JP6558897B2 - A manufacturing method for diamond structures with excellent thermal conductivity. - Google Patents

A manufacturing method for diamond structures with excellent thermal conductivity. Download PDF

Info

Publication number
JP6558897B2
JP6558897B2 JP2014267205A JP2014267205A JP6558897B2 JP 6558897 B2 JP6558897 B2 JP 6558897B2 JP 2014267205 A JP2014267205 A JP 2014267205A JP 2014267205 A JP2014267205 A JP 2014267205A JP 6558897 B2 JP6558897 B2 JP 6558897B2
Authority
JP
Japan
Prior art keywords
diamond
thermal conductivity
pressure
temperature
nanodiamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014267205A
Other languages
Japanese (ja)
Other versions
JP2016117633A (en
Inventor
藤村 忠正
忠正 藤村
塩崎 茂
茂 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicca Chemical Co Ltd
Original Assignee
Nicca Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicca Chemical Co Ltd filed Critical Nicca Chemical Co Ltd
Priority to JP2014267205A priority Critical patent/JP6558897B2/en
Publication of JP2016117633A publication Critical patent/JP2016117633A/en
Application granted granted Critical
Publication of JP6558897B2 publication Critical patent/JP6558897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、ダイヤモンド粉末を、高温、高圧下で固めて優れた熱伝導性を有するダイヤモンド構造体を、簡便に、効率よく、かつ高い生産性で製造する方法に関する。  The present invention relates to a method for easily and efficiently producing a diamond structure having excellent thermal conductivity by solidifying diamond powder at high temperature and high pressure with high productivity.

ダイヤモンドは、化学的安定性、生体適合性、半導体特性、硬度、熱伝導性等の物性の高さから、パワー半導体デバイス、電子放出源、電極、MEMS、バイオデバイス、切削工具、研磨工具、プローブ、ヒートシンク、触媒担体等への応用が期待されている。しかし、ダイヤモンド自体の正確な微細加工が困難であるという問題があり、これがデバイスの実用化を阻む原因の一つとなっている。ダイヤモンドの微細加工では、上記の困難さのために、まずは所定の構造を製造することが目的となっている。ダイヤモンド構造体の微細加工では、加工面の平坦性、形状を加工する方法等さまざまな技術開発が行われている。  Diamonds have high physical properties such as chemical stability, biocompatibility, semiconductor properties, hardness, and thermal conductivity, so power semiconductor devices, electron emission sources, electrodes, MEMS, biodevices, cutting tools, polishing tools, probes Application to heat sinks, catalyst carriers, etc. is expected. However, there is a problem that accurate microfabrication of diamond itself is difficult, and this is one of the causes that hinders practical use of devices. In the fine processing of diamond, first of all, the purpose is to manufacture a predetermined structure because of the above-mentioned difficulty. In the fine processing of a diamond structure, various technological developments such as a method for processing the flatness of the processed surface and the shape have been performed.

これらは所望の構造体を加工することによって得ることを目的とした技術開発であり、所望の構造体そのものを得る技術開発については検討されていない。  These are technical developments aimed at obtaining a desired structure, and technical development for obtaining the desired structure itself has not been studied.

従って、本発明の目的は、ダイヤモンド粉末を、高温、高圧下で固めて優れた熱伝導性を有するダイヤモンド構造体を、簡便に、効率よく、かつ高い生産性で製造する方法を提供することにある。  Accordingly, an object of the present invention is to provide a method for easily and efficiently producing a diamond structure having excellent thermal conductivity by consolidating diamond powder at high temperature and high pressure with high productivity. is there.

上記目的に鑑み鋭意研究の結果、本発明者らは、不活性ガス雰囲気中で、ダイヤモンド粉末を高温、高圧下で成型して、熱伝導性に優れたダイヤモンド構造体を製造することができることを見出し、本発明に想到した。  As a result of diligent research in view of the above object, the present inventors have found that a diamond structure having excellent thermal conductivity can be produced by molding diamond powder at high temperature and high pressure in an inert gas atmosphere. The headline and the present invention were conceived.

すなわち、本発明のダイヤモンド構造体の製造法は、不活性ガス雰囲気中で、ダイヤモンド粉末を高温、高圧下で用途に応じた任意の形状に成型した熱伝導性に優れたことを特徴とするダイヤモンド構造体及びその製造法に関する。  That is, the method for producing a diamond structure according to the present invention is characterized in that the diamond powder is excellent in thermal conductivity by molding diamond powder into an arbitrary shape according to the application under high temperature and high pressure in an inert gas atmosphere. The present invention relates to a structure and a manufacturing method thereof.

前記ダイヤモンド粉末を窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下、高温、高圧下で焼結し、成型することが好ましい。  The diamond powder is preferably sintered and molded under an inert gas atmosphere such as nitrogen, helium or argon under high temperature and high pressure.

前記ダイヤモンド構造体において、高温が1300〜3500K、高圧が4〜12GPaの範囲の組合せで焼結し、成型することが好ましい。  The diamond structure is preferably sintered and molded in a combination of a high temperature of 1300 to 3500 K and a high pressure of 4 to 12 GPa.

前記ダイヤモンド構造体において、ダイヤモンドが爆轟法により得られたナノダイヤモンドであることが好ましい。  In the diamond structure, the diamond is preferably a nanodiamond obtained by a detonation method.

