JP2010269165A - X線ct装置 - Google Patents

X線ct装置 Download PDF

Info

Publication number
JP2010269165A
JP2010269165A JP2010174976A JP2010174976A JP2010269165A JP 2010269165 A JP2010269165 A JP 2010269165A JP 2010174976 A JP2010174976 A JP 2010174976A JP 2010174976 A JP2010174976 A JP 2010174976A JP 2010269165 A JP2010269165 A JP 2010269165A
Authority
JP
Japan
Prior art keywords
subject
ray
tube current
dose
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010174976A
Other languages
English (en)
Other versions
JP5027909B2 (ja
Inventor
Takayuki Nagaoka
孝行 長岡
Yasushi Miyazaki
宮崎  靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2010174976A priority Critical patent/JP5027909B2/ja
Publication of JP2010269165A publication Critical patent/JP2010269165A/ja
Application granted granted Critical
Publication of JP5027909B2 publication Critical patent/JP5027909B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】 被検体への無用なX線被曝を抑え、適正なX線量を照射できるX線CT装置を提供する。
【解決手段】 X線源12、検出器13、これらを搭載するスキャナ11、高電圧発生装置22、ホストコンピュータ20、画像処理装置24、表示装置25などを具備するX線CT装置において、装置のスキャン条件を設定する操作手段21と、被検体15のスキャノグラム画像データを解析し、被検体の3次元的透過長モデルを生成するスキャノグラム解析手段26と、被検体の透過長モデルとスキャン条件に基づいて被検体15の撮影部位に応じた線管電流(以下、管電流という)の変化パターンを自動的に設定する管電流設定手段23と、管電流の変化パターンに基づき被検体15に照射される線量を計算し、計算結果を表示装置25に表示する線量計算手段を備えている。
【選択図】 図2

