JP2010254529A - Method for producing diamond and shock compression apparatus - Google Patents

Method for producing diamond and shock compression apparatus Download PDF

Info

Publication number
JP2010254529A
JP2010254529A JP2009108027A JP2009108027A JP2010254529A JP 2010254529 A JP2010254529 A JP 2010254529A JP 2009108027 A JP2009108027 A JP 2009108027A JP 2009108027 A JP2009108027 A JP 2009108027A JP 2010254529 A JP2010254529 A JP 2010254529A
Authority
JP
Japan
Prior art keywords
diamond
explosive
sample tube
impact compression
cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009108027A
Other languages
Japanese (ja)
Other versions
JP5509668B2 (en
Inventor
Masaharu Kato
雅晴 加藤
Tomoaki Hatake
友昭 畠
Ikuo Sakakibara
育夫 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2009108027A priority Critical patent/JP5509668B2/en
Publication of JP2010254529A publication Critical patent/JP2010254529A/en
Application granted granted Critical
Publication of JP5509668B2 publication Critical patent/JP5509668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a diamond in which the diamond, which comprises fewer particles each having an acute portion and is larger in the primary particle diameter in comparison with the case of a cluster diamond to be obtained by an explosion method, can be obtained by subjecting the cluster diamond to shock compression treatment, and to provide a shock compression apparatus. <P>SOLUTION: The method for producing the diamond comprises: a first step of mixing the cluster diamond homogeneously with metal powder, compacting the obtained mixture 3 under pressure and housing the obtained compact in a metallic sample tube 1; a second step of subjecting the compact 3 housed in the sample tube 1 to the shock compression treatment using an explosive 10; a third step of cutting the sample tube 1 after the shock compression treatment to recover the contents; and a fourth step of chemically purifying the recovered contents to remove impurities. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、爆発法で得られるクラスターダイヤモンドを衝撃圧縮処理することにより、衝撃圧縮処理前よりも粒子の鋭角部が少なく一次粒子径が大きいダイヤモンドを得ることができるダイヤモンドの製造方法、及び衝撃圧縮装置に関するものである。   The present invention relates to a method for producing a diamond capable of obtaining a diamond having a smaller primary portion and a larger primary particle diameter by impact compression treatment of cluster diamond obtained by an explosion method, and impact compression. It relates to the device.

従来、人工ダイヤモンドの種類には、静圧法(または高温高圧法とも呼ぶ)で製造される単結晶ダイヤモンドと衝撃圧縮法で製造される多結晶ダイヤモンドがあり、研磨材料や切削材料として広く使用されてきた。このうち、電子材料分野や光学材料分野などで用いられる研磨材料には高精度の精密研磨が要求されているが、単結晶ダイヤモンドは刃面が鋭角であるために被研磨物にスクラッチを発生しやすく、また粒子表面の刃面部分が少ないために一旦磨耗すると加工速度が著しく低下するという問題があった。   Conventional types of artificial diamond include single-crystal diamond produced by a static pressure method (or high-temperature and high-pressure method) and polycrystalline diamond produced by an impact compression method, which have been widely used as polishing materials and cutting materials. It was. Of these, polishing materials used in the fields of electronic materials and optical materials require high-precision precision polishing. However, single crystal diamond has a sharp edge surface, which causes scratches on the object to be polished. There is a problem that the processing speed is remarkably reduced once it wears because it is easy and there are few blade surfaces on the particle surface.

この問題を解決するために、単結晶ダイヤモンドを不活性ガス雰囲気下で加熱することにより粒子表面の刃先を鈍角にしてスクラッチを減少させ、また微細なクラックを形成することにより、研磨過程においてクラックから粒子が崩壊して新生刃面を生み出して加工速度を上げる方法も開示されている(特許文献1参照)。
また、多結晶ダイヤモンドは、数〜十数nmの結晶子が焼結したような状態で一次粒子を形成しており、研磨過程においては焼結部分から粒子が崩落しながら新生刃面を生み出すために加工速度が高く、刃面も比較的鈍角であるためにスクラッチが比較的少ない特徴を持つ。
しかしながら、電子材料分野や光学材料分野での技術革新は目覚しく、例えばハードディスクや磁気ヘッドなどの研磨には、スクラッチが著しく少ない鏡面状態の仕上げが要求されており、これらの用途では前述の熱処理によってクラックを形成した単結晶ダイヤモンドや多結晶ダイヤモンドでは、粒子の強度が強過ぎ、また研磨過程において崩落する粒子が大きくて角部を持つことから、スクラッチを減少させるには限界があるために不向きであった。
In order to solve this problem, by heating single crystal diamond in an inert gas atmosphere, the edge of the particle surface becomes obtuse to reduce scratches, and by forming fine cracks, cracks are removed from the cracks in the polishing process. A method is also disclosed in which particles break down to create a new blade surface and increase the processing speed (see Patent Document 1).
Polycrystalline diamond forms primary particles in the state that several to tens of nanometers of crystallites are sintered, and in the polishing process, the particles fall from the sintered part to produce a new blade surface. In addition, since the machining speed is high and the blade surface is relatively obtuse, the scratches are relatively few.
However, technological innovation in the electronic material field and optical material field is remarkable, and polishing of hard disks and magnetic heads, for example, requires a mirror-finished finish with extremely little scratches. Single crystal diamonds and polycrystalline diamonds that form diamonds are not suitable because the strength of the particles is too strong, and the particles that collapse during the polishing process are large and have corners, so there is a limit to reducing scratches. It was.

