JP2010267926A - 基板処理装置及びデバイスの製造方法 - Google Patents

基板処理装置及びデバイスの製造方法 Download PDF

Info

Publication number
JP2010267926A
JP2010267926A JP2009120259A JP2009120259A JP2010267926A JP 2010267926 A JP2010267926 A JP 2010267926A JP 2009120259 A JP2009120259 A JP 2009120259A JP 2009120259 A JP2009120259 A JP 2009120259A JP 2010267926 A JP2010267926 A JP 2010267926A
Authority
JP
Japan
Prior art keywords
pipe
processing apparatus
substrate
substrate processing
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009120259A
Other languages
English (en)
Inventor
Shintaro Kawada
真太郎 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009120259A priority Critical patent/JP2010267926A/ja
Publication of JP2010267926A publication Critical patent/JP2010267926A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】処理精度の低下を抑制することが可能な基板処理装置及びデバイスの製造方法を提供すること。
【解決手段】基板に対し所定の処理を行う処理装置を有する基板処理装置であって、前記処理装置に接続され、前記処理装置に流体を供給する第一配管と、前記第一配管を内包し、前記処理装置から前記流体を排出する第二配管とを備える。
【選択図】図3

Description

本発明は、基板処理装置及びデバイスの製造方法に関する。
半導体デバイス、電子デバイス等のマイクロデバイスの製造工程においては、露光装置等の基板処理装置を用いて基板が処理される。基板処理装置として、例えば内部空間を形成するチャンバ装置と、チャンバ装置内に配置され、基板を保持して移動するステージ装置とを有する構成が知られている。このような基板処理装置において、ステージ装置を駆動するアクチュエータ等から発生する熱を冷却するために、気体あるいは液体等の流体の供給及び排出が必要である。そのため、ステージ装置には、例えば金属配管又は樹脂チューブを接続し、この金属配管又は樹脂チューブを介して、気体あるいは液体を供給及び排出を行う構成が知られている(例えば、特許文献1参照)。
特開2001−297967号公報
しかしながら、ステージ装置に金属配管を接続した場合、管自身からの脱ガスを抑えられるが、金属配管同士の接触により、金属粒子が発生し、チャンバ装置内の雰囲気が汚染される恐れがある。
また、金属配管の代わりに柔軟性の高い樹脂チューブを採用することが考えられるが、樹脂チューブは脱ガスの発生や、チューブを透過するガスの量が金属配管に比べて大きく、チャンバ装置内の雰囲気が汚染される恐れがある。チャンバ内の雰囲気が汚染されることにより、処理装置の処理精度が低下してしまう。
上記のような事情に鑑み、本発明は、処理精度の低下を抑制することが可能な基板処理装置及びデバイスの製造方法を提供することを目的とする。
本発明に係る基板処理装置は、基板に対し所定の処理を行う処理装置を有する基板処理装置であって、前記処理装置に接続され、前記処理装置に流体を供給する第一配管と、前記第一配管を内包し、前記処理装置から前記流体を排出する第二配管とを備えることを特徴とする。
本発明に係るデバイスの製造方法は、上記の基板処理装置を用いて、基板を露光する工程と、前記露光された前記基板を現像する工程とを含む。
本発明によれば、処理精度の低下を抑制することが可能となる。
本発明に係る基板処理装置として露光装置の概略構成を示す図。 露光装置のウエハステージ近傍の構成を示す図。 ウエハステージに接続される配管の構成を示す図。 配管の構成を示す図。 ウエハステージと配管との接続部分の構成を示す図。 本発明に係る基板処理装置として露光装置の他の構成を示す図。 本発明に係る基板処理装置として露光装置の他の構成を示す図。 本発明に係る基板処理装置として露光装置の他の構成を示す図。 本発明のマイクロデバイス製造工程の一例を示すフローチャート。 マイクロデバイス製造工程のステップS13の詳細工程の一例を示す図。