Description

本発明は、撮影中のX線管電流(以下、管電流と略称する)を制御して被検体の被曝線量を抑制するX線CT装置に係り、特に被検体の被曝線量と画質とを考慮して、撮影中の管電流の変化曲線を再設定できるX線CT装置に関する。
従来のX線CT装置は、同一断層面では、同一のCTスキャン(以下、スキャンと略称する)条件(X線管電圧(以下、管電圧と略称する)や管電流等)で、撮影を行うようにしている。
また、近年被検体を螺旋状にスキャンして撮影するヘリカルスキャンが広く用いられるようになってきているが、体軸方向のスキャン条件もスキャン中一定である。
従って、例えば被検体の断面が、CTスキャナ(以下、スキャナと略称する)の回転軸に対して同心円ではなく楕円である場合、X線源の回転角度位置によって、被検体におけるX線の透過長が大きく変化するため、同一断層面内で、透過するX線量の過不足が発生する問題点を有していた。
また、肺等の胸部の低密度の臓器と、肝臓等の腹部の高密度の臓器とでは、X線の吸収係数が大きく異なるため、胸部から上腹部へ連続的にスキャンを行う場合、肺に適するようなX線量を設定すると、肝臓では不足し、肝臓に適するようなX線量を設定すると、肺では過剰となる事態が生じていた。
透過するX線量が不足する場合、X線検出器(以下、検出器と略称する)によって検出されるX線光子の量の減少によりS/N(SN比)が悪化し、結果として画像再構成によって得られる断層画像全体のS/Nが悪化する。逆に、透過するX線量が多すぎる場合には、被検体に対して、無効なX線被曝がなされていることになる。
これらの問題点を解決する方法として、特許文献1で開示された管電圧を制御する方法や、特許文献2、特許文献3で開示された管電流を制御する方法が提案されている。
特開昭53-110495号公報 特開平9-108209号公報 特開平10-309271号公報 特開2001-276040号公報
しかしながら、特許文献1の管電圧を制御する方法は、スキャン中に管電圧を変化させるためにX線のスペクトルが変化し、CT値が決定できないという問題点がある。このため、現在では、管電流を制御する方法が主流となっている。
管電流を被検体に応じて最適に制御しようとする方法として、特許文献3のように、スキャナ回転の半周期前の透過X線量データを用いて管電流を制御する方法と、特許文献2のように、異なる2方向から撮影したスキャノグラムをもとにして、予め管電流を制御するパターンを被検体の位置に応じて決定しておく方法がある。
しかし、特許文献3のスキャナ回転の半周期前の透過X線量データを用いる方法は、特にヘリカルスキャンにて、スキャンピッチを大きくする場合に、透過X線量データのずれが大きくなる問題点がある。また、横隔膜前後のように、被検体のX線吸収特性が大きく変わる領域では、対応することができない。
特許文献2の異なる2方向からのスキャノグラムを取得する方法は、スキャノグラム撮影を2回行うことにより、被検体への無用なX線被曝を増加させることになり、管電流制御による被曝線量の低減の目的に相反するものである。
また、本発明の発明者達も、管電流を被検体に応じて最適に制御する一方法を特許文献4にて提案している。特許文献4の発明は、被検体への無用なX線被曝を抑えて、被検体の低被曝化を実現したX線CT装置に関するもので、被検体に関するスキャナの回転角度とX線透過長との関係を示すモデルをメモリに格納しておき、被検体に対してのスキャン計測時に、このモデルから定まるスキャナの回転角度毎の設定管電流によるX線を、同じ被検体に照射してスキャン計測を行い、断層画像を再構成するものである。
特許文献4の発明では、被検体のX線透過長モデルの生成と、このX線透過長モデルのX線透過長に基づいて管電流を設定することに重点が置かれ、設定された管電流によって被検体に照射されるX線量や、被検体内の臓器へのX線被曝などについては考慮されていなかった。
上記の問題点を考慮し、本発明では、被検体のX線透過長モデルから自動的に設定した管電流の変化パターンによる被検体の内外における被曝線量を算定し、この被検体のX線被曝を考慮に入れて操作者が管電流の変化パターンを再設定することができるX線CT装置を提供することを目的とする。
上記目的を達成するため、本発明のX線CT装置は、被検体の周囲を回転しながらX線を曝射するX線源と、被検体を挟んでX線源と対向して配置され、被検体を透過したX線量を検出する多チャンネルのX線検出器と、被検体を透過したX線量データに基づき被検体の断層像を再構成する画像再構成手段と、断層像を表示する表示手段とを具備するX線CT装置において、装置のスキャン条件を設定する操作手段と、被検体のスキャノグラム画像データを解析し、被検体の3次元的X線透過長モデルを生成するスキャノグラム解析手段と、前記被検体の3次元的X線透過長モデルとスキャン条件に基づいて被検体の撮影部位に応じたX線管電流(以下、管電流と略称する)の変化パターンを自動的に設定する管電流設定手段と、前記管電流の変化パターンに基づき被検体に照射される線量を計算し、計算結果を表示する線量計算手段とを具備する(請求項1)。
この構成では、スキャノグラム解析手段によってスキャノグラム画像データから生成された被検体の3次元的X線透過長モデルと、操作手段によって設定したスキャン条件のうちの管電流の最大値、最小値に基づいて、被検体の撮影部位に応じた管電流の変化パターンが管電流設定手段によって自動的に設定されるので、管電流の変化パターンの設定及び管電流の制御が自動化できる。また、線量計算手段によってスキャン中の被検体に照射される線量が計算され、表示手段に表示されるので、操作者は被検体へのX線被曝を評価することができる。また、X線被曝の評価結果によって、管電流の変化パターンの再設定が可能である。
本発明のX線CT装置では更に、前記管電流設定手段は、前記被検体の3次元的X線透過長モデルデータの撮影部位における最大値、最小値に、スキャン条件として設定された管電流の最大値、最小値を対応付け、前記X線透過長モデルデータのより大きい値に、管電流のより大きい値を対応付けるように前記管電流の変化パターンを設定するものである。この構成では、被検体のX線透過長の大きさに対応付けて、X線源の放射X線量に比例する管電流の大きさが設定されているので、被検体に照射される線量は被検体のX線透過長の大きさに対応したものとなり、被検体内及び被検体を透過した線量は平準化される。その結果、CT画像の画質の向上及び被検体内のX線被曝の低減に寄与する。
本発明のX線CT装置では更に、任意のX線源位置での前記被検体のX線透過長モデルデータの値と管電流の設定値との間に、前記X線透過長モデルデータの値と最小値との差分と、管電流の設定値と最小値との差分との間に比例関係が保持されるように、前記管電流の変化パターンを設定するものである。この構成では、被検体のX線透過長モデルデータと管電流の変化パターンとの間にγの値で決定される関数関係があるので、管電流の最大値、最小値とγの値を設定するだけで、自動的に管電流の変化パターンを設定することができ、管電流の変化パターンの設定が極めて容易となる。
本発明のX線CT装置では、前記線量計算手段によって計算された被検体に照射されるX線量の経時的積算値をスキャン中に逐次前記表示手段に表示するものである。この構成では、スキャン中に逐次被検体に照射されるX線量の積算値が表示されるので、操作者はスキャン中の被検体へのX線被曝量の経緯を容易に把握することができる。
本発明のX線CT装置では更に、前記スキャノグラム解析手段は被検体の正面方向又は側面方向のスキャノグラム画像に基づき、被検体の複数横断面のX線透過長の楕円形モデル(2次元的X線透過長モデル)を作成し、該楕円形モデル複数個を体軸方向に配列することによって被検体の3次元的X線透過長モデルを生成する。この構成では、1回のスキャノグラム撮影にて被検体の3次元的X線透過長モデルを生成することができるので、被検体へのX線被曝を低減することができる。
本発明のX線CT装置では更に、被検体の横断面のX線透過長の前記楕円形モデルは、前記被検体のスキャノグラム画像の対応する断面における最大X線減衰量に対応するX線透過長を短軸又は、長軸とし、前記断面におけるX線透過長方向とは直交する方向にX線減衰量に対応するX線透過長を断面全体にわたって積分した積分値を面積とする楕円形でモデル化される。この構成では、X線透過長の楕円形モデルが、被検体のスキャノグラム画像の計測データから容易に作成することができる。
本発明のX線CT装置では更に、前記管電流の変化パターン及び予め求めた被検体の3次元CT値モデルに基づいて、被検体の体内の線量分布を計算し、計算結果を表示する線量分布計算手段を具備する(請求項2)。この構成では、線量分布計算手段によって、操作者はCT撮影による被検体の体内での線量分布を予め知ることができ、注目する臓器のX線被曝の程度を考慮して、スキャン実行の可否を判断することができる。
本発明のX線CT装置では更に、前記線量分布計算手段は前記線量計算手段が前記管電流の変化パターンに基づいて計算した被検体に照射されるX線量と、前記被検体の3次元CT値モデルから計算された被検体の3次元μ(線減弱係数)値モデルデータに基づいて、前記被検体内の線量分布を計算する。
本発明のX線CT装置では更に、前記線量分布計算手段は、前記表示手段の同一画面上に被検体の撮影部位に重ねて被検体内の線量分布のグラフを表示する。また、被検体内の線量分布のグラフとしては線量の等線量線を表示する。この構成では、表示画面上に被検体の撮影部位と被検体内の線量分布のグラフが重ねて表示されるので、注目する臓器などの被曝線量が一目で分かり、X線被曝の過不足の判断を容易に行うことができる。
本発明のX線CT装置では更に、標準的な人体ファントムをCT撮影して生成した標準人体CT値モデルデータと、被検体のスキャノグラム画像データに基づいて、被検体の3次元的CT値モデルデータを生成する被検体CT値モデル生成手段を具備する。この構成では、被検体のスキャノグラム画像から被検体の3次元的CT値モデルを生成する被検体CT値モデル生成手段を備えているので、以前にCT撮影を実施したことのない被検体について、予備撮影としての一回のスキャノグラム画像データの取得のみによって、被検体CT値モデルを生成することができる。
本発明のX線CT装置では更に、前記被検体CT値モデル生成手段によって、被検体の過去のCT撮影によって取得したCT画像から被検体の3次元的CT値モデルを生成するものである。この構成では、被検体の過去のCT画像から被検体の3次元的CT値モデルデータが得られるので、過去のCT画像の有効利用により、被検体CT値モデルの生成のための時間を短縮することができる。
本発明のX線CT装置では更に、前記表示手段の同一画面上に管電流の変化パターンと被検体のスキャノグラム画像とを並置して、又は重ねて表示する(請求項3)。この構成では、表示手段の同一画面上に被検体のスキャノグラム画像と並置又は重畳して、管電流の変化パターンが表示されるので、操作者などは被検体の撮影部位を見ながら管電流の変化パターンの編集をすることが可能となり、撮影部位に適した管電流の設定を容易に行うことができる。
以上説明した如く、本発明のX線CT装置では、装置のスキャン条件を設定する操作手段や被検体のスキャノグラム画像データから被検体の3次元的X線透過長モデルを生成するスキャノグラム解析手段や、スキャン条件と被検体の3次元的X線透過長モデルとから被検体の撮影部位に応じた管電流の変化パターンを自動的に設定する管電流設定手段や、管電流の変化パターンに基づき被検体に照射される線量を計算し、表示する線量計算手段などを備えているので、スキャン条件として管電流の最大値、最小値を入力することにより、スキャン中の管電流の変化パターンを自動的に設定することができ、かつ被検体へのX線被曝も評価することができる。更に、被検体へのX線被曝が過剰になる恐れがある場合には、管電流の変化パターンを再設定することも可能である。