一方、近年では酸素バランスが負の高性能爆薬を水中又は不活性ガスを充填した爆発容器内で爆発させて製造するクラスターダイヤモンドが開発されている(例えば特許文献2参照)。このクラスターダイヤモンドは、3〜6nm程度の球形の一次粒子が凝集して房状の形態をしており、その凝集力は比較的弱い。このため、鋭角な刃面が無く、研磨過程においては凝集体が比較的容易に崩落するため、前述の多結晶ダイヤモンドや単結晶ダイヤモンドと比較すると、スクラッチが生じ難く、鏡面仕上げに好適である。
しかしながら、このクラスターダイヤモンドは、一次粒子が小さすぎるために被研磨物の硬度が高いと加工速度が著しく低くなるという問題があった。
On the other hand, in recent years, cluster diamond has been developed that is produced by exploding a high-performance explosive having a negative oxygen balance in an explosion container filled with water or an inert gas (see, for example, Patent Document 2). In this cluster diamond, spherical primary particles of about 3 to 6 nm are aggregated to form a tuft shape, and the aggregation force is relatively weak. For this reason, there is no sharp blade surface, and the aggregates collapse relatively easily during the polishing process. Therefore, scratches are less likely to occur compared to the above-mentioned polycrystalline diamond or single crystal diamond, which is suitable for mirror finishing.
However, this cluster diamond has a problem that the processing speed is remarkably lowered when the hardness of the object to be polished is high because the primary particles are too small.

なお、50〜100μm板状の黒鉛粉末と50μmリン片状の銅粉末を混合した後、衝撃圧縮を加える方法でのダイヤモンド合成方法が開示されている(特許文献3参照)。
しかしながら、この製造方法で得られるものは多結晶ダイヤモンドである上に、その実施例2として得られたダイヤモンドの結晶子の大きさは230nmと大きいものである。また、電子顕微鏡での観察では40〜120μmの粒子で、ボールミルで粉砕しても30〜100μmに変化しているのみと記載されており、結晶子及び粒子径ともにクラスターダイヤモンドと比較すると極めて大きい上に、粉砕強度も強すぎるため、精密研磨には不向きと推定される。
A diamond synthesis method is disclosed in which 50 to 100 μm plate-like graphite powder and 50 μm flake-like copper powder are mixed and then subjected to impact compression (see Patent Document 3).
However, what is obtained by this manufacturing method is polycrystalline diamond, and the crystallite size of the diamond obtained as Example 2 is as large as 230 nm. Moreover, it is described that the particle size is 40 to 120 μm when observed with an electron microscope, and it is only changed to 30 to 100 μm even when pulverized with a ball mill. Moreover, since the crushing strength is too strong, it is estimated that it is not suitable for precision polishing.

特開2001−329252号公報(第6頁)JP 2001-329252 A (page 6) 特開2007−269576号公報(第8〜9頁)JP 2007-269576 A (pages 8-9) 特公平6−93995号公報(第6頁)Japanese Patent Publication No. 6-93995 (page 6)

本発明の目的は、粒子の鋭角部が少なく、衝撃圧縮処理前のクラスターダイヤモンドよりも一次粒子径を大きくすることにより、電子材料分野や光学材料分野などの研磨過程においてスクラッチが生じ難く、また加工速度が速くなるダイヤモンドを得ることができるダイヤモンドの製造方法を提供することである。   The object of the present invention is that the number of sharp corners of the particles is small, and the primary particle diameter is made larger than that of the cluster diamond before the impact compression treatment, so that scratches are hardly generated in the polishing process in the electronic material field and the optical material field. It is an object of the present invention to provide a method for producing diamond capable of obtaining a diamond having a high speed.

本発明者らは、上記課題を解決すべく、新たな結晶状態のダイヤモンドの製造方法を鋭意研究した結果、クラスターダイヤモンドと金属粉末を混合し、その混合物を加圧成型して金属製試料管に収容して衝撃圧縮処理を施し、回収後に化学的精製を施すことにより課題が解決できることを見出し、本発明を完成した。   In order to solve the above-mentioned problems, the present inventors have intensively studied a method for producing a diamond having a new crystalline state. As a result, the cluster diamond and the metal powder are mixed, and the mixture is pressure-molded into a metal sample tube. The present invention has been completed by finding that the problem can be solved by storing and subjecting it to impact compression treatment and then performing chemical purification after recovery.

本発明の第1の発明は、クラスターダイヤモンドと金属粉末を均一に混合し、その混合物を加圧成型して金属製試料管に収容する第1の工程と、試料管に収容した成型体に爆薬を用いて衝撃圧縮処理を施す第2の工程と、衝撃圧縮後の試料管を切断して内容物を回収する第3の工程と、回収した内容物を化学的精製により不純物を除去する第4の工程とからなることを特徴とするダイヤモンドの製造方法に関するものである。   The first invention of the present invention is a first step of uniformly mixing cluster diamond and metal powder, press-molding the mixture and storing the mixture in a metal sample tube, and an explosive in the molded body stored in the sample tube A second step of performing an impact compression treatment using the above, a third step of recovering the contents by cutting the sample tube after the impact compression, and a fourth step of removing impurities by chemical purification of the recovered contents It is related with the manufacturing method of the diamond characterized by comprising these processes.

本発明の第2の発明は、前記ダイヤモンドの製造方法において、クラスターダイヤモンド/金属粉末の混合比(質量比)が1/99〜20/80であることを特徴とするダイヤモンドの製造方法をも提案する。   The second aspect of the present invention also proposes a method for producing diamond characterized in that, in the method for producing diamond, the mixing ratio (mass ratio) of cluster diamond / metal powder is 1/99 to 20/80. To do.

本発明の第3の発明は、前記ダイヤモンドの製造方法において、X線回折装置を用いて分析(スキャンスピード2.000°/分、サンプリング幅0.020°)し、ダイヤモンド結晶の(111)面に由来するピーク(39.0〜48.0°)からScherrerの式より算出した衝撃圧縮処理後の結晶子径が処理前に比較して30〜200%大きいことを特徴とするダイヤモンドの製造方法をも提案する。   According to a third aspect of the present invention, in the diamond production method, analysis is performed using an X-ray diffractometer (scanning speed: 2.000 ° / min, sampling width: 0.020 °), and the (111) plane of the diamond crystal is analyzed. A method for producing diamond characterized in that the crystallite diameter after impact compression treatment calculated from Scherrer's equation from the peak derived from (39.0 to 48.0 °) is 30 to 200% larger than before treatment I also propose.

