JP4548540B2 - vending machine - Google Patents

vending machine Download PDF

Info

Publication number
JP4548540B2
JP4548540B2 JP2009006342A JP2009006342A JP4548540B2 JP 4548540 B2 JP4548540 B2 JP 4548540B2 JP 2009006342 A JP2009006342 A JP 2009006342A JP 2009006342 A JP2009006342 A JP 2009006342A JP 4548540 B2 JP4548540 B2 JP 4548540B2
Authority
JP
Japan
Prior art keywords
refrigerant
internal heat
solenoid valve
heat exchanger
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009006342A
Other languages
Japanese (ja)
Other versions
JP2010165143A (en
Inventor
真 石田
浩司 滝口
尚紀 井下
鶴羽  健
正樹 藤波
馨 倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2009006342A priority Critical patent/JP4548540B2/en
Publication of JP2010165143A publication Critical patent/JP2010165143A/en
Application granted granted Critical
Publication of JP4548540B2 publication Critical patent/JP4548540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷媒回路にて冷却または加熱して販売に供する自動販売機に関する。 The present invention relates to a vending machine that sells a product such as a beverage in a container such as a can, a bottle, a pack, or a plastic bottle after being cooled or heated in a refrigerant circuit.

近年の地球温暖化に対して二酸化炭素の排出量削減が課題となっており、自動販売機も省エネ型が開発されている。その1方式として従来は排熱していた凝縮器の熱を庫内の加熱に利用するヒートポンプ方式の自動販売機が注目されている(例えば、特許文献1参照)。 Reducing carbon dioxide emissions has become a challenge with recent global warming, and energy-saving vending machines have been developed. As one of the methods, a heat pump type vending machine that uses the heat of the condenser, which has been exhausted in the past, to heat the inside of the cabinet has attracted attention (for example, see Patent Document 1).

特許文献1に開示された自動販売機は、図7にて示すように、冷媒を圧縮する圧縮機11zと、庫外に設け冷媒を凝縮する凝縮器12zと、凝縮器12zへの冷媒の通路を開閉する電磁弁19zと、凝縮器12zより冷媒を分配する分配部64zを介して二方に分岐し、電磁弁15Az,15Bzを介して冷媒を膨張させるキャピラリチューブ(膨張手段)16Az,16Bzと、冷媒を蒸発させる熱交換器(庫内熱交換器)8Az、8Bzと、熱交換器8Azより電磁弁20zを介する配管と熱交換器8Bzからの出口配管が合流部67zで合流して圧縮機11zに戻る冷却循環回路を構成している。さらに、圧縮機11zと熱交換器8Azとを電磁弁17azを介して接続するホットガスバイパス管路(配管)と、熱交換器8Azと凝縮器12zとを電磁弁18zを介して接続する配管とにより、熱交換器8Azを凝縮器として作用させてヒートポンプ運転を行う加熱冷却循環回路が構成されている。 As shown in FIG. 7, the vending machine disclosed in Patent Document 1 includes a compressor 11z that compresses a refrigerant, a condenser 12z that is provided outside the refrigerator and condenses the refrigerant, and a refrigerant path to the condenser 12z. A capillary tube (expansion means) 16Az, 16Bz that branches in two directions via a solenoid valve 19z that opens and closes and a distributor 64z that distributes the refrigerant from the condenser 12z and expands the refrigerant via the electromagnetic valves 15Az and 15Bz. The heat exchangers (internal heat exchangers) 8Az and 8Bz for evaporating the refrigerant, the piping through the solenoid valve 20z from the heat exchanger 8Az and the outlet piping from the heat exchanger 8Bz join at the junction 67z, and the compressor A cooling circulation circuit returning to 11z is configured. Furthermore, a hot gas bypass pipe (pipe) for connecting the compressor 11z and the heat exchanger 8Az via the electromagnetic valve 17az, and a pipe for connecting the heat exchanger 8Az and the condenser 12z via the electromagnetic valve 18z Thus, a heating / cooling circuit that performs the heat pump operation with the heat exchanger 8Az acting as a condenser is configured.

また、電磁弁15Az,15Bzは,図8で示されるような通常低コスト型の直動型電磁弁80が使用される。直動型電磁弁80は、同図で示すように電磁弁本体81の内部に円筒形状のシリンダ81aを有し、シリンダ81aの側部端面側に入口部81b、下面に出口部81cが連結しており、出口部81cの上面周縁部には円錐台形状に弁座81dが形成されている。シリンダ81a内部には、弁座81dと当接する球状の弁体82、弁体82と持着して重力およびバネ84で弁体82を付勢するスプール83が挿入されている。スプール83には、鉄製のアーマチャー85が連結され、アーマチャー85の上部周縁側にソレノイド86が取設されている。 As the electromagnetic valves 15Az and 15Bz, a normal low-cost direct acting electromagnetic valve 80 as shown in FIG. 8 is used. As shown in the figure, the direct acting solenoid valve 80 has a cylindrical cylinder 81a inside a solenoid valve main body 81, and an inlet 81b is connected to the side end face of the cylinder 81a, and an outlet 81c is connected to the lower surface. A valve seat 81d is formed in the shape of a truncated cone on the peripheral edge of the upper surface of the outlet portion 81c. Inside the cylinder 81 a, a spherical valve body 82 that comes into contact with the valve seat 81 d and a spool 83 that is attached to the valve body 82 and biases the valve body 82 with gravity and a spring 84 are inserted. An iron armature 85 is connected to the spool 83, and a solenoid 86 is provided on the upper peripheral side of the armature 85.

ソレノイド86が無通電状態のときは、図8(a)で示すようにバネ84とスプール83の重力にて弁体82を弁座81dに当接させることにより、入口部81bと出口部81cの連通を封止している。ソレノイド86が通電状態のときは、図8(b)で示すようにアーマチャー85がソレノイド86の磁力により上方へ吸引移動されるので、弁体82と弁座81dの間に隙間が形成され、入口部81bと出口部81cが連通され、冷媒が通過可能となる。 When the solenoid 86 is in a non-energized state, as shown in FIG. 8A, the valve body 82 is brought into contact with the valve seat 81d by the gravity of the spring 84 and the spool 83, so that the inlet portion 81b and the outlet portion 81c The communication is sealed. When the solenoid 86 is energized, the armature 85 is attracted and moved upward by the magnetic force of the solenoid 86 as shown in FIG. 8B, so that a gap is formed between the valve body 82 and the valve seat 81d, and the inlet The part 81b and the outlet part 81c communicate with each other, and the refrigerant can pass therethrough.