また、本発明のX線CT装置では、スキャン中の管電流の変化パターンと予め生成した被検体の3次元CT値モデルデータに基づいて、被検体の体内の線量分布を計算し、表示する線量分布計算手段を備えているので、CT撮影による被検体の体内での線量分布を予め知ることができ、注目する臓器のX線被曝の程度を考慮して、スキャン実行の可否を判断することができる。
また、本発明のX線CT装置では、上記の被検体の3次元CT値モデルデータを人体ファントムなどをCT撮影して取得した標準人体CT値モデルデータと被検体のスキャノグラム画像データに基づいて生成する被検体CT値モデル生成手段を備えているので、以前にCT撮影を実施したことのない被検体についても、予備撮影としての1回のスキャノグラム画像データの取得のみによって、被検体CT値モデルデータの生成が可能である。
また、本発明のX線CT装置では、表示手段の同一画面に被検体のスキャノグラム画像と管電流の変化パターンを並置又は重ねて表示しているので、操作者などは被検体の撮影部位を見ながら管電流の変化パターンの編集を行うことが可能となり、撮影部位に適した管電流の設定を容易に行うことができる。
本発明に係るX線CT装置の全体構成を示すブロック図。 本発明に係るX線CT装置の要部構成要素。 本発明に係るX線CT装置を使用した第1のスキャン操作例の一連の動作のフローチャート。 スキャノグラム画像とスライス位置及び投影データ例との対応を示す図。 3次元的X線透過長モデルの1スライス位置でのモデルを示す図。 スライス位置ZにおけるX線透過長モデル。 管電流の変化パターンの表示例。 管電流の変化パターンの例。 本発明に係るX線CT装置を使用した第2のスキャン操作例の一連の動作のフローチャート。 被検体内の線量分布の計算結果の表示例。 被検体CT値モデルの作成手順を説明するための図。 照射X線量分布計算の手順を説明するための図。 被検体のスキャノグラム画像上に管電流の変化パターンを重畳して表示したもの。 管電流と被検体の厚さとの関係を示した図。
以下、添付図面を用いて、本発明の実施例について説明する。図1は、本発明に係るX線CT装置の全体構成を示すブロック図である。図1に示すように、このX線CT装置は、主としてX線源12と検出器13等を搭載し、被検体15に対してその周囲を連続回転可能なスキャナ11を内蔵するガントリ10と、装置全体を総括するホストコンピュータ20と、X線源12に高電圧を供給する高電圧発生装置22と、画像データの前処理や画像再構成処理、あるいは各種の解析処理を行う画像処理装置24と、画像を表示する表示装置25と、被検体15を載せるテーブル装置18と、操作者がスキャン条件等を入力する操作手段21等から成る。なお、スキャナ11と被検体15とは、相対的に回転することができればよいので、被検体15が静止してスキャナ11が回転してもよいし、スキャナ11が静止して被検体15の方が回転するとしてもよい。
図2は、本発明に係るX線CT装置の要部構成要素を示す。図2を用いて、先ず、スキャナ11の詳細について説明する。図2において、スキャナ11には、X線源12と検出器13とが180度対向した位置関係で配置されている。このX線源12から放射されたX線ビーム14は、コリメータ19によってビームの幅及び厚さが制限されたファン状のX線ビーム14となって、被検体15に照射される。X線源12は、高電圧発生装置22を介してホストコンピュータ20によって制御される。スキャナ11全体は、スキャナ角度検出手段17によって回転角度を検出し、検出した回転角度に基づいてホストコンピュータ20が、スキャナ駆動手段16を制御し、スキャナ11を駆動する。検出器13は、被検体15を透過したX線14を検出し、検出データは被検体15によるX線の減衰量を示す投影データとして取り込まれる。投影データは、画像処理装置24において、ホストコンピュータ20の持つスキャナ角度等のデータと照合され、画像再構成等の処理をされた後に、表示装置25にて断層画像として表示される。
次に、本発明に係るスキャナ11以外の要部構成要素について説明する。図2において、装置全体を総括するホストコンピュータ20には、スキャナ11はスキャナ駆動手段16を介して、X線源12は高電圧発生装置22を介して、検出器13は画像処理装置24を介して、それぞれ間接的に接続されており、操作手段21と、管電流設定手段22と、画像処理装置24と、スキャノグラム解析手段26は直接接続されている。ホストコンピュータ20とスキャナ11、X線源12、検出器13との接続により、ホストコンピュータ20はX線源12による被検体15へのX線照射と、検出器13による投影データ(検出データ)の取り込みを制御する。画像処理装置24はホストコンピュータ20の指令に応じて、取り込まれた投影データに基づき、断層画像を順次再構成する。
本発明に係るX線CT装置では、被検体の断層画像を取得する本スキャンの前に、スキャン条件を設定するために種々の準備操作を行う。この準備操作としては、被検体の位置決めのためのスキャノグラム画像の撮影、管電流設定のためのスキャノグラム画像データの解析、スキャン条件としての管電流の変化パターンの決定などが、ホストコンピュータ20の介在のもとで行われる。
これらの準備操作に関与する主な構成要素としては、図2において、ホストコンピュータ20と、操作手段21と、スキャノグラム解析手段26と、管電流設定手段22と、X線源12と、検出器13などである。この準備操作において、先ず、操作手段21は主として管電流の設定値(最大値、最小値)などのスキャン条件をシステムに入力する。X線源12と検出器13はスキャナ11を回転させずに、スキャノグラム画像の撮影を行い、画像データをホストコンピュータ20に保存する。スキャノグラム解析手段26はスキャノグラム画像データを解析し、被検体のX線透過長を体軸方向のスライス位置毎及びスキャナの回転角度毎に算出可能な、3次元形状データとしてモデル化し、このモデル(以下、被検体の3次元的X線透過長モデルという)のデータをホストコンピュータ20に保存する。管電流設定手段22は操作手段21から入力された管電流設定値と被検体の3次元的X線透過長モデルのデータを基にして、スキャン中に被検体の撮影部位のX線透過長の変化に応じて経時的に変化する一連の管電流値すなわち、管電流の変化パターンを自動的に決定する。このように決定された管電流の変化パターンは、ホストコンピュータ20に保存され、本スキャン時に被検体の撮影部位に応じて順次呼び出されて、X線源12の管電流を変化させる。
本発明では、更に上記で決定された管電流の変化パターンを基に、被検体15に照射されるX線量を本スキャン前に予め計算する。X線装置では、通常照射したX線量に対応する量としてmAs値が使用されているが、この計算でもmAs値を採用している。このmAs値は、管電流(mA)と照射時間(s)の積であり、管電圧が一定である場合(X線CT装置では管電圧が一定で使用される場合が多い)には、X線源12より照射されるX線量の総和に比例するために、X線量の基準として用いられる。ここで計算された被検体15に照射されるX線量については被検体15への予測被曝線量として操作者によって評価されることになる。
図3に、本発明に係るX線CT装置を使用した第1のスキャン操作の一連の動作のフローチャートを示す。このスキャン操作では、ステップ103、106、108の3次元データ生成、ステップ110の管電流パターン生成、ステップ111のmAs計算、ステップ114のmAs表示に特徴がある。以下、図2を参照しながら、図3の第1のスキャン操作の詳細について説明する。
図3において、先ず、ステップ101のスキャノグラム撮影の工程では、被検体15のスキャノグラム画像を撮影する。被検体15のスキャノグラム画像を撮影する構成と断層画像を撮影する構成とは基本的には同じである。本ステップでは、スキャノグラム画像データは、スキャナ11を回転させずに、被検体15に正面方向からX線14を照射して、検出器13によって検出データを取り込むことによって得られる。このとき得られるスキャノグラム画像は正面方向のものである。このスキャノグラム画像データは、検出器13からホストコンピュータ20に送られる。このスキャノグラム画像データは、本スキャン時の被検体15の位置決めのために利用される他、本発明では特に管電流制御のための管電流の変化パターンの決定のために利用される。
次に、ステップ102のスキャノグラムデータ解析の工程及びステップ103の第1の3次元データ生成の工程では、スキャノグラム画像データがホストコンピュータ20に接続されたスキャノグラム解析手段26によって解析され、被検体15の3次元的X線透過長モデルが生成される。この3次元的X線透過長モデルは、被検体15をCT撮影する場合の、被検体15の位置とX線透過長との関係を示すモデルである。被検体15の3次元的X線透過長モデルの作成方法については特許文献4にも開示されている。
以下、被検体15の3次元的X線透過長モデルの作成方法の一例について説明する。図4はスキャノグラム画像とスライス位置及び投影データ例との対応を示す図、図5は3次元的X線透過長モデルの1スライス位置でのモデルを示す図である。図4(a)は、ステップ101で撮影された被検体のスキャノグラム画像29を示す。このスキャノグラム画像29は胸部から腹部の中間位置までの領域を撮影領域としている。このようなスキャノグラム画像の撮影領域の中からスライス位置が選ばれる。図示の場合n個のスライス位置が選ばれている。図中、P1、・・・、Pi、・・・、Pj、・・・、Pnがスライス位置である。
図4(b),(c),(d)は3次元的X線透過長モデルのモデル決定の説明図である。任意の2つのスライス位置Pi、PjでのCT断層像が図4(b)の如くなっているものと仮定すると、その縦方向(図示の上下方向)のX線減衰量の投影データは図4(c)の如くなるはずである。人体の体幹部の横断面は通常楕円形に近いものであるので、任意のスライス位置Pi、PjのCT断層像を図4(b)で仮定するのは、大きな誤差はないものと判断される。そこで、図4(c)の投影データについては、X線透過長データに換算し、その後横軸に沿って積分して面積を求める。このとき、X線減衰量の投影データのX線透過長への換算にあたっては、簡単のため人体が水と等価であるとみなしてデータの変換を行う。X線減衰量をc、X線透過長をb、水の線減弱係数をμwとしたとき、両者の関係はb=log c/μwで表される。また、横軸については、X線減衰量データの存在する領域全体の幅が人体の幅寸法に一致するように変換する。図4(d)は、図4(c)の投影データから変換したスライス位置Pi、Pjにおける被検体15のX線透過長データの分布図である。図4(d)においてスライス位置Pi、Pjにおける最大X線透過長はbi、bj、面積はSi、Sjとなる。図4(d)のX線透過長データについて、最大X線透過長bi、bj及び面積Si、Sjに注目すると、bi、Siはスライス位置Piでの断層画像のX線透過状況を反映し、bj、Sjはスライス位置Pjでの断層画像のX線透過状況を反映した値と見なすことができる。
そこで、被検体15の3次元的X線透過長モデルとして、各スライス位置でのスライス断面を図5に示すような楕円形30でモデル化することにした。このモデル化では、スライス位置Pi、Pjにおける楕円形モデル30i、30jの面積をSi、Sj、短軸をbi、bjとしている。この結果、楕円形モデル30i、30jの長軸をai、ajとすると、楕円形モデル30i、30jの面積が[数1]で表されることから、
Figure 2010269165
長軸ai、ajは[数2]によって求められる。
Figure 2010269165