前記ダイヤモンド構造体において、ダイヤモンドの熱伝導率が500W/m・K以上であることが好ましい。  In the diamond structure, the thermal conductivity of diamond is preferably 500 W / m · K or more.

ここで言う熱伝導率は、JIS R1611に準拠して測定した。
熱伝導率の単位は、W/m・K で表される。ここで、
W;ワット
m;メートル
K;絶対温度(ケルビン)
を表す。
The heat conductivity said here was measured based on JISR1611.
The unit of thermal conductivity is expressed as W / m · K. here,
W; Watt m; Meter K; Absolute temperature (Kelvin)
Represents.

本発明は、不活性ガス雰囲気中で、ダイヤモンド粉末を高温、高圧下で焼結し、成型することによって、任意の形状の熱伝導性の良好な成型物とし、パワー半導体デバイス、電子放出源、電極、MEMS、バイオデバイス、切削工具、研磨工具、プローブ、ヒートシンク、触媒担体等への応用が期待できる。  The present invention sinters diamond powder at a high temperature and high pressure in an inert gas atmosphere and molds it to obtain a molded article having a good thermal conductivity in an arbitrary shape, a power semiconductor device, an electron emission source, Applications to electrodes, MEMS, biodevices, cutting tools, polishing tools, probes, heat sinks, catalyst carriers, etc. can be expected.

[1]ダイヤモンド構造体の製造方法
本発明のダイヤモンド構造体の製造方法の好ましい実施の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
[1] Method for Producing Diamond Structure A preferred embodiment of the method for producing a diamond structure of the present invention will be described in detail, but the present invention is not limited thereto.

(1)ダイヤモンド構造体の製造法
本発明のダイヤモンド構造体の製造方法は、高温、高圧圧縮機に金型をセットし、金型中にダイヤモンド粉末を窒素、ヘリウム、アルゴン、ネオン、クリプトン、キセノン等の不活性ガス雰囲気に満たし、高温、高圧下で圧縮、焼結し、構造体にすることを特徴とする。
(1) Manufacturing method of diamond structure The manufacturing method of the diamond structure of the present invention is such that a mold is set in a high-temperature, high-pressure compressor, and diamond powder is put into nitrogen, helium, argon, neon, krypton, xenon in the mold. It is characterized in that it is filled with an inert gas atmosphere, and is compressed and sintered at a high temperature and high pressure to form a structure.

ダイヤモンド粉体には空気を含むので、高温に加熱するとダイヤモンドが酸化して燃焼するので、高温、高圧圧縮機にセットした金型にダイヤモンド粉末をセットした状態で、金型部分より吸引して、空気を予め除去しておくことが好ましい。真空で空気を除去するとダイヤモンド粉体が舞い上がるので、ダイヤモンド粉体が舞い上がらないように、徐々に真空度を上げて空気を除く事が好ましい。  Since diamond powder contains air, when heated to a high temperature, diamond oxidizes and burns, so in a state where diamond powder is set in a mold set in a high-temperature, high-pressure compressor, suction from the mold part, It is preferable to remove air in advance. When the air is removed in a vacuum, the diamond powder rises. Therefore, it is preferable to gradually increase the degree of vacuum to remove the air so that the diamond powder does not rise.

しかる後、金型部分にダイヤモンド粉末が舞い上がらないように、不活性ガスを徐々に注入することが好ましい。注入する不活性ガスとしては、窒素、ヘリウム、アルゴン、ネオン、クリプトン、キセノン等が挙げられるが、窒素、ヘリウム、アルゴンが特に好ましい。  After that, it is preferable to gradually inject an inert gas so that diamond powder does not rise in the mold part. Examples of the inert gas to be injected include nitrogen, helium, argon, neon, krypton, and xenon, and nitrogen, helium, and argon are particularly preferable.

ダイヤモンド粉末は、使用用途に応じて作製された金型にコンパクトに充填され次工程で高温に加熱され、高圧がかけられる。高温加熱、加圧に先だって、金型中のダイヤモンド粉末より空気を完全に除くために、空気を除く真空操作と不活性ガスを注入する操作を数回繰り返し行う事が好ましい。  The diamond powder is compactly filled in a mold produced according to the intended use, heated to a high temperature in the next step, and subjected to high pressure. Prior to high temperature heating and pressurization, in order to completely remove air from the diamond powder in the mold, it is preferable to repeat the vacuum operation for removing air and the operation for injecting an inert gas several times.