かかる構成で、図7にて熱交換器8Azを凝縮器として作用させ、熱交換器8Bzを蒸発器として作用させてヒートポンプ運転を行うには、電磁弁15Bz、17az、18zを開成(ON)し、電磁弁15Az、19z、20zを閉止(OFF)する。このときの冷媒は図中の太線で示すように回路内を流れ、圧縮機11zで圧縮されて高温高圧の冷媒となり、電磁弁17azを介して庫内熱交換器8Azにて凝縮し、庫内を加熱する。そして、庫内熱交換器8Azにて凝縮した冷媒は、電磁弁18zを介して凝縮器12zでさらに凝縮し、分岐点64z、電磁弁15Bzを経由して膨張手段16Bzにて膨張して低温低圧の冷媒となり、庫内熱交換器8Bzにて蒸発し、庫内を冷却する。庫内熱交換器8Bzにて蒸発した冷媒は、合流部67zを介して圧縮機11zへ戻る。 In such a configuration, in order to perform the heat pump operation with the heat exchanger 8Az acting as a condenser and the heat exchanger 8Bz acting as an evaporator in FIG. 7, the electromagnetic valves 15Bz, 17az, and 18z are opened (ON). The electromagnetic valves 15Az, 19z, and 20z are closed (OFF). The refrigerant at this time flows in the circuit as shown by the thick line in the figure, is compressed by the compressor 11z to become a high-temperature and high-pressure refrigerant, condenses in the internal heat exchanger 8Az via the electromagnetic valve 17az, Heat. The refrigerant condensed in the internal heat exchanger 8Az further condenses in the condenser 12z via the electromagnetic valve 18z, expands in the expansion means 16Bz via the branch point 64z and the electromagnetic valve 15Bz, and is cooled at low temperature and low pressure. The refrigerant evaporates in the internal heat exchanger 8Bz and cools the interior. The refrigerant evaporated in the internal heat exchanger 8Bz returns to the compressor 11z through the junction portion 67z.

特開平5−233941号公報Japanese Patent Laid-Open No. 5-233941

しかしながら、この種の自動販売機は、庫内の熱交換器一個につき一個のキャピラリチューブを必要とするので、コストアップとなる。そこで、図9に示すようにキャピラリチューブ16Az、16Bzの代わりに凝縮器12zと分岐点64zとの間にキャピラリチューブ16Czを接続することにより、一個のキャピラリチューブで兼用することが可能である。 However, since this type of vending machine requires one capillary tube for each heat exchanger in the warehouse, the cost increases. Therefore, by connecting the capillary tube 16Cz between the condenser 12z and the branch point 64z instead of the capillary tubes 16Az and 16Bz as shown in FIG. 9, it is possible to use a single capillary tube.

かかる構成にて、熱交換器8Azを凝縮器として作用させ、熱交換器8Bzを蒸発器として作用させてヒートポンプ運転を行うには、電磁弁15Bz、17az、18zを開成(ON)し、電磁弁15Az、19z、20zを閉止(OFF)する。このときの冷媒は、図中の太線で示すように回路内を流れ、圧縮機11zで圧縮されて高温高圧の冷媒となり、電磁弁17azを介して熱交換器8Azにて凝縮し、庫内を加熱する。そして、熱交換器8Azにて凝縮した冷媒は、電磁弁18zを介して凝縮器12zでさらに凝縮され、キャピラリチューブ16Czにて膨張して低温低圧の冷媒となり、分岐点64z、電磁弁15Bzを経由して熱交換器8Bzにて蒸発し、庫内を冷却する。熱交換器8Bzにて蒸発した冷媒は、合流部67zを介して圧縮機11zへ戻る。 In such a configuration, in order to perform the heat pump operation by causing the heat exchanger 8Az to act as a condenser and the heat exchanger 8Bz to act as an evaporator, the solenoid valves 15Bz, 17az, and 18z are opened (ON), and the solenoid valve 15Az, 19z, and 20z are closed (OFF). The refrigerant at this time flows in the circuit as shown by the thick line in the figure, is compressed by the compressor 11z to become a high-temperature and high-pressure refrigerant, condenses in the heat exchanger 8Az through the electromagnetic valve 17az, Heat. The refrigerant condensed in the heat exchanger 8Az is further condensed in the condenser 12z via the electromagnetic valve 18z, and expands in the capillary tube 16Cz to become a low-temperature and low-pressure refrigerant, and passes through the branch point 64z and the electromagnetic valve 15Bz. Then, it evaporates in the heat exchanger 8Bz and cools the inside of the refrigerator. The refrigerant evaporated in the heat exchanger 8Bz returns to the compressor 11z through the junction 67z.

しかしながら、ヒートポンプ運転中には図9に示すように庫内熱交換器8Azの入口側配管の圧力をP、分岐部64zの圧力をPとすると、閉止をしている電磁弁15Azの出口側には高圧のPが印加され、入口側には低圧のPが印加される。この逆圧により図8(b)と同じ態様で弁体82が押し上げられ、弁座81dとの間に隙間が形成される。隙間が形成されると出口側と入口側が連通をして同圧となるため、再び弁体82が弁座81と当接をして通路を閉鎖する。すると、再び、逆圧が形成されるので弁体82を押し上げ、押し戻すという振動が繰りかえされる。この現象は、ヒートポンプ運転中継続し、弁体82が弁座81に衝突する際の耳障りな音(以下、異音という)を発生し続けるという虞があった。これを防ぐために逆圧に強い大型の電磁弁を使用することが考えられるが、それではコストが上昇をする。また、電磁弁の出口側と入口側に微細管のバイパス管を接続して、逆圧を抑制することも考えられるが、意図しない冷媒の流れができるため、エネルギーロス(消費電力の増大)という課題が発生する。 However, during operation of the heat pump, as shown in FIG. 9, when the pressure of the inlet side piping of the internal heat exchanger 8Az is P 1 and the pressure of the branching portion 64z is P 2 , the outlet of the electromagnetic valve 15Az that is closed High pressure P 1 is applied to the side and low pressure P 2 is applied to the inlet side. This reverse pressure pushes up the valve body 82 in the same manner as in FIG. 8B, and a gap is formed between the valve seat 81d. When the gap is formed, the outlet side and the inlet side communicate with each other and have the same pressure. Therefore, the valve body 82 again comes into contact with the valve seat 81 to close the passage. Then, since a reverse pressure is formed again, the vibration of pushing up and pushing back the valve body 82 is repeated. This phenomenon has continued during the heat pump operation, and there is a concern that an annoying sound (hereinafter referred to as abnormal noise) generated when the valve body 82 collides with the valve seat 81 may continue to be generated. In order to prevent this, it is conceivable to use a large solenoid valve that is resistant to back pressure, but this increases the cost. In addition, it is conceivable to connect a bypass pipe of a fine pipe to the outlet side and the inlet side of the solenoid valve to suppress the reverse pressure. However, since an unintended refrigerant flow is possible, energy loss (increased power consumption) is called. Issues arise.

また、電磁弁15Azと分岐部64zとの間に逆止弁を接続して、逆圧を抑制することも考えられるが、逆止弁には若干の冷媒の漏れが生じ、漏れの発生時には、電磁弁15Azに逆圧が印加されるので、頻度は低減するものの異音は発生を続ける。 In addition, it is conceivable to connect a check valve between the solenoid valve 15Az and the branching portion 64z to suppress the reverse pressure. However, a slight amount of refrigerant leaks in the check valve. Since reverse pressure is applied to the electromagnetic valve 15Az, abnormal noise continues to be generated although the frequency is reduced.