上記によって、各スライス位置での断層画像に対応するX線透過長モデルとしての楕円形モデル30が求められたので、これらの楕円形モデル30を体軸方向に配列することによって3次元的X線透過長モデル30を作成することができる。体軸方向のスライス位置のピッチが粗いときには、例えば隣り合う楕円形モデル間で最小自乗法により、その途中の1つ又は2つ以上の楕円形モデルを補間で求める。以上の如き手順により被検体15の3次元的X線透過長モデル30のデータとして、3次元座標(X、Y、Z)系での被検体15のX線透過長データT=T(X、Y、Z)が生成される。
次に、ステップ104からステップ110の工程では、上記の3次元的X線透過長モデル30を使用してX線源12に付与する管電流の変化パターンを設定することになるが、その前に3次元的X線透過長モデル30を使用した管電流の求め方について説明する。図4、図5で求めた3次元的X線透過長モデル30は、被検体の各スライス位置での断層画像のX線透過長を反映したものである。3次元的X線透過長モデル30のデータは一旦ホストコンピュータ20のレジスタを含むメモリに格納されているので、撮影範囲及びテーブルピッチなどのスキャン条件が決定するとその範囲のモデルのデータがメモリから取り出され、第2、第3の3次元データの生成及び管電流の変化パターンの決定に使用される。
管電流は、管電流設定手段23によって各スライス位置でスキャナ回転角度毎に3次元的X線透過長モデル30から得られるX線透過長に基づいて決定される。図6には、スライス位置(体軸方向の位置)ZにおけるX線透過長モデル30を示す。また、あるスキャナ回転角度における管電流は、通常そのスキャナ回転角度における3次元的X線透過長モデルのX線透過長のうちの最大値に対応付けて決定される。この最大値を示すX線透過長は図6の楕円形モデル30の中心0を通過するパスで得られるので、管電流を設定するにあたっては、スキャナ回転角度毎にこの楕円形モデル30の中心0を通過するパスのX線透過長のみを考慮すればよい。従って、図6においてスライス位置をZ、スキャナ回転角度をθ(θの始点は楕円形モデル30の短軸方向とする)としたとき、その位置における最大X線透過長Tは、Zとθの関数としてT=T(Z、θ)と表すことができる。
この最大X線透過長T(Z、θ)は、楕円形モデル30の中心位置0を通るパスの長さであるので、長軸をa、短軸をb、スキャナ回転角度をθとした場合、[数3]の如く表すことができる。
Figure 2010269165
ここで、a、bは[数1]、[数2]のai、aj、及びbi、bjと対応する。
次に、管電流の設定方法の一例について説明する。先ず、被検体をスキャンする全範囲におけるパスの最大値(全スライス位置P1〜Pnの中でのパスの最大値)をTmax、最小値(同じくパスの最小値)をTminとする。これらの値は3次元的X線透過長モデル30を作るとき既知である。管電流を最大値Imax(mA)と最小値Imin(mA)の範囲で変化させる場合、本例では管電流の最大値、最小値とパスの最大値、最小値をそれぞれ対応させて、管電流とパスとの間に直線関係を持たせるものである。管電流IとパスTとの関係は[数4]の如く表される。
Figure 2010269165
ここで、パスTはT(Z、θ)に対応するので、管電流Iは(Z、θ)の1次関数となり、スライス位置Z及びスキャナ回転角度θごとに求められる。
次に、図3のフローチャートに戻って説明する。ステップ104及びステップ105の工程では、操作者がスキャノグラム画像を参照して操作手段21からスキャン条件としてのテーブルピッチ及びスキャン開始位置を入力する。これらのデータにより、被検体のCT撮影範囲とスライス位置とスキャン回転角度が決定される。このときの座標系としては、上記の如く(Z、θ)座標系がよく、スキャン条件のデータも、(Z、θ)座標系のデータで入力するのがよい。
次に、ステップ106の工程では、第2の3次元的X線透過長モデルのデータを生成する。この工程で生成するデータは、各スライス位置Z、スキャン回転角度θ毎の最大X線透過長であり、第1の3次元的X線透過長モデルのデータから[数3]によって求めることができるので、ホストコンピュータ20のメモリから第1の3次元的X線透過長モデルのデータを呼び出して演算する。この演算結果は、T=T(Z、θ)で表される。
次に、ステップ107の工程では、スキャン条件としてのスキャン時間を操作手段21より入力する。スキャン開始位置と、テーブルピッチと、スキャン時間が決定すると、スキャン中のX線源12の位置(Z、θ)はスキャン開始後の経過時間tの関数として表すことができるので、各スキャン位置での被検体15の第2の3次元的X線透過長モデル、すなわち最大X線透過長Tも時間tの関数T=T(t)として表すことができる。このため、ステップ108の第3の3次元的X線透過長モデル生成の工程では、最大X線透過長Tの関数を、T=T(Z、θ)からT=T(t)に変換する。
次に、ステップ109の管電流設定値入力の工程では、操作者が操作手段21より、管電流の設定値、例えばスキャン中の管電流の最大値Imaxと最小値Iminを入力する。ステップ110の管電流パターン生成の工程では、管電流設定手段23がホストコンピュータ20から3次元的X線透過長モデルのデータT(t)を呼び出し、上記の管電流設定値に基づき、被検体15の撮影部位に応じた管電流の変化パターンを自動的に決定する。このとき、X線透過長T(t)に対応付けてスキャン中の管電流の値を設定することになるが、X線透過長T(t)が最小の時には最小の管電流を設定し、X線透過長T(t)が最大の時には最大の管電流を設定するように管電流の変化パターンを決定する。また、X線透過長T(t)と管電流の値との関係として[数4]に示した1次関数の他、種々のものがある(但し、[数4]のTはT(t)に対応する)。
上記の如くして被検体15の3次元的X線透過長モデルに合わせて、管電流が時間tの関数として決定される。従って、管電流の変化パターンは、I=I(t)と表すことができる。このように決定された管電流の変化パターンI=I(t)はホストコンピュータ20に保存され、本スキャン時に被検体15の撮影部位に応じて順次呼び出されて、高電圧発生装置22を介してスキャン中の管電流を制御する。
図7に、管電流の変化パターンの表示例を示す(本例も含めて以下の管電流の変化パターンの表示例では、簡単のためスキャナ回転角度θの変化に伴う大略周期的な管電流の変化については省略し、スライス位置による変化のみ示している)。これは、表示装置25の画面上にスキャノグラム画像29と対比して表示したものである。管電流の変化パターン31では、縦軸に管電流値(mA)、横軸にスキャン開始後の経過時間tをとっている。表示例の場合、管電流はスキャンの初期(腹部)には中程度の値で、中期(腹部と胸部との間)には最小値となり、終期(胸部)には最大値となっている。本表示例の如く、管電流の変化パターン31とスキャノグラム画像29を同一画面上に並置することにより、管電流値と撮影部位との対比を一目で行うことができるので、管電流値の妥当性の判断に有効である。
次に、ステップ111のmAs計算の工程では、ステップ110で決定された管電流の変化パターンに基づき、スキャン中に被検体15に照射されるX線量を計算する。ここで、被検体15に照射されるX線量の基準としては上述の如く管電流(mA)と照射時間(s)との積であるmAsが用いられる。従って、本ステップでは、管電流の変化パターンI=I(t)を時間で積分して、被検体15に照射されるX線量mAsを求める。この積分は[数5]によって行われる。
Figure 2010269165
ここで求めたmAs値は、あくまでも被検体15に照射されるX線量に相当する量であるので、実験等によってX線量とmAs値との正確な対応をとり、両者の間の換算ができるようにしておく必要がある。
図7に示した管電流の変化パターン31を例に上げて、被検体15への照射X線量mAsを計算することを考える。この場合、管電流の変化パターン31は、I=I(t)で、時間の関数であるから、これを積分してmAsを計算することは、管電流の変化パターン31の図の面積を計算することになり、管電流の変化パターン31の図の面積SがmAsに相当する。
次に、ステップ112のmAs計算値表示の工程では、ステップ111にて求めたmAsの計算値を表示装置25の画面に表示する。ステップ111では、管電流の変化パターンが生成された段階で、被検体15のスキャン範囲の全領域にわたって被検体に照射されるX線量に対応するmAsが計算されるので、このステップ112でこのmAs値がスキャンを開始してもよいか否かを操作者が判断するための資料として操作者に提示される。
ステップ113のmAs判断の工程では、操作者が全体としてのmAsの妥当性について判断する。すなわち、操作者はこれから行われるCT撮影による利益と被検体15へのX線被曝による不利益とを比較考量して、全体としてのmAsが大きすぎないか否かを判断し、全体としてのmAsが大きすぎると判断した場合には管電流の設定値を下げることになる。この場合には、ステップ109に戻り、管電流設定値を再度入力し、管電流の変化パターンを再設定する。
図8には、管電流の変化パターンの例を示す。図8(a)に示した管電流の変化パターン31aは、通常の管電流一定(I0)の場合で、管電流の最小値(Imin)と最大値(Imax)が同じI0である場合の例である。図8(a)の管電流の変化パターン31aのグラフでは、mAsは面積Saである。次に、図8(b)示した管電流の変化パターン31bでは、管電流は初期には図8(a)と同じI0で、中期にI0より低い最小値Iminとなり、終期にI0より高い最大値Imaxとなっている。図8(b)の管電流の変化パターン31aのグラフでのmAsは面積Sbであるが、この面積Sbは図8(a)の面積Saより小さくなっており、被検体15の被曝線量は低減している。