以下、図面を参照して、本発明の実施の形態を説明する。本実施形態では、基板処理装置として、露光装置を例に挙げて説明する。
図1は、本実施形態の露光光EL(照明光)として波長が100nm以下で、例えば3〜50nm程度の範囲内の11nm又は13nm等のEUV光(Extreme Ultraviolet Light)を用いる露光装置(EUV露光装置)100の全体構成を概略的に示す断面図である。図1において、露光装置100は、露光光ELを発生するレーザプラズマ光源10と、露光光ELでレチクルR(マスク)を照明する照明光学系ILSと、レチクルRを保持して移動するレチクルステージRSTと、レチクルRのパターン面(レチクル面)に形成されたパターンの像を、レジスト(感光材料)が塗布されたウエハW(感光性基板)上に投影する投影光学系POとを備えている。さらに、露光装置100は、ウエハWを保持して移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータを含む主制御系31等とを備えている。
本実施形態では、露光光ELとしてEUV光が使用されているため、照明光学系ILS及び投影光学系POは、特定のフィルタ等(不図示)を除いて複数のミラー(反射光学部材)より構成され、レチクルRも反射型である。これらのミラーの反射面及びレチクル面には、EUV光を反射する多層の反射膜が形成されている。レチクル面上の反射膜上には、吸収層によって回路パターンが形成されている。また、露光光ELの気体による吸収を防止するため、露光装置100はほぼ全体として箱状の真空チャンバ1内に収容され、真空チャンバ1内の空間を排気管32Aa,32Ba等を介して真空排気するための大型の真空ポンプ32A,32B等が備えられている。さらに、真空チャンバ1内で露光光ELの光路上の真空度をより高めるために複数のサブチャンバ(不図示)も設けられている。一例として、真空チャンバ1内の気圧は10-5Pa程度、真空チャンバ1内で投影光学系POを収納するサブチャンバ(不図示)内の気圧は10-5〜10-6Pa程度である。
以下、図1において、ウエハステージWSTが載置される面(真空チャンバ1の底面)の法線方向にZ軸を取り、Z軸に垂直な平面内で図1の紙面に垂直な方向にX軸を、図1の紙面に平行な方向にY軸を取って説明する。本実施形態では、レチクル面上での露光光ELの照明領域27Rは、X方向に細長い円弧状であり、露光時にレチクルR及びウエハWは投影光学系POに対してY方向(走査方向)に同期して走査される。
レーザプラズマ光源10は、高出力のレーザ光源(不図示)と、このレーザ光源から真空チャンバ1の窓部材15を介して供給されるレーザ光を集光する集光レンズ12と、キセノン又はクリプトン等のターゲットガスを噴出するノズル14と、回転楕円面状の反射面を持つ集光ミラー13とを備えた、ガスジェットクラスタ方式の光源である。レーザプラズマ光源10から放射された露光光ELは、集光ミラー13の第2焦点に集光する。その第2焦点に集光した露光光ELは、凹面ミラー21を介してほぼ平行光束となり、露光光ELの照度分布を均一化するための一対のフライアイ光学系22及び23からなるオプティカル・インテグレータに導かれる。フライアイ光学系22及び23のより具体的な構成及び作用については、例えば米国特許第6,452,661号明細書に開示されている。
図1において、フライアイ光学系23の反射面の近傍の面は、照明光学系ILSの瞳面であり、この瞳面又はこの近傍の位置に開口絞りASが配置されている。開口絞りASは、種々の形状の開口を有する複数の開口絞りを代表的に表している。主制御系31の制御のもとで、開口絞りASを交換することによって、照明条件を通常照明、輪帯照明、2極照明、又は4極照明等に切り換えることができる。
開口絞りASを通過した露光光ELは、一度集光した後に曲面ミラー24に入射し、曲面ミラー24で反射された露光光ELは、凹面ミラー25で反射された後、ブラインド板26Aの円弧状のエッジ部で−Y方向の端部が遮光された後、レチクルRのパターン面の円弧状の照明領域27Rを下方から斜めに均一な照度分布で照明する。曲面ミラー24と凹面ミラー25とからコンデンサ光学系が構成されている。コンデンサ光学系によって、第2フライアイ光学系23を構成する多数の反射ミラー要素からの光がレチクル面の照明領域27Rを重畳的に照明する。凹面ミラー21、フライアイ光学系22,23、開口絞りAS、曲面ミラー24、及び凹面ミラー25を含んで照明光学系ILSが構成されている。
レチクルRの照明領域27Rで反射した露光光ELは、ブラインド板26Bの円弧状のエッジ部で+Y方向の端部が遮光された後、投影光学系POに入射する。投影光学系POを通過した露光光ELは、ウエハW上の露光領域(照明領域27Rと共役な領域)27Wに投影される。なお、ブラインド板26A,26Bは、例えば照明光学系ILS内のレチクル面との共役面の近傍に配置してもよい。