本発明の第4の発明は、前記ダイヤモンドの製造方法において、第1及び第2の工程の衝撃圧縮処理を果たすものであって、クラスターダイヤモンドと金属粉体との混合物を密閉充填した金属製試料管が円周状空間を隔てて飛翔管内に位置され、該飛翔管を爆薬容器の中心に設置すると共に前記飛翔管を覆うようにして爆薬を充填して爆薬の上部に雷管を取付けてなることを特徴とする衝撃圧縮装置をも提案する。   According to a fourth aspect of the present invention, there is provided a metal sample which performs the impact compression treatment of the first and second steps in the diamond production method, and which is hermetically filled with a mixture of cluster diamond and metal powder. The tube is positioned in the flight tube across a circumferential space, the flight tube is installed in the center of the explosive container, and the explosive is filled so as to cover the flight tube, and a detonator is attached to the upper portion of the explosive. We also propose an impact compression device characterized by this.

本発明の第1の発明では、爆発法で得られるクラスターダイヤモンドを衝撃圧縮処理することにより、粒子の鋭角部が少なく、衝撃圧縮処理前のクラスターダイヤモンドよりも一次粒子径が大きくなるため、電子材料分野や光学材料分野などの研磨過程においてスクラッチが生じ難く、また加工速度が速くなるダイヤモンドが得られる。   In the first invention of the present invention, since the cluster diamond obtained by the explosion method is subjected to an impact compression treatment, the number of sharp corners of the particles is small, and the primary particle diameter is larger than that of the cluster diamond before the impact compression treatment. In the polishing process in the field or optical material field, it is possible to obtain a diamond that hardly causes scratches and has a high processing speed.

本発明の第2の発明では、圧力媒体及び冷却媒体としての効果が十分に発揮され、また製造効率が向上する。   In the second aspect of the present invention, the effects as the pressure medium and the cooling medium are sufficiently exhibited, and the production efficiency is improved.

本発明の第3の発明では、前記第1の発明の効果の点でより優れている。   The third invention of the present invention is more excellent in terms of the effects of the first invention.

本発明の第4の発明では、前記第1の発明の第1及び第2の工程の衝撃圧縮処理を果たすものであり、雷管を起爆して爆薬が爆轟すると、それに伴い、飛翔管は試料管の方向に投射され、試料管はその衝撃波を受け、試料管の内部に充填された試料が高圧で圧縮される。その後、試料管の両端を切断して試料を取り出し、化学的精製を施すことにより金属粉や砂、グラファイトなどの不純物を除去し、目的とするダイヤモンドを得ることができる。   In the fourth invention of the present invention, the impact compression process of the first and second steps of the first invention is performed. When the detonator is detonated and the explosive is detonated, the flight tube is accompanied by a sample. Projected in the direction of the tube, the sample tube receives the shock wave, and the sample filled in the sample tube is compressed at a high pressure. Thereafter, both ends of the sample tube are cut, the sample is taken out, and subjected to chemical purification to remove impurities such as metal powder, sand, and graphite, thereby obtaining the target diamond.

本発明のダイヤモンドの製造方法の第2の工程を果たす衝撃圧縮装置を模式的に示す断面図である。It is sectional drawing which shows typically the impact compression apparatus which performs the 2nd process of the manufacturing method of the diamond of this invention. 実施例1に用いた原材料クラスターダイヤモンドの透過型電子顕微鏡写真の複写図である。2 is a copy of a transmission electron micrograph of a raw material cluster diamond used in Example 1. FIG. 実施例1にて得られた衝撃圧縮処理後のダイヤモンドの透過型電子顕微鏡写真の複写図である。2 is a copy of a transmission electron micrograph of diamond after shock compression treatment obtained in Example 1. FIG.

1:(金属製)試料管
2:底栓
3:試料(混合物、成型体)
4:上栓
5:固定リング
6:飛翔管
7:空間
8:爆薬容器
9:円錐キャップ
10:爆薬
11:ブースター爆薬
12:雷管
1: (Metal) Sample tube 2: Bottom plug 3: Sample (mixture, molded product)
4: Upper plug 5: Fixing ring 6: Flight tube 7: Space 8: Explosive container 9: Conical cap 10: Explosive 11: Booster explosive 12: Detonator

以下、本発明の実施形態について詳細に説明する。
本発明のダイヤモンドの製造方法は、クラスターダイヤモンドと金属粉末を均一に混合し、その混合物を加圧成型して金属製試料管に収容する第1の工程と、試料管に収容した成型体に爆薬を用いて衝撃圧縮処理を施す第2の工程と、衝撃圧縮後の試料管を切断して内容物を回収する第3の工程と、回収した内容物を化学的精製により不純物を除去する第4の工程とからなる。
以下に、各工程毎に説明する。
Hereinafter, embodiments of the present invention will be described in detail.
The method for producing diamond according to the present invention includes a first step of uniformly mixing cluster diamond and metal powder, press-molding the mixture and storing the mixture in a metal sample tube, and an explosive in the molded body stored in the sample tube. A second step of performing an impact compression treatment using the above, a third step of recovering the contents by cutting the sample tube after the impact compression, and a fourth step of removing impurities by chemical purification of the recovered contents It consists of the process.
Below, it demonstrates for every process.

第1の工程ではクラスターダイヤモンドと金属粉末を均一に混合し、その混合物を加圧成型する。   In the first step, cluster diamond and metal powder are uniformly mixed, and the mixture is pressure-molded.

出発原料となるクラスターダイヤモンドの一次粒子径は、通常3〜6nm程度のものが用いられる。また、嵩密度は0.3g/cm3以上であることが好ましい。嵩密度が0.3g/cm3より低いと金属粉末と混合して加圧成型した際に十分な加圧ができないため成型体に空隙が生じ、衝撃圧縮処理での十分な効果が発揮されない。なお、このクラスターダイヤモンドの合成方法としては、(1)圧力容器内を爆薬中の炭素原子に対して不活性なガスで満たし、その中で爆薬を爆発させる合成方法と、(2)水中で爆薬を爆発させる合成方法とがあり、特にその製法を限定するものではなく、例えば前記特許文献2の方法を採用してもよい。   The primary particle diameter of cluster diamond used as a starting material is usually about 3 to 6 nm. The bulk density is preferably 0.3 g / cm 3 or more. If the bulk density is lower than 0.3 g / cm 3, sufficient pressure cannot be exerted when the metal powder is mixed with the metal powder and pressure-molded, so that voids are formed in the molded body, and sufficient effects in the impact compression treatment are not exhibited. In addition, as a synthesis method of this cluster diamond, (1) the pressure vessel is filled with a gas inert to the carbon atoms in the explosive, and the explosive is exploded in that, and (2) the explosive in water. There is no particular limitation on the production method, and for example, the method of Patent Document 2 may be adopted.