図8(c)に示した管電流の変化パターン31cでは、図8(b)のグラフと比べて、終期の最大値Imaxを小さくし、I0とほぼ同じとしたものである。この場合、スキャン全体として管電流が低目に抑えられている。図8(c)の管電流の変化パターン31cのグラフでのmAsは面積Scであるが、この面積Scは図8(b)の面積Sbより更に小さくなっており、被検体15の被曝線量は更に低減している。
図8(d)に示した管電流の変化パターン31dでは、図8(b)に比べて中期の最小値Iminを更に小さくし、IminがI0に対し大幅に低下するようにしたものである。図8(d)の管電流の変化パターン31dでのmAsは面積Sdであるが、図8(c)の面積Scより更に小さくなっている。
図8(c)の場合の如く管電流設定値の最大値を下げた場合には、被検体15の厚さが厚い部分、すなわちX線透過長が大きい部分での管電流を減らすことになる。従って、図8(c)の管電流の変化パターン31cは、特に肺のように低密度の部位での画質を重視し、腹部のように高密度の領域での被曝線量を低減したい場合に適する。
図8(d)の場合の如く管電流設定値の最小値を下げた場合には、被検体15の厚さが薄い部分、すなわちX線透過長が小さい部分での管電流を減らすことになる。従って、図8(d)の管電流の変化パターン31dは、特に骨周辺や実質部のように高密度の部位での画質を重視し、低密度の領域での被曝線量を低減したい場合に適する。
図8(c),図8(d)では、管電流設定値の最大値Imax又は最小値Iminのいずれか一方のみを小さくしているが、両方を小さくして、被検体15の全領域について平均的に被曝線量を低減することも可能である。上記の如く新たに設定した管電流の変化パターンについては、再度mAsを計算し、問題が無い場合には、そのまま採用する。
次に、ステップ114のスキャンの工程では、操作者は上記で決定した管電流の変化パターンを含めたスキャン条件にてスキャンを実行する。
次に、ステップ115のmAs積算値表示の工程では、上記の[数5]に従って、スキャン中のmAsの積算値を逐次計算し、表示装置25の画面にリアルタイムで表示し、操作者に提示する。mAs積算値表示方法としては、全体としてのmAs値に対する比率としての相対値を表示する方法と、mAs積算値の絶対値を表示する方法のいずれかを選択することができる。
もちろん、その両方を同時に表示することも可能である。
次に、本発明に係るX線CT装置の第2のスキャン操作例について説明する。図9は、第2のスキャン操作例の一連の動作のフローチャートを示したものである。このスキャン操作例では、図3の第1のスキャン操作例のフローチャートに対し、ステップ111のmAs計算及びステップ112のmAs表示の工程の後に、被検体15内の線量分布の計算及び表示の工程を追加し、操作者が被検体15内の線量分布をも見てスキャン実行の判断を下せるようにしたものである。このため、本操作例の説明では、ステップ201〜205の被検体15内の線量分布の計算及び表示の工程を重点に説明する。
以下、図9の第2のスキャン操作例の中のステップ201からステップ205について説明するが、ステップの内容説明に入る前に、被検体15内の線量分布の計算結果の表示例を図10に示す。図10(a)は被検体の横断面35での線量分布の表示例、図10(b)は被検体の体軸方向の側面36での線量分布の表示例である。両図とも被検体15内の分布線量の等しい等線量線38a〜38c、39a〜39cが示されており、体表に近いほど高線量になっている。本操作例では、被検体15の線量分布が操作者に提示されるため、操作者は被検体のX線被曝についてより詳細な評価を行うことができるということが大きな特徴となる。
本操作例では、ステップ203で被検体内の線量分布の計算を行う前に、準備として、ステップ201で被検体のCT値モデルの生成、ステップ202で被検体のμモデルの生成を行い、その後で被検体のμモデルデータと被検体に照射されたX線量データを基にして被検体内の線量分布を計算する。
先ず、ステップ201の被検体CT値モデル生成の工程では、予め標準的な人体のCT値分布モデル(以下、標準人体CT値モデルという)データを取得して、ホストコンピュータ20の記憶手段に保存しておき、この標準人体CT値モデルデータを、ステップ101で取得した被検体15のスキャノグラム画像のデータに基づいて補正を行うことによって、被検体15のCT値モデル(以下、被検体CT値モデルという)を作成する。上記の標準人体CT値モデルデータとしては、例えば標準的な人体ファントムなどをCT撮影した断層画像から得られる3次元的CT値分布データが用いられる。断層画像はCT値の分布を表し、実効エネルギー(通常60keV)のX線に対する線減弱係数の分布を表しているので、この断層画像を3次元に再構成をした3次元的CT値分布データは線減弱係数の3次元的な空間分布のデータであり、被検体に照射されたX線の減弱量の計算に利用することができる。
次に、被検体CT値モデルの生成方法の一例について、図11を用いて説明する。この例では、ステップ101で被検体15を撮影して取得して実測したスキャノグラム画像データと、上記の標準人体CT値モデルデータとから、被検体15の3次元的CT値分布を表す被検体CT値モデルデータを生成する。この被検体CT値モデルの生成にあたっては、被検体15のスキャノグラム画像データと標準的人体のスキャノグラム画像データが媒体として利用される。
図11は、ステップ201の被検体CT値モデルの作成手順を説明するための図である。図11において、図11(a)は標準人体CT値モデルデータ41の例を、図11(b)は図11(a)の標準人体CT値モデルデータ41から計算で求めた標準人体のスキャノグラム画像データ42の例を、図11(c)は被検体の実測のスキャノグラム画像データ43の例を、図11(d)は計算で求めた被検体CT値モデルデータ44の例を示す。図11(a)の標準人体CT値モデルデータ41は、人体ファントムなどの標準的な人体の体幹部のCT値分布モデルで、肩から腹部までのスライス位置ごとの断面のCT値分布モデルを示している。
スキャノグラム画像は、その3次元的CT値分布モデルから計算によって生成することができるので、図11(b)の標準人体スキャノグラム画像データ42は図11(a)の標準人体CT値モデルデータ41について正面方向から投影したデータを求めることによって得られる。図11(c)の被検体の実測スキャノグラム画像データ43は、被検体15の体幹部について標準人体スキャノグラム画像データ42と同じ領域を正面方向から撮影したスキャノグラム画像データである。この画像については、以下被検体スキャノグラム画像と呼ぶことにする。
図11においては、体幹部の標準人体スキャノグラム画像データ42と被検体スキャノグラム画像データ43とを並置して対比できるように示してあるが、両者は普通寸法及びCT値とも異なるものである。このため、標準人体スキャノグラム画像データ42と被検体スキャノグラム画像データ43とを対比しながら、両者の差異に基づいて、一致する部分はそのままとし、異なる部分については変形させて、被検体15に合うように標準人体CT値モデルデータ41を補正して、被検体CT値モデルデータ44を生成する。
図11の体幹部の例では、先ず体軸方向に関して、標準人体スキャノグラム画像データ42と被検体スキャノグラム画像データ43の肩から横隔膜までの長さAと、横隔膜から腸管までの長さBとに分けて、それぞれの差異を基に、標準人体CT値モデルデータ41を補間、伸長したり、あるいは間引き、短縮したりすることで、標準人体CT値モデルデータ41の体軸方向のCT値分布を被検体15の実状に近似させる。左右方向に関しても、同様に、体軸を基準にして左と右に分けて、それぞれの差異を基に、左右の広がりを補正し、被検体15の実状に近似させる。前後方向に関しては、被検体スキャノグラム画像データ43から推定される前後方向のX線透過長を基に、標準人体CT値モデルデータ41の前後方向のデータを線形に補間する。このようにして、2つのスキャノグラム画像データ42、43を基に、標準人体CT値モデルデータ41を実際の被検体15に合わせ込むことにより、被検体CT値モデルデータ44を生成する。
次に、ステップ202の被検体μモデル生成の工程では、ステップ201で生成した被検体CT値モデルデータ44のCT値を線減弱係数μに変換して、被検体15の3次元的μ値分布モデルを生成する。CT値から線減弱係数μへの変換は下記の如く行われる。
CT値は実効エネルギー(通常60keVを使用)のX線に対する線減弱係数によって決定され、水=0、空気=1000、平均的な骨=1000として定義されている。今、被検体CT値モデルの位置xにおけるCT値をCTxとすると、その位置xにおける実効エネルギー(60keV)での線減弱係数μxは[数6]、[数7]で表される。
Figure 2010269165
Figure 2010269165
ここで、μwは水の線源弱係数(=0.206cm-1)、μairは空気の線減弱係数(=0.00025cm-1)、μboneは骨の線減弱係数(=0.567cm-1、ただし密度1.8g/cm3の場合)である。
次に、ステップ203の線量分布計算の工程では、図12に示す如く、ステップ111で求めた被検体に照射されたX線量のデータ(図12(a))とステップ202で求めた被検体μモデルデータ45(図12(b))を用いて、被検体15内の線量分布(図12(c))を計算する。このステップ203の計算では、被検体に照射されるX線のエネルーギースペクトルを考慮して、被検体15内でのX線の減衰を計算し、被検体15内の線量の空間的分布を計算する。被検体15に任意の方向からX線を照射した場合のX線の減弱量は、被検体の3次元的線減弱係数(μ)のモデルである被検体μモデルデータを用いることにより解析的に計算可能であり、このような計算手法は既に他の分野、例えば放射線治療計画装置などの分野でも行われている(参考文献1、稲邑清也、放射線治療計画システム、P.90〜92、P.113〜115、篠原出版、平成4月20日発行)。