次に、レチクルRは、レチクルステージRSTの底面に静電チャックRHを介して吸着保持されている。レチクルステージRSTは、レーザ干渉計(不図示)の計測値及び主制御系31の制御情報に基づいて、真空チャンバ1の外面のXY平面に平行なガイド面に沿って、例えば磁気浮上型2次元リニアアクチュエータよりなる駆動系(不図示)によってY方向に所定ストロークで駆動されるとともに、X方向及びθz方向(Z軸回りの回転方向)等にも微小量駆動される。レチクルステージRSTを真空チャンバ1側に覆うようにパーティション8が設けられ、パーティション8内は不図示の真空ポンプによって真空排気されている。
レチクルRのパターン面側には、レチクル面に対して例えば斜めに計測光を照射して、レチクル面のZ方向の位置(Z位置)を計測する光学式のレチクルオートフォーカス系(不図示)が配置されている。主制御系31は、走査露光中にレチクルオートフォーカス系の計測値に基づいて、例えばレチクルステージRST内のZ駆動機構(不図示)を用いてレチクルRのZ位置を許容範囲内に設定する。
投影光学系POは、一例として、6枚のミラーM1〜M6を不図示の鏡筒で保持することによって構成され、物体(レチクルR)側に非テレセントリックで、像(ウエハW)側にテレセントリックの反射系であり、投影倍率は1/4倍等の縮小倍率である。レチクルRの照明領域27Rで反射された露光光ELが、投影光学系POを介してウエハW上の露光領域27Wに、レチクルRのパターンの一部の縮小像を形成する。
投影光学系POにおいて、レチクルRからの露光光ELは、ミラーM1で上方(+Z方向)に反射され、続いてミラーM2で下方に反射された後、ミラーM3で上方に反射され、ミラーM4で下方に反射される。次にミラーM5で上方に反射された露光光ELは、ミラーM6で下方に反射されて、ウエハW上にレチクルRのパターンの一部の像を形成する。一例として、ミラーM1,M2,M3,M4,M6は凹面鏡であり、他のミラーM5は凸面鏡である。
ウエハWは、静電チャック(不図示)を介してウエハステージWST上に吸着保持されている。ウエハステージWSTは、XY平面に沿って配置されたガイド面上に配置されている。ウエハステージWSTは、レーザ干渉計(不図示)の計測値及び主制御系31の制御情報に基づいて、例えば磁気浮上型2次元リニアアクチュエータよりなる駆動系(不図示)によってX方向及びY方向に所定ストロ−クで駆動され、必要に応じてθz方向等にも駆動される。ウエハステージWSTは、冷却装置50を用いて冷却されるようになっている。
ウエハステージWST上のウエハWの近傍には、例えばレチクルRのアライメントマークの像を検出する空間像計測系29が設置され、空間像計測系29の検出結果が主制御系31に供給されている。主制御系31は、空間像計測系29の検出結果から投影光学系POの光学特性(諸収差、あるいは波面収差等)を求めることができ、一例としてその光学特性が所定の許容範囲内に維持されるように、ミラーM1等の反射面の形状(面形状)をアクティブに制御する(詳細後述)。なお、その光学特性は、テストプリント等で求めることも可能である。さらに、露光光ELの照射熱によるミラーM1等の面形状の変形は予測できるため、露光中の面形状の変形を相殺するようにミラーM1等の面形状をアクティブに制御することも可能である。
露光の際には、ウエハW上のレジストから生じるガスが投影光学系PLのミラーM1〜M6に悪影響を与えないように、ウエハWはパーティション7の内部に配置される。パーティション7には露光光ELを通過させる開口が形成され、パーティション7内の空間は、真空ポンプ(不図示)により真空排気されている。
ウエハW上の1つのショット領域(ダイ)を露光するときには、露光光ELが照明光学系ILSによりレチクルRの照明領域27Rに照射され、レチクルRとウエハWとは投影光学系POに対して投影光学系POの縮小倍率に従った所定の速度比でY方向に同期して移動する(同期走査)。このようにして、レチクルパターンはウエハW上の一つのショット領域に露光される。その後、ウエハステージWSTを駆動してウエハWをステップ移動した後、ウエハW上の次のショット領域に対してレチクルRのパターンが走査露光される。このようにステップ・アンド・スキャン方式でウエハW上の複数のショット領域に対して順次レチクルRのパターンの像が露光される。
図2は、パーティション7の内外の構成、特にウエハステージWST及び冷却装置50の構成を示す図である。
図2に示すように、冷却装置50は、冷媒処理装置51及び配管52を有している。冷媒処理装置51は、パーティション7の外部、すなわち、真空チャンバ1の外部に設けられている。冷媒処理装置51は、ウエハに露光光が照射されることによってウエハステージWSTの温度が上昇するのを抑制したり、ウエハステージWSTを駆動するアクチュエータ等の駆動系が発生する熱を冷却するために、配管52を介してウエハステージWSTに接続されている。冷媒処理装置51は、配管52を介して冷媒を供給する供給部(不図示)、供給した冷媒を回収する回収部(不図示)を有している。冷媒としては、例えば水やフッ素系不活性液体(例えば「フロリナート」:住友スリーエム株式会社製)、ガルテンなどを用いることができる。