また、金属粉末は、衝撃圧縮の際の圧力媒体であり、またクラスターダイヤモンドが衝撃圧縮の際に高温が負荷されることによりグラファイト化することを防止するための冷却媒体として作用する。金属粉末の種類としては金、銀、銅、鉄、ニッケルなどが用いられるが、化学的精製のし易さや冷却効果、コスト等を考慮すると銅粉が好ましい。さらに、クラスターダイヤモンドと金属粉末を均一に混合し、圧力媒体や冷却媒体としての効果をより発揮するためには、充填性が良いことが望ましいことから、形状は球形で粒径は0.1〜100μm程度が好ましい。   Further, the metal powder is a pressure medium at the time of impact compression, and acts as a cooling medium for preventing cluster diamond from being graphitized due to high temperature being applied at the time of impact compression. As the kind of metal powder, gold, silver, copper, iron, nickel and the like are used, but copper powder is preferable in view of easiness of chemical purification, cooling effect, cost and the like. Furthermore, in order to uniformly mix the cluster diamond and the metal powder and to exhibit the effect as a pressure medium and a cooling medium, it is desirable that the filling property is good. About 100 μm is preferable.

前記のクラスターダイヤモンド/金属粉末の混合比(質量比)は、好ましくは1/99〜20/80、より好ましくは2/98〜10/90である。クラスターダイヤモンドが20質量%よりも多く、かつ金属粉末が80質量%よりも少ない場合、圧力媒体及び冷却媒体としての効果が十分に発揮されず、また、クラスターダイヤモンドが1質量%よりも少なく、かつ金属粉末が99質量%よりも多い場合、原材料となるクラスターダイヤの仕込み量が減少するため、製造効率が低下する傾向にある。   The mixing ratio (mass ratio) of the cluster diamond / metal powder is preferably 1/99 to 20/80, more preferably 2/98 to 10/90. When the cluster diamond is more than 20% by mass and the metal powder is less than 80% by mass, the effect as a pressure medium and a cooling medium is not sufficiently exhibited, the cluster diamond is less than 1% by mass, and When the amount of the metal powder is more than 99% by mass, the production amount of the cluster diamond as a raw material is reduced, so that the production efficiency tends to be lowered.

そして、この第1の工程ではクラスターダイヤモンドと金属粉末の混合物を油圧プレス等で加圧成型して金属製試料管に収容するが、プレス用の金型を用いて成型した後に成型体を試料管に収容しても良いし、混合物を試料管に直接入れて段階的に加圧成型しても良い。衝撃圧縮の効果を高めるには、加圧成型された試料の空隙率が低い方が好ましいが、空隙率を5%未満にするには特殊な装置を使用する必要がある。したがって、空隙率は好ましくは5〜50%、より好ましくは5〜30%になることが望ましい。なお、試料管の材質は強度とコストの面から鉄、真鍮、炭素鋼、ステンレス鋼、クロム鋼等が好ましい。   In this first step, a mixture of cluster diamond and metal powder is pressure-molded with a hydraulic press or the like and accommodated in a metal sample tube. After molding using a press mold, the molded body is sampled into a sample tube. Alternatively, the mixture may be directly placed in a sample tube and pressure-molded stepwise. In order to enhance the impact compression effect, it is preferable that the porosity of the pressure-molded sample is low. However, in order to reduce the porosity to less than 5%, it is necessary to use a special apparatus. Therefore, the porosity is preferably 5 to 50%, more preferably 5 to 30%. The material of the sample tube is preferably iron, brass, carbon steel, stainless steel, chrome steel or the like in terms of strength and cost.

次に第2の工程では、前記第1の工程で試料管に収容した成型体に爆薬を用いて衝撃圧縮処理を施す。
成型体を内在した試料管を別の円筒状金属容器(飛翔管)の中央にOリングを介して配置する。これを、別の円筒状容器(爆薬容器)の中央に配置し、飛翔管と爆薬容器の空間に爆薬を充填する。使用する爆薬の種類は、クラスターダイヤモンド/金属粉末の質量比、成型体の空隙率、成型体を内在した試料管と飛翔管の空間の大きさ等を考慮し、衝撃圧縮の効果が高くなるものを選択すれば良い。但し、爆薬の爆轟圧力が高すぎると試料管が破壊されて内部の試料が漏出して回収量が減少し、また爆轟圧力が低すぎると目的とする効果が得られない。このため、通常は爆薬としてはダイナマイト、含水爆薬、硝安油剤爆薬(ANFO)、トリニトロトルエン(TNT)などが用いられる。なお、飛翔管の材質は、強度とコストの面から試料管と同様に鉄、真鍮、炭素鋼、ステンレス鋼、クロム鋼等が好ましい。また、爆薬容器の材質は、爆薬の種類や量によって選択すれば良いが、通常は鉄、ステンレス鋼などの金属や樹脂、厚紙等を使用する。
Next, in the second step, the molded body accommodated in the sample tube in the first step is subjected to an impact compression treatment using an explosive.
A sample tube containing the molded body is placed in the center of another cylindrical metal container (flying tube) via an O-ring. This is arranged at the center of another cylindrical container (explosive container), and the space between the flight tube and the explosive container is filled with the explosive. The type of explosive to be used increases the impact compression effect in consideration of the mass ratio of cluster diamond / metal powder, the porosity of the molded body, the size of the space between the sample tube and the flying tube in which the molded body is embedded, etc. Should be selected. However, if the detonation pressure of the explosive is too high, the sample tube is destroyed and the internal sample leaks to reduce the recovery amount. If the detonation pressure is too low, the intended effect cannot be obtained. For this reason, dynamite, hydrous explosives, ammonium nitrate explosive (ANFO), trinitrotoluene (TNT), etc. are usually used as explosives. The material of the flight tube is preferably iron, brass, carbon steel, stainless steel, chrome steel or the like in the same manner as the sample tube in terms of strength and cost. The material of the explosive container may be selected depending on the type and amount of the explosive, but usually a metal such as iron or stainless steel, a resin, cardboard, or the like is used.