X線の減衰の計算にあたっては、先ず、被検体15内の注目する位置xからX線源12に向かってX線が透過する実効距離δを計算する。実効距離は、X線が透過する媒質によって1/eに減衰する距離を1と定義される。X線のエネルギースペクトルを考慮しない場合、注目位置xからX線源12までに、組成iの媒質が実距離でdi(cm)あり、かつ組成iの線減弱係数がμi(cm-1)であるとき、実効距離δは[数8]で表される。
Figure 2010269165
しかし、X線のエネルギースペクトルを考慮すると実効距離はX線のエネルギーに応じて異なる値となる。組成iのX線のエネルギーjに対する線減弱係数をμij(cm-1)とすると、X線のエネルギーjに対する実効距離δjは[数9]で表される。
Figure 2010269165
ここで、μijは組成iのエネルギーjのX線に対する線減弱系数(cm-1)、diは組成i中のX線の透過距離(cm)である。μijについては、X線のエネルギーjに応じて被検体15のμ値モデルから求める必要がある。
次に、被検体15内の注目位置xでの線量を計算する。X線源12から注目位置xまでの距離をrx(m)、距離1mにおける線量をI0(C/kg:Cはクーロン)とする。I0については、例えば実験的に求める。X線のエネルギースペクトル、つまりエネルギーjの成分比をSjとすると、注目位置xでの線量Ix(C/kg)は[数10]で表される。
Figure 2010269165
ここで、I0は線量(X線源12から単位距離における空中の線量、単位C/kg)、rxはX線源12から注目位置xまでの距離、単位m)、SjはX線のエネルギースペクトルである。
[数10]による計算の結果、X線源12がある位置Q(Z、θ)にある場合の被検体15内の任意に位置xにおける線量が求められる。X線源12を1回転した場合の任意の位置xにおける線量は、X線源12の位置Q(Z、θ)を被検体15の周囲で回転させ、上記の線量を1回転分(θ=0〜2π)積算することによって得られる。上記の如き手順で、被検体15内の設定された各位置での計算を行うことにより、スライス位置Zでの被検体15内の線量分布を求めることができる。また、他のスライス位置における線量分布も同様に計算によって求めることができるので、被検体15の体軸方向について撮影部位の全領域の計算を進めることにより、被検体15内の3次元的な線量分布が得られる。
1スライスの断層画像を撮影する場合(2次元の場合)には上記の計算によって被検体15内の線量の分布が精度良く求められるが、1回のスキャン中に複数スライスのCT撮影を行う場合(3次元の場合)には散乱X線の撮影を考慮しないと計算精度が低下する恐れがある。X線CT装置では、X線のエネルギーが100keV以下のオーダーであるため、散乱線としてはコンプトン(Compton)散乱のみ考慮すればよい(参考文献1参照)。このコンプトン散乱を考慮することにより、計算精度をより高くすることができる。
上記の如き手順で、被検体15内の各スライス位置での各設定点における線量を計算することにより、計算された被検体15の3次元的線量分布が得られる。この被検体15の線量分布の計算結果はホストコンピュータ20に一時的に保存され、操作者などにとって見やすい図象、例えば図10に示したような図象で表示される。
次に、ステップ204の線量分布表示の工程ではステップ203の計算結果が表示装置25に表示される。本実施例での表示例としては、図10に示したような被検体15の断層面35内の線量分布(図10(a))又は被検体15の側面36の線量分布(図10(b))が上げられる。これらの図では、被検体15の臓器と線量分布を示す等線量線を重ねて表示しているので、一目で各臓器への被曝線量を認識することができるので、被検体15へのX線被曝を評価する上では有効である。
次に、ステップ205の被曝線量判断の工程では、ステップ204で表示された被検体15内の線量分布の計算結果を操作者が見て、被検体15内の臓器へのX線被曝が過剰になる恐れがないかどうかを判断し、Yesと判断した場合にはステップ114のスキャン実行の工程に進み、スキャンを開始することになり、Noと判断した場合にはステップ109の管電流設定値入力の工程に戻り、管電流設定値の再入力、管電流パターンの再検討を行うことになる。
また、ステップ201での被検体15のCT値モデルデータの生成方法としては、上記の標準人体CT値モデルデータを使う方法以外に、過去に撮影した同じ被検体15のCT撮影データを使用する方法も実施可能である。この場合には、実際に同一の被検体15のCT値分布データを使用するために、標準人体CT値モデルデータ41の形状を補正する手順が必要なくなるという利点がある。しかし初回のCT撮影には適さないため、過去にCT撮影を行った被検体に関して、2回目以降のCT撮影を行う場合が対象となる。
上記したように、CTスキャン前に被検体15の体内の線量分布をシミュレーション計算して、計算結果を、例えば図10に示す如く表示することにより、操作者は事前に撮影手技に応じた被検体の体内の線量分布を近似的に知ることが可能となる。
この結果、例えば、単純に被検体の全ての組織に関して一律に被曝線量を減らすのではなく、骨髄や肺等の放射線感受性の高い組織に関しては特に被曝線量を低減し、逆に脂肪や筋肉等の放射線感受性の比較的低い組織には、画質が満足できる程度に被曝線量のレベルを維持するというような詳細な設定が可能となる。
次に、図13を用いて、被検体をCT撮影する管電流の変化パターンの編集例を説明する。
図13は、被検体のスキャノグラム画像上に管電流の変化パターンを重畳して表示したものである。図12において、スキャノグラム画像データ29aは体幹部のもの、管電流の変化パターンは、編集前の初期の管電流の変化パターン46aと編集後の修正された管電流の変化パターン46bである。
この管電流の変化パターンの編集工程では、表示装置25の画面においてスキャノグラム画像29a上に表示された初期に設定された管電流の変化パターン46aに対し、スキャノグラム画像データ29aを参照しながら、また場合によっては被検体15の内部の照射線量分布を参照して、操作手段21によって修正を加えて、新しい管電流の変化パターン46bを編集する。この編集操作によって任意の部位の管電流の変化パターンを再設定する。
この編集操作において、例えば、自動的な管電流の変化パターンの設定では、横隔膜付近のように密度が大きく変化する領域では、管電流を平均的な値に設定するが、被曝線量が増えても画質を向上させる必要がある領域などでは、管電流を部分的に高く設定する。
管電流の変化パターンは、上記の如くスキャン条件が設定されていれば、時間tのみの関数になるので、任意時刻の管電流の値を変化させることができる。図13の例では、初期の管電流の変化パターン46aに対し、肺の領域の管電流を少し低下させ、横隔膜の領域の管電流を少し増加させることで、修正後の管電流の変化パターン46bに編集している。
図14は、管電流と被検体の厚さ(X線透過長に相当)との関係を示した図である。上記のステップ110の工程の説明では、管電流の最大値、最小値と被検体の厚さの最大値、最小値とを一致させて、両者間で線形の関係を持つものとして説明したが、両者の関係については操作者の設定により非線形の関係を持つようにすることが可能である。図14に示した管電流Iと被検体の厚さTとの関係は、[数11]で表される。
Figure 2010269165
ここで、Imax、Iminは管電流の最大値と最小値、Tmax、Tminは被検体の厚さの最大値と最小値、γは定数である。γについては以下ガンマと呼ぶことにする。
図14において、グラフ50はガンマ=1の場合で、管電流と被検体の厚さとの関係は線形であり、グラフ51はガンマ<1の場合、グラフ52はガンマ>1の場合で、共に管電流と被検体の厚さとの関係は非線形である。図14の場合、ガンマの値を決めることによって管電流と被検体の厚さとの関係が一義的に決まるので、[数11]のような関係式を装置に組み込んでおくことにより、操作者は操作手段21からガンマの値を入力することによって、図14の如く、管電流Iと被検体の厚さTとの関係を変化させることができる。また、実際の操作にあたっては、例えば操作者が特別な設定をしない初期設定では管電流の最大値、最小値と被検体の厚さの最大値、最小値を一致させて、線形の関係を持たせることにし、操作者の設定によりガンマを入力することで、非線形の関係を持たせることができる。図14において、ガンマ=1を基準にした場合、ガンマ>1のときは被検体の被曝低減を重視する場合とみられ、ガンマ<1のときは画質を重視する場合とみられる。
10 ガントリ、11 CTスキャナ(スキャナ)、12 X線源、13 X線検出器(検出器)、14 X線ビーム(X線)、15 被検体、16 スキャナ駆動手段、17 スキャナ角度検出手段、18 テーブル、19 コリメータ、20 ホストコンピュータ、21 操作手段、22 高電圧発生装置、23 管電流設定手段、24 画像処理装置、25 表示装置、26 スキャノグラム解析手段、29、29a スキャノグラム画像、30 X線透過長モデル(楕円形モデル)、31、31a、31b、31c、31d、47a、47b 管電流の変化パターン、35 被検体横断面、36 被検体側面、38a、38b、38c、39a、39b、39c、39d、46a、46b、46c 等線量線、41 標準人体CT値モデルデータ、42 計算スキャノグラム画像データ、43 実測スキャノグラム画像データ、44 被検体CT値モデルデータ、45 被検体μモデルデータ、51、52、53 グラフ