配管52は、一端が冷媒処理装置51に接続されており、他端がウエハステージWSTの接続部分60に接続されている。配管52は、例えばパーティション7の蓋部材7a及び真空チャンバ1の蓋部材1aを貫通するように配置されており、パーティション7及び真空チャンバ1の内外を連通するように設けられている。配管52は、ウエハステージWSTの移動に対応可能な長さを有している。
図3は、配管52を横切る方向の断面構成を示す図である。
図3に示すように、配管52は、第一配管53及び第二配管54を有している。第一配管53及び第二配管54は、それぞれ断面視円筒状に形成されている。配管52は、当該第一配管53及び第二配管54によって二重配管構造に形成されている。
第一配管53は、冷媒処理装置51からウエハステージWSTに冷媒を供給する配管である。第一配管53の流路53aは、冷媒処理装置51の供給部に接続されている。流路53aには、冷媒処理装置51から供給される冷媒がウエハステージWSTへ向けて流通するようになっている。
第二配管54は、第一配管53を内包するように配置されている。第二配管54は、ウエハステージWSTから冷媒を排出する配管である。第二配管54の内面54fと第一配管53の外面53fとの間に、当該第二配管54の流路54aが形成されている。流路54aは、冷媒処理装置51の回収部に接続されている。流路54aには、ウエハステージWSTから排出される冷媒が冷媒処理装置51へ向けて流通するようになっている。
第一配管53の流路53aの断面積S1と、第二配管54の流路54aの断面積S2との関係については、S1<S2となっている。第一配管53の流路断面積S1を第二配管54の流路断面積S2よりも小さくすることで、流路53aに流通する冷媒の流通量が大きくなりすぎるのを抑えることができ、配管52からの冷媒の漏れ出しが極力抑えられるようになっている。
第一配管53及び第二配管54は、例えば樹脂材料によって形成されている。このため、第一配管53及び第二配管54は、金属材料を用いて形成される場合に比べて外力に対する柔軟性が高くなっている。第一配管53及び第二配管54は、例えばウエハステージWSTが移動する場合であっても、当該移動に応じて柔軟に変形するようになっている。
第一配管53及び第二配管54の構成材料を選択する際、外側に形成される第二配管54からの冷媒の漏れ出しを極力防ぐため、また、配管52の全体を衝撃等から保護するため、第一配管53の硬度よりも第二配管54の硬度の方が高くなるように当該第一配管53及び第二配管54の構成材料を選択することが好ましい。冷媒として水を用いる場合と、他の化合物を用いる場合とで、選択する第一配管53及び第二配管54の構成材料を異ならせても良い。
例えば、冷媒として水を用いる場合、第一配管53の構成材料として例えばポリエチレンなどを用いることができ、第二配管54の構成材料として例えばポリ塩化ビニリデンなどを用いることができる。冷媒として、水以外の材料、例えばフッ素系不活性液体やガルテンなどを用いる場合、第一配管53の構成材料として例えばポリウレタンなどを用いることができ、第二配管54の構成材料として例えばエチレンビニルアルコール共重合体(例えば「エバール」:株式会社クラレ製、登録商標)などを用いることができる。エチレンビニルアルコール共重合体を用いる場合、第二配管54の表面を例えばポリエチレンによってコートした状態で用いても構わない。
図4は、配管52の延在方向の断面構成を示す図である。
図4に示すように、第一配管53は、外面53fに凸部53bを有している。凸部53bは、第一配管53の延在方向に沿って複数配列されている。複数の凸部53bは、突起高さが均一になるように形成されている。各凸部53bの先端は、第二配管54の内面に当接されている。凸部53bが第二配管54の内面54fに当接することにより、第二配管54の流路54aのためのスペースが確保されている。このように、第一配管53の凸部53bは、第一配管53と第二配管54との間のスペーサとして機能することとなる。凸部53bは、第一配管53の外面53fの円周方向にずれた位置にも配置されるようにしても構わない。この構成により、第一配管53と第二配管54との間隔が周方向に均一な寸法に確保されることとなる。
図5は、ウエハステージWSTの接続部分60の断面構成を示す図である。
図5に示すように、接続部分60は、配管52を差し込み可能に設けられている。接続部分60は、例えば第二配管54の外周の径とほぼ同一の径を有するように形成されている。接続部分60には、継手部材61が設けられている。
継手部材61は、接続部分60の突き当たり部分に配置されている。継手部材61は、第一配管53の流路53aと第二配管54の流路54aとを接続する接続部である。継手部材61は、第一配管53の流路53aを流通してきた冷媒が第二配管54の流路54aへ折り返して流通するように形成されている。