本発明は、上記実情に鑑みて、上記の課題を解決して、電磁弁よりの異音を抑制し、低コストで信頼性の高い圧縮機の運転ができる自動販売機を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide an automatic vending machine that solves the above-described problems, suppresses noise from the electromagnetic valve, and can operate a compressor at low cost and high reliability. And

上記の目的を達成するために、本発明の請求項1に係る自動販売機は、冷却加熱兼用の商品収納庫を有し、冷却加熱の運転モードにより選択的に商品収納庫を冷却もしくは加熱する自動販売機であって、冷媒を圧縮する圧縮機と、庫外に設け凝縮器電磁弁を介して冷媒を凝縮する凝縮器と、冷媒を膨張させる膨張手段と、膨張手段より膨張した冷媒を分配する分配器と、庫内に設け前記分配器より冷却器入口電磁弁と逆止弁を介して冷媒を蒸発する複数の庫内熱交換器と、蒸発した冷媒を冷却器出口電磁弁を介して合流する合流器と、にて冷却循環回路を構成するとともに、前記冷却循環回路に、前記圧縮機と前記庫内熱交換器入口側との間を加熱器電磁弁を介して配管接続し、かつ、前記庫内熱交換器出口側と前記分配器との間を第2膨張手段を介して配管接続することにより、前記庫内熱交換器を凝縮器として作用させてヒートポンプ運転を行う加熱冷却循環回路を構成し、前記圧縮機、前記凝縮器電磁弁、前記冷却器入口電磁弁、前記冷却器出口電磁弁、前記加熱器電磁弁を制御する制御装置を有する自動販売機において、前記制御装置は、前記庫内熱交換器を凝縮器として作用させてヒートポンプ運転を行う時は、当該庫内熱交換器に接続している加熱器電磁弁を開成するとともに、当該庫内熱交換器に接続している冷却器入口電磁弁も開成して運転することを特徴とする。 In order to achieve the above object, a vending machine according to claim 1 of the present invention has a product storage that is also used for cooling and heating, and selectively cools or heats the product storage according to an operation mode of cooling and heating. A vending machine that compresses refrigerant, a condenser that is provided outside the refrigerator and that condenses refrigerant via a condenser solenoid valve, expansion means that expands the refrigerant, and refrigerant that is expanded by the expansion means is distributed A plurality of in-compartment heat exchangers that evaporate the refrigerant from the distributor through the cooler inlet solenoid valve and the check valve, and the evaporated refrigerant through the cooler outlet solenoid valve. A cooling circulation circuit is formed by the merger, and the cooling circulation circuit is connected to the cooling circulation circuit via a heater solenoid valve between the compressor and the internal heat exchanger inlet side, and The second expansion between the outlet side of the internal heat exchanger and the distributor By connecting the pipes through the stages, a heating / cooling circulation circuit that operates the heat pump by operating the internal heat exchanger as a condenser is configured, and the compressor, the condenser solenoid valve, and the condenser inlet electromagnetic In the vending machine having a control device for controlling the valve, the cooler outlet solenoid valve, and the heater solenoid valve, the control device operates the heat exchanger as a condenser to perform a heat pump operation. The heater electromagnetic valve connected to the internal heat exchanger is opened, and the cooler inlet electromagnetic valve connected to the internal heat exchanger is also opened and operated.

本発明に係る請求項1の自動販売機は、庫内熱交換器を凝縮器として作用させてヒートポンプ運転を行う時は、当該庫内熱交換器に接続している加熱器電磁弁を開成するとともに、当該庫内熱交換器に接続している冷却器入口電磁弁も開成して運転することにより、冷却器入口電磁弁に発生する逆圧を激減させて、電磁弁からの異音の発生を低コストで抑制することが出来る。 The vending machine according to claim 1 of the present invention opens the heater solenoid valve connected to the internal heat exchanger when the internal heat exchanger acts as a condenser to perform the heat pump operation. At the same time, by opening and operating the cooler inlet solenoid valve connected to the internal heat exchanger, the back pressure generated at the cooler inlet solenoid valve is drastically reduced, and abnormal noise is generated from the solenoid valve. Can be suppressed at low cost.

以下に添付図面を参照して、本発明に係る自動販売機の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Exemplary embodiments of a vending machine according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

まず、本発明の実施例に係る自動販売機について説明する。なお、図1は本発明の実施例に係る自動販売機を示す斜視図、図2は図1に示した自動販売機の断面図であり、図3は冷媒回路図である。図4は制御装置のブロック図を示し、図5は3室を全て冷却する冷却運転における冷媒の流れを示す回路図であり、図6は1室を冷却し、2室を加熱するヒートポンプ運転における冷媒の流れを示す回路図である。 First, a vending machine according to an embodiment of the present invention will be described. 1 is a perspective view showing a vending machine according to an embodiment of the present invention, FIG. 2 is a sectional view of the vending machine shown in FIG. 1, and FIG. 3 is a refrigerant circuit diagram. FIG. 4 is a block diagram of the control device, FIG. 5 is a circuit diagram showing the flow of refrigerant in the cooling operation for cooling all three chambers, and FIG. 6 is in the heat pump operation for cooling one chamber and heating two chambers. It is a circuit diagram which shows the flow of a refrigerant | coolant.

これら図において、自動販売機は、前面が開口した直方状の断熱体として形成された本体キャビネット10と、その前面に設けられた外扉20および内扉30と、本体キャビネット10の内部を上下2段に底板11にて区画形成し、上部を例えば2つの断熱仕切板40wによって仕切られた3つの独立した商品収納庫40a、40b、40cと、下部に商品収納庫40a、40b、40cを冷却もしくは加熱する冷却/加熱ユニット60を収納する機械室50と、外扉20の内側に配設され、商品収納庫40a、40b、40c内の温度センサTa、Tb、Tcにより自動販売機の冷却、加熱運転などを制御する制御手段90と、を有して構成されている。 In these drawings, the vending machine includes a main body cabinet 10 formed as a rectangular heat insulator having an open front surface, an outer door 20 and an inner door 30 provided on the front surface, and an interior of the main body cabinet 10 in two directions. The bottom plate 11 is partitioned and formed at the stage, and the upper part is cooled by, for example, three independent product storage units 40a, 40b, and 40c separated by two heat insulating partition plates 40w, and the lower part product storage units 40a, 40b, and 40c are cooled or Cooling / heating of the vending machine by the temperature sensor Ta, Tb, Tc disposed inside the machine room 50 for storing the cooling / heating unit 60 for heating and the outer door 20 and in the product storages 40a, 40b, 40c. And control means 90 for controlling operation and the like.