Claims (3)

  1. 被検体の周囲を回転しながらX線を曝射するX線源と、被検体を挟んでX線源と対向して配置され、被検体を透過したX線量を検出する多チャンネルのX線検出器と、被検体を透過したX線量データに基づき被検体の断層像を再構成する画像再構成手段と、断層像を表示する表示手段とを具備するX線CT装置において、装置のスキャン条件を設定する操作手段と、被検体のスキャノグラム画像データを解析し、被検体の3次元的X線透過長モデルを生成するスキャノグラム解析手段と、前記被検体の3次元的X線透過長モデルとスキャン条件に基づいて被検体の撮影部位に応じたX線管電流(以下、管電流と略称する)の変化パターンを自動的に設定する管電流設定手段と、前記管電流の変化パターンに基づき被検体に照射される線量を計算し、計算結果を表示する線量計算手段とを具備することを特徴とするX線CT装置。
  2. 請求項1記載のX線CT装置において、前記管電流の変化パターン及び予め求めた被検体の3次元CT値モデルに基づいて、被検体の体内の線量分布を計算し、計算結果を表示する線量分布計算手段を具備することを特徴とするX線CT装置。
  3. 請求項1及び2記載のX線CT装置において、前記表示手段の同一画面上に管電流の変化パターンと被検体のスキャノグラム画像とを並置して、又は重ねて表示することを特徴とするX線CT装置。
JP2010174976A 2010-08-04 2010-08-04 X線ct装置 Expired - Lifetime JP5027909B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174976A JP5027909B2 (ja) 2010-08-04 2010-08-04 X線ct装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174976A JP5027909B2 (ja) 2010-08-04 2010-08-04 X線ct装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009099614A Division JP4644292B2 (ja) 2009-04-16 2009-04-16 X線ct装置とその画像表示方法

Publications (2)

Publication Number Publication Date
JP2010269165A true JP2010269165A (ja) 2010-12-02
JP5027909B2 JP5027909B2 (ja) 2012-09-19

Family

ID=43417655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174976A Expired - Lifetime JP5027909B2 (ja) 2010-08-04 2010-08-04 X線ct装置

Country Status (1)

Country Link
JP (1) JP5027909B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2465435A1 (en) * 2010-12-14 2012-06-20 General Electric Company Selection of optimal viewing angle to optimize anatomy visibility and patient skin dose
JP2013544605A (ja) * 2010-12-08 2013-12-19 ベイヤー、インク. 医療用撮像スキャンに起因する患者の放射線量を予測するための適切なモデルの作成
JP2016022095A (ja) * 2014-07-18 2016-02-08 コニカミノルタ株式会社 断層画像生成システム
JP2020089497A (ja) * 2018-12-04 2020-06-11 キヤノンメディカルシステムズ株式会社 X線撮影装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124152A (ja) * 1993-11-01 1995-05-16 Toshiba Corp X線ctスキャナ
JPH07204196A (ja) * 1994-01-24 1995-08-08 Hitachi Medical Corp X線ct装置
JPH08168486A (ja) * 1994-08-03 1996-07-02 General Electric Co <Ge> X線ctシステムでx線ビームの線量を変調する方法
JPH08206107A (ja) * 1994-09-06 1996-08-13 General Electric Co <Ge> X線量低減方法
JPH09199292A (ja) * 1995-11-20 1997-07-31 General Electric Co <Ge> X線源に供給されるx線管電流を変調させるシステム
JPH10335092A (ja) * 1997-04-01 1998-12-18 Toshiba Corp X線装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124152A (ja) * 1993-11-01 1995-05-16 Toshiba Corp X線ctスキャナ
JPH07204196A (ja) * 1994-01-24 1995-08-08 Hitachi Medical Corp X線ct装置
JPH08168486A (ja) * 1994-08-03 1996-07-02 General Electric Co <Ge> X線ctシステムでx線ビームの線量を変調する方法
JPH08206107A (ja) * 1994-09-06 1996-08-13 General Electric Co <Ge> X線量低減方法
JPH09199292A (ja) * 1995-11-20 1997-07-31 General Electric Co <Ge> X線源に供給されるx線管電流を変調させるシステム
JPH10335092A (ja) * 1997-04-01 1998-12-18 Toshiba Corp X線装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544605A (ja) * 2010-12-08 2013-12-19 ベイヤー、インク. 医療用撮像スキャンに起因する患者の放射線量を予測するための適切なモデルの作成
JP2016129716A (ja) * 2010-12-08 2016-07-21 べイヤー ヘルスケア、エルエルシー 医療用撮像スキャンに起因する患者の放射線量を予測するための適切なモデルの作成
EP2465435A1 (en) * 2010-12-14 2012-06-20 General Electric Company Selection of optimal viewing angle to optimize anatomy visibility and patient skin dose
US9138197B2 (en) 2010-12-14 2015-09-22 General Electric Company Selection of optimal viewing angle to optimize anatomy visibility and patient skin dose
JP2016022095A (ja) * 2014-07-18 2016-02-08 コニカミノルタ株式会社 断層画像生成システム
JP2020089497A (ja) * 2018-12-04 2020-06-11 キヤノンメディカルシステムズ株式会社 X線撮影装置
JP7224880B2 (ja) 2018-12-04 2023-02-20 キヤノンメディカルシステムズ株式会社 X線撮影装置

Also Published As

Publication number Publication date
JP5027909B2 (ja) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4532005B2 (ja) X線ct装置及びその画像表示方法
JP6066596B2 (ja) X線撮像における散乱補正の方法及びシステム
CN103462628B (zh) 辐射成像设备及方法
JP5898081B2 (ja) X線ct装置
WO2007074772A1 (ja) X線ct装置
JP2011502679A (ja) 三次元x線画像における改良された画質のための可動式くさび
CN107252318A (zh) 采集协议评价设备
JP2007135658A (ja) X線ct装置およびx線ct透視装置
JP2007181623A (ja) X線ct装置
JP4468352B2 (ja) コンピュータトモグラフィにおける局所的患者線量の再構成
JP4429694B2 (ja) X線ct装置
JP2006312047A (ja) 対象の直交方向x線減弱の算出方法、コンピュータ断層撮影装置およびその補正モジュール
JP4554185B2 (ja) X線ct装置
JP2008220452A (ja) 器官に基づく放射線プロファイル設定を設けた放射線撮像の方法及びシステム
JP5027909B2 (ja) X線ct装置
US20180165800A1 (en) Method for image improvement of image data from a dental image generation system
US20220054862A1 (en) Medical image processing device, storage medium, medical device, and treatment system
KR101762070B1 (ko) 콘빔 엑스선 ct의 디텍터 보정 장치 및 그 방법
JP2006334319A (ja) X線ct装置とその前処理方法、及びデータ作成装置とその方法、並びに制御プログラム
JP4644292B2 (ja) X線ct装置とその画像表示方法
CN111839574B (zh) Ct超低剂量自动三维定位扫描方法及系统
TWI645836B (zh) 粒子線治療裝置及數位重組放射線攝影影像作成方法
CN107809954B (zh) 计算机断层切片图像相对于要被成像的对象的深度位置的显示
US11937970B2 (en) System and method for calibrating a camera feature detection system of an x-ray system
JP5384293B2 (ja) X線ct装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term