不活性ガスで置換されたダイヤモンド粉末を金型に充填した状態で、不活性ガスを温度700〜1200Kで1分から30分かけて予熱して、しかる後、高温、高圧をかけてダイヤモンド構造体を作製する。かける温度としては、700〜4000K、好ましくは1300〜3300Kであることが良い。このときの圧力は、1Gpa〜15Gpa、好ましくは4〜12Gpaであることが良い。温度、圧力は、これら両者の組合せの範囲内で有れば良い。加熱する温度、圧力が700K以下、1Gpa以下であると構造体としての形状の保持が難しく、力を加えると容易に崩れる。また熱伝導率が目的とする500W/m・K以上を達成できない。その理由は良く分からないが、不活性ガス等がダイヤモンド間に介在し、ダイヤモンドの密着が十分でない事が理由であるかもしれない。加熱する温度、圧力の上限は特に限定されないが、生産技術上4000K、15Gpa程度が限界である。また4000K以上では加熱による劣化が大きく好ましくない。加熱、加圧する時間は、数秒から5分の間で有れば良く、好ましくは15秒から3分程度かければ良い。高温で加圧圧縮終了後、冷却スピードが遅いとナノダイヤモンドは酸化劣化するので、冷却は速いほうが良く、冷却するスピードは、500〜6000K/分であることが良い。  In a state where the diamond powder substituted with the inert gas is filled in the mold, the inert gas is preheated at a temperature of 700 to 1200 K for 1 to 30 minutes, and then the diamond structure is formed by applying high temperature and high pressure. Make it. The applied temperature is 700 to 4000K, preferably 1300 to 3300K. The pressure at this time is 1 Gpa to 15 Gpa, preferably 4 to 12 Gpa. The temperature and pressure may be within the range of the combination of both. When the heating temperature and pressure are 700 K or less and 1 Gpa or less, it is difficult to maintain the shape as a structure, and when a force is applied, it easily collapses. Moreover, the thermal conductivity of 500 W / m · K or more cannot be achieved. The reason is not well understood, but it may be because an inert gas or the like is interposed between the diamonds and the diamond is not sufficiently adhered. The upper limit of the heating temperature and pressure is not particularly limited, but is limited to about 4000 K and 15 Gpa in terms of production technology. Further, when the temperature is 4000K or more, deterioration due to heating is large and not preferable. The heating and pressurizing time may be between several seconds and 5 minutes, preferably 15 seconds to 3 minutes. After completion of pressurization and compression at a high temperature, if the cooling speed is slow, the nanodiamond is oxidized and deteriorated. Therefore, the cooling is preferably fast, and the cooling speed is preferably 500 to 6000 K / min.

(2)ダイヤモンドの製造法
ダイヤモンド粉末としては、市販のナチュラルダイヤモンドを用いることが好ましい。0〜0.1μから30〜40μ大きさのナチュラルダイヤモンドは多数あるが、細かく粉砕したメジアン径で100nm程度のダイヤモンド粉末を用いることが好ましい。本発明に於いて用いるダイヤモンドは、爆轟法ナノダイヤモンドが更に好ましい。爆轟法ナノダイヤモンドは、コアがSP3ダイヤモンドで、その表面のシェルはSP2グラファイトからなるコア・シェル構造から成っている。シェルのSP2グラファイト表面に多数の官能基、すなわち、水酸基(−OH)、カルボキシル基(−COOH)等が存在している。高温・高圧を加えることで固い構造体になる理由は明らかでないが、−OHと−COOHが、又は−OH同士が反応して、エーテル結合を作製するためと考えられている。いずれにしろ、しっかりと結合したダイヤモンド構造体が得られる。
(2) Diamond production method It is preferable to use commercially available natural diamond as the diamond powder. There are many natural diamonds having a size of 0 to 0.1 μ to 30 to 40 μm, but it is preferable to use diamond powder having a median diameter of about 100 nm and finely ground. The diamond used in the present invention is more preferably detonated nanodiamond. The detonation nanodiamond has a core-shell structure in which the core is SP3 diamond and the surface shell is SP2 graphite. Many functional groups, that is, hydroxyl groups (—OH), carboxyl groups (—COOH), and the like are present on the surface of the SP2 graphite of the shell. Although the reason why a hard structure is formed by applying high temperature and high pressure is not clear, it is considered that —OH and —COOH or —OH react with each other to form an ether bond. In any case, a tightly bonded diamond structure is obtained.

爆轟法によるナノダイヤモンドの合成は、例えば、水と多量の氷を満たした純チタン製の耐圧容器に、電気雷管を装着した爆薬[例えば、TNT(トリニトロトルエン)/HMX(シクロテトラメチレンテトラニトラミン)=50/50]を胴内に収納させ、片面プラグ付き鋼鉄製パイプを水平に沈め、この鋼鉄製パイプに鋼鉄製のヘルメット状カバーを被覆して、前記爆薬を爆裂させることにより行うことができる。反応生成物としてのナノダイヤモンドは容器中の水中から回収する。  Nano-diamond synthesis by the detonation method is, for example, an explosive in which an electric detonator is mounted on a pressure vessel made of pure titanium filled with water and a large amount of ice [for example, TNT (trinitrotoluene) / HMX (cyclotetramethylenetetranitra). Min) = 50/50] is stored in the body, a steel pipe with a single-sided plug is sunk horizontally, a steel helmet-like cover is covered on the steel pipe, and the explosive is exploded. Can do. Nanodiamond as a reaction product is recovered from the water in the container.