より詳細に説明すると、外扉20は、本体キャビネット10の前面開口を開閉するためのものであり、図には明示していないが、この外扉20の前面には、販売する商品の見本を展示する商品展示室、販売する商品を選択するための選択ボタン、貨幣を投入するための貨幣投入口、払い出された商品を取り出すための商品取出口21等々、商品の販売に必要となる構成が配置してある。 More specifically, the outer door 20 is used to open and close the front opening of the main body cabinet 10 and is not shown in the figure. Product display room, selection button for selecting the product to be sold, money slot for inserting money, product outlet 21 for taking out the paid-out product, etc. Is arranged.

内扉30は、商品収納庫40a、40b、40cの前面を開閉し、内部の商品を保温するものであり、上下2段に分割され内部に断熱体を有する箱型形状の構造体である。上側の内扉30aは、一端を外扉20に枢軸し、他端を外扉20に係着して、外扉20の開放と同時に上側の内扉30aを開放させて、商品の補充を容易にするものである。下側の内扉30bは、一端を本体キャビネット10に枢軸し、他端を本体キャビネット10に不図示の掛金にて掛着して、外扉20を開放したときには、閉止した状態であり、商品収納庫40a、40b、40c内の冷気もしくは暖気が流出することを防ぎ、メンテナンス時など必要に応じて開放できるものである。 The inner door 30 opens and closes the front surfaces of the product storage units 40a, 40b, and 40c to keep the products in the interior warm. The inner door 30 is a box-shaped structure that is divided into upper and lower stages and has a heat insulator inside. The upper inner door 30a is pivoted at one end to the outer door 20, and the other end is engaged with the outer door 20, and the upper inner door 30a is opened at the same time as the outer door 20 is opened to facilitate replenishment of goods. It is to make. The lower inner door 30b is in a closed state when one end pivots on the main body cabinet 10 and the other end is hooked on the main body cabinet 10 with a latch (not shown) and the outer door 20 is opened. It is possible to prevent the cool air or warm air in the storage boxes 40a, 40b, 40c from flowing out, and to open as necessary during maintenance.

商品収納庫40a、40b、40cは、缶入り飲料やペットボトル入り飲料等の商品を所望の温度に維持した状態で収容するためのものであり、その収納庫の容量は商品収納庫40a、40c、40bの順番に大きな態様で配分されている。本実施例は、商品収納庫40aを冷却専用とし、商品収納庫40b、40cを冷却加熱兼用としている。その商品収納庫40a、40b、40cには、それぞれ、商品を上下方向に沿って並ぶ態様で収納し、販売信号により1個ずつ商品を排出するための商品搬出機構を備えた商品収納ラックR、排出された商品Sを内扉30bに取設された搬出扉31を介して外扉の販売口21へ搬出する商品搬出シュート42を有している。 The product storage units 40a, 40b, and 40c are for storing products such as canned beverages and beverages containing plastic bottles at a desired temperature, and the capacity of the storage units is the product storage units 40a, 40c. , 40b in a large manner. In this embodiment, the product storage case 40a is exclusively used for cooling, and the product storage cases 40b and 40c are also used for cooling and heating. The product storage racks 40a, 40b, and 40c store the products in a manner that they are arranged in the vertical direction, and are provided with a product storage rack R that includes a product delivery mechanism for discharging the products one by one in response to a sales signal. There is a product carry-out chute 42 for carrying the discharged product S to the sales port 21 of the outer door through a carry-out door 31 installed in the inner door 30b.

冷却/加熱ユニット60は、機械室50内に圧縮機61、凝縮器62、膨張器(膨張手段)63、第2の膨張器79、アキュムレータ69、補助熱交換器76を取設し、底板11を跨いで庫内に庫内熱交換器65a、65b、65cを有して各機器を冷媒配管で接続されることにより構成されている。冷却/加熱ユニット60は、冷却加熱の運転モードに応じて、庫内に冷風または温風を循環させて商品収納ラックR内の商品Sを冷却または加熱するものである。 The cooling / heating unit 60 includes a compressor 61, a condenser 62, an expander (expansion means) 63, a second expander 79, an accumulator 69, and an auxiliary heat exchanger 76 in the machine room 50. The internal heat exchangers 65a, 65b, and 65c are provided in the storage across the space, and each device is connected by a refrigerant pipe. The cooling / heating unit 60 cools or heats the product S in the product storage rack R by circulating cold air or warm air in the cabinet according to the cooling / heating operation mode.

冷却加熱用の圧縮機61は、冷媒を圧縮して回路内を循環させるためのもので、冷却運転時には、蒸発温度が約−10℃、凝縮温度が約40℃で使用され、加熱運転時には、蒸発温度が約−10℃、凝縮温度が約70℃で使用される。 The compressor 61 for cooling and heating is for compressing the refrigerant and circulating it in the circuit. During the cooling operation, the evaporation temperature is about −10 ° C., the condensation temperature is about 40 ° C., and during the heating operation, An evaporation temperature of about −10 ° C. and a condensation temperature of about 70 ° C. are used.

凝縮器62は、フィンチューブ型の熱交換器であり、冷却運転時に不要な凝縮熱を排出するためのものである。凝縮器62の後部にはファン62fが取設され、ファン62fは機械室50の前面開口部より空気を吸入し、凝縮器62による凝縮熱を吸入するとともに、圧縮機61の排熱を吸収して、機械室50の背面開口部へ排気するためのものである。 The condenser 62 is a fin tube type heat exchanger, and discharges unnecessary condensation heat during the cooling operation. A fan 62f is installed at the rear of the condenser 62. The fan 62f sucks air from the front opening of the machine chamber 50, sucks heat of condensation by the condenser 62, and absorbs exhaust heat of the compressor 61. Thus, the air is exhausted to the rear opening of the machine room 50.

膨張器63は、冷却運転時に通過する冷媒を減圧して断熱膨張させるものであり、たとえばキャピラリ、温度膨張弁、電子膨張弁である。 The expander 63 decompresses the refrigerant passing during the cooling operation and adiabatically expands, and is, for example, a capillary, a temperature expansion valve, or an electronic expansion valve.

分流器64は、膨張器63で断熱膨張させられた冷媒を庫内熱交換器65a、65b、65cに分配するためのものである。 The flow divider 64 is for distributing the refrigerant adiabatically expanded by the expander 63 to the internal heat exchangers 65a, 65b, 65c.

庫内熱交換器65a、65b、65cは、商品収納庫40aを冷却するためのものであり、庫内熱交換器65b、65cは、商品収納庫40b、40cを加熱する庫内熱交換器を兼用している。また、庫内熱交換器65a、65b、65cは、各商品収納庫の下部に取設され、風胴67で囲繞され、その後方にファン65fが取設され、その後方にダクト67dが取設されている。商品収納庫内の冷却と加熱は、庫内熱交換器65a、65b、65cにより冷却もしくは加熱された空気を商品収納庫内の商品Sに送風し、図2中の矢印で示すようにダクト67dより循環回収することで行われる。 The internal heat exchangers 65a, 65b, 65c are for cooling the product storage 40a, and the internal heat exchangers 65b, 65c are internal heat exchangers for heating the product storage 40b, 40c. I also use it. The internal heat exchangers 65a, 65b, 65c are installed at the lower part of each product storage, surrounded by a wind tunnel 67, a fan 65f is installed behind them, and a duct 67d is installed behind them. Has been. The cooling and heating in the product storage are performed by blowing the air cooled or heated by the internal heat exchangers 65a, 65b, 65c to the product S in the product storage, and the duct 67d as shown by the arrow in FIG. It is done by more circulating recovery.