第3の工程では、衝撃圧縮後の試料管を切断して内容物を回収する。
衝撃圧縮後の試料管は、切断機を用いて両端を切断した後、油圧プレス等を用いて圧縮された内容物を解塊して取り出す。
In the third step, the sample tube after impact compression is cut to recover the contents.
After the impact compression, the sample tube is cut at both ends using a cutting machine, and then the compressed contents are removed using a hydraulic press or the like.

第4の工程では、回収した内容物を化学的精製により不純物を除去する。
取り出した内容物から化学的精製により不純物を除去し、目的とするダイヤモンドを回収する。不純物としては、原材料クラスターダイヤモンドに混合した金属粉があり、例えば銅粉を使用した場合は硝酸や王水で溶解処理することにより除去することができる。また、合成時に砂等が混入した場合は、フッ化水素酸で溶解して除去することができる。更に、衝撃圧縮処理において印加される高熱によってダイヤモンドの一部がグラファイトに相転換した場合は、硫硝混酸処理や酸素存在下で加熱酸化することによりグラファイトを除去することができる。
In the fourth step, impurities are removed from the collected contents by chemical purification.
Impurities are removed from the extracted contents by chemical purification, and the target diamond is recovered. Examples of impurities include metal powder mixed with raw material cluster diamond. For example, when copper powder is used, it can be removed by dissolution treatment with nitric acid or aqua regia. Moreover, when sand etc. mix at the time of a synthesis | combination, it can melt | dissolve and remove with hydrofluoric acid. Further, when a part of diamond is phase-converted to graphite due to high heat applied in the impact compression treatment, the graphite can be removed by a sulfuric acid mixed acid treatment or heat oxidation in the presence of oxygen.

続いて図を用いて詳細に説明する。図1は本発明におけるダイヤモンド製造方法に用いる衝撃圧縮処理装置の断面図である。金属製試料管1の底部には底栓2を配置し、底栓2の上部にはクラスターダイヤモンドと金属粉体の成型体である試料3を装填し、更にその上部には上栓4を取付けて密閉する。試料管1の外部には、上下両端ともに均等の円周幅を保持した固定リング5を取付け、固定リング5を介して試料管1と同心円状に飛翔管6を設置する。従って、固定リング5により試料管1と飛翔管との間には一定幅の円周状の空間7を保有される。   Then, it demonstrates in detail using figures. FIG. 1 is a cross-sectional view of an impact compression processing apparatus used in the diamond manufacturing method of the present invention. A bottom plug 2 is arranged at the bottom of the metal sample tube 1, a sample 3 which is a molded product of cluster diamond and metal powder is loaded on the top of the bottom plug 2, and an upper plug 4 is mounted on the top. And seal. On the outside of the sample tube 1, a fixing ring 5 having a uniform circumferential width is attached to both the upper and lower ends, and the flying tube 6 is installed concentrically with the sample tube 1 via the fixing ring 5. Therefore, a circumferential space 7 having a certain width is held between the sample tube 1 and the flight tube by the fixing ring 5.

試料管1を内在した飛翔管6は、底部を備えた円筒形の爆薬容器8の中心に設置し、飛翔管6の上部には円錐キャップ9を載置する。この飛翔管6及び円錐キャップ9を覆うようにして爆薬10を充填する。爆薬10の上部にはブースター爆薬11を載せ、その上部に爆薬容器8円周の中心になるように雷管12を取付ける。なお、ブースター爆薬11は爆薬10の起爆性に応じて省略することが出来る。   The flying tube 6 containing the sample tube 1 is installed in the center of a cylindrical explosive container 8 having a bottom, and a conical cap 9 is placed on the flying tube 6. The explosive 10 is filled so as to cover the flying tube 6 and the conical cap 9. A booster explosive 11 is placed on the top of the explosive 10, and a detonator 12 is attached to the upper portion of the explosive 10 so as to be the center of the circumference of the explosive container 8. The booster explosive 11 can be omitted depending on the explosive nature of the explosive 10.

次に衝撃圧縮方法について説明する。雷管12を起爆すると、ブースター爆薬11を介して爆薬10が爆轟する。爆轟に伴い、飛翔管6は試料管1の方向に投射され、試料管1はその衝撃波を受け、試料管1の内部に充填された試料3が高圧で圧縮される。
また、爆薬10の爆轟による衝撃波は、飛翔管6を介して試料管1に加えることができる他、試料管1に直接的に加えることもできる。この場合は、飛翔管6を省略し、試料管1と爆薬10が直接接触した状態で爆薬10を爆轟させる。
Next, the impact compression method will be described. When the detonator 12 is detonated, the explosive 10 is detonated through the booster explosive 11. With the detonation, the flight tube 6 is projected in the direction of the sample tube 1, the sample tube 1 receives the shock wave, and the sample 3 filled in the sample tube 1 is compressed at high pressure.
Further, the shock wave caused by the detonation of the explosive 10 can be applied to the sample tube 1 through the flight tube 6 or directly to the sample tube 1. In this case, the flying tube 6 is omitted, and the explosive 10 is detonated while the sample tube 1 and the explosive 10 are in direct contact.

衝撃圧縮後の試料管1は、両端を切断して底栓2と上栓4を外した後、試料3を取り出し、化学的精製を施すことにより金属粉や砂、グラファイトなどの不純物を除去し、目的とするダイヤモンドを得ることができる。   After the impact compression, the sample tube 1 is cut at both ends and the bottom plug 2 and the top plug 4 are removed. Then, the sample 3 is taken out and subjected to chemical purification to remove impurities such as metal powder, sand and graphite. The target diamond can be obtained.

このような本発明の製造方法により得られるダイヤモンドの特徴について説明する。
X線回折装置を用いて分析(スキャンスピード2.000°/分、サンプリング幅0.020°)し、ダイヤモンド結晶の(111)面に由来するピーク(39.0〜48.0°)からScherrerの式より算出した結晶子径が4〜10nm、好ましくは5〜8nmである。
結晶子径がこの範囲であると、粒子の鋭角部が少なく、衝撃圧縮処理前のクラスターダイヤモンドよりも一次粒子径を大きくなるため、スクラッチが生じ難く、また加工速度が速くなる。
The characteristics of the diamond obtained by the production method of the present invention will be described.
Analysis was performed using an X-ray diffractometer (scanning speed 2.000 ° / min, sampling width 0.020 °), and a peak derived from the (111) plane of the diamond crystal (39.0 to 48.0 °) was used as a Scherrer. The crystallite diameter calculated from the formula is 4 to 10 nm, preferably 5 to 8 nm.
When the crystallite diameter is within this range, the number of sharp corners of the particles is small, and the primary particle diameter is larger than that of the cluster diamond before the impact compression treatment, so that scratches are hardly generated and the processing speed is increased.

以下、実施例により本発明を更に具体的に説明する。
〈ダイヤモンドの一次粒子径の測定方法〉
X線回折装置(株式会社リガク製 RINT2000)により分析を行い(スキャンスピード2.000°/分、サンプリング幅0.020°)、ダイヤモンド結晶の(111)面に由来するピーク(39.0〜48.0°)からScherrerの式より算出した結晶子径として評価した。
Hereinafter, the present invention will be described more specifically with reference to examples.
<Diamond primary particle diameter measurement method>
Analysis is performed with an X-ray diffractometer (RINT2000 manufactured by Rigaku Corporation) (scanning speed 2.000 ° / min, sampling width 0.020 °), and a peak (39.0 to 48) derived from the (111) plane of the diamond crystal. .0 °) was evaluated as a crystallite diameter calculated from the Scherrer equation.

〔実施例1〕
第1の工程として、トリメチレントリニトロアミン(RDX)60質量%、トリニトロトルエン(TNT)40質量%の混合爆薬を窒素ガス雰囲気下の耐圧容器内で合成した後、化学的精製処理で不純物を除去したクラスターダイヤモンド5質量%と平均粒径80μmの球形銅粉末95質量%を乾式にて均一混合し、試料粉を得た。下栓を挿入した金属製試料管(外径28mm、内径20mm、長さ140mm)に前記の試料粉を注入しながら油圧プレスで段階的に圧填した後、試料管上部に上栓を挿入した。下栓には脱気用の銅パイプを設けており、この銅パイプを利用して400℃、0.1MPaで2時間の真空脱気をした後、銅パイプを封止した。脱気処理後、固定リングを介して飛翔管(外径48mm、内径42mm、長さ140mm)の中心に試料管を配置し、その上に円錐キャップを載置した。この状態で試料管を爆薬容器(外径114mm、内径105mm、長さ170mm)の中心にセットし、飛翔管と爆薬容器の間にダイナマイト(爆速5,400m/秒)を装填した。ダイナマイトは起爆感度が良好であるためブースター爆薬は省略し、ダイナマイトの上部(飛翔管円周の中心位置)に6号電気雷管を挿入した。
[Example 1]
As a first step, after synthesizing a mixed explosive of 60% by mass of trimethylenetrinitroamine (RDX) and 40% by mass of trinitrotoluene (TNT) in a pressure vessel in a nitrogen gas atmosphere, impurities are removed by chemical purification treatment. 5% by mass of the removed cluster diamond and 95% by mass of spherical copper powder having an average particle size of 80 μm were uniformly mixed by a dry method to obtain a sample powder. The above sample powder was poured into a metal sample tube (outer diameter: 28 mm, inner diameter: 20 mm, length: 140 mm) into which a lower plug had been inserted, and then the upper plug was inserted into the upper part of the sample tube. . The lower plug was provided with a copper pipe for deaeration. After this vacuum deaeration was performed at 400 ° C. and 0.1 MPa for 2 hours using this copper pipe, the copper pipe was sealed. After the deaeration treatment, a sample tube was placed at the center of the flight tube (outer diameter 48 mm, inner diameter 42 mm, length 140 mm) via a fixing ring, and a conical cap was placed thereon. In this state, the sample tube was set at the center of the explosive container (outer diameter 114 mm, inner diameter 105 mm, length 170 mm), and dynamite (explosion speed 5,400 m / sec) was loaded between the flight tube and the explosive container. Since dynamite has good detonation sensitivity, the booster explosive was omitted, and a No. 6 electric detonator was inserted at the top of the dynamite (center position of the flight tube circumference).

第2の工程として、6号電気雷管を起爆させてダイナマイトを爆轟させ、試料管に衝撃圧縮処理を施した。
第3の工程として、衝撃圧縮処理後の試料管を切断して上栓と下栓を外して内部の試料粉を取り出した。
第4の工程として、硝酸、塩酸及びフッ化水素酸で銅粉や砂などの不純物を溶解除去した。更に一部グラファイト化した炭素を硫硝混酸によって酸化除去した後、得られた粉体を水洗、乾燥した。
As a second step, the No. 6 electric detonator was detonated to detonate dynamite, and the sample tube was subjected to impact compression treatment.
As a third step, the sample tube after the impact compression treatment was cut, the upper plug and the lower plug were removed, and the internal sample powder was taken out.
As a fourth step, impurities such as copper powder and sand were dissolved and removed with nitric acid, hydrochloric acid and hydrofluoric acid. Further, the partially graphitized carbon was oxidized and removed with sulfuric acid mixed acid, and the obtained powder was washed with water and dried.

原材料クラスターダイヤモンド及び衝撃圧縮後のダイヤモンドの一次粒子径は、前記結晶子径として評価した。
結晶子径は衝撃圧縮前のクラスターダイヤモンドが4.0nm、衝撃圧縮後に得られたダイヤモンドは5.5nmであった。
また、図2に衝撃圧縮処理前の原材料クラスターダイヤモンドの透過型電子顕微鏡写真、図3に衝撃圧縮処理後のダイヤモンドの透過型電子顕微鏡写真を示す。図2及び図3より、原材料クラスターダイヤモンドは一次粒子が数nmであるが、衝撃圧縮後には一部に原材料クラスターダイヤモンドの形態が残存しているものの、10〜50nm程度の丸みを帯びた粒子も多数認められた。
The primary particle diameter of the raw material cluster diamond and the diamond after impact compression was evaluated as the crystallite diameter.
The crystallite diameter was 4.0 nm for the cluster diamond before impact compression and 5.5 nm for the diamond obtained after impact compression.
FIG. 2 shows a transmission electron micrograph of the raw material cluster diamond before the impact compression treatment, and FIG. 3 shows a transmission electron micrograph of the diamond after the impact compression treatment. From FIG. 2 and FIG. 3, although the raw material cluster diamond has a primary particle of several nanometers, the shape of the raw material cluster diamond remains after the impact compression, but the round particle of about 10 to 50 nm is also present. Many were recognized.

〔実施例2〕
前記実施例1で用いた結晶子径4.0nmのクラスターダイヤモンド3質量%と平均粒径80μmの球形銅粉末97質量%を乾式にて均一混合して試料粉を得た。以下、前記実施例1と同様の衝撃圧縮処理及び化学的精製処理を行った。
衝撃圧縮処理後に得られたダイヤモンドの結晶子径は6.8nmであった。
[Example 2]
A sample powder was obtained by uniformly mixing 3% by mass of cluster diamond having a crystallite size of 4.0 nm used in Example 1 and 97% by mass of spherical copper powder having an average particle size of 80 μm by a dry method. Thereafter, the same impact compression treatment and chemical purification treatment as in Example 1 were performed.
The crystallite diameter of the diamond obtained after the impact compression treatment was 6.8 nm.

(産業上の利用可能性)
本発明から得られる結晶子径の大きいダイヤモンドは、単結晶ダイヤモンドや多結晶ダイヤモンドと結晶性が異なり、また通常のクラスターダイヤモンドより一次粒子径が大きい。このため、分級工程により粒径を調整したものは研磨材料として使用した場合において特異な性能を示すことが期待される。
(Industrial applicability)
The large crystallite diameter diamond obtained from the present invention is different in crystallinity from single crystal diamond or polycrystalline diamond, and has a larger primary particle diameter than ordinary cluster diamond. For this reason, what adjusted the particle size by the classification process is expected to show a unique performance when used as an abrasive material.

Claims (4)

クラスターダイヤモンドと金属粉末を均一に混合し、その混合物を加圧成型して金属製試料管に収容する第1の工程と、試料管に収容した成型体に爆薬を用いて衝撃圧縮処理を施す第2の工程と、衝撃圧縮処理後の試料管を切断して内容物を回収する第3の工程と、回収した内容物を化学的精製により不純物を除去する第4の工程とからなることを特徴とするダイヤモンドの製造方法。   A first step of uniformly mixing the cluster diamond and the metal powder, press-molding the mixture and storing the mixture in a metal sample tube, and applying an impact compression treatment to the molded body stored in the sample tube using an explosive. And the third step of recovering the contents by cutting the sample tube after the impact compression treatment, and the fourth step of removing impurities by chemical purification of the recovered contents. A method for producing diamond. クラスターダイヤモンド/金属粉末の混合比(質量比)が1/99〜20/80であることを特徴とする請求項1に記載のダイヤモンドの製造方法。   The method for producing diamond according to claim 1, wherein the mixing ratio (mass ratio) of cluster diamond / metal powder is 1/99 to 20/80. X線回折装置を用いて分析(スキャンスピード2.000°/分、サンプリング幅0.020°)し、ダイヤモンド結晶の(111)面に由来するピーク(39.0〜48.0°)からScherrerの式より算出した衝撃圧縮処理後の結晶子径が処理前に比較して30〜200%大きいことを特徴とする請求項1又は2のいずれか記載のダイヤモンドの製造方法。   Analysis was performed using an X-ray diffractometer (scanning speed 2.000 ° / min, sampling width 0.020 °), and a peak derived from the (111) plane of the diamond crystal (39.0 to 48.0 °) was used as a Scherrer. 3. The method for producing diamond according to claim 1, wherein the crystallite diameter after the impact compression treatment calculated from the formula is 30 to 200% larger than that before the treatment. クラスターダイヤモンドと金属粉体との混合物を密閉充填した金属製試料管が円周状空間を隔てて飛翔管内に位置され、該飛翔管を爆薬容器の中心に設置すると共に前記飛翔管を覆うようにして爆薬を充填して爆薬の上部に雷管を取付けてなることを特徴とする衝撃圧縮装置。   A metal sample tube hermetically filled with a mixture of cluster diamond and metal powder is positioned in the flight tube across a circumferential space, and the flight tube is placed at the center of the explosive container and covers the flight tube. An impact compression device characterized in that it is filled with explosive and a detonator is attached to the top of the explosive.
JP2009108027A 2009-04-27 2009-04-27 Diamond production method and diamond produced by this production method Active JP5509668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108027A JP5509668B2 (en) 2009-04-27 2009-04-27 Diamond production method and diamond produced by this production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108027A JP5509668B2 (en) 2009-04-27 2009-04-27 Diamond production method and diamond produced by this production method

Publications (2)

Publication Number Publication Date
JP2010254529A true JP2010254529A (en) 2010-11-11
JP5509668B2 JP5509668B2 (en) 2014-06-04

Family

ID=43315912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108027A Active JP5509668B2 (en) 2009-04-27 2009-04-27 Diamond production method and diamond produced by this production method

Country Status (1)

Country Link
JP (1) JP5509668B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600769A (en) * 2012-04-06 2012-07-25 北京理工大学 High-quenching-rate material impact synthesis and recovery device
CN103990418A (en) * 2014-04-29 2014-08-20 大连凯峰超硬材料有限公司 Explosion method capable of reducing powder unloading temperature
JP2017088449A (en) * 2015-11-11 2017-05-25 株式会社ダイセル Nanodiamond-dispersed liquid and method for producing the same
WO2018225433A1 (en) * 2017-06-06 2018-12-13 株式会社ダイセル Explosive body for nanodiamond synthesis
CN111195506A (en) * 2020-01-21 2020-05-26 成都奇点无限科技有限公司 Detonation type synthesizer
CN115213406A (en) * 2022-06-24 2022-10-21 中北大学 Method for preparing refractory high-entropy alloy by explosive loading
JP7470294B2 (en) 2021-02-11 2024-04-18 トーメイダイヤ株式会社 Sintered diamond thermal diffusion material and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114994B1 (en) * 1970-03-23 1976-05-13
JPH0693995B2 (en) * 1990-07-24 1994-11-24 住友石炭鉱業株式会社 Diamond abrasive grain manufacturing method
JP2002153747A (en) * 2000-11-21 2002-05-28 Nof Corp Production of high pressure phase substance
JP2006225208A (en) * 2005-02-18 2006-08-31 Hiroshi Ishizuka Highly dispersible single crystal diamond fine powder and its producing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114994B1 (en) * 1970-03-23 1976-05-13
JPH0693995B2 (en) * 1990-07-24 1994-11-24 住友石炭鉱業株式会社 Diamond abrasive grain manufacturing method
JP2002153747A (en) * 2000-11-21 2002-05-28 Nof Corp Production of high pressure phase substance
JP2006225208A (en) * 2005-02-18 2006-08-31 Hiroshi Ishizuka Highly dispersible single crystal diamond fine powder and its producing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600769A (en) * 2012-04-06 2012-07-25 北京理工大学 High-quenching-rate material impact synthesis and recovery device
CN102600769B (en) * 2012-04-06 2013-11-20 北京理工大学 High-quenching-rate material impact synthesis and recovery device
CN103990418A (en) * 2014-04-29 2014-08-20 大连凯峰超硬材料有限公司 Explosion method capable of reducing powder unloading temperature
CN103990418B (en) * 2014-04-29 2016-03-09 大连凯峰超硬材料有限公司 The explosive method of powder unloading temperature can be reduced
JP2017088449A (en) * 2015-11-11 2017-05-25 株式会社ダイセル Nanodiamond-dispersed liquid and method for producing the same
JPWO2018225433A1 (en) * 2017-06-06 2020-04-23 株式会社ダイセル Explosive body for nanodiamond synthesis
WO2018225433A1 (en) * 2017-06-06 2018-12-13 株式会社ダイセル Explosive body for nanodiamond synthesis
JP7162220B2 (en) 2017-06-06 2022-10-28 株式会社ダイセル Explosive body for nanodiamond synthesis
CN111195506A (en) * 2020-01-21 2020-05-26 成都奇点无限科技有限公司 Detonation type synthesizer
CN111195506B (en) * 2020-01-21 2021-01-15 成都奇点无限科技有限公司 Detonation type synthesizer
JP2023504294A (en) * 2020-01-21 2023-02-02 成都奇点無限科技有限公司 Double pipe connection structure for detonation synthesis, detonation synthesis device and its use
JP7340108B2 (en) 2020-01-21 2023-09-06 成都奇点無限科技有限公司 Double pipe connection structure for detonation synthesis, detonation synthesis device, use of double pipe connection structure for detonation synthesis or detonation synthesis device, and method for producing high strength composite pipe or high strength pressure vessel
JP7470294B2 (en) 2021-02-11 2024-04-18 トーメイダイヤ株式会社 Sintered diamond thermal diffusion material and its manufacturing method
CN115213406A (en) * 2022-06-24 2022-10-21 中北大学 Method for preparing refractory high-entropy alloy by explosive loading
CN115213406B (en) * 2022-06-24 2024-02-27 中北大学 Method for preparing refractory high-entropy alloy by explosive loading

Also Published As

Publication number Publication date
JP5509668B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5509668B2 (en) Diamond production method and diamond produced by this production method
JP3957632B2 (en) Polycrystalline abrasive coarse particles
JP2012502811A (en) Abrasive grains with unique morphology
US4490329A (en) Implosive consolidation of a particle mass including amorphous material
JP3877677B2 (en) Heat resistant diamond composite sintered body and its manufacturing method
KR100642840B1 (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
JPS5825042B2 (en) Synthesis method of diamond powder by impact compression
JP4677665B2 (en) Method for producing high-pressure phase material
EP0432065B1 (en) Process for manufacturing UO2 nuclear fuel pellets from Uranium metal, without production of any effluent
JP3346496B2 (en) Polycrystalline BCN material and method for producing the same
JPH0693995B2 (en) Diamond abrasive grain manufacturing method
RU2491987C2 (en) Method of producing superhard composite material
JPWO2004069399A1 (en) Cubic boron nitride, cubic boron nitride synthesis catalyst, and method for producing cubic boron nitride
JP2017154960A (en) Diamond sintered body with excellent thermal conductivity, and method for producing same
JP2004323277A (en) Cubic spinel type silicon nitride of high pressure phase type and manufacturing method therefor
JP2006291216A (en) Cubic boron nitride abrasive grain and process for producing cubic boron nitride abrasive grain
CN114787315B (en) Breakable diamond abrasive grain and method for producing same
JP2987415B2 (en) Method for producing boron nitride
WO2021112145A1 (en) Metal nitride prodcution method
JPH06121923A (en) Production of diamond
JP6558897B2 (en) A manufacturing method for diamond structures with excellent thermal conductivity.
RU2429195C1 (en) Procedure for surface of diamond grains roughing
JPS5957905A (en) Production of cubic boron nitride
Shang et al. Analysis crystal characteristics of diamond synthesized by different dynamic loading methods
CN114787315A (en) Breakable diamond abrasive grain and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5509668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250