爆薬としては、トロメチルアニリン(テトリル)、トリアミノトリニトロベンゼン(TATB)、ジアミノトリニトロベンゼン(DATB)、ヘキサニトロスチルベン(HNS)、ヘキサニトロアゾベンゼン(HNAB)、ヘキサニトロジフェニルアミン(HNDP)、ピクリン酸、ピクリン酸アンモニウム、ベンゾトリアゾール(TACOT)、エチレンジニトラミン(EDNA)、ニトログアニジン(NQ)、ペンタエリスリトールテトラナイトレート(ペンスリット)、ベンゾトリフルオキサン(BTF)等が挙げられ、これらを単独又は混合して使用する。特に、RDX(60%)とTNT(40%)との混合爆薬であるコンポジションB、HMX(75%)とTNT(25%)との混合爆薬であるオクトール等を使用するのが好ましい。  Explosives include tromethylaniline (tetril), triaminotrinitrobenzene (TATB), diaminotrinitrobenzene (DATB), hexanitrostilbene (HNS), hexanitroazobenzene (HNAB), hexanitrodiphenylamine (HNDP), picric acid, Examples include ammonium picrate, benzotriazole (TACOT), ethylenedinitramine (EDNA), nitroguanidine (NQ), pentaerythritol tetranitrate (pen slit), benzotrifluoroxane (BTF), etc. And use it. In particular, it is preferable to use Composition B which is a mixed explosive of RDX (60%) and TNT (40%), octol which is a mixed explosive of HMX (75%) and TNT (25%), and the like.

これらの有機系爆薬は、炭素原子含有率が15質量%以上、好ましくは20〜35質量%、密度が1.5g/cc以上、好ましくは1.6g/cc以上、爆速は7000m/s以上、好ましくは7500m/s以上であり、酸素バランスが負、好ましくは−0.2〜−0.6であり、爆轟圧が18GPa以上、好ましくは20〜30GPa、爆轟温度が3000K以上、好ましくは3000〜4000Kである。そのため、爆薬中の炭素原子を効率よくダイヤモンドに転換することができる。  These organic explosives have a carbon atom content of 15% by mass or more, preferably 20 to 35% by mass, a density of 1.5 g / cc or more, preferably 1.6 g / cc or more, an explosion speed of 7000 m / s or more, Preferably it is 7500 m / s or more, oxygen balance is negative, preferably -0.2 to -0.6, detonation pressure is 18 GPa or more, preferably 20 to 30 GPa, detonation temperature is 3000 K or more, preferably It is 3000-4000K. Therefore, carbon atoms in the explosive can be efficiently converted to diamond.

回収した爆発生成物は、ナノオーダーサイズのダイヤモンドの表面をグラファイト系炭素が覆ったコア/シェル構造を有しており、黒く着色している。この未精製のナノダイヤモンドは、2.4〜2.6g/cm程度の密度を有し、メジアン径(動的光散乱法)は50〜500nm程度である。未精製ナノダイヤモンドの精製の程度によっては目的とする熱伝導性に差異が出るので、高熱伝導性を求める場合は、SP2グラファイトを除去して構造体に供することが好ましい。この未精製のダイヤモンドを後述の方法で酸化処理することにより、グラファイト系炭素のシェル層を除去し、ナノダイヤモンドの粒子を得ることができる。酸化処理により精製したダイヤモンド粒子は、2〜10nm程度の一次粒子からなるメジアン径50〜250nm程度の二次粒子である。The recovered explosion product has a core / shell structure in which the surface of a nano-order diamond is covered with graphite-based carbon, and is colored black. This unpurified nanodiamond has a density of about 2.4 to 2.6 g / cm 3 and a median diameter (dynamic light scattering method) of about 50 to 500 nm. Depending on the degree of purification of the unpurified nanodiamond, the desired thermal conductivity differs. Therefore, when high thermal conductivity is desired, it is preferable to remove SP2 graphite and use it for the structure. By oxidizing this unpurified diamond by the method described later, the graphite carbon shell layer can be removed to obtain nanodiamond particles. The diamond particles purified by the oxidation treatment are secondary particles having a median diameter of about 50 to 250 nm composed of primary particles of about 2 to 10 nm.

未精製のナノダイヤモンド(粗ダイヤモンド)の酸化処理方法としては、(a)硝酸等の共存下で高温高圧処理する方法(酸化処理A)、(b)水及び/又はアルコールからなる超臨界流体中で処理する方法(酸化処理B)、(c)水及び/又はアルコールからなる溶媒に酸素を共存させて、前記溶媒の標準沸点以上の温度及び0.1MPa(ゲージ圧)以上の圧力で処理する方法(酸化処理C)、又は(d)380〜450℃で酸素を含む気体により処理する方法(酸化処理D)が挙げられる。これらの酸化処理は、単独で行ってもよいし、組合せて行っても良い。酸化処理を組合せる場合は、爆轟法で得られた未精製のナノダイヤモンドにまず酸化処理Aを施し、さらに酸化処理B〜Cのいずれかを施すのが好ましい。  As an oxidation treatment method of unpurified nanodiamond (crude diamond), (a) a method of high-temperature and high-pressure treatment in the presence of nitric acid (oxidation treatment A), (b) in a supercritical fluid composed of water and / or alcohol (C) Treatment is carried out at a temperature not lower than the normal boiling point of the solvent and a pressure not lower than 0.1 MPa (gauge pressure) in the presence of oxygen in a solvent comprising water and / or alcohol. Examples thereof include a method (oxidation treatment C) and (d) a method of treatment with a gas containing oxygen at 380 to 450 ° C. (oxidation treatment D). These oxidation treatments may be performed alone or in combination. When combining the oxidation treatment, it is preferable to first subject the unpurified nanodiamond obtained by the detonation method to oxidation treatment A and then to any of oxidation treatments B to C.

爆轟法で得られた未精製のダイヤモンドに酸化処理Aを施すことによりグラファイト層の一部が除去されたダイヤモンド粒子(グラファイト−ダイヤモンド粒子)が得られ、このグラファイト−ダイヤモンド粒子に酸化処理B〜Cのいずれかの処理を施すことにより前記グラファイト層をさらに除去することができる。  Oxidation treatment A is applied to unpurified diamond obtained by the detonation method to obtain diamond particles from which a part of the graphite layer has been removed (graphite-diamond particles). The graphite layer can be further removed by performing any of the treatments of C.

酸化処理したダイヤモンドの密度は、ダイヤモンド粒子中のダイヤモンドとグラファイトとの量によって決まる。すなわち、未精製のナノダイヤモンドに施す酸化処理の程度によって、ダイヤモンド粒子中のダイヤモンドとグラファイトとの量を変え、ダイヤモンド粒子の密度を調節することができる。グラファイト系炭素(グラファイトの密度:2.25g/cm)の残存量が少なくなればなるほどダイヤモンドの密度(3.50g/cm)に近づく。従って、精製度が高くグラファイト系炭素の残存量が少ないほど密度が高くなる。The density of the oxidized diamond is determined by the amount of diamond and graphite in the diamond particles. That is, the density of diamond particles can be adjusted by changing the amount of diamond and graphite in the diamond particles according to the degree of oxidation treatment performed on the unpurified nanodiamond. (Density of Graphite: 2.25g / cm 3) graphitic carbon approaches the density of the remaining amount is small, the more an Diamond (3.50g / cm 3). Therefore, the higher the degree of purification and the smaller the residual amount of graphite carbon, the higher the density.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。  The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例1〜5、比較例1〜2
(1)爆薬の準備
図4(a)に示すように、TNT(トリニトロトルエン)とRDX(シクロトリメチレントリニトロアミン)を60/40の比で含む0.65kgの爆薬3を、円筒状のPET製の容器20aに充填し、同じくPET製の蓋20bをして容器20aを密閉した。前記蓋20bに設けられたノズル21から容器20a内の空気を吸引し、代わりに窒素ガスを充填する操作を5回繰り返した後、ノズルを閉めて容器20aを密閉した。このような操作により、容器20a内は窒素ガスで満たされ、このときの酸素濃度は0.5容量%であった。なお爆薬3には、起爆用爆薬及び電気雷管を取り付けた。
Examples 1-5, Comparative Examples 1-2
(1) Preparation of explosive As shown in FIG. 4 (a), 0.65 kg of explosive 3 containing TNT (trinitrotoluene) and RDX (cyclotrimethylenetrinitroamine) in a ratio of 60/40 is formed into a cylindrical shape. The container 20a made of PET was filled, and the container 20a was sealed with the same lid 20b made of PET. The operation of sucking air in the container 20a from the nozzle 21 provided on the lid 20b and filling with nitrogen gas instead was repeated five times, and then the nozzle was closed to seal the container 20a. By such an operation, the container 20a was filled with nitrogen gas, and the oxygen concentration at this time was 0.5% by volume. The explosive 3 was equipped with a detonation explosive and an electric detonator.

(2)爆薬の設置
この爆薬3を充填した容器20aを、図1に示すように、5mの大きさの耐圧性容器1内のほぼ中央部分に吊材4で吊り下げ、耐圧性容器1内の空気を窒素と置換した。前記吊材4として銅線を使用し、爆薬3を起爆するための電気雷管への電流はこの銅線を通して供給した。このときの耐圧性容器1内は1気圧であり、酸素濃度は4容量%であった。
(2) Installation of explosive The container 20a filled with the explosive 3 is suspended by a suspension material 4 at a substantially central portion in the pressure resistant container 1 having a size of 5 m 3 as shown in FIG. The air inside was replaced with nitrogen. A copper wire was used as the suspension member 4, and the current to the electric detonator for detonating the explosive 3 was supplied through this copper wire. The pressure-resistant container 1 at this time was 1 atm, and the oxygen concentration was 4% by volume.

(3)爆発
耐圧性容器1の外壁に、送風機で風を当てながら窒素ガスで満たした容器20aに充填した爆薬3を爆発させた。
(3) Explosion Explosive 3 filled in container 20a filled with nitrogen gas was exploded while applying air to the outer wall of pressure-resistant container 1 with a blower.

(4)爆発生成物の回収
爆発後5分間静置し、耐圧性容器1の上蓋7を開け、水で耐圧性容器の内壁面を洗浄しながら黒色液状の爆発生成物(未精製のダイヤモンド)を回収した。この未精製のダイヤモンドの収率は使用した爆薬量に対して7.5質量%であり、密度は2.44g/cm、メジアン径(動的光散乱法)は100nmであった。この未精製のダイヤモンドは、密度から計算して、85体積%のグラファイト系炭素と15体積%のダイヤモンドからなっていると推定された。
(4) Recovery of explosive products Leave for 5 minutes after the explosion, open the top lid 7 of the pressure-resistant container 1 and clean the inner wall surface of the pressure-resistant container with water (black liquid explosive product (unrefined diamond)) Was recovered. The yield of the unpurified diamond was 7.5% by mass with respect to the amount of explosive used, the density was 2.44 g / cm 3 , and the median diameter (dynamic light scattering method) was 100 nm. This unrefined diamond was estimated from the density to be composed of 85% by volume of graphite-based carbon and 15% by volume of diamond.

(5)ダイヤモンドの精製
この未精製のダイヤモンドを60質量%硝酸水溶液と混合し、160℃、14気圧、20分の条件で酸化性分解処理を行った後、130℃、13気圧、1時間で酸化性エッチング処理を行った。酸化性エッチング処理により、グラファイトが一部除去された粒子が得られた。この粒子を、アンモニアを用いて、210℃、20気圧、20分還流し中和処理した後、自然沈降させデカンテーションにより35質量%硝酸での洗浄を行い、さらにデカンテーションにより3回水洗し、遠心分離により脱水し、120℃で加熱乾燥し、ダイヤモンドの粉末を得た。このダイヤモンド粉末の収率は使用した爆薬量に対して4.1質量%であり、密度は3.36g/cm、メジアン径は35nm(動的光散乱法)であった。密度から計算して、89体積%のダイヤモンドと11体積%のグラファイト系炭素からなっていると推定された。
(5) Purification of diamond This unpurified diamond is mixed with a 60% by mass nitric acid aqueous solution and subjected to oxidative decomposition under conditions of 160 ° C, 14 atm and 20 minutes, and then at 130 ° C, 13 atm and 1 hour. Oxidative etching treatment was performed. Particles from which graphite was partially removed were obtained by the oxidative etching treatment. The particles were refluxed with ammonia at 210 ° C., 20 atm for 20 minutes, neutralized, then naturally settled, washed with 35 mass% nitric acid by decantation, and further washed with water three times by decantation. It was dehydrated by centrifugation and dried by heating at 120 ° C. to obtain a diamond powder. The yield of this diamond powder was 4.1% by mass with respect to the amount of explosive used, the density was 3.36 g / cm 3 , and the median diameter was 35 nm (dynamic light scattering method). Calculated from the density, it was estimated to be composed of 89% by volume of diamond and 11% by volume of graphite-based carbon.

実施例1〜5、比較例1〜2の項で得られたナノダイヤモンド粉末を、金型に入れ、ナノダイヤモンド粉末が飛ばないように空気を抜き、同様にナノダイヤモンドが飛ばないように、徐々に不活性ガスアルゴン注入をする。これを5回繰り返し、アルゴン雰囲気のナノダイヤモンドを1000Kで2分間、予め加熱して、表1に記載の温度、圧力で圧縮機にかけて10mm径の厚み3mmのナノダイヤモンド構造体を作製した。この試料の熱伝導率を測定した結果を表1に示す。  The nanodiamond powders obtained in the sections of Examples 1 to 5 and Comparative Examples 1 and 2 are put into a mold, air is evacuated so that the nanodiamond powder does not fly, and gradually, so that the nanodiamond does not fly. Inject an inert gas with argon. This was repeated 5 times, and nanodiamond in an argon atmosphere was preliminarily heated at 1000 K for 2 minutes, and a nanodiamond structure having a diameter of 3 mm and a diameter of 3 mm was produced by applying a compressor at the temperature and pressure shown in Table 1. The results of measuring the thermal conductivity of this sample are shown in Table 1.

Figure 0006558897
表1から明らかなように、熱伝導率が500W/m・K以上を満足するには、処理温度は、700〜4000K、処理圧力が1〜15GPaの組み合わせが好ましく、処理温度が1300〜3300K、処理圧力が4〜12GPaである事が最も好ましい事が理解される。
Figure 0006558897
As is clear from Table 1, in order to satisfy the thermal conductivity of 500 W / m · K or more, the processing temperature is preferably 700 to 4000 K, the processing pressure is 1 to 15 GPa, the processing temperature is 1300 to 3300 K, It is understood that the processing pressure is most preferably 4 to 12 GPa.

実施例2
実施例1と同様にして、(1)爆薬の準備、(2)爆薬の設置、及び(3)爆発の操作を行った後、さらに、(1)爆薬の準備、(2)爆薬の設置、及び(3)爆発の操作を4回繰り返し、続けて合計で5回の爆発を行った。ただし、2回目以降の爆発においては、爆薬を設置した後に容器内のガスを窒素で置換する操作は省略した。5回目の爆発後、実施例1と同様にして、(4)爆発生成物の回収作業、及び(5)ダイヤモンドの精製を行った。この未精製のダイヤモンドを60質量%硝酸水溶液と混合し、130℃、10気圧、10分の条件で酸化性分解処理を行った後、110℃、10気圧、30分で酸化性エッチング処理を行った。酸化性エッチング処理により、グラファイトが一部除去された粒子が得られた。この粒子を、アンモニアを用いて、180℃、15気圧、20分還流し中和処理した後、自然沈降させデカンテーションにより35質量%硝酸での洗浄を行い、さらにデカンテーションにより3回水洗し、遠心分離により脱水し、120℃で加熱乾燥し、ダイヤモンドの粉末を得た。このダイヤモンド粉末の収率は使用した爆薬量に対して4.3質量%であり、密度は3.13g/cm、メジアン径は30nm(動的光散乱法)であった。密度から計算して、70体積%のダイヤモンドと30体積%のグラファイト系炭素からなっていると推定された。
Example 2
In the same manner as in Example 1, (1) Preparation of explosives, (2) Installation of explosives, and (3) Explosive operation, (1) Preparation of explosives, (2) Installation of explosives, And (3) The explosion operation was repeated four times, followed by a total of five explosions. However, in the second and subsequent explosions, the operation of replacing the gas in the container with nitrogen after installing the explosive was omitted. After the fifth explosion, (4) explosive product recovery work and (5) diamond purification were performed in the same manner as in Example 1. This unpurified diamond is mixed with a 60% by mass nitric acid aqueous solution, subjected to oxidative decomposition treatment at 130 ° C., 10 atm and 10 minutes, and then subjected to oxidative etching treatment at 110 ° C., 10 atm and 30 minutes. It was. Particles from which graphite was partially removed were obtained by the oxidative etching treatment. The particles were refluxed with ammonia at 180 ° C., 15 atm for 20 minutes, neutralized, then naturally settled, washed with 35 mass% nitric acid by decantation, and further washed with water three times by decantation. It was dehydrated by centrifugation and dried by heating at 120 ° C. to obtain a diamond powder. The yield of this diamond powder was 4.3% by mass with respect to the amount of explosive used, the density was 3.13 g / cm 3 , and the median diameter was 30 nm (dynamic light scattering method). Calculated from the density, it was estimated to be composed of 70% by volume of diamond and 30% by volume of graphite-based carbon.

実施例6〜10、比較例3〜4の項で得られたナノダイヤモンド粉末を、金型に入れ、ナノダイヤモンド粉末が飛ばないように空気を抜き、同様にナノダイヤモンドが飛ばないように、徐々に不活性ガスアルゴン注入をする。これを5回繰り返し、アルゴン雰囲気のナノダイヤモンドを1000Kで2分間、予め加熱して、表2に記載の温度、圧力で圧縮機にかけて10mm径の厚み600μのナノダイヤモンド構造体を作製した。この試料の熱伝導率を測定した結果を表2に示す。  The nanodiamond powder obtained in Examples 6 to 10 and Comparative Examples 3 to 4 is put into a mold, and air is evacuated so that the nanodiamond powder does not fly, and gradually, so that the nanodiamond does not fly. Inject an inert gas with argon. This was repeated 5 times, and nanodiamond in an argon atmosphere was preliminarily heated at 1000 K for 2 minutes, and a nanodiamond structure having a diameter of 600 mm and a diameter of 600 mm was applied to the compressor at the temperature and pressure shown in Table 2. The results of measuring the thermal conductivity of this sample are shown in Table 2.

Figure 0006558897
表2から明らかなように、熱伝導率が500W/m・Kを満足するには、処理温度は、700〜4000K、処理圧力が1〜15GPaの組み合わせが好ましく、処理温度が1300〜3300K、処理圧力が4〜12GPaである事が最も好ましい事が理解される。
Figure 0006558897
As is clear from Table 2, in order to satisfy the thermal conductivity of 500 W / m · K, the treatment temperature is preferably a combination of 700 to 4000 K and a treatment pressure of 1 to 15 GPa, the treatment temperature is 1300 to 3300 K, and the treatment It is understood that the pressure is most preferably 4-12 GPa.

表1、表2の結果から明らかなように、熱伝導率が500W/m・Kを満足するダイヤモンド構造体を作製するには、高温、高圧圧縮機にセットした金型中に、ダイヤモンド粉末をセットし、空気を除き、不活性ガスを充填を数回繰り返し、予め余熱を加えてしかる後、処理温度は、700〜4000K、処理圧力が1〜15GPaの組み合わせが好ましく、処理温度が1300〜3300K、処理圧力が4〜12GPaである事が最も好ましい事が理解される。  As is apparent from the results of Tables 1 and 2, in order to produce a diamond structure having a thermal conductivity of 500 W / m · K, diamond powder is placed in a mold set in a high-temperature, high-pressure compressor. After setting and removing air and filling with inert gas several times and adding preheat in advance, the processing temperature is preferably 700-4000K, the processing pressure is 1-15GPa, the processing temperature is 1300-3300K It is understood that the treatment pressure is most preferably 4 to 12 GPa.

本発明のナノダイヤモンド作製の耐圧性容器Pressure-resistant container for producing nanodiamond of the present invention 同火薬納入の容器Container for delivery of the explosive 同耐圧性密封容器Same pressure-resistant sealed container 同火薬密封容器Same gunpowder sealed container 同火薬密封容器蓋Same gunpowder sealed container lid

1・・・耐圧性容器
2・・・容器
3・・・爆薬
4・・・吊材
5・・・リーク弁
6・・・耐圧性の密閉容器
7・・・上蓋
20a・・・容器
20b・・・蓋
21・・・ノズル
22a,22b・・・氷の容器
DESCRIPTION OF SYMBOLS 1 ... Pressure-resistant container 2 ... Container 3 ... Explosive 4 ... Hanging material 5 ... Leak valve 6 ... Pressure-resistant airtight container 7 ... Upper lid 20a ... Container 20b ..Lid 21 ... Nozzle 22a, 22b ... Ice container

Claims (5)

ダイヤモンド粉末のみを金型に入れ、不活性ガス雰囲気中で、前記ダイヤモンド粉末を高温、高圧下で焼結し、成型する工程を備え、
前記高温が700〜4000K、前記高圧が1〜15GPaであり、
前記ダイヤモンド粉末は、曝轟法によって得られたナノダイヤモンドを硝酸の共存下で高温高圧処理することによりグラファイト層の一部を除去したナノダイヤモンドである、熱伝導性に優れたダイヤモンド構造体の製造方法。
Only diamond powder is put in a mold, and the diamond powder is sintered at a high temperature and high pressure in an inert gas atmosphere, and includes a step of molding.
The high temperature is 700 to 4000 K, the high pressure is 1 to 15 GPa,
The diamond powder is a nanodiamond obtained by removing a part of the graphite layer by subjecting the nanodiamond obtained by the exposure method to high-temperature and high-pressure treatment in the presence of nitric acid, and producing a diamond structure having excellent thermal conductivity. Method.
前記不活性ガスが窒素、ヘリウム、又はアルゴンである、請求項1に記載の熱伝導性に優れたダイヤモンド構造体の製造方法。   The method for producing a diamond structure having excellent thermal conductivity according to claim 1, wherein the inert gas is nitrogen, helium, or argon. 前記高温が1300〜3300K、前記高圧が4〜12GPaである、請求項1又は2に記載の熱伝導性に優れたダイヤモンド構造体の製造方法。   The method for producing a diamond structure excellent in thermal conductivity according to claim 1 or 2, wherein the high temperature is 1300 to 3300 K and the high pressure is 4 to 12 GPa. 前記ダイヤモンド粉末の密度が、3.36g/cm以上である、請求項1〜3のいずれか一項に記載の熱伝導性に優れたダイヤモンド構造体の製造方法。 The manufacturing method of the diamond structure excellent in thermal conductivity as described in any one of Claims 1-3 whose density of the said diamond powder is 3.36 g / cm < 3 > or more. 前記ダイヤモンド構造体の熱伝導率が500W/m・K以上である、請求項1〜のいずれか一項に記載の熱伝導性に優れたダイヤモンド構造体の製造方法。 The manufacturing method of the diamond structure excellent in heat conductivity as described in any one of Claims 1-4 whose thermal conductivity of the said diamond structure is 500 W / m * K or more.
JP2014267205A 2014-12-19 2014-12-19 A manufacturing method for diamond structures with excellent thermal conductivity. Active JP6558897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014267205A JP6558897B2 (en) 2014-12-19 2014-12-19 A manufacturing method for diamond structures with excellent thermal conductivity.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014267205A JP6558897B2 (en) 2014-12-19 2014-12-19 A manufacturing method for diamond structures with excellent thermal conductivity.

Publications (2)

Publication Number Publication Date
JP2016117633A JP2016117633A (en) 2016-06-30
JP6558897B2 true JP6558897B2 (en) 2019-08-14

Family

ID=56242425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014267205A Active JP6558897B2 (en) 2014-12-19 2014-12-19 A manufacturing method for diamond structures with excellent thermal conductivity.

Country Status (1)

Country Link
JP (1) JP6558897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210395607A1 (en) * 2018-10-31 2021-12-23 Daicel Corporation Fluorescent diamond and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899402B2 (en) * 2002-08-26 2007-03-28 独立行政法人物質・材料研究機構 Method for producing diamond-titanium carbide composite sintered body
US20050019114A1 (en) * 2003-07-25 2005-01-27 Chien-Min Sung Nanodiamond PCD and methods of forming
JP2012121765A (en) * 2010-12-08 2012-06-28 Vision Development Co Ltd Diamond-containing composite metal

Also Published As

Publication number Publication date
JP2016117633A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP2799337B2 (en) Artificial diamond-containing material and method for producing the same
JP5324556B2 (en) Diamond manufacturing method
JP2014144903A (en) Diamond production method
JP6114717B2 (en) Production method of carbon particles by detonation method
JP5973987B2 (en) Production method of carbon particles by detonation method
WO2015119618A1 (en) Method of producing graphene from a hydrocarbon gas and liquid metal catalysts
JP5509668B2 (en) Diamond production method and diamond produced by this production method
JP6558897B2 (en) A manufacturing method for diamond structures with excellent thermal conductivity.
Batsanov et al. Synthesis and Properties of Hydrogen‐Free Detonation Diamond
JP2017154960A (en) Diamond sintered body with excellent thermal conductivity, and method for producing same
JP5819683B2 (en) Magnetic diamond fine particles and method for producing the same
JP2012121765A (en) Diamond-containing composite metal
JP4677665B2 (en) Method for producing high-pressure phase material
WO2007078209A1 (en) Diamond-carbon material and a method for the production thereof
US8021639B1 (en) Method for rapidly synthesizing monolithic polycrystalline diamond articles
JP7162220B2 (en) Explosive body for nanodiamond synthesis
JP6352747B2 (en) Method for producing nano diamond and method for purifying nano diamond
CN105481621A (en) Formula and method for preparing three-dimensional-graphene coated single-particle nano-diamond material
JP5918054B2 (en) A slidable resin member excellent in releasability comprising diamond fine particles having silicon and / or fluorine.
Shenderova et al. Nanodiamonds
RU2428376C1 (en) Method of producing aluminium nitride
US4166841A (en) Method for making pure beta silicon carbide
RU2676614C1 (en) Method of detonation synthesis of nanodiamonds
CN109704315A (en) A kind of preparation method of graphene
Shakhov et al. Effect of fullerenes on the activation energy of the graphite-diamond phase transition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190716

R150 Certificate of patent or registration of utility model

Ref document number: 6558897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250