継手部材61は、例えば金属材料などの熱伝導性の高い材料を用いて形成されており、ウエハステージWSTに密着されている。このため、継手部材61では、ウエハステージWSTから冷媒への熱の移動が行われやすくなっている。継手部材61に用いられる材料としては、金属材料に限られることはなく、他の材料であっても勿論構わない。継手部材61を設けることなく、例えばウエハステージWSTの接続部分60を構成する内壁部分を介して第一配管53の流路53aと第二配管54の流路54aとを接続させる構成であっても構わない。継手部材61は、接続部分60に設けられる構成に限られず、例えば予め配管52と一体的に形成しておく構成としても構わない。
以上のように、本実施形態によれば、ウエハWを保持して移動するウエハステージWSTに接続され、ウエハステージWSTに冷媒を供給する第一配管53と、当該第一配管53を内包し、ウエハステージWSTから冷媒を排出する第二配管54とを備える構成としたので、ウエハステージWSTに供給される冷媒が第一配管53及び第二配管54を有する二重配管の内側の流路53aを流通することになる。このため、第一配管53及び第二配管54によって二重に漏れ出しを防ぐことができる。これにより、真空チャンバ1内の真空度の低下を防ぐことができるので、露光精度の低下を抑制することができる。
本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
上記実施形態では、第一配管53の外面53fに形成される凸部として、当該第一配管53の延在方向に沿って複数の凸部53bが形成される構成を例に挙げて説明したが、これに限られることは無い。例えば図6に示すように、冷媒の流通方向に沿って凸部53cを形成する構成としても構わない。この場合、凸部53cによって冷媒の流通が促進されることにもなる。
また、上記実施形態では、第二配管54に内包される第一配管53が1本である構成を例に挙げて説明したが、これに限られることは無い。例えば図7に示すように、複数の第一配管53の束を第二配管54に内包させる構成であっても構わない。この場合、複数の第一配管53の流路53aの断面積の総和が第二配管54の流路54aの断面積よりも小さくなるように第一配管53を形成することが好ましい。
また、図7には、第二配管54の断面視中央部に複数(4本)の第一配管53が密集されている構成が示されているが、これに限られることは無く、例えば複数の第一配管53を互いに接触させないように分散させて配置する構成としても構わない。第一配管53の本数については、3本以下としても構わないし、5本以上しても構わない。
また、上記実施形態では、第一配管53の流路53a及び第二配管54の流路54aに流通させる流体として、冷媒に用いる液体を例に挙げて説明したが、これに限られることは無く、例えば冷媒とは異なる用途に用いられる液体を流通させる場合に本発明を適用させても構わない。また、液体ではなく気体を流通させる場合に本発明の構成を適用させても構わない。
また、継手部材61の構成として、例えば図8に示すように、継手部材61がウエハステージWSTの広範囲に配置されるように引き伸ばされた構成としても構わない。これにより、ウエハステージWSTの広い範囲にわたって冷却を行わせることができる。また、この場合において、冷媒の流通方向を規制する規制部材62を設けるようにし、冷媒が継手部材61の延在方向に沿って流通するように構成することができる。これにより、冷媒の滞留を防ぎ、効率的な冷却が可能となる。
また、ウエハステージWSTの構成として、例えば配管52との接続部分60の近傍に温度センサを設ける構成とし、当該温度センサの検出結果に基づいて冷媒の供給量を設定するようにしても構わない。例えばウエハステージWSTの冷却が不要な場合、第一配管53の流路53a及び第二配管54の流路54aに対して冷媒を流通させないようにすることができるため、配管52から冷媒の漏れ出しの可能性を極力低くすることができる。
なお、上記各実施形態の基板(物体)としては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板P上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。
また、例えば米国特許第6,611,316号に開示されているように、2つのマスクのパターンを、投影光学系を介して基板上で合成し、1回の走査露光によって基板上の1つのショット領域をほぼ同時に二重露光する露光装置などにも本発明を適用することができる。
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
また、本実施形態においては、露光光ELがEUV光である場合を例にして説明したが、露光光ELとして、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)、ArFエキシマレーザ光(波長193nm)及びF2レーザ光(波長157nm)等の真空紫外光(VUV光)等を用いることもできる。
次に、本発明の実施形態による露光装置及び露光方法をリソグラフィ工程で使用したマイクロデバイスの製造方法の実施形態について説明する。図9は、マイクロデバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートを示す図である。
まず、ステップS10(設計ステップ)において、マイクロデバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップS11(マスク製作ステップ)において、設計した回路パターンを形成したマスク(レチクル)を製作する。一方、ステップS12(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。
次に、ステップS13(ウエハ処理ステップ)において、ステップS10〜ステップS12で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術等によってウエハ上に実際の回路等を形成する。次いで、ステップS14(デバイス組立ステップ)において、ステップS13で処理されたウエハを用いてデバイス組立を行う。このステップS14には、ダイシング工程、ボンティング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。最後に、ステップS15(検査ステップ)において、ステップS14で作製されたマイクロデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にマイクロデバイスが完成し、これが出荷される。
図10は、半導体デバイスの場合におけるステップS13の詳細工程の一例を示す図である。
ステップS21(酸化ステップ)おいては、ウエハの表面を酸化させる。ステップS22(CVDステップ)においては、ウエハ表面に絶縁膜を形成する。ステップS23(電極形成ステップ)においては、ウエハ上に電極を蒸着によって形成する。ステップS24(イオン打込みステップ)においては、ウエハにイオンを打ち込む。以上のステップS21〜ステップS24のそれぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップS25(レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ステップS26(露光ステップ)において、上で説明したリソグラフィシステム(露光装置)及び露光方法によってマスクの回路パターンをウエハに転写する。次に、ステップS27(現像ステップ)においては露光されたウエハを現像し、ステップS28(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップS29(レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取り除く。これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
また、半導体素子等のマイクロデバイスだけではなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置等で使用されるレチクル又はマスクを製造するために、マザーレチクルからガラス基板やシリコンウエハ等ヘ回路パターンを転写する露光装置にも本発明を適用できる。ここで、DUV(深紫外)やVUV(真空紫外)光等を用いる露光装置では、一般的に透過型レチクルが用いられ、レチクル基板としては石英ガラス、フッ素がドープされた石英ガラス、蛍石、フッ化マグネシウム、又は水晶等が用いられる。また、プロキシミティ方式のX線露光装置や電子線露光装置等では、透過型マスク(ステンシルマスク、メンブレンマスク)が用いられ、マスク基板としてはシリコンウエハ等が用いられる。なお、このような露光装置は、WO99/34255号、WO99/50712号、WO99/66370号、特開平11−194479号、特開2000−12453号、特開2000−29202号等に開示されている。
上記実施形態では、基板処理装置として露光装置100を例に挙げて説明し、処理装置としてウエハステージWSTを例に挙げて説明したが、これに限られることは無い。例えば、基板処理装置として、デバイスの製造工程に含まれる感光剤の塗布装置、ウエハの現像装置など、他の基板処理装置においても、本発明の適用は可能である。この場合、各基板処理装置の冷却時のみならず、液体や気体などの流体を供給する場合であれば本発明の適用は可能である。
また、処理装置については、ウエハステージWSTのみならず、レチクルステージRSTやレチクルの冷却時に本発明の構成を用いることも可能であるし、例えば駆動系(不図示)などを冷却する場合に本発明の構成を適用させても構わない。例えば、照明光学系ILS及び投影光学系POを構成する各種ミラーの冷却に適用しても良い。勿論、冷却以外の用途で液体や気体などの流体を供給する場合であっても、本発明の適用は可能である。
また、上記実施形態では、可動部であるウエハステージWSTに配管52を接続する構成であるため、ウエハステージWSTの移動に伴って変形しやすい樹脂材料を用いて第一配管53及び第二配管54を形成した例を説明したが、これに限られることは無い。例えば駆動系の固定子(不図示)などの固定された部分に配管52を接続させる場合には、第一配管53及び第二配管54の構成材料として金属材料を用いる構成としても構わない。これにより、配管52からの流体の漏れ出しをより確実に防ぐことができる。
100…露光装置 WST…ウエハステージ 50…冷却装置 51…冷媒処理装置 52…配管 53…第一配管 54…第二配管

Claims (15)

  1. 基板に対し所定の処理を行う処理装置を有する基板処理装置であって、
    前記処理装置に接続され、前記処理装置に流体を供給する第一配管と、
    前記第一配管を内包し、前記処理装置から前記流体を排出する第二配管と
    を備えることを特徴とする基板処理装置。
  2. 前記処理装置は、真空雰囲気内に配置される
    ことを特徴とする請求項1に記載の基板処理装置。
  3. 前記第二配管は、前記第一配管よりも硬度が高い
    ことを特徴とする請求項1又は請求項2に記載の基板処理装置。
  4. 前記第一配管と前記第二配管との間にスペーサを有する
    ことを特徴とする請求項1から請求項3のうちいずれか一項に記載の基板処理装置。
  5. 前記スペーサは、前記第一配管の外面に形成された凸部である
    ことを特徴とする請求項4に記載の基板処理装置。
  6. 前記スペーサは、前記流体の流通方向に沿って形成されている
    ことを特徴とする請求項4又は請求項5に記載の基板処理装置。
  7. 前記第一配管における前記流体の流路と、前記第二配管における前記流体の流路とを接続する接続部を有する
    ことを特徴とする請求項1から請求項6のうちいずれか一項に記載の基板処理装置。
  8. 前記接続部は、前記第一配管及び前記第二配管と、前記所定装置との接続部分に設けられている
    ことを特徴とする請求項7に記載の基板処理装置。
  9. 前記第二配管における前記流体の流路は、前記第一配管における前記流体の流路よりも断面積が大きい
    ことを特徴とする請求項1から請求項8のうちいずれか一項に記載の基板処理装置。
  10. 前記流体は、気体及び液体のうち少なくとも一方である
    ことを特徴とする請求項1から請求項9のうちいずれか一項に記載の基板処理装置。
  11. 前記流体は、前記所定装置の冷却に用いられる冷媒である
    ことを特徴とする請求項1から請求項10のうちいずれか一項に記載の基板処理装置。
  12. 前記第二配管は、前記第一配管を複数内包する
    ことを特徴とする請求項1から請求項11のうちいずれか一項に記載の基板処理装置。
  13. 前記処理装置は、前記基板を保持して移動する移動ステージを含む
    ことを特徴とする請求項1から請求項12のうちいずれか一項に記載の基板処理装置。
  14. 前記処理装置は、回路パターンが形成されたマスクを介して、前記基板に露光を照射する
    ことを特徴とする請求項1から請求項13のうちいずれか一項に記載の基板処理装置。
  15. 請求項14に記載の基板処理装置を用いて、基板を露光する工程と、
    前記露光された前記基板を現像する工程と
    を含むデバイスの製造方法。
JP2009120259A 2009-05-18 2009-05-18 基板処理装置及びデバイスの製造方法 Pending JP2010267926A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009120259A JP2010267926A (ja) 2009-05-18 2009-05-18 基板処理装置及びデバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009120259A JP2010267926A (ja) 2009-05-18 2009-05-18 基板処理装置及びデバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2010267926A true JP2010267926A (ja) 2010-11-25

Family

ID=43364629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009120259A Pending JP2010267926A (ja) 2009-05-18 2009-05-18 基板処理装置及びデバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2010267926A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129905A (ja) * 2009-12-08 2011-06-30 Asml Holding Nv 転がりループ状のケーブルダクトを通して流体を輸送する二重封じ込めシステム
KR101942249B1 (ko) 2012-11-08 2019-01-28 현대모비스 주식회사 전동식 파워 스티어링 시스템의 모터 구동장치 및 그 제어방법
JP2021506136A (ja) * 2017-12-11 2021-02-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 極低温に冷却された回転可能静電チャック

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129905A (ja) * 2009-12-08 2011-06-30 Asml Holding Nv 転がりループ状のケーブルダクトを通して流体を輸送する二重封じ込めシステム
KR101942249B1 (ko) 2012-11-08 2019-01-28 현대모비스 주식회사 전동식 파워 스티어링 시스템의 모터 구동장치 및 그 제어방법
JP2021506136A (ja) * 2017-12-11 2021-02-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 極低温に冷却された回転可能静電チャック
JP7317013B2 (ja) 2017-12-11 2023-07-28 アプライド マテリアルズ インコーポレイテッド 極低温に冷却された回転可能静電チャック

Similar Documents

Publication Publication Date Title
US9182679B2 (en) Lithographic apparatus and device manufacturing method
JP4565270B2 (ja) 露光方法、デバイス製造方法
US8179517B2 (en) Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
US8724077B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US20120008114A1 (en) Lithographic apparatus and device manufacturing method
JPWO2007000984A1 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2007142366A (ja) 露光装置及びデバイス製造方法
EP1670040B1 (en) Projection exposure apparatus, projection exposure method, and device manufacturing method
JP2011077142A (ja) 照明光学装置、露光装置及びデバイス製造方法
JP2005129898A (ja) 露光装置およびデバイス製造方法
JP2004259778A (ja) 冷却機構
JP2006100363A (ja) 露光装置、露光方法、及びデバイス製造方法。
JP2010267926A (ja) 基板処理装置及びデバイスの製造方法
JP2011077480A (ja) 反射型マスク、露光装置及び露光方法並びにデバイス製造方法
US20070062398A1 (en) Lithographic apparatus, and mechanism
JP2008235620A (ja) 液浸露光装置
JP2009260352A (ja) 露光装置、クリーニング方法、及びデバイス製造方法
JP2006332530A (ja) 投影光学系、露光装置、及びデバイスの製造方法
JP2007005571A (ja) 露光装置及びデバイス製造方法
KR101528577B1 (ko) 리소그래피 장치, 투영 시스템 및 디바이스 제조 방법
JP2011204864A (ja) 反射型マスク、露光装置、露光方法及びデバイス製造方法
JP4720293B2 (ja) 露光装置、及びデバイスの製造方法
JP2010141196A (ja) 温調装置、温調方法、ステージ装置及び露光装置
JP2006173245A (ja) 露光装置及びデバイスの製造方法
JP4908807B2 (ja) 処理装置、露光装置、およびデバイス製造方法