アキュムレータ69は、庫内熱交換器65a、65b、65cから蒸発された冷媒を流入し、気液分離させて液冷媒を貯留し、気体冷媒を圧縮機61に戻すための密閉した容器である。また、アキュムレータ69は、回路の冷媒循環に余った冷媒を貯留するための容器でもある。 The accumulator 69 is a sealed container for flowing the refrigerant evaporated from the internal heat exchangers 65 a, 65 b and 65 c, separating the gas and liquid to store the liquid refrigerant, and returning the gas refrigerant to the compressor 61. The accumulator 69 is also a container for storing the refrigerant remaining in the refrigerant circulation of the circuit.

補助熱交換器76は、フィンチューブ型の熱交換器であり、加熱運転時に不要な凝縮熱を排出するためのものである。 The auxiliary heat exchanger 76 is a fin tube type heat exchanger, and discharges unnecessary condensation heat during heating operation.

膨張器79は、加熱運転時に通過する冷媒を減圧して断熱膨張させるものであり、たとえばキャピラリ、温度膨張弁、電子膨張弁である。 The expander 79 decompresses the refrigerant passing during the heating operation and adiabatically expands, and is, for example, a capillary, a temperature expansion valve, or an electronic expansion valve.

ヒータ66b、66cは庫内熱交換器65b、65cの前方に取設され、商品収納庫40b、40cの加熱の補助を行うものである。 The heaters 66b and 66c are installed in front of the internal heat exchangers 65b and 65c, and assist heating of the product storages 40b and 40c.

庫内温センサTa、Tb、Tcは、商品収納庫40a、40b、40c内の風胴67の上面に取設され、商品収納庫40a、40b、40cの庫内温度を検知するためのものである。 The inside temperature sensors Ta, Tb, Tc are installed on the upper surface of the wind tunnel 67 in the product storage 40a, 40b, 40c, and are used to detect the inside temperature of the product storage 40a, 40b, 40c. is there.

凝縮器電磁弁68は、圧縮機61と凝縮器62間の冷媒通路を開閉するものであり、加熱器電磁弁68b、68cは、圧縮機61と庫内熱交換器65b、65c間の圧縮された冷媒の通路を開閉するものである。冷却器入口電磁弁70a,70b,70cは分流器64と庫内熱交換器65a、65b、65c間の膨張された冷媒の通路を開閉するものであり、冷却器出口電磁弁72b,72cは、庫内熱交換器65b、65cと圧縮機61と間の蒸発された冷媒の通路を開閉するものである。これらの電磁弁は、すべて図8に示されるような直動型電磁弁の構造である。 The condenser solenoid valve 68 opens and closes the refrigerant passage between the compressor 61 and the condenser 62, and the heater solenoid valves 68b and 68c are compressed between the compressor 61 and the internal heat exchangers 65b and 65c. It opens and closes the refrigerant passage. The cooler inlet solenoid valves 70a, 70b, 70c open and close the expanded refrigerant passage between the flow divider 64 and the internal heat exchangers 65a, 65b, 65c. The cooler outlet solenoid valves 72b, 72c It opens and closes the passage of the evaporated refrigerant between the internal heat exchangers 65b and 65c and the compressor 61. All of these solenoid valves have the structure of a direct acting solenoid valve as shown in FIG.

冷却/加熱ユニット60の冷媒回路構成について図3を用いて詳述する。冷媒回路構成は、庫内を冷却のみを行う冷却循環回路60Aと庫内の冷却加熱を同時に行う(ヒートポンプ運転を行う)加熱冷却循環回路60Bを有している。なお、図中の点線の囲いは、商品収納庫40a、40b、40cを模式的に示している。 The refrigerant circuit configuration of the cooling / heating unit 60 will be described in detail with reference to FIG. The refrigerant circuit configuration includes a cooling circuit 60A that only cools the inside of the cabinet and a heating / cooling circuit 60B that simultaneously performs cooling and heating inside the cabinet (performs a heat pump operation). In addition, the enclosure of the dotted line in the figure has shown typically goods storage 40a, 40b, 40c.

冷却循環回路60Aは、圧縮機61、凝縮器電磁弁68、凝縮器62、膨張器63を経由して、分流器64に接続し、分流器64より冷却器入口電磁弁70a、70b、70cと逆止弁71b、71cを経由して(冷却器入口電磁弁70aの出口側には逆止弁71はない)庫内熱交換器65a、65b、65cに接続され、庫内熱交換器65aからの配管と、庫内熱交換器65b、65cからの冷却器出口電磁弁72b、72cを介した配管とを集合器67にて集合した後アキュムレータ69を経由して圧縮機61に戻る回路である。 The cooling circuit 60A is connected to the flow divider 64 via the compressor 61, the condenser electromagnetic valve 68, the condenser 62, and the expander 63. From the flow divider 64, the cooling inlet electromagnetic valves 70a, 70b, and 70c are connected. Via the check valves 71b and 71c (there is no check valve 71 on the outlet side of the cooler inlet electromagnetic valve 70a), the internal heat exchangers 65a, 65b and 65c are connected to the internal heat exchanger 65a. And the piping through the cooler outlet electromagnetic valves 72b and 72c from the internal heat exchangers 65b and 65c are collected by the collecting unit 67 and then returned to the compressor 61 via the accumulator 69. .

一方、加熱冷却循環回路60Bには、冷却循環回路60Aに加えて、圧縮機61より凝縮器電磁弁68と並列接続され加熱器電磁弁68b、68cに接続する加熱弁入口配管168b、168cと、加熱器電磁弁68b、68cより逆止弁71b,71cと庫内熱交換器65b、65c入口側との間をそれぞれ結合させる加熱弁出口配管165b、165cと、庫内熱交換器65b、65c出口側と逆止弁71,71を介して結合し補助熱交換器76と接続する配管と、補助熱交換器76より膨張器79を経由して分配器64へ接続する配管とが設けられている。 On the other hand, in addition to the cooling circulation circuit 60A, the heating / cooling circulation circuit 60B includes heating valve inlet pipes 168b, 168c connected in parallel to the condenser electromagnetic valve 68 from the compressor 61 and connected to the heater electromagnetic valves 68b, 68c, and Heater valve outlet pipes 165b and 165c for connecting the check valves 71b and 71c to the inlet side of the internal heat exchangers 65b and 65c from the heater electromagnetic valves 68b and 68c, respectively, and the internal heat exchangers 65b and 65c outlets And a pipe connected to the auxiliary heat exchanger 76 via the check valves 71 and 71, and a pipe connected to the distributor 64 from the auxiliary heat exchanger 76 via the expander 79. .

しかして、加熱冷却循環回路60Bは、圧縮機61から加熱器電磁弁68b、68cを介し庫内熱交換器65c、65bに接続され、庫内熱交換器65c、65bから逆止弁71,71を介して補助熱交換器76、膨張器79を経由して分配器64に接続され、分流器64から冷却器入口電磁弁70aを介して庫内熱交換器65aに接続され、集合器67、アキュムレータ69を経由して圧縮機61に戻る回路である。 Thus, the heating / cooling circulation circuit 60B is connected from the compressor 61 to the internal heat exchangers 65c, 65b via the heater electromagnetic valves 68b, 68c, and from the internal heat exchangers 65c, 65b to the check valves 71, 71. Are connected to the distributor 64 via the auxiliary heat exchanger 76 and the expander 79, and are connected to the internal heat exchanger 65a via the cooler inlet solenoid valve 70a from the flow divider 64, This circuit returns to the compressor 61 via the accumulator 69.

冷媒は、臨界圧力内で使用する冷媒、例えばフロン冷媒でR134aを使用している。また、臨界圧力外で使用する冷媒、例えば二酸化炭素冷媒でもよい。 As the refrigerant, R134a is used as a refrigerant used within a critical pressure, for example, a fluorocarbon refrigerant. Further, a refrigerant used outside the critical pressure, for example, a carbon dioxide refrigerant may be used.

制御手段90は、商品収納庫40a、40b、40cを冷却加熱の運転モードにより冷却もしくは加熱の制御をするものである。図4に示すように内部にCPU、メモリを有し、運転モード設定SW91の設定により決まる冷却加熱の運転モードに応じて冷媒回路の電磁弁開閉などの制御を行う。運転モードは、商品収納庫40a、40b、40cの冷却もしくは加熱の運転をC、Hで示すものであり、商品収納庫の左側から(40a、40b、40c)順に、例えば、すべてが冷却の場合にはCCCモード、左の商品収納庫のみが加熱の場合にはHCCモードなどと記す。また、制御手段90は、庫内温センサTa、Tb、Tcにより検知した温度により、圧縮機61、凝縮器電磁弁68、冷却器入口電磁弁70a、70b、70c、冷却器出口電磁弁72b、72c、加熱器電磁弁68b、68cなどを制御し、庫内を一定温度範囲内でON・OFF制御するサーモサイクル運転により庫内温度を適温に維持する。 The control means 90 controls the cooling or heating of the product storage boxes 40a, 40b, and 40c by the cooling and heating operation mode. As shown in FIG. 4, a CPU and a memory are provided inside, and control such as opening and closing of the solenoid valve of the refrigerant circuit is performed according to the cooling heating operation mode determined by the setting of the operation mode setting SW91. The operation mode indicates the cooling or heating operation of the product storage units 40a, 40b, and 40c by C and H, and in the order of (40a, 40b, 40c) from the left side of the product storage unit, for example, all are cooling Is described as CCC mode, and when only the left product storage is heated, it is described as HCC mode. Moreover, the control means 90 is the compressor 61, the condenser solenoid valve 68, the cooler inlet solenoid valves 70a, 70b, 70c, the cooler outlet solenoid valve 72b, depending on the temperatures detected by the internal temperature sensors Ta, Tb, Tc. 72c, heater solenoid valves 68b and 68c, etc. are controlled, and the interior temperature is maintained at an appropriate temperature by thermocycle operation in which the interior is controlled to be ON / OFF within a certain temperature range.

かかる構成で運転モード設定SW91の操作により運転モードをCCCモードに設定すると、制御手段90は凝縮器電磁弁68、冷却器入口電磁弁70a、70b、70c、冷却器出口電磁弁72b、72cを開成し、加熱器電磁弁68b、68cを閉止する。図5の太線で示すように圧縮機61で圧縮された高温冷媒は、凝縮器62にて凝縮され液体となり、膨張器63で膨張して低温の気液二相流となり、分流器64で三方に分流された後庫内熱交換器65a、65b、65cに流入する。流入した冷媒は、庫内熱交換器65a、65b、65cで蒸発し、商品収納庫40a、40b、40cを冷却し、蒸発した冷媒は集合器67で集合して液冷媒を貯留するアキュムレータ69を介して気液分離させて圧縮機61に戻る。なお、この冷却は、制御装置90にて庫内温度センサTa、Tb、Tcによるサーモサイクル運転により庫内温度が適温に制御される。 With this configuration, when the operation mode is set to the CCC mode by operating the operation mode setting SW 91, the control unit 90 opens the condenser solenoid valve 68, the cooler inlet solenoid valves 70a, 70b, 70c, and the cooler outlet solenoid valves 72b, 72c. Then, the heater solenoid valves 68b and 68c are closed. As shown by the thick line in FIG. 5, the high-temperature refrigerant compressed by the compressor 61 is condensed by the condenser 62 to become a liquid, expands by the expander 63, and becomes a low-temperature gas-liquid two-phase flow. And then flows into the internal heat exchangers 65a, 65b, 65c. The inflowing refrigerant evaporates in the internal heat exchangers 65a, 65b, and 65c, cools the product storages 40a, 40b, and 40c, and the evaporated refrigerant collects in the aggregator 67 to store the liquid refrigerant. Then, the gas and liquid are separated and returned to the compressor 61. In this cooling, the controller 90 controls the internal temperature to an appropriate temperature by the thermocycle operation by the internal temperature sensors Ta, Tb, and Tc.

次に、運転モード設定SW91の操作により運転モードを左側の1室を冷却し、中、右側の2室を加熱するCHHモードに設定すると、制御手段90は、加熱器電磁弁68b、68c、冷却器入口電磁弁70a、70b、70cを開成し、凝縮器電磁弁68、冷却器出口電磁弁72b、72cを閉止する。図6の太線で示すように圧縮機61で圧縮された高温冷媒は、加熱弁入口配管168b,168c、加熱器電磁弁68b、68c、加熱弁出口配管165b,165cを経由して庫内熱交換器65b、65cに流入する。庫内熱交換器65b、65cに流入した冷媒は凝縮し、商品収納庫40b、40cを加熱し、逆止弁71,71を介して集合し、補助熱交換器76でさらに凝縮して膨張器79に流入する。膨張器79に流入した冷媒は、膨張して低温低圧の気液二相流となり分流器64、冷却器入口電磁弁70aを経由して庫内熱交換器65aに流入する。庫内熱交換器65aに流入した冷媒は、庫内熱交換器65aで蒸発して商品収納庫40aを冷却し、集合器67、アキュムレータ69を経由して圧縮機61に戻る。このヒートポンプ運転も前述のようにサーモサイクル運転で庫内が適温に維持される。 Next, when the operation mode is set to CHH mode in which the operation mode is set to cool the left one chamber and the middle two right chambers are heated by operating the operation mode setting SW 91, the control means 90 is connected to the heater solenoid valves 68 b, 68 c, cooling The inlet solenoid valves 70a, 70b, and 70c are opened, and the condenser solenoid valve 68 and the cooler outlet solenoid valves 72b and 72c are closed. As shown by the thick line in FIG. 6, the high-temperature refrigerant compressed by the compressor 61 undergoes internal heat exchange via the heating valve inlet pipes 168b and 168c, the heater electromagnetic valves 68b and 68c, and the heating valve outlet pipes 165b and 165c. Flows into the containers 65b and 65c. The refrigerant flowing into the internal heat exchangers 65b and 65c condenses, heats the product storage 40b and 40c, collects via the check valves 71 and 71, further condenses in the auxiliary heat exchanger 76, and expands. 79 flow into. The refrigerant that has flowed into the expander 79 expands into a low-temperature and low-pressure gas-liquid two-phase flow and flows into the internal heat exchanger 65a via the flow divider 64 and the cooler inlet electromagnetic valve 70a. The refrigerant flowing into the internal heat exchanger 65a evaporates in the internal heat exchanger 65a, cools the product storage 40a, and returns to the compressor 61 via the collector 67 and the accumulator 69. In this heat pump operation, the inside of the cabinet is maintained at an appropriate temperature by the thermocycle operation as described above.

しかして、図6に示すように、圧縮機61で圧縮した冷媒が流れる庫内熱交換器65b、65cの入口側の高圧圧力をP、Pとし、膨張器79で膨張した冷媒が流れる分流器64の出口の低圧圧力をP、Pとすると、庫内熱交換器65b、65cの入口側と分流器64の出口側との間にP−P、P−Pの圧力差が発生するので、冷媒は、逆止弁71b、71c、冷却器入口電磁弁70b、70cに流れようとする。この冷媒の流れは、逆止弁71b、71cで阻止されるものの、一部が漏れ冷媒となるが、冷却器入口電磁弁70b、70cが開成しているので、冷却器入口電磁弁70b、70cの出入口間の逆圧は激減し、極めて遅い流れとなる。この漏れ流量は全体の冷媒循環量と比較して極めて少量であるため、冷却加熱性能には、事実上影響を与えることはない。しかも、冷却器入口電磁弁70b、70cが開成しているので、電磁弁の弁体82は常に弁座81dと離間して固定している結果、振動をして異音を発生することがない。 Accordingly, as shown in FIG. 6, the high-pressure pressure on the inlet side of the internal heat exchangers 65 b and 65 c through which the refrigerant compressed by the compressor 61 flows is P 1 and P 2, and the refrigerant expanded by the expander 79 flows. When the low pressure at the outlet of the flow divider 64 is P 3 and P 4 , P 1 -P 3 , P 2 -P 4 are provided between the inlet side of the internal heat exchangers 65 b and 65 c and the outlet side of the flow divider 64. Therefore, the refrigerant tends to flow to the check valves 71b and 71c and the cooler inlet electromagnetic valves 70b and 70c. Although the refrigerant flow is blocked by the check valves 71b and 71c, a part of the refrigerant becomes a leaking refrigerant, but the cooler inlet solenoid valves 70b and 70c are opened, so the cooler inlet solenoid valves 70b and 70c are opened. The back pressure between the entrance and exit of the water is drastically reduced, resulting in a very slow flow. Since the leakage flow rate is extremely small compared with the total refrigerant circulation amount, the cooling heating performance is not substantially affected. In addition, since the cooler inlet solenoid valves 70b and 70c are opened, the valve body 82 of the solenoid valve is always fixed away from the valve seat 81d, so that it does not vibrate and generate abnormal noise. .

このように、庫内熱交換器65b、65cを凝縮器として作用させてヒートポンプ運転を行う時は、当該庫内熱交換器65b、65cに接続している加熱器電磁弁68b、68cを開成するとともに、当該庫内熱交換器65b、65cに接続している冷却器入口電磁弁71b、71cも開成して運転することにより、冷却器入口電磁弁71b、71cに発生する逆圧を激減させ、冷却器入口電磁弁71b、71cからの異音の発生を抑制することが出来る。しかも、小型の直動型電磁弁で冷媒回路を構成できるので、低コストで信頼性の高い圧縮機の運転ができる。 As described above, when the heat exchangers 65b and 65c are operated as condensers and the heat pump operation is performed, the heater electromagnetic valves 68b and 68c connected to the internal heat exchangers 65b and 65c are opened. At the same time, by opening and operating the cooler inlet solenoid valves 71b and 71c connected to the internal heat exchangers 65b and 65c, the back pressure generated in the cooler inlet solenoid valves 71b and 71c is drastically reduced. Generation | occurrence | production of the noise from the cooler entrance electromagnetic valves 71b and 71c can be suppressed. Moreover, since the refrigerant circuit can be configured with a small direct acting solenoid valve, the compressor can be operated at low cost and high reliability.

なお、上述の説明は、冷却加熱の運転モードをCHHモードで説明をしたが、加熱を1室の商品収納庫で行うCCHモード、CHCモードでも同様な効果が得られる。また、上述の説明は、2室の商品収納庫を冷却加熱兼用とした自動販売機で説明をしたが、1室のみの商品収納庫を冷却加熱兼用とした自動販売機でも同様な効果が得られる。 In the above description, the cooling and heating operation mode is described as the CHH mode. However, the same effect can be obtained in the CCH mode and the CHC mode in which heating is performed in a single product storage. In the above description, the vending machine has a two-room product storage and cooling / heating function. However, the same effect can be obtained with a vending machine that has a one-room product storage and cooling / heating function. It is done.

以上のように、本発明に係る自動販売機は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷媒回路にて冷却または加熱するのに適している。 As described above, the vending machine according to the present invention is suitable for cooling or heating a product such as a beverage contained in a container such as a can, a bottle, a pack, or a plastic bottle in a refrigerant circuit.

本発明の実施例に係る自動販売機を示す斜視図である。1 is a perspective view showing a vending machine according to an embodiment of the present invention. 図1に示した自動販売機の断面図である。It is sectional drawing of the vending machine shown in FIG. 本発明の実施例に係る冷媒回路図である。It is a refrigerant circuit figure concerning the example of the present invention. 制御装置のブロック図である。It is a block diagram of a control apparatus. 3室を全て冷却する冷却単独運転における冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant in the cooling single operation which cools all the three chambers. 1室を冷却し、2室を加熱するヒートポンプ運転における冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant in the heat pump driving | operation which cools 1 chamber and heats 2 chambers. 従来例に係る冷媒回路図である。It is a refrigerant circuit figure concerning a conventional example. 直動型電磁弁の構成図を示し、(a)はソレノイドの無通電時、(b)はソレノイドの通電時の状態である。The block diagram of a direct acting type solenoid valve is shown, (a) is a state when the solenoid is not energized, and (b) is a state when the solenoid is energized. 従来例に係る別の冷媒回路図である。It is another refrigerant circuit figure concerning a conventional example.

10 本体キャビネット
20 外扉
30 内扉
40a、40b、40c 商品収納庫
60 冷却/加熱ユニット
61 圧縮機
62 凝縮器
63、79 膨張器
64 分流器
65a、65b、65c 庫内熱交換器
68 凝縮器電磁弁
68a、68b 加熱器電磁弁
70a、70b、70c 冷却器入口電磁弁
72b、72c 冷却器出口電磁弁
80 直動型電磁弁
81a 弁座
82 弁体
83 スプール
84 バネ
90 制御装置
91 運転モード選択SW
165b、165c 加熱弁出口配管
168b、168c 加熱弁入口配管
DESCRIPTION OF SYMBOLS 10 Main body cabinet 20 Outer door 30 Inner door 40a, 40b, 40c Goods storage 60 Cooling / heating unit 61 Compressor 62 Condenser 63, 79 Inflator 64 Shunt 65a, 65b, 65c In-house heat exchanger 68 Condenser electromagnetic Valve 68a, 68b Heater solenoid valve 70a, 70b, 70c Cooler inlet solenoid valve 72b, 72c Cooler exit solenoid valve 80 Direct acting solenoid valve 81a Valve seat 82 Valve body 83 Spool 84 Spring 90 Control device 91 Operation mode selection SW
165b, 165c Heating valve outlet piping 168b, 168c Heating valve inlet piping

Claims (1)

冷却加熱兼用の商品収納庫を有し、冷却加熱の運転モードにより選択的に商品収納庫を冷却もしくは加熱する自動販売機であって、
冷媒を圧縮する圧縮機と、庫外に設け凝縮器電磁弁を介して冷媒を凝縮する凝縮器と、冷媒を膨張させる膨張手段と、膨張手段より膨張した冷媒を分配する分配器と、庫内に設け前記分配器より冷却器入口電磁弁と逆止弁を介して冷媒を蒸発する複数の庫内熱交換器と、蒸発した冷媒を冷却器出口電磁弁を介して合流する合流器と、にて冷却循環回路を構成するとともに、
前記冷却循環回路に、前記圧縮機と前記庫内熱交換器入口側との間を加熱器電磁弁を介して配管接続し、かつ、前記庫内熱交換器出口側と前記分配器との間を第2膨張手段を介して配管接続することにより、前記庫内熱交換器を凝縮器として作用させてヒートポンプ運転を行う加熱冷却循環回路を構成し、
前記圧縮機、前記凝縮器電磁弁、前記冷却器入口電磁弁、前記冷却器出口電磁弁、前記加熱器電磁弁を制御する制御装置を有する自動販売機において、
前記制御装置は、前記庫内熱交換器を凝縮器として作用させてヒートポンプ運転を行う時は、当該庫内熱交換器に接続している加熱器電磁弁を開成するとともに、当該庫内熱交換器に接続している冷却器入口電磁弁も開成して運転することを特徴とする自動販売機。
A vending machine that has a product storage for cooling and heating, and selectively cools or heats the product storage by an operation mode of cooling and heating,
A compressor for compressing the refrigerant, a condenser for condensing the refrigerant via a condenser solenoid valve, an expansion means for expanding the refrigerant, a distributor for distributing the refrigerant expanded by the expansion means, and the interior A plurality of internal heat exchangers that evaporate the refrigerant from the distributor via the cooler inlet electromagnetic valve and the check valve, and a merger that merges the evaporated refrigerant via the cooler outlet electromagnetic valve, And configure the cooling circuit,
A pipe connection is made between the compressor and the internal heat exchanger inlet side to the cooling circuit via a heater solenoid valve, and between the internal heat exchanger outlet side and the distributor. By connecting the pipe through the second expansion means, the heating / cooling circuit for operating the heat pump by operating the internal heat exchanger as a condenser is configured,
In a vending machine having a control device for controlling the compressor, the condenser solenoid valve, the cooler inlet solenoid valve, the cooler outlet solenoid valve, and the heater solenoid valve,
The control device opens the heater solenoid valve connected to the internal heat exchanger and performs internal heat exchange when the internal heat exchanger acts as a condenser to perform a heat pump operation. Vending machine characterized by opening and operating the cooler inlet solenoid valve connected to the vessel.
JP2009006342A 2009-01-15 2009-01-15 vending machine Expired - Fee Related JP4548540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009006342A JP4548540B2 (en) 2009-01-15 2009-01-15 vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009006342A JP4548540B2 (en) 2009-01-15 2009-01-15 vending machine

Publications (2)

Publication Number Publication Date
JP2010165143A JP2010165143A (en) 2010-07-29
JP4548540B2 true JP4548540B2 (en) 2010-09-22

Family

ID=42581256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009006342A Expired - Fee Related JP4548540B2 (en) 2009-01-15 2009-01-15 vending machine

Country Status (1)

Country Link
JP (1) JP4548540B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233941A (en) * 1992-02-26 1993-09-10 Fuji Electric Co Ltd Stockroom cooling and heating device for automatic vending machine
JP2002340435A (en) * 2001-05-16 2002-11-27 Sanyo Electric Co Ltd Air conditioner
JP2003279189A (en) * 2002-03-26 2003-10-02 Sanyo Electric Co Ltd Air conditioning device and solenoid valve unit used for the same
JP2008267700A (en) * 2007-04-20 2008-11-06 Sanden Corp Cooling and heating device
JP2008275225A (en) * 2007-04-27 2008-11-13 Fuji Electric Retail Systems Co Ltd Heat pump unit and automatic vending machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233941A (en) * 1992-02-26 1993-09-10 Fuji Electric Co Ltd Stockroom cooling and heating device for automatic vending machine
JP2002340435A (en) * 2001-05-16 2002-11-27 Sanyo Electric Co Ltd Air conditioner
JP2003279189A (en) * 2002-03-26 2003-10-02 Sanyo Electric Co Ltd Air conditioning device and solenoid valve unit used for the same
JP2008267700A (en) * 2007-04-20 2008-11-06 Sanden Corp Cooling and heating device
JP2008275225A (en) * 2007-04-27 2008-11-13 Fuji Electric Retail Systems Co Ltd Heat pump unit and automatic vending machine

Also Published As

Publication number Publication date
JP2010165143A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2010035512A1 (en) Vending machine
JP2009076028A (en) Vending machine
JP5169282B2 (en) vending machine
JP5375342B2 (en) vending machine
JP5392491B2 (en) Refrigerant circuit
JP5407621B2 (en) Cooling and heating device
JP5321241B2 (en) vending machine
JP4924535B2 (en) vending machine
JP5156923B2 (en) vending machine
JP5471563B2 (en) vending machine
JP5569634B2 (en) Operation method of cooling heating device
JP4548540B2 (en) vending machine
JP5272475B2 (en) vending machine
JP2010152673A (en) Vending machine
JP5228965B2 (en) vending machine
JP5434423B2 (en) vending machine
JP5229057B2 (en) vending machine
JP5375560B2 (en) vending machine
JP5240017B2 (en) vending machine
JP5240016B2 (en) vending machine
JP5471518B2 (en) vending machine
JP5240030B2 (en) vending machine
JP5407692B2 (en) vending machine
JP2009169495A (en) Vending machine
JP5471480B2 (en) vending machine

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100426

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4548540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees