65b、65cで蒸発し、商品収納庫40a、40b、40cが冷却される。気体となった冷媒は、圧縮機61に戻り冷凍サイクルが適温となるまで運転される。
一方、第1の電磁弁68b、68cは閉成されているけれども、圧縮機61の吐出圧により若干の高温の冷媒は漏洩する場合がある。この漏洩冷媒は、第1の電磁弁68b、68cからバイパス回路75b、75cより第2の電磁弁73b、73cを介して、膨張弁72に流入する。流入した漏洩冷媒は、膨張弁72の出口側の圧力が低いので、第2の膨張弁72により膨張され、分流器64より蒸発器65a、65b、65c流入して蒸発し低温の気体冷媒となる。このように、漏洩冷媒は、加熱熱交換器66b、66cに滞留することなく、循環する冷媒として回収されるので、回路の冷媒循環量が低減することなく、冷却能力が高効率で維持される。
As the refrigerant, R134a is used as a refrigerant used within a critical pressure, for example, a fluorocarbon refrigerant.
The control means 90 controls cooling or heating according to the operation mode of the product storage 40a, 40b, 40c, has a CPU and a memory inside, and opens / closes the electromagnetic valve of the refrigerant circuit by setting the operation mode setting SW91. Take control.
When the operation mode is set to a mode (hereinafter referred to as the CCC mode) in which the product storage units 40a, 40b, and 40c are all cooled in such a configuration, the control means 90 is operated by the electromagnetic valves 68, 69, 70a, 70b, 70c, 73b, and 73c. Is opened and the solenoid valves 68b, 68c, 74 are closed. As shown in FIG. 5 (a), the high-temperature refrigerant compressed by the compressor 61 is condensed in the condenser 62 to become liquid refrigerant, expands by the expansion valve 63, and becomes a low-temperature gas-liquid two-phase flow. The product is divided into three directions and evaporated by the evaporators 65a, 65b, and 65c, and the product storage boxes 40a, 40b, and 40c are cooled. The refrigerant turned into gas is returned to the compressor 61 and operated until the refrigeration cycle reaches an appropriate temperature.
On the other hand, although the first electromagnetic valves 68b and 68c are closed, some high-temperature refrigerant may leak due to the discharge pressure of the compressor 61. This leaked refrigerant flows from the first electromagnetic valves 68b and 68c into the expansion valve 72 through the bypass circuits 75b and 75c via the second electromagnetic valves 73b and 73c. Since the leaked refrigerant that has flowed in has a low pressure on the outlet side of the expansion valve 72, it is expanded by the second expansion valve 72, flows into the evaporators 65a, 65b, and 65c from the flow divider 64 and evaporates to become a low-temperature gaseous refrigerant. . In this way, the leaked refrigerant is collected as a circulating refrigerant without staying in the heating heat exchangers 66b and 66c, so that the cooling capacity is maintained with high efficiency without reducing the refrigerant circulation amount of the circuit. .

次に、運転モードを商品収納庫40a、40b、40cが冷却、冷却、加熱するモード(以下、CCHモードという)に設定すると、制御手段90は、電磁弁68c、69、70a、70b、73bを開成し、電磁弁68、68b、70c、73c、74を閉成する。図5(b)で示すように圧縮機61で圧縮された高温冷媒は、第1の電磁弁68cを介して加熱熱交換器66cに流入して凝縮され液冷媒となり、商品収納庫40cを加熱する。次に、凝縮された冷媒は、さらに凝縮器62にて凝縮され、膨張弁63で膨張して低温の気液2相流となり、分流器64で2方に分流され蒸発器65a、65bで蒸発し、商品収納庫40a、40bが冷却される。蒸発器65a、65bで気体となった冷媒は、圧縮機61に戻り冷凍サイクルが適温となるまで運転される。
ところで、閉成された第1の電磁弁68bから漏洩する冷媒は、前述のようにバイパス回路75bより第2の電磁弁73bを介して、第2の膨張弁72に流入し、膨張されたのち蒸発器65a、65bに流入して蒸発して回収されるので、回路の冷媒循環量が低減することなく、冷却能力が高効率で維持される。
次に、運転モードを商品収納庫40a、40b、40cが冷却、加熱、加熱するモード(以下、CHHモードという)に設定すると、制御手段90は、電磁弁68b、68c、70a、74を開成し、電磁弁68、69、70b、70c、73b、73cを閉成する。図5(c)で示すように圧縮機61で圧縮された高温冷媒は、第1の電磁弁68b、68cを介して加熱熱交換器66b、66cに流入して凝縮され、商品収納庫40b、40cを加熱する。凝縮された液冷媒は、電磁弁74、バイパス回路70を経由して膨張弁63で膨張して低温の気液2相流となり、分流器64より蒸発器65aで蒸発し、商品収納庫40aが冷却される。
Next, when the operation mode is set to a mode in which the product storage units 40a, 40b, 40c cool, cool, and heat (hereinafter referred to as CCH mode), the control means 90 sets the electromagnetic valves 68c, 69, 70a, 70b, 73b. The solenoid valves 68, 68b, 70c, 73c, and 74 are closed. As shown in FIG. 5 (b), the high-temperature refrigerant compressed by the compressor 61 flows into the heating heat exchanger 66c through the first electromagnetic valve 68c and is condensed to become liquid refrigerant, which heats the commodity storage 40c. To do. Next, the condensed refrigerant is further condensed by the condenser 62, expanded by the expansion valve 63 to become a low-temperature gas-liquid two-phase flow, divided into two by the flow divider 64, and evaporated by the evaporators 65a and 65b. Then, the product storage boxes 40a and 40b are cooled. The refrigerant turned into gas in the evaporators 65a and 65b returns to the compressor 61 and is operated until the refrigeration cycle reaches an appropriate temperature.
By the way, the refrigerant leaking from the closed first electromagnetic valve 68b flows into the second expansion valve 72 from the bypass circuit 75b via the second electromagnetic valve 73b as described above, and is expanded. Since the refrigerant flows into the evaporators 65a and 65b and is evaporated and collected, the cooling capacity is maintained with high efficiency without reducing the refrigerant circulation amount of the circuit.
Next, when the operation mode is set to a mode in which the product storage units 40a, 40b, and 40c cool, heat, and heat (hereinafter referred to as CHH mode), the control unit 90 opens the electromagnetic valves 68b, 68c, 70a, and 74. The electromagnetic valves 68, 69, 70b, 70c, 73b, 73c are closed. As shown in FIG. 5C, the high-temperature refrigerant compressed by the compressor 61 flows into the heating heat exchangers 66b and 66c via the first electromagnetic valves 68b and 68c and is condensed, and the product storage case 40b, Heat 40c. The condensed liquid refrigerant is expanded by the expansion valve 63 via the electromagnetic valve 74 and the bypass circuit 70 to become a low-temperature gas-liquid two-phase flow, and is evaporated by the evaporator 65a from the flow divider 64. To be cooled.

なお、CHHモードの場合には、第1の電磁弁68b、68cが常に開成しているので、漏洩により冷却加熱性能が低下をするという問題はない。
(実施例2)
本発明の実施例2に係る自動販売機について図6を用いて説明する。図6は、本発明の実施例2に係る冷媒回路図であり、運転モードCCC時の冷媒の流れを示す。実施例1と相違する点は、バイパス管75b、75c、第2の電磁弁73b、73cの代わりに加熱熱交換器66b、66cの出口を結合した配管からバイパス管75を、第3の電磁弁73と第3の膨張弁(膨張手段)72を介して分配器64の入口部と接続したことである。また、電磁弁68とバイパス管75入口との間に電磁弁79を設けている。その他の構成は、実施例1と実質的に同一であるので、その説明を省略する。なお、バイパス管75、第3の電磁弁73および第3の膨張弁(膨張手段)72からなるバイパス管路が減圧管路を構成している。
かかる構成において、CCCの運転モードで運転をするときには、制御手段90は、電磁弁68、69、70a、70b、70c、73を開成し、電磁弁68b、68c、74、79を閉成する。このとき、電磁弁68b、68cより漏洩する冷媒は、加熱熱交換器66b、66cを経由してバイパス回路75より、第3の電磁弁73、第3の膨張弁72を経由して膨張して分流器64に流れ込むので、回路の冷媒循環量が低減し、冷却能力が低下することがない。
In the case of the CHH mode, since the first electromagnetic valves 68b and 68c are always opened, there is no problem that the cooling and heating performance is deteriorated due to leakage.
(Example 2)
A vending machine according to a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a refrigerant circuit diagram according to the second embodiment of the present invention, and shows the flow of the refrigerant in the operation mode CCC. The difference from the first embodiment is that, instead of the bypass pipes 75b and 75c and the second electromagnetic valves 73b and 73c, the bypass pipe 75 is connected to a pipe connected to the outlets of the heating heat exchangers 66b and 66c. 73 and a third expansion valve (expansion means) 72 and connected to the inlet portion of the distributor 64. An electromagnetic valve 79 is provided between the electromagnetic valve 68 and the bypass pipe 75 inlet. Other configurations are substantially the same as those of the first embodiment, and thus the description thereof is omitted. Note that a bypass pipe composed of the bypass pipe 75, the third electromagnetic valve 73, and the third expansion valve (expansion means) 72 constitutes a decompression pipe.
In such a configuration, when operating in the CCC operation mode, the control means 90 opens the electromagnetic valves 68, 69, 70a, 70b, 70c, 73, and closes the electromagnetic valves 68b, 68c, 74, 79. At this time, the refrigerant leaking from the electromagnetic valves 68b and 68c expands via the heating heat exchangers 66b and 66c from the bypass circuit 75 via the third electromagnetic valve 73 and the third expansion valve 72. Since it flows into the flow divider 64, the refrigerant circulation amount of the circuit is reduced, and the cooling capacity is not lowered.

(実施例3)
本発明の実施例3に係る自動販売機について説明する。なお、図7は、本発明の実施例3に係る冷媒回路図を示し、図8は、図7の冷媒回路図における冷媒の流れを示し、(a)は運転モードCCCの冷媒の流れを示す回路図であり、(b)は運転モードCCHの冷媒の流れを示す回路図であり、(c)は運転モードCHHの冷媒の流れを示す回路図である。
実施例1と相違する点は、バイパス管75b、75c、第2の電磁弁73b、73cの代わりに加熱熱交換器66b、66cの出口を結合した配管から、商品収納庫の外に設けた庫外熱交換器76を介して冷媒配管77aを接続し、さらに、第3の膨張弁72aを介して分配器64の入口部に冷媒配管77bを接続したことである。また、圧縮機61に入口側配管に冷媒の気液を分離するアキュムレータ78を設けている。その他の構成は、実施例1と実質的に同一であるので、その説明を省略する。なお、加熱熱交換器66b、66cの出口に接続した庫外熱交換器76および第3の膨張弁72aからなるバイパス管路が減圧管路を構成している。
かかる構成で運転モードをCCCモードに設定すると、制御手段90は、電磁弁68、70a、70b、70cを開成し、電磁弁68b、68cを閉成する。図8(a)で示すように圧縮機61で圧縮された高温冷媒は、凝縮器62に凝縮され液冷媒となり、膨張弁63で膨張して低温の気液2相流となり、分流器64で3方に分流され蒸発器65a、65b、65cで蒸発し、商品収納庫40a、40b、40cが冷却される。気体となった冷媒は、アキュムレータ78を介して圧縮機61に戻り冷凍サイクルが適温となるまで運転される。
(Example 3)
A vending machine according to Embodiment 3 of the present invention will be described. 7 shows a refrigerant circuit diagram according to the third embodiment of the present invention, FIG. 8 shows a refrigerant flow in the refrigerant circuit diagram of FIG. 7, and (a) shows a refrigerant flow in the operation mode CCC. It is a circuit diagram, (b) is a circuit diagram which shows the flow of the refrigerant | coolant of operation mode CCH, (c) is a circuit diagram which shows the flow of the refrigerant | coolant of operation mode CHH.
The difference from the first embodiment is that the storage pipe provided outside the product storage box is connected to the piping connecting the outlets of the heating heat exchangers 66b and 66c instead of the bypass pipes 75b and 75c and the second electromagnetic valves 73b and 73c. The refrigerant pipe 77a is connected through the external heat exchanger 76, and the refrigerant pipe 77b is connected to the inlet portion of the distributor 64 through the third expansion valve 72a. Further, the compressor 61 is provided with an accumulator 78 for separating the gas-liquid refrigerant in the inlet side pipe. Other configurations are substantially the same as those of the first embodiment, and thus the description thereof is omitted. In addition, the bypass line consisting of the external heat exchanger 76 and the third expansion valve 72a connected to the outlets of the heating heat exchangers 66b and 66c constitutes a pressure reducing line.
When the operation mode is set to the CCC mode with such a configuration, the control means 90 opens the electromagnetic valves 68, 70a, 70b, and 70c, and closes the electromagnetic valves 68b and 68c. As shown in FIG. 8A, the high-temperature refrigerant compressed by the compressor 61 is condensed in the condenser 62 to become liquid refrigerant, expands in the expansion valve 63 and becomes a low-temperature gas-liquid two-phase flow, and in the flow divider 64 The product is divided into three directions and evaporated by the evaporators 65a, 65b, and 65c, and the product storage boxes 40a, 40b, and 40c are cooled. The refrigerant that has become gas returns to the compressor 61 via the accumulator 78 and is operated until the refrigeration cycle reaches an appropriate temperature.

一方、閉成された第1の電磁弁68b、68cより漏洩する冷媒は、加熱熱交換器66b、66cを経由して、庫外熱交換器76に入り凝縮される。凝縮された漏洩冷媒は、冷媒配管77aを経由して第3の膨張弁72aで膨張され、分流器64より蒸発器65a、65b、65cに流入して蒸発し低温の気体冷媒となる。このように、漏洩冷媒は、加熱熱交換器66b、66c、庫外熱交換器76に滞留することなく、循環する冷媒として回収されるので、回路の冷媒循環量が低減することなく、冷却能力が高効率で維持される。
次に、運転モードをCCHモードに設定すると、制御手段90は、電磁弁68c、70a、70bを開成し、電磁弁68、68b、70cを閉成する。図8(b)で示すように圧縮機61で圧縮された高温冷媒は、加熱熱交換器66cに流入して凝縮され、商品収納庫40cを加熱する。加熱熱交換器66cで凝縮され高温冷媒は、さらに庫外熱交換器76で凝縮され、冷媒配管77aを経由して第3の膨張弁72aで膨張される。第3の膨張弁72aで膨張された冷媒は、低温の気液2相流となり、分流器64で分流され蒸発器65a、65bで蒸発し、商品収納庫40a、40bが冷却される。蒸発器65a、65bで気体となった冷媒は、圧縮機61に戻り冷凍サイクルが適温となるまで運転される。
ところで、閉成された第1の電磁弁68bから漏洩する冷媒は、前述のように加熱熱交換器66bを経由して、庫外熱交換器76に入り凝縮され、第3の膨張弁72aで膨張され、蒸発器65a、65b流入して蒸発して回収されるので、回路の冷媒循環量が低減することなく、冷却能力が高効率で維持される。
On the other hand, the refrigerant leaking from the closed first electromagnetic valves 68b and 68c enters the external heat exchanger 76 through the heating heat exchangers 66b and 66c and is condensed. The condensed leaked refrigerant is expanded by the third expansion valve 72a via the refrigerant pipe 77a, flows into the evaporators 65a, 65b, and 65c from the flow divider 64 and evaporates to become a low-temperature gaseous refrigerant. In this way, the leaked refrigerant is recovered as a circulating refrigerant without staying in the heating heat exchangers 66b and 66c and the external heat exchanger 76, so that the cooling capacity is reduced without reducing the refrigerant circulation amount of the circuit. Is maintained with high efficiency.
Next, when the operation mode is set to the CCH mode, the control unit 90 opens the electromagnetic valves 68c, 70a, and 70b, and closes the electromagnetic valves 68, 68b, and 70c. As shown in FIG. 8B, the high-temperature refrigerant compressed by the compressor 61 flows into the heating heat exchanger 66c and is condensed to heat the commodity storage 40c. The high-temperature refrigerant condensed by the heating heat exchanger 66c is further condensed by the external heat exchanger 76, and expanded by the third expansion valve 72a via the refrigerant pipe 77a. The refrigerant expanded by the third expansion valve 72a becomes a low-temperature gas-liquid two-phase flow, is divided by the flow divider 64 and is evaporated by the evaporators 65a and 65b, and the product storage boxes 40a and 40b are cooled. The refrigerant turned into gas in the evaporators 65a and 65b returns to the compressor 61 and is operated until the refrigeration cycle reaches an appropriate temperature.
By the way, the refrigerant leaking from the closed first electromagnetic valve 68b enters the external heat exchanger 76 through the heating heat exchanger 66b as described above, is condensed, and is then condensed by the third expansion valve 72a. Since the refrigerant is expanded and flows into the evaporators 65a and 65b to evaporate and is collected, the cooling capacity is maintained with high efficiency without reducing the refrigerant circulation amount of the circuit.

また、冷凍サイクルにおいて、凝縮する熱交換器は、加熱熱交換器66cと庫外熱交換器76であり、蒸発する熱交換器は、蒸発器65a、65bとなるので、凝縮する熱交換器の容量が大きい状態で運転される結果、冷却能力が低下することを抑制する。
次に、運転モードをCHHモードに設定すると、制御手段90は、電磁弁68b、68c、70aを開成し、電磁弁68、70b、70cを閉成する。図8(c)で示すように圧縮機61で圧縮された高温冷媒は、加熱熱交換器66b、66cに流入して凝縮され、商品収納庫40b、40cを加熱する。加熱熱交換器66b、66cで凝縮され高温冷媒は、さらに庫外熱交換器76で凝縮され、冷媒配管77aを経由して第3の膨張弁72aで膨張される。第3の膨張弁72aで膨張された冷媒は、低温の気液2相流となり、分流器64を経由して蒸発器65aで蒸発し、商品収納庫40aが冷却される。蒸発器65aで気体となった冷媒は、圧縮機61に戻り冷凍サイクルが適温となるまで運転される。
なお、CHHモードの場合には、第1の電磁弁68b、68cが常に開成しているので、漏洩により冷却加熱性能が低下をするという問題はない。
また、冷凍サイクルにおいて、凝縮する熱交換器は、加熱熱交換器66b、66cと庫外熱交換器76であり、蒸発する熱交換器は、蒸発器65aとなるので、凝縮する熱交換器の容量が十分に大きい状態で運転される結果、冷却能力が低下することを抑制する。
(実施例4)
本発明の実施例4に係る自動販売機について説明する。なお、図9は、本発明の実施例4に係る冷媒回路図を示し、図10は凝縮器の配管構成を示す模式図であり、(a)は平面図、(b)は正面図である。
In the refrigeration cycle, the heat exchangers that condense are the heating heat exchanger 66c and the external heat exchanger 76, and the heat exchangers that evaporate are the evaporators 65a and 65b. As a result of operating with a large capacity, the cooling capacity is prevented from being lowered.
Next, when the operation mode is set to the CHH mode, the control unit 90 opens the electromagnetic valves 68b, 68c, 70a and closes the electromagnetic valves 68, 70b, 70c. As shown in FIG. 8C, the high-temperature refrigerant compressed by the compressor 61 flows into the heat exchangers 66b and 66c and is condensed to heat the product storage boxes 40b and 40c. The high-temperature refrigerant condensed by the heating heat exchangers 66b and 66c is further condensed by the external heat exchanger 76 and expanded by the third expansion valve 72a via the refrigerant pipe 77a. The refrigerant expanded by the third expansion valve 72a becomes a low-temperature gas-liquid two-phase flow, evaporates by the evaporator 65a via the flow divider 64, and the commodity storage 40a is cooled. The refrigerant turned into gas in the evaporator 65a returns to the compressor 61 and is operated until the refrigeration cycle reaches an appropriate temperature.
In the case of the CHH mode, since the first electromagnetic valves 68b and 68c are always opened, there is no problem that the cooling and heating performance is deteriorated due to leakage.
In the refrigeration cycle, the heat exchangers that condense are heating heat exchangers 66b and 66c and the external heat exchanger 76, and the heat exchanger that evaporates becomes the evaporator 65a. As a result of being operated in a state where the capacity is sufficiently large, the cooling capacity is prevented from being lowered.
Example 4
A vending machine according to a fourth embodiment of the present invention will be described. FIG. 9 shows a refrigerant circuit diagram according to the fourth embodiment of the present invention, FIG. 10 is a schematic diagram showing the piping configuration of the condenser, (a) is a plan view, and (b) is a front view. .

実施例3と相違する点は、凝縮器62と庫外熱交換器76の凝縮配管82a、庫外熱交換配管82bを共通の冷却フィン82cで一体に構成をした凝縮器82を設けたことである。また、図7では、図示を省略した凝縮器82(凝縮器62と庫外熱交換器76)用のファン62f、庫内の温度を検出する庫内温センサTa、Tb、Tcを図示している。その他の構成は、実施例3と実質的に同一であるので、その説明を省略し、運転モードの動作も実施例3と実質的に同一であるので、その説明を省略する。
凝縮器82は、それぞれ独立した2個の配管として、図10(a)の白抜き矢印でファン62fの風の流れを示すように風上側に1段で、図10(b)に示すように上部位置に3ピッチの庫外熱交換配管82bおよびその配管以外の配管である凝縮配管82aとを有し、これらの配管を共通の放熱フィン82cと熱結合して構成されている。したがって、風上側に配設された庫外熱交換配管82bは凝縮配管82aよりも効率よく熱交換されることになる。また、図8の運転モードに示すように冷却同時運転であるCCCモードと冷却加熱同時運転(ヒートポンプ運転ともいう)であるCCHモード、CHHモードなどでは、凝縮器62と庫外熱交換器76には同時に冷媒が流れることはない。よって、凝縮器82は、庫外熱交換配管82b、および凝縮配管82aに共通の放熱フィン82cを有しているので、放熱フィン82cの面積に対応して冷媒の放熱効率が向上することになる。
The difference from the third embodiment is that a condenser 82 in which the condenser pipe 82a and the external heat exchanger pipe 82b of the condenser 62 and the external heat exchanger 76 are integrally formed by a common cooling fin 82c is provided. is there. Further, in FIG. 7, the fan 62 f for the condenser 82 (the condenser 62 and the external heat exchanger 76) not shown, and the internal temperature sensors Ta, Tb, and Tc for detecting the internal temperature are illustrated. Yes. Since the other configuration is substantially the same as that of the third embodiment, the description thereof is omitted, and the operation in the operation mode is also substantially the same as that of the third embodiment, and thus the description thereof is omitted.
As shown in FIG. 10 (b), the condenser 82 has two independent pipes, one on the windward side as shown by the white arrow in FIG. 10 (a) and the wind flow of the fan 62f. It has a three-pitch external heat exchange pipe 82b and a condensing pipe 82a which is a pipe other than the pipe at the upper position, and these pipes are configured to be thermally coupled to a common radiating fin 82c. Accordingly, the external heat exchange pipe 82b disposed on the windward side can exchange heat more efficiently than the condensing pipe 82a. Further, as shown in the operation mode of FIG. 8, in the CCC mode that is the simultaneous cooling operation and the CCH mode and the CHH mode that are the simultaneous cooling and heating operation (also referred to as heat pump operation), the condenser 62 and the external heat exchanger 76 are connected. The refrigerant will not flow at the same time. Therefore, since the condenser 82 has the heat radiation fins 82c common to the external heat exchange pipe 82b and the condensation pipe 82a, the heat radiation efficiency of the refrigerant is improved corresponding to the area of the heat radiation fins 82c. .

ファン62fは、いわゆるプロペラファンであり直流モータで駆動され、庫内温センサTa、Tb、Tcにより回転制御される。すなわち、加熱運転する室が庫内設定温度より高い場合には、ファン62fを全速で回転させ庫外熱交換配管82bによる放熱を増加させることにより、冷凍サイクルの冷却能力を増加させる。また、加熱運転する室が庫内設定温度より低い場合には、ファン62fを減速もしくは停止させて庫外熱交換配管82bによる放熱を低減もしくは停止して、加熱熱交換器66b、66cの加熱能力を増加させる。具体的には、加熱運転する室が庫内設定温度より高く、冷却運転するすべての室が庫内設定温度より高い場合には、ファン62fは全速運転される。加熱運転する室が庫内設定温度より高く、冷却運転する室が1室のみ庫内設定温度より低い場合には、ファン62fは中速もしくは低速で運転され、加熱運転する室が庫内設定温度より低い場合には、ファン62fは運転を停止される。
かかる構成で、自販機の運転を行うと、凝縮器82は、冷却単独運転時に凝縮配管82aに冷媒が流れる場合にも、冷却加熱同時運転時に庫外熱交換配管82bに冷媒が流れる場合にも、それぞれ共通の放熱フィン82cにより凝縮熱は放熱をされるので、凝縮器62と庫外熱交換器76を別個に設けた場合を比較して効率よく熱交換される。
また、庫外熱交換配管82bが凝縮器82の風上側に配設されているので、凝縮配管82aの後流の影響を受けることがないので、冷却・加熱運転の性能が向上する。
(実施例5)
本発明の実施例5に係る自動販売機について説明する。なお、図11は、本発明の実施例5に係る冷媒回路図を示し、図12は、図11の冷媒回路図における冷媒の流れを示し、(a)は冷媒の循環量を調整するときの冷媒の流れを示す回路図であり、(b)は別の冷媒の循環量を調整するときの冷媒の流れを示す回路図である。
The fan 62f is a so-called propeller fan, is driven by a DC motor, and is rotationally controlled by the internal temperature sensors Ta, Tb, Tc. That is, when the room to be heated is higher than the set temperature in the refrigerator, the cooling capacity of the refrigeration cycle is increased by rotating the fan 62f at full speed and increasing the heat radiation by the external heat exchange pipe 82b. When the heating chamber is lower than the internal set temperature, the fan 62f is decelerated or stopped to reduce or stop the heat radiation by the external heat exchange pipe 82b, and the heating capacity of the heating heat exchangers 66b and 66c. Increase. Specifically, when the heating operation chamber is higher than the internal set temperature and all the cooling operation chambers are higher than the internal set temperature, the fan 62f is operated at full speed. When the room for heating operation is higher than the set temperature in the chamber and only one room for cooling operation is lower than the set temperature in the chamber, the fan 62f is operated at medium speed or low speed, and the room for heating operation is set in the store temperature. If it is lower, the fan 62f is stopped.
In such a configuration, when the vending machine is operated, the condenser 82 can be used when the refrigerant flows through the condensation pipe 82a during the cooling only operation or when the refrigerant flows through the external heat exchange pipe 82b during the cooling heating simultaneous operation. Since the condensation heat is radiated by the common heat radiation fins 82c, the heat exchange is efficiently performed as compared with the case where the condenser 62 and the external heat exchanger 76 are provided separately.
Further, since the external heat exchange pipe 82b is disposed on the windward side of the condenser 82, it is not affected by the wake of the condenser pipe 82a, so that the performance of the cooling / heating operation is improved.
(Example 5)
A vending machine according to Embodiment 5 of the present invention will be described. FIG. 11 shows a refrigerant circuit diagram according to the fifth embodiment of the present invention, FIG. 12 shows a refrigerant flow in the refrigerant circuit diagram of FIG. 11, and (a) is when adjusting the circulation amount of the refrigerant. It is a circuit diagram which shows the flow of a refrigerant | coolant, (b) is a circuit diagram which shows the flow of a refrigerant | coolant when adjusting the circulation amount of another refrigerant | coolant.

実施例3と相違する点は、凝縮器62の出口側に第4の電磁弁80に設け、庫外熱交換器76の出口側に第5の電磁弁81に設けたことである。その他の構成は、実施例3と実質的に同一であるので、その説明を省略する。また、運転モードの動作も実施例3と実質的に同一であるので、その説明を省略する。
ここでは、運転モードに適した冷媒循環量の調整について説明をする。運転モードにおいて、CCCモード、CCHモード、CHHモードの順に冷媒循環量を少なくすることが高効率で冷却/加熱運転をすることになる。冷媒循環量を少なくするには、使用をしていない熱交換器に冷媒を滞留させれば良い。
CCCモードで運転をして、CCHモードに運転を切り替えるときに、図12(a)で示すように冷媒回路の電磁弁を設定して冷媒循環量を少なくする。具体的には、制御手段90は、電磁弁68c、70a、70b、80、81を開成し、電磁弁68、68b、70cを閉成する。圧縮機61で圧縮された冷媒は、加熱熱交換器66c、庫外熱交換器76で凝縮され、第3の膨張弁72aで膨張され、蒸発器65a、65bで蒸発し圧縮機61に戻る冷凍サイクルで循環をする。一方、CCCモードで運転中に凝縮器62に滞留していた冷媒は、第3の膨張弁72aによる低圧で吸引されて膨張弁63を介して蒸発器65a、65bに流入するので、適正な滞留量になったところで、第4の電磁弁80を閉成することにより冷媒循環量を少なくすることが出来る。
The difference from the third embodiment is that the fourth electromagnetic valve 80 is provided on the outlet side of the condenser 62, and the fifth electromagnetic valve 81 is provided on the outlet side of the external heat exchanger 76. Other configurations are substantially the same as those of the third embodiment, and thus the description thereof is omitted. Further, since the operation in the operation mode is substantially the same as that of the third embodiment, the description thereof is omitted.
Here, adjustment of the refrigerant circulation amount suitable for the operation mode will be described. In the operation mode, reducing the refrigerant circulation rate in the order of the CCC mode, the CCH mode, and the CHH mode results in a cooling / heating operation with high efficiency. In order to reduce the amount of refrigerant circulation, the refrigerant may be retained in a heat exchanger that is not being used.
When the operation is performed in the CCC mode and the operation is switched to the CCH mode, the electromagnetic valve of the refrigerant circuit is set to reduce the refrigerant circulation amount as shown in FIG. Specifically, the control means 90 opens the electromagnetic valves 68c, 70a, 70b, 80, 81, and closes the electromagnetic valves 68, 68b, 70c. The refrigerant compressed by the compressor 61 is condensed by the heating heat exchanger 66c and the external heat exchanger 76, expanded by the third expansion valve 72a, evaporated by the evaporators 65a and 65b, and returned to the compressor 61. Cycle through the cycle. On the other hand, the refrigerant staying in the condenser 62 during operation in the CCC mode is sucked at a low pressure by the third expansion valve 72a and flows into the evaporators 65a and 65b through the expansion valve 63, so that the appropriate retention When the amount is reached, the refrigerant circulation amount can be reduced by closing the fourth electromagnetic valve 80.

また、図12(b)は、別の実施例であり、具体的には、制御手段90は、電磁弁68、68c、70a、70b、80を開成し、電磁弁68b、70c、81を閉成する。圧縮機61で圧縮された冷媒は、凝縮器62で凝縮され、膨張弁63で膨張され、蒸発器65a、65bで蒸発し圧縮機61に戻る冷凍サイクルで循環をする。一方、圧縮機61で圧縮された冷媒は、膨張弁68cを経由して加熱熱交換器66c、庫外熱交換器76に蓄積することになるので、その分だけ凝縮器62に滞留する冷媒が減少する結果、適正な滞留量になったところで、第5の電磁弁81を開成し、電磁弁68、第4の電磁弁80を閉成することにより冷媒循環量を少なくすることが出来る。
なお、CCHモードからCCCモードに運転を切り替えて、冷媒循環量を増加させる場合には、単にしてCCCモード運転における電子弁の設定で良い。また、CHHモードへの変更も同様である。
上述のように第4、5の電磁弁80、81の開閉を制御することにより、各運転モードにおいて、冷媒の循環量を適正に調整することが出来る結果、高効率で冷却/加熱運転をすることができる。
(実施例6)
本発明の実施例6に係る自動販売機について図13〜17を参照して説明する。図13は、本発明の実施例6に係る冷媒回路図を示し、図14は、図13の制御ブロック図を示す。図15は、本発明の実施例6に係る自動販売機の冷媒循環量を調整する制御を示すフローチャートであり、図16は、各運転条件における電磁弁、電子膨張弁の動作図である。図17は、図15のステップ時における冷媒の流れを示す回路図で、(a)は冷媒を加熱熱交換器に供給する時の回路図、(b)は凝縮器に冷媒を回収する時の回路図を示す。
FIG. 12B shows another embodiment. Specifically, the control means 90 opens the electromagnetic valves 68, 68c, 70a, 70b, 80 and closes the electromagnetic valves 68b, 70c, 81. To do. The refrigerant compressed by the compressor 61 is condensed by the condenser 62, expanded by the expansion valve 63, evaporated by the evaporators 65 a and 65 b, and circulated in the refrigeration cycle returning to the compressor 61. On the other hand, the refrigerant compressed by the compressor 61 is accumulated in the heating heat exchanger 66c and the external heat exchanger 76 via the expansion valve 68c, so that the refrigerant staying in the condenser 62 corresponding to that amount. As a result of the decrease, the amount of refrigerant circulation can be reduced by opening the fifth solenoid valve 81 and closing the solenoid valve 68 and the fourth solenoid valve 80 when the appropriate amount of residence is reached.
When the operation is switched from the CCH mode to the CCC mode and the refrigerant circulation amount is increased, the setting of the electronic valve in the CCC mode operation may be simply performed. The change to the CHH mode is the same.
As described above, by controlling the opening and closing of the fourth and fifth solenoid valves 80 and 81, the circulation amount of the refrigerant can be appropriately adjusted in each operation mode, so that the cooling / heating operation is performed with high efficiency. be able to.
(Example 6)
A vending machine according to a sixth embodiment of the present invention will be described with reference to FIGS. FIG. 13 shows a refrigerant circuit diagram according to Embodiment 6 of the present invention, and FIG. 14 shows a control block diagram of FIG. FIG. 15 is a flowchart showing control for adjusting the refrigerant circulation amount of the vending machine according to the sixth embodiment of the present invention, and FIG. 16 is an operation diagram of the electromagnetic valve and the electronic expansion valve in each operation condition. FIG. 17 is a circuit diagram showing the flow of the refrigerant at the time of the step of FIG. 15, (a) is a circuit diagram when the refrigerant is supplied to the heating heat exchanger, and (b) is a time when the refrigerant is recovered in the condenser. A circuit diagram is shown.

実施例5と相違する点は、庫外熱交換器76の出口側の第5の電磁弁81を省略し、第2の膨張手段72aに電子膨張弁79を使用した点である。また、図11では図示を省略した、凝縮器62と庫外熱交換器76用のファン62f、庫内温度センサTa、Tb.Tcを図示している。また、図14に示すように制御手段90aには、電子膨張弁79が接続されている。また、通常運転時における運転モードの動作は実施例5と実質的に同一であるので、その説明を省略する。
本発明の実施例6は、各運転モードにおいて、冷却加熱同時運転を開始する場合、1または2の室の庫内温度が所定の設定温度に達して冷却単独の運転となった場合、またはその逆で冷却単独の運転から冷却加熱同時運転となった場合、運転時間が累積で一定時間を経過したときなど、運転中もしくは停止中に加熱熱交換器65b、65c内に寝込んだ冷媒を循環回路に戻し、冷媒循環量を適正に調整するため運転制御に関するものである。
この制御が行われるイベントは、図16の動作図に示されている。図16の第1列は番号(No.)、第2列は運転モード、第3列はイベント、第4列は制御パターン、第5列以降は電磁弁68、68c、68b、70a、70b、70c、80、電子膨張弁79の動作を示している。図16中、「○」は電磁弁の開成、「×」は閉成を示す。「☆1」は、電磁弁80を閉成後数十秒から数分後に開成することを示し、「☆2」は、電子膨張弁79を所定の開度から数十秒から数分後に全開することを示し、「★」は、電子膨張弁79を庫内温度に応じた所定開度とすることを示す。また、「☆1」、「☆2」「★」のあるモードは、所定時間毎にその開閉動作を行う。そして、イベントによる制御は、全室冷却運転モード(CCCモード)の場合には、運転開始時(図16中No1)、冷却・加熱運転モード(CCHモード、CHCモード、CHHモード)の場合には、運転開始時(図16中No3、7、11)、冷却加熱同時運転から冷却単独運転(加熱室が適温になり冷却室のみ運転)になった時(図16中No4、8、12)、または、その逆に冷却単独運転から冷却加熱同時運転なった時(図16中No6、10、14)に行われ、運転時間が累積で一定時間(たとえば2時間)を経過した時にも行われる。運転を停止するときは、すべての電磁弁68、68c、68b、70a、70b、70c、80、電子膨張弁79が閉成される。制御パターンは、加熱熱交換器66b、66cに冷媒を供給する場合を1で示し、凝縮器62に冷媒を回収する場合を2で示し、運転を停止する場合を0で示している。
The difference from the fifth embodiment is that the fifth electromagnetic valve 81 on the outlet side of the external heat exchanger 76 is omitted and an electronic expansion valve 79 is used as the second expansion means 72a. 11, the fan 62f for the condenser 62 and the external heat exchanger 76, the internal temperature sensors Ta, Tb. Tc is illustrated. As shown in FIG. 14, an electronic expansion valve 79 is connected to the control means 90a. Further, since the operation in the operation mode during normal operation is substantially the same as that of the fifth embodiment, the description thereof is omitted.
In Example 6 of the present invention, in each operation mode, when the cooling and heating simultaneous operation is started, when the internal temperature of the chamber of 1 or 2 reaches a predetermined set temperature and the operation becomes the cooling alone, or On the contrary, when the cooling-only operation is switched to the cooling-heating simultaneous operation, the refrigerant that has fallen into the heating heat exchangers 65b and 65c during operation or when the operation time has elapsed, such as when the operation time has accumulated, has been circulated. This is related to operation control in order to properly adjust the refrigerant circulation amount.
The event in which this control is performed is shown in the operation diagram of FIG. The first column in FIG. 16 is a number (No.), the second column is an operation mode, the third column is an event, the fourth column is a control pattern, the fifth column and thereafter are solenoid valves 68, 68c, 68b, 70a, 70b, The operations of 70c and 80 and the electronic expansion valve 79 are shown. In FIG. 16, “◯” indicates opening of the solenoid valve, and “×” indicates closing. “☆ 1” indicates that the solenoid valve 80 is opened several tens of seconds to several minutes after closing, and “☆ 2” indicates that the electronic expansion valve 79 is fully opened several tens of seconds to several minutes after the predetermined opening degree. “★” indicates that the electronic expansion valve 79 has a predetermined opening degree corresponding to the internal temperature. In addition, in the modes with “☆ 1”, “☆ 2”, and “★”, the opening / closing operation is performed every predetermined time. And control by event is in the case of all-chamber cooling operation mode (CCC mode), at the start of operation (No1 in FIG. 16), in the case of cooling / heating operation mode (CCH mode, CHC mode, CHH mode). , When the operation is started (No. 3, 7, 11 in FIG. 16), when the cooling and heating simultaneous operation is changed to the single cooling operation (the heating chamber is at an appropriate temperature and only the cooling chamber is operated) (No. 4, 8, and 12 in FIG. 16). Or conversely, it is performed when the cooling single operation is changed to the simultaneous cooling and heating operation (Nos. 6, 10, and 14 in FIG. 16), and is also performed when a certain time (for example, 2 hours) has elapsed. When the operation is stopped, all the electromagnetic valves 68, 68c, 68b, 70a, 70b, 70c, 80 and the electronic expansion valve 79 are closed. In the control pattern, the case where the refrigerant is supplied to the heating heat exchangers 66b and 66c is indicated by 1, the case where the refrigerant is recovered to the condenser 62 is indicated by 2, and the case where the operation is stopped is indicated by 0.

かかる構成で図15のフローチャートを参照しつつこの運転制御を説明する。このフローチャートでは、加熱熱交換器66b、66cに冷媒を供給する制御パターン1である冷却加熱同時運転を行う場合のステップS13〜22と、凝縮器62に冷媒を回収する制御パターン2である冷却単独運転を行う場合のステップS33〜42に分けられる。
例として、CCHモードのときで冷却単独運転から冷却加熱同時運転なった(図16中No6)の場合を説明する。まず始めに庫内温度センサTa、Tb、Tcより庫内温度を読み(S11)、各室の冷却、加熱の運転状態を判断する(S12)。冷却加熱同時運転中または冷却加熱同時運転に切替時であれば(S13/Yes)、次のステップで圧縮機61が運転開始時、または冷却単独運転から冷却加熱同時運転に切り替わる時、または運転時間が累積で一定時間を経過した時であるかを判定する(S14)。この条件でなければ(S14/No)、最初のステップS11に戻り、この条件であれば(S14/Yes)、以下の冷媒調整を行う。まず、庫外熱交換器76の出口側の電子膨張弁79を所定の開度に設定する(S15)。次に加熱熱交換器66cの入口側の第1の電磁弁68cが開成され(S17)、一定時間経過後(S18)、凝縮器62の入口側の電磁弁68が閉成される(S19)。この時、図17(a)に示すように冷媒が凝縮器62および、蒸発器65a、65b、65cから圧縮機61により第1の電磁弁68cを介して加熱熱交換器66cおよび庫外熱交換器76に供給される。しかる後に、第4の電磁弁80を閉成し通常運転を行う(S21)。このように、冷却単独運転中に凝縮器62および、蒸発器65a、65b、65cに貯留されていた冷媒を加熱熱交換器66c側に供給するので、適正な冷媒循環量が得られ、冷却・加熱運転を高効率で行うことができる。
This operation control will be described with reference to the flowchart of FIG. In this flowchart, steps S13 to 22 in the case of performing the cooling and heating simultaneous operation which is the control pattern 1 for supplying the refrigerant to the heating heat exchangers 66b and 66c, and the cooling alone which is the control pattern 2 for collecting the refrigerant in the condenser 62. The operation is divided into steps S33 to S42 when the operation is performed.
As an example, a case will be described in which the cooling single heating operation is changed to the cooling heating simultaneous operation in the CCH mode (No. 6 in FIG. 16). First, the internal temperature is read from the internal temperature sensors Ta, Tb, and Tc (S11), and the operation state of cooling and heating of each chamber is determined (S12). If it is during cooling / heating simultaneous operation or when switching to simultaneous cooling / heating operation (S13 / Yes), when the compressor 61 starts operation in the next step, or when switching from cooling single operation to simultaneous cooling / heating operation, or operation time It is determined whether or not a certain period of time has elapsed (S14). If this condition is not satisfied (S14 / No), the process returns to the first step S11. If this condition is satisfied (S14 / Yes), the following refrigerant adjustment is performed. First, the electronic expansion valve 79 on the outlet side of the external heat exchanger 76 is set to a predetermined opening degree (S15). Next, the first electromagnetic valve 68c on the inlet side of the heating heat exchanger 66c is opened (S17), and after a predetermined time (S18), the electromagnetic valve 68 on the inlet side of the condenser 62 is closed (S19). . At this time, as shown in FIG. 17A, the refrigerant is exchanged between the condenser 62 and the evaporators 65a, 65b and 65c by the compressor 61 through the first electromagnetic valve 68c and the heating heat exchanger 66c and the external heat exchange. Supplied to the vessel 76. Thereafter, the fourth solenoid valve 80 is closed and normal operation is performed (S21). In this way, since the refrigerant stored in the condenser 62 and the evaporators 65a, 65b, and 65c during the single cooling operation is supplied to the heating heat exchanger 66c side, an appropriate refrigerant circulation amount can be obtained, and cooling / Heating operation can be performed with high efficiency.

前述のように、制御手段90aは、加熱冷却同時運転の始動時、または冷却単独運転から加熱冷却同時運転への切換時、または加熱冷却同時運転中の一定時間運転後に、加熱熱交換器66b、66cの出口側の第1の電磁弁68b、68cを開けて、その後、凝縮器62の入口側の電磁弁68を閉成するようにして冷媒循環量を制御することにより、冷却単独運転中に凝縮器62および、蒸発器65a、65b、65cに貯留されていた冷媒を加熱熱交換器66b、66c側に供給するので、適正な冷媒循環量が得られ、冷却・加熱運転が高効率で行うことができる。
次に、CCHモードのときで冷却加熱同時運転から冷却単独運転に切り替わる時(図16中No.4)を例として説明する。図15のフローチャートでステップS11〜13に進み、ステップS13ではこの場合Noの分岐となるので、ステップS33に進む。このステップでは圧縮機61が運転開始時、または冷却加熱同時運転から冷却単独運転に切り替わる時、または運転時間が累積で一定時間を経過した時であるかを判定する(S34)。この条件でなければ(S34/No)、最初のステップ(S11)に戻り、この条件であれば(S34/Yes)、以下の冷媒調整を行う。説明例の場合は、冷却加熱同時運転から冷却単独運転に切替わるので(S34/Yes)、まず、凝縮器62の入口側の第1の電磁弁68が開成され(S35)、一定時間経過後(S36)、加熱熱交換器66cの入口側の電磁弁68cが閉成され(S37)、そして一定時間経過後(S38)、凝縮器62の出口側の第4の電磁弁80を閉成する(S39)。一定時間経過後(S40)、庫外熱交換器76の出口側の電子膨張弁79を全開にする(S41)。このことにより、図17(b)に示すように凝縮器62の出口側が遮断され、加熱熱交換器66b、66cおよび、庫外熱交換器76に貯留されている冷媒が凝縮器62に回収される。回収後、電子膨張弁79の開度を所定の位置に戻し、通常の冷却運転を行う(S42)。このように、冷却単独運転中に第1の電磁弁68bから漏れた冷媒が加熱熱交換器66b内で寝込み電子膨張弁79を介して回収できない分も含めて、加熱熱交換器66cおよび、庫外熱交換器76に貯留されていた冷媒を凝縮器62に供給するので、適正な冷媒循環量が得られ、冷却運転が高効率で行うことができる。
As described above, the control unit 90a is configured so that the heating heat exchanger 66b, During the single cooling operation, the first solenoid valves 68b and 68c on the outlet side of 66c are opened, and then the solenoid valve 68 on the inlet side of the condenser 62 is closed to control the refrigerant circulation amount. Since the refrigerant stored in the condenser 62 and the evaporators 65a, 65b, and 65c is supplied to the heating heat exchangers 66b and 66c, an appropriate refrigerant circulation amount can be obtained, and cooling and heating operations can be performed with high efficiency. be able to.
Next, description will be made by taking as an example the case of switching from the simultaneous cooling and heating operation to the single cooling operation in the CCH mode (No. 4 in FIG. 16). In the flowchart of FIG. 15, the process proceeds to steps S11 to S13. In step S13, the branch is No in this case, and thus the process proceeds to step S33. In this step, it is determined whether or not the compressor 61 starts operation, switches from simultaneous cooling and heating operation to single cooling operation, or when the operation time has accumulated a fixed time (S34). If this condition is not satisfied (S34 / No), the process returns to the first step (S11). If this condition is satisfied (S34 / Yes), the following refrigerant adjustment is performed. In the case of the explanation example, since the cooling and heating simultaneous operation is switched to the cooling single operation (S34 / Yes), first, the first electromagnetic valve 68 on the inlet side of the condenser 62 is opened (S35), and after a certain time has elapsed. (S36), the electromagnetic valve 68c on the inlet side of the heating heat exchanger 66c is closed (S37), and after a predetermined time has passed (S38), the fourth electromagnetic valve 80 on the outlet side of the condenser 62 is closed. (S39). After a predetermined time has elapsed (S40), the electronic expansion valve 79 on the outlet side of the external heat exchanger 76 is fully opened (S41). As a result, the outlet side of the condenser 62 is shut off as shown in FIG. 17B, and the refrigerant stored in the heating heat exchangers 66b and 66c and the external heat exchanger 76 is recovered by the condenser 62. The After the collection, the opening degree of the electronic expansion valve 79 is returned to a predetermined position, and a normal cooling operation is performed (S42). In this way, the heating heat exchanger 66c and the storage including the amount that the refrigerant leaked from the first electromagnetic valve 68b during the single cooling operation cannot be recovered through the electronic expansion valve 79 in the heating heat exchanger 66b. Since the refrigerant stored in the external heat exchanger 76 is supplied to the condenser 62, an appropriate refrigerant circulation amount can be obtained and the cooling operation can be performed with high efficiency.

前述のように、制御手段90aは、冷却単独運転の開始時、または、加熱冷却同時運転中から冷却単独運転への切換時、または、冷却単独運転中の一定時間運転後に、凝縮器62の入口側の第1の電磁弁68を開成し、その後、加熱熱交換器66b、66cの入口側の第1の電磁弁68b、68cを閉成し、第4の電磁弁80を閉成し、電子膨張弁79を全開にして冷媒循環量を制御することにより、冷却単独運転中に寝込み回収漏れになった冷媒を回収するとともに、冷却単独運転に必要な冷媒循環量を確保するので、冷却・加熱運転が高効率で行うことができる。
(実施例7)
本発明の実施例7に係る自動販売機について図18〜20を参照して説明する。図18は、本発明の実施例7に係る冷媒回路図を示し、図19は、制御ブロック図を示す。図20は運転モード切替時における冷媒循環量を調整するフローチャートである。
実施例7は、凝縮温度により冷媒循環量を制御するものであり、実施例5と相違する点は、加熱熱交換器66c、66bの出口側に凝縮温度を検知する第1の温度センサ84を設け、凝縮器62の出口側に凝縮温度を検知する第2の温度センサ85を設けたことである。また、図11では図示を省略した、凝縮器62と庫外熱交換器76用のファン62f、および、庫内温度センサTa、Tb、Tcを図示している。また、図19に示すように制御手段90bには、第1の温度センサ84および第2の温度センサ85が接続されている。また、運転モードの動作も実施例5と実質的に同一であるので、その説明を省略する。
As described above, the control unit 90a is configured to enter the inlet of the condenser 62 at the start of the single cooling operation, at the time of switching from the simultaneous heating / cooling operation to the single cooling operation, or after the fixed time operation during the single cooling operation. Side first solenoid valve 68 is opened, then the first solenoid valves 68b and 68c on the inlet side of the heating heat exchangers 66b and 66c are closed, the fourth solenoid valve 80 is closed, and the electron By fully opening the expansion valve 79 and controlling the amount of refrigerant circulation, the refrigerant that has fallen into stagnation during the single cooling operation is recovered and the refrigerant circulation amount necessary for the single cooling operation is ensured. Operation can be performed with high efficiency.
(Example 7)
A vending machine according to Embodiment 7 of the present invention will be described with reference to FIGS. FIG. 18 shows a refrigerant circuit diagram according to Embodiment 7 of the present invention, and FIG. 19 shows a control block diagram. FIG. 20 is a flowchart for adjusting the refrigerant circulation amount when the operation mode is switched.
In the seventh embodiment, the refrigerant circulation amount is controlled by the condensing temperature. The difference from the fifth embodiment is that the first temperature sensor 84 for detecting the condensing temperature is provided on the outlet side of the heating heat exchangers 66c and 66b. The second temperature sensor 85 for detecting the condensation temperature is provided on the outlet side of the condenser 62. Moreover, the fan 62f for the condenser 62 and the external heat exchanger 76, and the internal temperature sensors Ta, Tb, and Tc, which are not shown in FIG. 11, are illustrated. As shown in FIG. 19, a first temperature sensor 84 and a second temperature sensor 85 are connected to the control means 90b. Further, since the operation in the operation mode is substantially the same as that of the fifth embodiment, the description thereof is omitted.

かかる構成で図20のフローチャートを参照しつつ3室冷却運転モード(CCC運転モード)から、冷却・加熱運転モード(HCC、CHC、HHC運転モード)に切り替え時の制御動作を、例としてHHC運転モードに切り替え時で説明する。
まず、加熱熱交換器66b、66c側の第1の電磁弁68b、68cを開成し、電磁弁68を閉成し(S51)、庫内温度センサTa、Tb、Tc、第1の温度センサ84および第2の温度センサ85より温度データを読み込む(S52)。制御手段90bは、温度データにより電子膨張弁72a、ファン62fを調整する(S53)。第1の温度センサ84で検知した凝縮温度が異常判定値(たとえば、80℃)以上であれば(S54/Yes)、凝縮器62の出口側の第4の電磁弁80を閉成し(S55)、一定時間(たとえば1分間)後に電磁弁68を所定時間(たとえば2分間)開成をする(S56)。この操作により加熱熱交換器66b、66cを循環している冷媒が凝縮器62に回収され、冷媒循環量が低減する。そして、庫内温度センサTa.Tb、Tcの検知した温度が目標値(たとえば冷却なら−2〜8℃、加熱なら50〜65℃)を満足していれば(S57/Yes)、圧縮機61の運転を停止する(S58)。また、庫内温度センサTa.Tb、Tcの検知した温度が目標値を満足していなければ(S57/No)、電子膨張弁72a、ファン62fを調整するステップS53に戻る。また、ステップS54にて凝縮温度が異常判定値以下であれば(S54/No)、庫内温度センサTa.Tb、Tcの検知した温度が目標値を満足する(S57)まで電子膨張弁72a、ファン62fの調整、および凝縮器62内に滞留している冷媒の調整を行う。
With this configuration, referring to the flowchart of FIG. 20, the control operation when switching from the three-chamber cooling operation mode (CCC operation mode) to the cooling / heating operation mode (HCC, CHC, HHC operation mode) is taken as an example in the HHC operation mode. It will be explained at the time of switching.
First, the first electromagnetic valves 68b and 68c on the heating heat exchangers 66b and 66c side are opened, the electromagnetic valve 68 is closed (S51), the inside temperature sensors Ta, Tb and Tc, and the first temperature sensor 84. Then, temperature data is read from the second temperature sensor 85 (S52). The controller 90b adjusts the electronic expansion valve 72a and the fan 62f based on the temperature data (S53). If the condensation temperature detected by the first temperature sensor 84 is equal to or higher than an abnormality determination value (for example, 80 ° C.) (S54 / Yes), the fourth solenoid valve 80 on the outlet side of the condenser 62 is closed (S55). ) After a predetermined time (for example, 1 minute), the solenoid valve 68 is opened for a predetermined time (for example, 2 minutes) (S56). By this operation, the refrigerant circulating through the heating heat exchangers 66b and 66c is recovered by the condenser 62, and the refrigerant circulation amount is reduced. And the inside temperature sensor Ta. If the temperature detected by Tb and Tc satisfies a target value (for example, -2 to 8 ° C for cooling and 50 to 65 ° C for heating) (S57 / Yes), the operation of the compressor 61 is stopped (S58). . The inside temperature sensor Ta. If the temperatures detected by Tb and Tc do not satisfy the target values (S57 / No), the process returns to step S53 for adjusting the electronic expansion valve 72a and the fan 62f. If the condensation temperature is equal to or lower than the abnormality determination value in step S54 (S54 / No), the inside temperature sensor Ta. The electronic expansion valve 72a and the fan 62f are adjusted and the refrigerant staying in the condenser 62 is adjusted until the temperatures detected by Tb and Tc satisfy the target values (S57).

このように、加熱熱交換器66b、66cの凝縮温度を検出する第1の温度センサ84(凝縮温検出手段)を設け、制御手段90bは、凝縮温検出手段が検知した凝縮温度に応じて第4の電磁弁80の開閉により徐々に冷媒循環量を制御するので、適正な冷媒循環量が得られ、冷却・加熱運転が高効率で行うことができる。
(実施例8)
本発明の実施例8に係る自動販売機は、冷却加熱同時運転(ヒートポンプ運転)後に、冷媒の循環量を凝縮温度により微調整する制御に関するものであり、図21のフローチャートを参照して説明する。なお、図21は運転中における冷媒循環量を微調整するフローチャートであり、また、冷媒回路図、制御ブロック図は、実施例7と実質的に同一であるので、その説明を省略する。例としてHHC運転モードにて運転中の場合について説明する。
まず、加熱熱交換器66b、66c側の第1の電磁弁68b、68cを開成し、電磁弁68を閉成し(S61)、庫内温度センサTa.Tb、Tc、第1の温度センサ84および第2の温度センサ85より温度データを読み込む(S62)。温度データにより制御手段90bは、電子膨張弁72a、ファン62fを調整する(S63)。第1の温度センサ84で検知した凝縮温度が下限値T1と上限値T2以外であれば(S64/No)、まず凝縮温度が上限値T2であるかを判定し(S65)、凝縮温度が上限値T2以上であれば(S65/Yes)、凝縮器62の出口側に位置する第4の電磁弁80を閉成し(S66)、前回の操作時間以下の時間で凝縮器62の入口側の第1の電磁弁68を開成する(S67)。この操作により加熱熱交換器66b、66cを循環している冷媒が凝縮器62に回収され、冷媒循環量が低減して、適正な冷媒循環量に微調整できる。そして、庫内温度センサTa.Tb、Tcの検知した温度が目標値(たとえば冷却なら−2〜8℃、加熱なら50〜65℃)を満足していれば(S68/Yes)、圧縮機61の運転を停止する(S71)。また、庫内温度センサTa.Tb、Tcの検知した温度が目標値を満足していなければ(S68/No)、電子膨張弁72a、ファン62fを調製するステップS63に戻る。
As described above, the first temperature sensor 84 (condensation temperature detection means) for detecting the condensation temperature of the heating heat exchangers 66b and 66c is provided, and the control means 90b performs the first operation according to the condensation temperature detected by the condensation temperature detection means. Since the refrigerant circulation amount is gradually controlled by opening and closing the electromagnetic valve 80, an appropriate refrigerant circulation amount can be obtained, and cooling and heating operations can be performed with high efficiency.
(Example 8)
The vending machine according to the eighth embodiment of the present invention relates to control for finely adjusting the circulation amount of the refrigerant by the condensation temperature after the cooling and heating simultaneous operation (heat pump operation), and will be described with reference to the flowchart of FIG. . FIG. 21 is a flowchart for finely adjusting the refrigerant circulation amount during operation, and the refrigerant circuit diagram and the control block diagram are substantially the same as those in the seventh embodiment, and thus the description thereof is omitted. As an example, a case where the vehicle is operating in the HHC operation mode will be described.
First, the first electromagnetic valves 68b and 68c on the heating heat exchangers 66b and 66c side are opened, the electromagnetic valve 68 is closed (S61), and the inside temperature sensor Ta. Temperature data is read from Tb, Tc, the first temperature sensor 84, and the second temperature sensor 85 (S62). The control means 90b adjusts the electronic expansion valve 72a and the fan 62f based on the temperature data (S63). If the condensation temperature detected by the first temperature sensor 84 is other than the lower limit value T1 and the upper limit value T2 (S64 / No), it is first determined whether the condensation temperature is the upper limit value T2 (S65), and the condensation temperature is the upper limit value. If it is equal to or greater than the value T2 (S65 / Yes), the fourth solenoid valve 80 located on the outlet side of the condenser 62 is closed (S66), and the time on the inlet side of the condenser 62 is less than the previous operation time. The first electromagnetic valve 68 is opened (S67). By this operation, the refrigerant circulating through the heating heat exchangers 66b and 66c is recovered by the condenser 62, the refrigerant circulation amount is reduced, and it can be finely adjusted to an appropriate refrigerant circulation amount. And the inside temperature sensor Ta. If the temperature detected by Tb and Tc satisfies a target value (for example, -2 to 8 ° C for cooling, 50 to 65 ° C for heating) (S68 / Yes), the operation of the compressor 61 is stopped (S71). . The inside temperature sensor Ta. If the temperatures detected by Tb and Tc do not satisfy the target values (S68 / No), the process returns to step S63 for preparing the electronic expansion valve 72a and the fan 62f.

また、ステップS65にて凝縮温度が上限値T2以上でなければ(S65/No)、ステップS69に進み凝縮温度が下限値T1以下あるかを判定し、凝縮温度が下限値T1以下でなければ(S69/No)、ステップS68に進み、凝縮温度が下限値T1以下であれば(S69/Yes)、凝縮器62の出口側の第4の電磁弁80を一定時間開成する(S70)。この操作により凝縮器62に貯留している冷媒が加熱熱交換器66b、66cに供給されるので、冷媒循環量が増加して、適正な冷媒循環量に微調整できる。
また、ステップS64にて第1の温度センサ84で検知した凝縮温度が下限値T1と上限値T2の間であれば(S64/Yes)、冷媒循環量を調整することなくステップS68に進み、庫内温度センサTa.Tb、Tcの検知した温度が目標値を満足するまで、上述の制御が継続される。
このように、制御手段90bは、凝縮温検出手段が検知した凝縮温度が所定の温度により高い場合には、第4の電磁弁80を閉成し、前回の操作時間以下の時間で凝縮器62の入口側の電磁弁68を開成することにより冷媒循環量を制御する。また、制御手段90bは、凝縮温検出手段が検知した凝縮温度が所定の温度により低い場合には、第4の電磁弁80を所定時間の開成することにより冷媒循環量を微量増加させて制御する。このことにより、運転モード切替後においても、冷媒循環量を微調整して、冷却・加熱運転を高効率で行うことができる。
If the condensation temperature is not higher than the upper limit value T2 in step S65 (S65 / No), the process proceeds to step S69 to determine whether the condensation temperature is lower than the lower limit value T1, and if the condensation temperature is not lower than the lower limit value T1 ( (S69 / No), the process proceeds to step S68, and if the condensing temperature is equal to or lower than the lower limit value T1 (S69 / Yes), the fourth solenoid valve 80 on the outlet side of the condenser 62 is opened for a certain time (S70). By this operation, the refrigerant stored in the condenser 62 is supplied to the heating heat exchangers 66b and 66c, so that the refrigerant circulation amount is increased and fine adjustment can be made to an appropriate refrigerant circulation amount.
If the condensation temperature detected by the first temperature sensor 84 in step S64 is between the lower limit value T1 and the upper limit value T2 (S64 / Yes), the process proceeds to step S68 without adjusting the refrigerant circulation amount. Internal temperature sensor Ta. The above-described control is continued until the temperatures detected by Tb and Tc satisfy the target value.
As described above, when the condensing temperature detected by the condensing temperature detecting means is higher than the predetermined temperature, the control means 90b closes the fourth electromagnetic valve 80 and performs the condenser 62 in a time shorter than the previous operation time. The refrigerant circulation amount is controlled by opening the solenoid valve 68 on the inlet side of the refrigerant. Further, when the condensing temperature detected by the condensing temperature detecting means is lower than the predetermined temperature, the control means 90b controls the fourth electromagnetic valve 80 to be slightly increased by opening the fourth electromagnetic valve 80 for a predetermined time. . Thus, even after the operation mode is switched, the refrigerant circulation amount can be finely adjusted, and the cooling / heating operation can be performed with high efficiency.

以上のように、本発明に係る自動販売機は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷媒回路にて冷却または加熱するのに適している。   As described above, the vending machine according to the present invention is suitable for cooling or heating a product such as a beverage contained in a container such as a can, a bottle, a pack, or a plastic bottle in a refrigerant circuit.

本発明の実施例1に係る自動販売機を示す斜視図である。It is a perspective view which shows the vending machine which concerns on Example 1 of this invention. 図1に示した自動販売機の断面図である。It is sectional drawing of the vending machine shown in FIG. 本発明の実施例1に係る冷媒回路図である。It is a refrigerant circuit figure concerning Example 1 of the present invention. 制御装置のブロック図である。It is a block diagram of a control apparatus. 図3の冷媒回路図における冷媒の流れを示し、(a)は運転モードCCCの冷媒の流れを示す回路図であり、(b)は運転モードCCHの冷媒の流れを示す回路図であり、(c)は運転モードCHHの冷媒の流れを示す回路図である。3 shows a refrigerant flow in the refrigerant circuit diagram of FIG. 3, (a) is a circuit diagram showing a refrigerant flow in the operation mode CCC, (b) is a circuit diagram showing a refrigerant flow in the operation mode CCH, c) is a circuit diagram showing the flow of refrigerant in the operation mode CHH. 本発明の実施例2に係る冷媒回路図である。It is a refrigerant circuit figure concerning Example 2 of the present invention. 本発明の実施例3に係る冷媒回路図である。It is a refrigerant circuit figure concerning Example 3 of the present invention. 図7の冷媒回路図における冷媒の流れを示し、(a)は運転モードCCCの冷媒の流れを示す回路図であり、(b)は運転モードCCHの冷媒の流れを示す回路図であり、(c)は運転モードCHHの冷媒の流れを示す回路図である。FIG. 7 shows the refrigerant flow in the refrigerant circuit diagram of FIG. 7, (a) is a circuit diagram showing the refrigerant flow in the operation mode CCC, (b) is a circuit diagram showing the refrigerant flow in the operation mode CCH, c) is a circuit diagram showing the flow of refrigerant in the operation mode CHH. 本発明の実施例4に係る冷媒回路図である。It is a refrigerant circuit figure concerning Example 4 of the present invention. 凝縮器の配管構成を示す模式図であり、(a)は平面図、(b)は正面図である。It is a schematic diagram which shows the piping structure of a condenser, (a) is a top view, (b) is a front view. 本発明の実施例5に係る冷媒回路図である。It is a refrigerant circuit figure concerning Example 5 of the present invention. 図11の冷媒回路図における冷媒の流れを示し、(a)は冷媒の循環量を調整するときの冷媒の流れを示す回路図であり、(b)は別の冷媒の循環量を調整するときの冷媒の流れを示す回路図である。FIG. 11 shows the flow of refrigerant in the refrigerant circuit diagram of FIG. 11, (a) is a circuit diagram showing the flow of refrigerant when adjusting the circulation amount of refrigerant, and (b) is when adjusting the circulation amount of another refrigerant. It is a circuit diagram which shows the flow of the refrigerant | coolant. 本発明の実施例6に係る冷媒回路図である。It is a refrigerant circuit figure concerning Example 6 of the present invention. 図13の制御ブロック図である。FIG. 14 is a control block diagram of FIG. 13. 本発明の実施例6に係る自動販売機の冷媒循環量を調整する制御を示すフローチャートである。It is a flowchart which shows the control which adjusts the refrigerant | coolant circulation amount of the vending machine which concerns on Example 6 of this invention. 各運転条件における電磁弁、電子膨張弁の動作図である。It is an operation diagram of a solenoid valve and an electronic expansion valve under each operating condition. 図15のステップ時における冷媒の流れを示す回路図で、(a)は冷媒を加熱熱交換器に供給する時の回路図、(b)は凝縮器に冷媒を回収する時の回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant at the time of the step of FIG. 15, (a) is a circuit diagram when supplying a refrigerant | coolant to a heating heat exchanger, (b) is a circuit diagram when collect | recovering refrigerant | coolants to a condenser. . 本発明の実施例7に係る冷媒回路図である。It is a refrigerant circuit figure concerning Example 7 of the present invention. 本発明の実施例7に係る制御ブロック図である。It is a control block diagram concerning Example 7 of the present invention. 運転モード切替時における冷媒循環量を調整するフローチャートである。It is a flowchart which adjusts the refrigerant | coolant circulation amount at the time of operation mode switching. 運転中における冷媒循環量を微調整するフローチャートである。3 is a flowchart for finely adjusting a refrigerant circulation amount during operation.

符号の説明Explanation of symbols

10 本体キャビネット
20 外扉
30 内扉
40a、40b、40c 商品収納庫
60 冷却/加熱ユニット
61 圧縮機
62 凝縮器
63 膨張弁(膨張手段)
65a、65b、65c 蒸発器
68b、68c 第1の電磁弁
72 第2の膨張弁
72a 第3の膨張弁
73 第3の電磁弁
73b、73c 第2の電磁弁
80 第4の電磁弁
81 第5の電磁弁
83 電子膨張弁
84 第1の温度センサ(凝縮温検出手段)
85 第2の温度センサ
90 制御装置
91 運転モード選択SW
DESCRIPTION OF SYMBOLS 10 Main body cabinet 20 Outer door 30 Inner door 40a, 40b, 40c Product storage 60 Cooling / heating unit 61 Compressor 62 Condenser 63 Expansion valve (expansion means)
65a, 65b, 65c Evaporator 68b, 68c 1st solenoid valve 72 2nd expansion valve 72a 3rd expansion valve 73 3rd solenoid valve 73b, 73c 2nd solenoid valve 80 4th solenoid valve 81 5th Solenoid valve 83 Electronic expansion valve 84 First temperature sensor (condensation temperature detection means)
85 Second temperature sensor 90 Controller 91 Operation mode selection SW

Claims (12)

複数の商品収納庫を有し、運転モードにより商品収納庫を冷却もしくは加熱するための自動販売機であって、
冷媒を圧縮する圧縮機と、庫外に設け冷媒を凝縮する凝縮器と、冷媒を膨張させる膨張手段と、膨張手段より膨張した冷媒を分配する分配器と、庫内に設け冷媒を蒸発する複数の蒸発器と、にて冷凍サイクルを構成し、
前記圧縮機の入口と前記凝縮器の入口との間で接続され、庫内に設けて冷媒を凝縮する加熱熱交換器と、前記圧縮機と前記加熱熱交換器との間に第1の電磁弁と、を有する自動販売機において、
前記加熱熱交換器と前記膨張手段出口側管路との間を第2の膨張手段を介して接続する減圧管路を有することを特徴とする自動販売機。
A vending machine having a plurality of product storages for cooling or heating the product storages according to the operation mode,
A compressor that compresses the refrigerant; a condenser that is provided outside the refrigerator to condense the refrigerant; an expansion means that expands the refrigerant; a distributor that distributes the refrigerant expanded by the expansion means; The refrigeration cycle with the evaporator of
A heating heat exchanger connected between the inlet of the compressor and the inlet of the condenser and provided in the warehouse to condense the refrigerant, and a first electromagnetic wave between the compressor and the heating heat exchanger A vending machine having a valve,
A vending machine comprising a pressure reducing pipe connecting the heating heat exchanger and the expansion means outlet side pipe via a second expansion means.
前記減圧管路は、前記加熱熱交換器の入口側と前記膨張手段出口側とを第2の電磁弁を介して接続したバイパス管路であることを特徴とする請求項1に記載の自動販売機。   The vending machine according to claim 1, wherein the decompression pipe is a bypass pipe in which an inlet side of the heating heat exchanger and an outlet side of the expansion means are connected via a second electromagnetic valve. Machine. 前記減圧管路は、第3の電磁弁を介して前記加熱熱交換器出口側管路と前記膨張手段出口側との間に接続したバイパス管路であることを特徴とする請求項1に記載の自動販売機。   The said pressure-reduction pipe line is a bypass pipe line connected between the said heating heat exchanger outlet side pipe line and the said expansion means outlet side via the 3rd solenoid valve. Vending machine. 商品収納庫の外に庫外熱交換器を設け、
前記減圧管路は、前記庫外熱交換器を介して前記加熱熱交換器出口側管路と前記膨張手段出口側との間に接続した管路であることを特徴とする請求項1に記載の自動販売機。
An external heat exchanger is installed outside the product storage,
The said decompression pipe line is a pipe line connected between the heating heat exchanger outlet side pipe line and the expansion means outlet side via the outside heat exchanger. Vending machine.
前記庫外熱交換器は、前記凝縮器と一体の構造であることを特徴とする請求項4に記載の自動販売機。   The vending machine according to claim 4, wherein the external heat exchanger has a structure integrated with the condenser. 前記庫外熱交換器は、前記凝縮器より風上側に配置したことを特徴とする請求項5に記載の自動販売機。   The vending machine according to claim 5, wherein the external heat exchanger is disposed on the windward side of the condenser. 凝縮器と庫外熱交換器の下流側に第4または/かつ第5の電磁弁と、当該電磁弁の開閉を制御する制御手段を有し、当該制御手段は、前記第4または/かつ第5の電磁弁の開閉により冷媒循環量を制御することを特徴とする請求項4に記載の自動販売機。   The fourth and / or fifth solenoid valve and control means for controlling opening and closing of the solenoid valve are provided downstream of the condenser and the external heat exchanger, and the control means includes the fourth and / or the fourth solenoid valve. The vending machine according to claim 4, wherein the refrigerant circulation amount is controlled by opening and closing the electromagnetic valve. 前記第2の膨張手段が電子膨張弁であって、
前記制御手段は、加熱冷却同時運転の始動時、または、冷却単独運転から加熱冷却同時運転への切換時、または、加熱冷却同時運転中の一定時間運転後に、前記電子膨張弁を所定の開度に設定をし、前記加熱熱交換器の入口側の第1の電磁弁を開けて、その後、凝縮器入口の電磁弁を閉成するようにして冷媒循環量を制御することを特徴とする請求項7記載の自動販売機。
The second expansion means is an electronic expansion valve;
The control means opens the electronic expansion valve at a predetermined opening degree at the start of the simultaneous heating / cooling operation, at the time of switching from the single cooling operation to the simultaneous heating / cooling operation, or after a fixed time operation during the heating / cooling simultaneous operation. The refrigerant circulation amount is controlled by opening the first electromagnetic valve on the inlet side of the heating heat exchanger, and then closing the electromagnetic valve on the condenser inlet. Item 7. A vending machine according to item 7.
前記第2の膨張手段が電子膨張弁であって、
前記制御手段は、冷却単独運転の開始時、または、加熱冷却同時運転中から冷却単独運転への切換時、または、冷却単独運転中の一定時間運転後に、前記凝縮器入口側の電磁弁を開成し、その後、前記加熱熱交換器の入口側の第1の電磁弁を閉成し、第4の電磁弁を閉成し、前記電子膨張弁を全開にして冷媒循環量を制御することを特徴とする請求項7記載の自動販売機。
The second expansion means is an electronic expansion valve;
The control means opens the solenoid valve on the inlet side of the condenser at the start of the single cooling operation, at the time of switching from the simultaneous heating / cooling operation to the single cooling operation, or after a certain time operation during the single cooling operation. Then, the first solenoid valve on the inlet side of the heating heat exchanger is closed, the fourth solenoid valve is closed, and the electronic expansion valve is fully opened to control the refrigerant circulation amount. The vending machine according to claim 7.
前記加熱熱交換器の凝縮温度を検出する凝縮温検出手段を設け、
前記制御手段は、前記凝縮温検出手段が検知した凝縮温度により、前記第4または/かつ第5の電磁弁の開閉により冷媒循環量を制御することを特徴とする請求項7に記載の自動販売機。
Condensation temperature detection means for detecting the condensation temperature of the heating heat exchanger is provided,
8. The automatic sales according to claim 7, wherein the control means controls the refrigerant circulation amount by opening and closing the fourth and / or fifth electromagnetic valve according to the condensation temperature detected by the condensation temperature detection means. Machine.
前記制御手段は、前記凝縮温検出手段が検知した凝縮温度が所定の温度により高い場合には、前記第4の電磁弁の閉成し、前回の操作時間以下の時間で前記凝縮器入口側の電磁弁を開成することにより冷媒循環量を制御することを特徴とする請求項10に記載の自動販売機。   When the condensing temperature detected by the condensing temperature detecting means is higher than a predetermined temperature, the control means closes the fourth solenoid valve and closes the condenser inlet side in a time shorter than the previous operation time. The vending machine according to claim 10, wherein the refrigerant circulation amount is controlled by opening an electromagnetic valve. 前記制御手段は、前記凝縮温検出手段が検知した凝縮温度が所定の温度により低い場合には、前記第4の電磁弁を所定時間の開成することにより冷媒循環量を制御することを特徴とする請求項10に記載の自動販売機。

The control means controls the refrigerant circulation amount by opening the fourth electromagnetic valve for a predetermined time when the condensing temperature detected by the condensing temperature detecting means is lower than a predetermined temperature. The vending machine according to claim 10.

JP2008002876A 2007-08-30 2008-01-10 vending machine Expired - Fee Related JP4557010B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008002876A JP4557010B2 (en) 2007-08-30 2008-01-10 vending machine
TW097150191A TWI437512B (en) 2008-01-10 2008-12-23 Vending machine
PCT/JP2009/050172 WO2009088057A1 (en) 2008-01-10 2009-01-09 Vending machine
CN2009801012268A CN101884057B (en) 2008-01-10 2009-01-09 Vending machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007223477 2007-08-30
JP2008002876A JP4557010B2 (en) 2007-08-30 2008-01-10 vending machine

Publications (2)

Publication Number Publication Date
JP2009076028A true JP2009076028A (en) 2009-04-09
JP4557010B2 JP4557010B2 (en) 2010-10-06

Family

ID=40610902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002876A Expired - Fee Related JP4557010B2 (en) 2007-08-30 2008-01-10 vending machine

Country Status (1)

Country Link
JP (1) JP4557010B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079881A (en) * 2008-08-29 2010-04-08 Panasonic Corp Vending machine
JP2010249455A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010249458A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010249457A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010249456A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010250433A (en) * 2009-04-13 2010-11-04 Fuji Electric Retail Systems Co Ltd Vending machine
JP2010257117A (en) * 2009-04-23 2010-11-11 Fuji Electric Retail Systems Co Ltd Vending machine
JP2011033264A (en) * 2009-07-31 2011-02-17 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2011065429A (en) * 2009-09-17 2011-03-31 Fuji Electric Holdings Co Ltd Vending machine
JP2011154649A (en) * 2010-01-28 2011-08-11 Fuji Electric Co Ltd Vending machine
ITPG20100017A1 (en) * 2010-03-05 2011-09-06 Gaia Tomarelli STEAM THERMODYNAMIC COMPRESSION SYSTEM FOR CLIMATE CHAMBERS AND REFRIGERATING PUMP MACHINES IN HEAT PUMP AND GENERAL, WHERE IT IS NECESSARY TO CHECK IN A CONTEMPORARY MANNER OR DISTINCT OR HUMAN, COLD AND RELATIVE HUMIDITY.
JP2012184882A (en) * 2011-03-04 2012-09-27 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2018087665A (en) * 2016-11-29 2018-06-07 富士電機株式会社 Refrigerant circuit device
WO2019215846A1 (en) * 2018-05-09 2019-11-14 三菱電機株式会社 Showcase

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184019A (en) * 2002-12-05 2004-07-02 Fuji Electric Retail Systems Co Ltd Inside cooling/heating device for vending machine
JP2005107764A (en) * 2003-09-30 2005-04-21 Sanden Corp Automatic vending machine
JP2006011493A (en) * 2004-06-22 2006-01-12 Sanden Corp Vending machine
JP2007328762A (en) * 2006-05-10 2007-12-20 Fuji Electric Retail Systems Co Ltd Cooling and heating device and automatic vending machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184019A (en) * 2002-12-05 2004-07-02 Fuji Electric Retail Systems Co Ltd Inside cooling/heating device for vending machine
JP2005107764A (en) * 2003-09-30 2005-04-21 Sanden Corp Automatic vending machine
JP2006011493A (en) * 2004-06-22 2006-01-12 Sanden Corp Vending machine
JP2007328762A (en) * 2006-05-10 2007-12-20 Fuji Electric Retail Systems Co Ltd Cooling and heating device and automatic vending machine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079881A (en) * 2008-08-29 2010-04-08 Panasonic Corp Vending machine
JP2010250433A (en) * 2009-04-13 2010-11-04 Fuji Electric Retail Systems Co Ltd Vending machine
JP2010249455A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010249458A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010249457A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010249456A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010257117A (en) * 2009-04-23 2010-11-11 Fuji Electric Retail Systems Co Ltd Vending machine
JP2011033264A (en) * 2009-07-31 2011-02-17 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2011065429A (en) * 2009-09-17 2011-03-31 Fuji Electric Holdings Co Ltd Vending machine
JP2011154649A (en) * 2010-01-28 2011-08-11 Fuji Electric Co Ltd Vending machine
ITPG20100017A1 (en) * 2010-03-05 2011-09-06 Gaia Tomarelli STEAM THERMODYNAMIC COMPRESSION SYSTEM FOR CLIMATE CHAMBERS AND REFRIGERATING PUMP MACHINES IN HEAT PUMP AND GENERAL, WHERE IT IS NECESSARY TO CHECK IN A CONTEMPORARY MANNER OR DISTINCT OR HUMAN, COLD AND RELATIVE HUMIDITY.
JP2012184882A (en) * 2011-03-04 2012-09-27 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2018087665A (en) * 2016-11-29 2018-06-07 富士電機株式会社 Refrigerant circuit device
WO2019215846A1 (en) * 2018-05-09 2019-11-14 三菱電機株式会社 Showcase
JPWO2019215846A1 (en) * 2018-05-09 2021-03-18 三菱電機株式会社 Showcase

Also Published As

Publication number Publication date
JP4557010B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4557010B2 (en) vending machine
WO2010035512A1 (en) Vending machine
JP5169282B2 (en) vending machine
WO2009088057A1 (en) Vending machine
JP4924535B2 (en) vending machine
JP5321241B2 (en) vending machine
JP5156923B2 (en) vending machine
JP4911105B2 (en) vending machine
JP5056426B2 (en) vending machine
JP5407621B2 (en) Cooling and heating device
JP5266819B2 (en) vending machine
JP5169383B2 (en) vending machine
JP5434423B2 (en) vending machine
JP5569634B2 (en) Operation method of cooling heating device
JP5240030B2 (en) vending machine
JP5056425B2 (en) vending machine
JP5240017B2 (en) vending machine
JP5229057B2 (en) vending machine
JP5240016B2 (en) vending machine
JP4548540B2 (en) vending machine
JP5471518B2 (en) vending machine
JP5471480B2 (en) vending machine
JP2009271740A (en) Vending machine
JP2010182224A (en) Vending machine
JP2011127848A (en) Refrigerant circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100409

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees