JPH0693995B2 - Diamond abrasive grain manufacturing method - Google Patents

Diamond abrasive grain manufacturing method

Info

Publication number
JPH0693995B2
JPH0693995B2 JP2197089A JP19708990A JPH0693995B2 JP H0693995 B2 JPH0693995 B2 JP H0693995B2 JP 2197089 A JP2197089 A JP 2197089A JP 19708990 A JP19708990 A JP 19708990A JP H0693995 B2 JPH0693995 B2 JP H0693995B2
Authority
JP
Japan
Prior art keywords
diamond
raw material
powder
graphite
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2197089A
Other languages
Japanese (ja)
Other versions
JPH0483525A (en
Inventor
保 明石
治彦 工藤
和之 石内
滋 松井
昭 澤岡
Original Assignee
住友石炭鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友石炭鉱業株式会社 filed Critical 住友石炭鉱業株式会社
Priority to JP2197089A priority Critical patent/JPH0693995B2/en
Publication of JPH0483525A publication Critical patent/JPH0483525A/en
Publication of JPH0693995B2 publication Critical patent/JPH0693995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は衝撃圧縮法によるダイヤモンド砥粒の製造方法
に係るものであり、詳しくは、研削砥石用の砥粒や研磨
作業用の砥粒として好適な粒子強度の優れた多結晶ダイ
ヤモンド砥粒を安価に製造する方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing diamond abrasive grains by an impact compression method, and more specifically, as an abrasive grain for a grinding wheel or an abrasive grain for polishing work. The present invention relates to a method for inexpensively producing polycrystalline diamond abrasive grains having excellent particle strength.

[従来の技術] 従来、この種のものにあっては、下記のようなものにな
っている。
[Prior Art] Conventionally, this kind of thing is as follows.

既知物質中、最も高い硬さを有するダイヤモンドは、そ
の優れた耐摩耗性をいかして、研削砥石用の砥粒やラッ
ピング、ポリッシング用の砥粒として広範囲に利用され
てきている。
Among the known materials, diamond, which has the highest hardness, has been widely used as abrasive grains for grinding wheels, lapping, and polishing grains because of its excellent wear resistance.

また、最近の新しい工業材料の導入とその加工方法の確
立の他、従来材料においても、それらの高精度、高能率
加工の要求が多く、ダイヤモンドによる加工に頼らざる
を得ない加工分野はますます増加していく傾向にある。
In addition to the recent introduction of new industrial materials and the establishment of processing methods for them, even in conventional materials, there are many demands for high-precision and high-efficiency processing, and there are more and more processing fields where diamond processing is inevitable. It tends to increase.

従来、ダイヤモンド砥粒の大部分は接触作用を持つ溶媒
を用いて静的超高圧法により合成されてきた。
Conventionally, most of diamond abrasive grains have been synthesized by a static ultra-high pressure method using a solvent having a contact action.

この方法で合成されるダイヤモンド粒子は単結晶であ
り、合成時の溶媒の種類や合成圧力、温度条件のコント
ロールより種々のサイズとグレードのダイヤモンド砥粒
が合成され、市販されている。
The diamond particles synthesized by this method are single crystals, and diamond abrasive grains of various sizes and grades have been synthesized and are commercially available by controlling the type of solvent, synthesis pressure, and temperature conditions during synthesis.

一方、もう一つのダイヤモンド合成法として動的超高圧
法、つまり衝撃波を利用した衝撃圧縮法がある。
On the other hand, as another diamond synthesis method, there is a dynamic ultrahigh pressure method, that is, a shock compression method using a shock wave.

この方法では、一般に、金属粉末に少量の炭素原料粉末
を混合し、衝撃圧縮することによりダイヤモンド粉末を
合成する。
In this method, generally, a small amount of carbon raw material powder is mixed with metal powder and shock-compressed to synthesize diamond powder.

ここで使用する金属粉末には触媒作用はなく、混合物中
での炭素原料粉末部分での衝撃圧力を高める効果と、ダ
イヤモンドに変換した後の急速な冷却を可能にする冷媒
体としての効果を持っている。
The metal powder used here has no catalytic action, and has the effect of increasing the impact pressure at the carbon raw material powder part in the mixture and the effect of a refrigerant body that enables rapid cooling after converting to diamond. ing.

この方法で合成されるダイヤモンドは微細な多結晶粉末
であり、主に、ラッピングやポリッシング用の砥粒とし
て市販、利用されている。
Diamond synthesized by this method is a fine polycrystalline powder, which is commercially available and used mainly as abrasive grains for lapping and polishing.

[発明が解決しようとする課題] 従来の技術で述べたものにあっては、下記のような問題
点を有していた。
[Problems to be Solved by the Invention] The conventional techniques described above have the following problems.

セラミック、複合材料をはじめとする新素材の導入や材
料の高機能化に伴い、単に研削や研磨の加工能率の向上
に対する要求だけでなく、同時に、より優れた加工面性
状に対する要求も高まってきている。
With the introduction of new materials such as ceramics and composite materials and the enhancement of the functionality of materials, not only the demand for improving the machining efficiency of grinding and polishing, but also the demand for better machined surface properties has increased. There is.

ここでの表面性状には、加工仕上げ面の粗さだけでな
く、加工面に残る歪みやマイクロクラックのようなダメ
ージ度合いにも重要な関心がもたれている。
Not only the roughness of the machined surface, but also the degree of damage such as strain and microcracks remaining on the machined surface is of great interest to the surface texture here.

一般に、ダイヤモンド砥粒を用いた砥石による研削加工
では、使用する砥粒が大きいほど研削能率、寿命は優れ
るが、仕上げ面状態は悪くなる。逆に、微細砥粒を用い
ると仕上げ面状態は良くなるが、加工能率は著しく低下
してしまう。
Generally, in the grinding process using a grindstone using diamond abrasive grains, the larger the abrasive grains used, the better the grinding efficiency and life, but the worse the finished surface condition. On the contrary, when fine abrasive grains are used, the finished surface condition is improved, but the machining efficiency is significantly reduced.

静的超高圧法により合成される単結晶ダイヤモンド粉末
は、ダイヤモンド結晶特有のへき開性のため破砕により
容易に鋭い角をもつ粒子となりやすく、また、大きい粒
子も得やすい。
The single crystal diamond powder synthesized by the static ultra-high pressure method is easily cleaved into particles having sharp corners due to the cleavage property peculiar to diamond crystals, and also large particles are easily obtained.

従って、このような単結晶ダイヤモンド粒子は、研削、
研磨用の砥粒として高い加工性能を発揮する。しかし、
反面、鋭い角が絶えず形成され加工材料に食い込み、材
料を除去しているため、加工面に与えるダメージが大き
くなるという欠点がある。
Therefore, such single crystal diamond particles are
Exhibits high processing performance as abrasive grains. But,
On the other hand, since sharp corners are constantly formed and bite into the processed material to remove the material, there is a drawback that damage to the processed surface becomes large.

これに対し、細かい単結晶ダイヤモンド粒子を用いる
と、上記のように加工面に与えるダメージは少なく、仕
上げ面精度も向上するが、大きい粒子のときに比べ加工
能率は著しく低下ししまうという問題がある。
On the other hand, when fine single crystal diamond particles are used, the damage given to the processed surface is small as described above and the finishing surface accuracy is improved, but there is a problem that the processing efficiency is remarkably reduced as compared with the case of large particles. .

このような従来の単結晶粒子の持つ問題点を解決するた
めに、単結晶の大粒粒子の代わりに、金属をバインダー
として微細な単結晶ダイヤモンド粒子を一度固めて作成
した凝集砥粒を用いる方法や、同じく微細な単結晶ダイ
ヤモンド粒子に微量の金属成分を加え超高圧焼結して得
た焼結体をもう一度粉砕して作ったダイヤ焼結粒子を用
いる方法が提案されている。
In order to solve the problems with such conventional single crystal particles, a method of using agglomerated abrasive grains prepared by once solidifying fine single crystal diamond particles using a metal as a binder, instead of large single crystal particles, and Similarly, there has been proposed a method of using diamond sintered particles made by pulverizing again a sintered body obtained by adding a minute amount of a metal component to fine single crystal diamond particles and performing ultra-high pressure sintering.

前者の例として、特公昭56−190、特開昭58−51076があ
り、Tiを添加したCuなどの金属成分で微細な単結晶ダイ
ヤモンド粒子を固めた方法の例が開示されている。
As examples of the former, Japanese Patent Publication No. 56-190 and Japanese Patent Laid-Open No. 58-51076 disclose an example of a method of solidifying fine single crystal diamond particles with a metal component such as Cu containing Ti.

また、後者の例として、特開昭59−152065号、特公昭60
−54909号、特公昭61−9245号があり、超高圧装置を用
いて得た焼結ダイヤモンド砥粒の例が開示されている。
Further, as examples of the latter, JP-A-59-152065 and JP-B-60
-54909 and JP-B-61-9245, there are disclosed examples of sintered diamond abrasive grains obtained by using an ultrahigh pressure apparatus.

しかし、前者の方法で得られる砥粒の粒子強度は充分高
くなく、高強度なセラミック材料や複合材料の研削や研
磨では材料除去能力が劣るという問題があった。
However, the particle strength of the abrasive grains obtained by the former method is not sufficiently high, and there is a problem that the material removing ability is poor in grinding or polishing a high-strength ceramic material or composite material.

この方法では、用いる金属成分の量が多く、また、ダイ
ヤモンドの熱力学的安定条件での製造ではないためであ
ろう。
This is probably because this method uses a large amount of metal components and is not a diamond thermodynamically stable production.

これに対し、後者の焼結体砥粒は、含まれる金属成分の
量は僅かであり、また、ダイヤモンドの安定条件で焼結
されたものであるため、充分高い粒子強度を有してお
り、上記のような高強度な材料の加工において、同じ大
きさの単結晶ダイヤモンド砥粒を用いた場合に匹敵する
研削能率を示しながら、単結晶砥粒の場合以上の優れた
加工面性状が得られる。
On the other hand, the latter sintered abrasive grains, the amount of the metal component contained is small, and since it was sintered under the stable conditions of diamond, it has a sufficiently high particle strength, In the processing of high-strength materials as described above, while exhibiting a grinding efficiency comparable to the case of using single crystal diamond abrasive grains of the same size, it is possible to obtain excellent processed surface properties more than in the case of single crystal abrasive grains. .

しかしながら、この焼結砥粒の製造には、一度超高圧装
置を用いて合成、精製して得た微細なダイヤモンド粉末
を、もう一度超高圧装置を用いて焼結し、さらに、その
焼結体を粉砕、分級しなげればならず、その製造工程は
通常のダイヤモンド砥粒製造工程の2倍以上の長い工程
を必要とするため、その製造コストは著しく高くなると
いう問題があった。
However, in order to manufacture the sintered abrasive grains, fine diamond powder once synthesized and purified using an ultra-high pressure apparatus is sintered again using the ultra-high pressure apparatus, and the sintered body is further Since it has to be crushed and classified, and its manufacturing process requires a process twice or more as long as a normal diamond abrasive grain manufacturing process, there has been a problem that its manufacturing cost becomes extremely high.

金属と炭素原料を衝撃処理して得られるダイヤモンド粉
末は前述のように多結晶粉末である。しかし、衝撃圧縮
の持続時間は、一般に、10-6−10-5と極めて短く、従来
の方法では、この間に、粒子強度の大きい、大粒の多結
晶ダイヤンモンド粒子を得ることは難しかった。また、
現在市販されている衝撃圧縮法により合成されたダイヤ
モンド粉末のX線回折では、回折線の強度は低いが、必
ず、黒鉛の存在を示す回折線がCu Ka線に対する回折角
2θで26.5゜付近に現れる。
The diamond powder obtained by subjecting the metal and carbon raw materials to the impact treatment is a polycrystalline powder as described above. However, the duration of impact compression is generally extremely short, 10-6-10-5, and it has been difficult to obtain large-sized polycrystalline diamond particles having a large particle strength during this period by the conventional method. Also,
In the X-ray diffraction of the diamond powder synthesized by the impact compression method which is currently commercially available, the intensity of the diffraction line is low, but the diffraction line indicating the presence of graphite is always around 26.5 ° at the diffraction angle 2θ with respect to the Cu Ka line. appear.

このような黒鉛成分は、個々の多結晶ダイヤモンドを構
成する微細粒子の粒界に存在し、それらの、多結晶粒子
の強度を低下させる原因と考えられる。
It is considered that such a graphite component is present in the grain boundaries of the fine particles constituting each polycrystalline diamond, and causes the strength of the polycrystalline particles to be reduced.

この発明は、以上のような事情に鑑みなされたものであ
り、大粒の多結晶ダイヤモンド粒子の、砥粒としての優
れた研削、研磨性能を生かしつつ、前述のような従来の
製造方法の持つ欠点を改良し、研削砥石や研磨作業用の
砥粒として好適な粒子強度の優れた多結晶ダイヤモンド
粉末を安価に製造することのできる改善されたダイヤモ
ンド砥粒と製造方法を提供することを目的としている。
The present invention has been made in view of the above circumstances, large-sized polycrystalline diamond particles, excellent grinding as abrasive grains, while utilizing the polishing performance, the drawbacks of the conventional manufacturing method as described above It is an object of the present invention to provide an improved diamond abrasive grain and a production method capable of inexpensively producing a polycrystalline diamond powder having an excellent particle strength suitable as an abrasive grain for a grinding wheel or polishing work. .

[課題を解決するための手段] 本発明者らは、従来より衝撃圧縮法によるダイヤモンド
粉末の合成について研究を行なってきた。この過程で、
出発原料中の炭素原料粉末の種類や、合成に用いる圧
力、温度条件と合成されたダイヤモンド粒子の特性との
相関についてもいくつかの重要な知見を得た。
[Means for Solving the Problem] The present inventors have conventionally studied the synthesis of diamond powder by the impact compression method. In the process,
We also obtained some important findings regarding the type of carbon raw material powder in the starting material, the pressure and temperature conditions used in the synthesis, and the correlation between the characteristics of the synthesized diamond particles.

本発明者らは、上記の課題を解決するための、それらの
知見を基に、より簡単な装置と方法により大粒で粒子強
度の優れた多結晶ダイヤモンド砥粒を合成する方法の開
発を目指して鋭意研究を重ねてきた。
The present inventors, in order to solve the above problems, based on those findings, aim at the development of a method of synthesizing a polycrystalline diamond abrasive grains having a large grain and excellent grain strength by a simpler device and method. I have earnestly studied.

その結果、まず、金属と黒鉛原料粉末よりなる出発原料
中の黒鉛原料粉末を、その黒鉛原料粉末粒子の持つ特有
の晶癖を利用して一定の結晶軸方向に配向させるように
して出発原料を作成した後、この出発原料を衝撃処理す
るための試料容器に、試料容器内での気孔の割合、つま
り、空隙率が15〜50%となるように調整して充填し、こ
の配向させた黒鉛原料粉末粒子のc軸方向に伝播する衝
撃波を用いて20GPa以上の圧力で該出発原料を衝撃圧縮
することにより、ダイヤモンドへの転換率を高くでき、
粒子強度の大きい、大粒の多結晶ダイヤモンド粉末の得
られることを見いだし、この発明をなすに至った。
As a result, first, the starting raw material consisting of the metal and the graphite raw material powder is oriented in a certain crystal axis direction by utilizing the unique crystal habit of the graphite raw material powder particles to prepare the starting raw material. After creating, the sample material for impact treatment of this starting material is adjusted and filled so that the ratio of pores in the sample container, that is, the porosity is 15 to 50%, and the oriented graphite By shock-compressing the starting material at a pressure of 20 GPa or more using a shock wave propagating in the c-axis direction of the raw material powder particles, the conversion rate to diamond can be increased,
It has been found that a large-sized polycrystalline diamond powder having a large particle strength can be obtained, and the present invention has been completed.

すなわち、この発明は、爆薬の爆発や高速飛翔体の衝突
により発生する衝撃波を用いて、金属と黒鉛原料粉末よ
りなる出発原料を衝撃圧縮することによりダイヤモンド
砥粒を製造する方法において、該出発原料中の黒鉛原料
粉末を一定の結晶軸方向に配向させ、該配向させた黒鉛
原料粉末粒子のc軸方向に伝播する衝撃波により20GPa
以上の圧力で該出発原料を衝撃圧縮することを特徴とす
るダイヤモンド砥粒の製造方法を提供する。
That is, the present invention provides a method for producing diamond abrasive grains by shock-compressing a starting material composed of a metal and a graphite raw material powder using a shock wave generated by the explosion of explosives or the collision of a high-velocity projectile. The graphite raw material powder inside is oriented in a certain crystal axis direction, and the shock wave propagating in the c-axis direction of the oriented graphite raw material powder particles causes 20 GPa.
Provided is a method for producing diamond abrasive grains, characterized in that the starting material is shock-compressed under the above pressure.

この場合、上記黒鉛原料粉末が0.1μm〜1mmの粒径を持
つリン片状または板状の粒子よりなる黒鉛原料粉末であ
ることもでき、また、上記出発原料が、少なくとも片面
に一定方向に配向した黒鉛原料粉末を配置した厚み0.01
mm〜2mmの金属板を一定方向に積み重ねた構造及び/ま
たは該金属板を渦巻状または同心円状に巻いた構造より
なる出発原料とすることもできる。
In this case, the graphite raw material powder may be a graphite raw material powder composed of scaly or plate-like particles having a particle size of 0.1 μm to 1 mm, and the starting raw material is oriented in at least one surface in a certain direction. Thickness of the deposited graphite raw material powder 0.01
A starting material having a structure in which metal plates of mm to 2 mm are stacked in a certain direction and / or a structure in which the metal plates are spirally or concentrically wound can also be used.

[作用] 効果と共に説明する。[Operation] The effect will be described.

[発明の実施例] 実施例について図面を参照して説明する。Embodiments of the Invention Embodiments will be described with reference to the drawings.

本発明に係るダイヤモンド砥粒の製造方法においては、
出発原料は金属と黒鉛原料粉末よりなり、黒鉛原料粉末
粒子を金属成分中に一定の結晶軸方向に配向させる。
In the method for producing diamond abrasive grains according to the present invention,
The starting raw material is composed of metal and graphite raw material powder, and the graphite raw material powder particles are oriented in a certain crystal axis direction in the metal component.

黒鉛原料粉末を一定の結晶軸方向に配向させる方法とし
ては、例えば、次のような方法を用いることができる。
As a method for orienting the graphite raw material powder in a certain crystal axis direction, for example, the following method can be used.

1)リン片状または板状の金属粉末を用い、これを黒鉛
原料粉末に均一に合成した後成形型に入れ、その上下か
ら小さい振動を与えながら充填、加圧し、黒鉛原料粉末
粒子を配向させる。
1) Using scaly or plate-shaped metal powder, uniformly synthesizing this into graphite raw material powder, and then putting it into a molding die, filling and pressurizing it while giving a small vibration from above and below to orient the graphite raw material powder particles. .

2)同じくリン片状または板状の金属粉末を用い、これ
を黒鉛原料粉末に均一に混合した後さらにエタノールを
加えスラリー状とする。
2) Similarly, a flaky or plate-shaped metal powder is used, and this is uniformly mixed with the graphite raw material powder, and then ethanol is further added to form a slurry.

これを成形用の型に入れ、静置、乾燥させ、乾燥後必要
に応じて加圧成形することにより黒鉛原料粉末粒子を配
向させる。
The graphite raw material powder particles are oriented by placing this in a mold for molding, allowing it to stand and drying, and then, after drying, pressure-molding as necessary.

3)黒鉛原料粉末にエタノール等の溶媒を加えスラリー
状とした後、これを金属板の片面または両面に塗布、乾
燥し、黒鉛原料粉末粒子を一定方向に配向させる。
3) A solvent such as ethanol is added to the graphite raw material powder to form a slurry, which is applied to one or both surfaces of a metal plate and dried to orient the graphite raw material powder particles in a certain direction.

次に、この金属板を一定方向に積み重ねる方法またはこ
れを渦巻状及び/または同心円状に巻くことにより、黒
鉛原料粉末粒子が一定方向に配向した出発原料を得るこ
とができる。
Next, a starting material in which graphite raw material powder particles are oriented in a certain direction can be obtained by stacking the metal plates in a certain direction or by winding the metal plates in a spiral and / or concentric manner.

本発明に係る方法においては、黒鉛原料粉末として結晶
性のよい、層状構造のよく発達した粉末が適し、特に、
0.1μm〜1mmの粒径を持つリン片状または板状の黒鉛原
料粉末を用いると出発原料中での黒鉛原料粉末粒子の配
向操作は容易となり、また、配向率も高くでき、結果的
に、ダイヤモンドへの転換率を高くでき、強固で粗粒の
多結晶ダイヤモンド粉末が得られ、望ましいことであ
る。
In the method according to the present invention, good crystallinity as the graphite raw material powder, a well-developed powder having a layered structure is suitable, in particular,
When the flaky or tabular graphite raw material powder having a particle size of 0.1 μm to 1 mm is used, the orientation operation of the graphite raw material powder particles in the starting raw material becomes easy, and the orientation rate can be increased, and as a result, It is desirable because the conversion rate to diamond can be increased and a strong and coarse-grained polycrystalline diamond powder can be obtained.

また、黒鉛原料粉末として、金属成分中での黒鉛原料粉
末粒子の配向を妨げない程度であり、かつ、合成される
ダイヤモンドの粒子強度を損なわない程度の非晶質及び
/または乱層構造の炭素及び黒鉛を含む黒鉛原料粉末を
用いることができる。
Further, as the graphite raw material powder, carbon having an amorphous and / or turbostratic structure that does not hinder the orientation of the graphite raw material powder particles in the metal component and does not impair the particle strength of the diamond to be synthesized. Graphite raw material powders containing and graphite can be used.

大粒の多結晶ダイヤモンド粒子を得る目的に、黒鉛原料
粉末として結晶性のよい、層状構造のよく発達した粉末
が適する理由は次のように考えられている。
The reason why a powder having good crystallinity and a well-developed layered structure is suitable as the graphite raw material powder for the purpose of obtaining large-sized polycrystalline diamond particles is considered as follows.

衝撃圧縮による黒鉛からダイヤモンドへの転移は、黒鉛
の構成原子が一度バラバラになった後、ダイヤモンドの
構造に組替えられる、所謂拡散型の転移ではなく、黒鉛
の構成原子が互いに相対的に僅かに変位してダイヤモン
ドの構造となる無拡散型の転移、つまり、マルテンサイ
ト型の転移と考えられる。
The transition from graphite to diamond due to impact compression is not a so-called diffusion type transition in which the constituent atoms of graphite are once disassembled and then rearranged into the structure of diamond, but the constituent atoms of graphite are displaced slightly relative to each other. It is considered to be a non-diffusion type transition that becomes a diamond structure, that is, a martensite type transition.

このことは、衝撃温度の低い条件でのダイヤモンドの合
成では、出発原料として結晶構造の整った黒鉛粉末を用
いるとダイヤモンドへの転換率が高くなることと矛盾し
ない。また、本発明に係る方法では、結晶性のよい黒鉛
を一定方向に配向させ、そのc軸方向に伝播する衝撃波
により衝撃圧縮するが、この方法により一層、ダイヤモ
ンドへの転換率が高くなることも見出した。大粒のダイ
ヤモンド粒子を得る上でダイヤモンドへの転換率の高い
ことは必要な条件である。
This is consistent with the fact that in the synthesis of diamond under conditions of low impact temperature, the use of graphite powder having a regular crystal structure as a starting material results in a high conversion rate to diamond. Further, in the method according to the present invention, graphite having good crystallinity is oriented in a certain direction and shock-compressed by the shock wave propagating in the c-axis direction, but this method may further increase the conversion rate to diamond. I found it. A high conversion rate to diamond is a necessary condition for obtaining large diamond particles.

一方、上記のようなマルテンサイト型転移は一般に非常
に高速で起きるものであり、特に、衝撃圧縮の場合に
は、衝撃波の立ち上がり、つまり、衝撃波面においては
強い一軸性の圧力から静水圧的応力状態になるための極
めて速い剪断変形が起き、この変形に伴う原子の高速の
移動は黒鉛からダイヤモンドへの高速の転移を可能にす
るものと考えられる。
On the other hand, the above-mentioned martensite type transition generally occurs at a very high speed, and particularly in the case of shock compression, the shock wave rises, that is, in the shock wave front, strong uniaxial pressure causes hydrostatic stress. It is considered that extremely fast shear deformation to bring into a state occurs, and the high-speed movement of atoms accompanying this deformation enables a high-speed transition from graphite to diamond.

従って、衝撃波面の通過直後には、はじめの黒鉛原料粉
末粒子中に結晶方位の揃ったダイヤモンド微粒子が多数
生成された状態にあり、それらのダイヤモンド微粒子間
の焼結反応が、時間は10-6秒と短いが、ダイヤモンドの
熱力学的安定条件の満たされる衝撃圧縮中に起きるもの
と考えられる。本発明に係る方法では、出発原料として
黒鉛原料粉末粒子の一定方向に配向したものを用いてお
り、衝撃圧縮中には個々の黒鉛原料粉末粒子内で転移、
生成したダイヤモンド微粒子間だけでなく、より大きな
単位でのダイヤモンド粒子同士の焼結が起き、結果的
に、大粒のダイヤモンド粒子が得られたものと考えられ
る。
Therefore, immediately after passing through the shock wave surface, a large number of diamond fine particles having a uniform crystal orientation were generated in the first graphite raw material powder particles, and the sintering reaction between these diamond fine particles took 10-6 hours. Although it is as short as a second, it is considered to occur during impact compression when the thermodynamic stability condition of diamond is satisfied. In the method according to the present invention, a graphite raw material powder particles are used as a starting material, which are oriented in a certain direction, and are transformed within individual graphite raw material powder particles during impact compression,
It is considered that not only between the generated diamond fine particles but also between the diamond particles in a larger unit was sintered, and as a result, large diamond particles were obtained.

一方、出発原料中の金属成分は、前述のように黒鉛原料
粉末粒子部分での発生圧力を高める効果と、生成したダ
イヤモンドを衝撃波通過直後、急冷し、ダイヤモンドの
黒鉛への逆転換を防ぐ効果を持つものである。
On the other hand, the metal component in the starting material has the effect of increasing the pressure generated in the graphite raw material powder particle portion as described above and the effect of immediately quenching the generated diamond immediately after passing the shock wave to prevent the diamond from being converted back into graphite. To have.

この金属成分としては、炭素と反応して安定な炭化物を
作ることのない金属、例えば、銅、ニッケル、コバル
ト、スズなどを用いることができるが、コストの面及び
合成後のダイヤモンドの精製工程を考慮すると、銅が適
する。
As this metal component, a metal that does not react with carbon to form a stable carbide, for example, copper, nickel, cobalt, tin, or the like can be used. However, in terms of cost and the purification step of diamond after synthesis, Considering it, copper is suitable.

また、本発明に係る方法では、上記の金属成分の粉末を
用いることができるが、特に、これらの金属の、厚み0.
01mm〜2mmの板状体を用い、上記3)の方法により黒鉛
原料粉末を塗布して用いる方法では黒鉛原料粉末粒子の
配向性が向上し、また、ダイヤモンドの急冷効果も優れ
たものとなり、望ましい方法である。
Further, in the method according to the present invention, it is possible to use powders of the above metal components, in particular, of these metals, thickness 0.
The method of applying a graphite raw material powder by the method 3) above using a plate of 01 mm to 2 mm improves the orientation of the graphite raw material powder particles, and also has an excellent rapid cooling effect on diamond, which is desirable. Is the way.

出発原料中での黒鉛原料粉末の占める割合は、5〜60体
積%であり、好ましくは、10〜40体積%である。黒鉛原
料粉末の割合が5%未満ではダイヤモンド合成に必要な
衝撃圧力は低くでき、ダイヤモンドの合成は容易となる
が、1回当りのダイヤモンドの収量は著しく少なくな
り、結果的に、製造コストが高くなり、好ましくない。
The proportion of the graphite raw material powder in the starting raw material is 5 to 60% by volume, preferably 10 to 40% by volume. When the proportion of the graphite raw material powder is less than 5%, the impact pressure required for diamond synthesis can be lowered, and the diamond synthesis is facilitated, but the yield of diamond per one time is significantly reduced, resulting in high manufacturing cost. It is not preferable.

一方、黒鉛原料粉末が60%越えて含まれるようになる
と、ダイヤモンドの合成に必要な衝撃圧力は高くなり、
製造上好ましくないだけでなく、金属成分による急冷効
果が期待できなくなり、結果的に、逆変換によるダイヤ
モンド粒子の質の低下や収率の低下が起きるようにな
り、好ましくない。
On the other hand, when the graphite raw material powder exceeds 60%, the impact pressure required for diamond synthesis increases,
Not only is it unfavorable in manufacturing, but the quenching effect due to the metal component cannot be expected, and as a result, the quality of the diamond particles and the yield are lowered due to the reverse conversion, which is not preferable.

また、出発原料中の空隙率は50%以下、好ましくは、35
%以下である。空隙率50%以上では、衝撃波通過直後の
温度が高くなりすぎ、ダイヤモンドの黒鉛への逆変換が
起きるためダイヤモンドの収量が減り、また、得られた
ダイヤモンド粒子の強度も低下してくるようになり、好
ましくない。
The porosity in the starting material is 50% or less, preferably 35%.
% Or less. When the porosity is 50% or more, the temperature immediately after passing the shock wave becomes too high and the diamond is converted back into graphite, so the yield of diamond decreases and the strength of the obtained diamond particles also decreases. , Not preferable.

第1図は、本発明のダイヤモンド砥粒の製造方法に用い
ることのできる平面衝撃圧縮装置の例を示す。
FIG. 1 shows an example of a plane impact compression apparatus that can be used in the method for producing diamond abrasive grains of the present invention.

この例の装置においては、上方から雷管1、シート爆薬
2a,2b、金属板3a,3b、爆薬容器5、主爆薬4及び駆動板
6からなる爆薬系、出発原料を充填する試料容器10を収
容する容器ホルダー8からなる試料部及び試料容器10の
回収を容易とするためのサイドモーメンタムトラップ7
と下方モーメンタムトンラップ9よりなっている。
In the device of this example, the detonator 1 and the sheet explosive from above
2a, 2b, metal plates 3a, 3b, explosive container 5, explosive system consisting of main explosive 4 and drive plate 6, sample part consisting of container holder 8 accommodating sample container 10 for filling starting material and collection of sample container 10 Side Momentum Trap 7 to facilitate
And lower momentum ton wrap 9.

第2図は試料容器10の断面を示しており、試料容器本体
10a、出発原料11、スペーサー10b及びネジ10cよりなっ
ている。
FIG. 2 shows a cross section of the sample container 10, the sample container body.
10a, starting material 11, spacer 10b and screw 10c.

前述のような方法により作成した、金属成分と黒鉛原料
粉末よりなる出発原料を第2図に示す試料容器10にある
出発原料11の位置に、円筒状の試料容器の軸方向に黒鉛
原料粉末粒子の配向面が垂直、つまり、試料容器の軸方
向と黒鉛原料粒子のc軸方向が平行となるように充填
し、スペーサー10bを配置し、ネジ10cでネジ止めし固定
する。
The starting raw material composed of the metal component and the graphite raw material powder prepared by the above-mentioned method is placed at the position of the starting raw material 11 in the sample container 10 shown in FIG. Are filled so that the orientation plane of the sample is vertical, that is, the axial direction of the sample container and the c-axis direction of the graphite raw material particles are parallel to each other, spacers 10b are arranged, and fixed with screws 10c.

この試料容器10を第1図の容器ホルダー8に入れ、その
外側にサイドモーメンタムトラップ7、下側に下方モー
メンタムトラップ9を設置する。サイドモーメンタムト
ラップ7は、主に試料容器の側面方向、また、下方モー
メンタムトラップ9は試料容器下方向の各々の運動量を
吸収し、衝撃処理後の試料の回収を容易にするためのも
のである。
This sample container 10 is placed in the container holder 8 shown in FIG. 1, and the side momentum trap 7 is installed on the outer side thereof and the lower momentum trap 9 is installed on the lower side thereof. The side momentum trap 7 mainly absorbs momentum in the lateral direction of the sample container, and the lower momentum trap 9 absorbs each momentum in the downward direction of the sample container to facilitate the recovery of the sample after the impact treatment.

試料容器10の材質は広範囲のものを選択できるが、コス
トと強度の面から鉄系の材料が適する。
The material of the sample container 10 can be selected from a wide range, but an iron-based material is suitable in terms of cost and strength.

第1図の上方部はこの衝撃圧縮装置の爆薬構成部分であ
り、雷管1で起爆された爆轟は、内側に金属板3aをもつ
シート爆薬2aに伝わり、この爆轟の進行により内側の金
属板3aがシート爆薬2bの方へ飛ばされ、シート爆薬2bに
直線的に衝突し、これを起爆する。ここで点起爆が線起
爆に変化する。
The upper part of Fig. 1 is the explosive constituent part of this shock compression device, and the detonation initiated by the detonator 1 is transmitted to the sheet explosive 2a having the metal plate 3a inside, and the inside metal is detonated by the progress of this detonation. The plate 3a is blown toward the sheet explosive 2b, linearly collides with the sheet explosive 2b, and detonates it. Here, the point detonation changes to the line detonation.

シート爆薬2bはその下に金属板3bを有しており、シート
爆薬2bの爆轟により、下の金属板3bが下方へ飛ばされ、
下の主爆薬4に平面的に衝突し、これを起爆する。
The sheet explosive 2b has a metal plate 3b under it, and the detonation of the sheet explosive 2b causes the lower metal plate 3b to fly downward,
It collides flatly with the lower explosive 4 and detonates it.

ここで線起爆が面起爆に変化する。Here, the linear detonation changes to a surface detonation.

そしてこの主爆薬4の爆轟により下の駆動板6が所定の
速さまで加速され、試料容器10に衝突し、試料容器10内
に衝撃波が発生する。
Then, the lower drive plate 6 is accelerated to a predetermined speed by the detonation of the main explosive 4, collides with the sample container 10, and a shock wave is generated in the sample container 10.

ここでの衝撃波は、試料容器の軸方向に伝播し、試料容
器10中の出発原料11の中の黒鉛原料粉末はc軸方向に伝
播する衝撃波による衝撃圧縮される。
The shock wave here propagates in the axial direction of the sample container, and the graphite raw material powder in the starting material 11 in the sample container 10 is shock-compressed by the shock wave propagating in the c-axis direction.

衝撃波の通過により出発原料部分で発生する圧力、温度
は主に用いる爆薬量と出発原料中の空隙率により制御す
ることができる、 また、圧力の持続時間は第1図のような駆動板を用いた
場合、その厚みにより変えることができるが、3.2mmの
鉄板を2Km/s程度で試料容器に衝突させた場合の圧力持
続時間は約1.5*10-6秒であり、極めて短い。
The pressure and temperature generated in the starting material part due to the passage of the shock wave can be controlled mainly by the amount of explosive used and the porosity in the starting material, and the duration of the pressure can be controlled by the driving plate as shown in FIG. When the thickness of the iron plate is 3.2 mm, the pressure duration is about 1.5 * 10-6 seconds, which is extremely short.

本発明に係る方法では20GPa以上の衝撃圧力が必要であ
るが、ここで駆動板6として鉄板を、試料容器10として
ステンレスを用いた場合20GPa以上の圧力を得るために
は1.1Km/s以上の駆動板速度が必要である。
In the method according to the present invention, an impact pressure of 20 GPa or more is required, but when an iron plate is used as the drive plate 6 and stainless steel is used as the sample container 10, 1.1 Km / s or more is required to obtain a pressure of 20 GPa or more. Drive plate speed is required.

第3図はこの発明の方法に利用できる円筒衝撃圧縮装置
の1実施例を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing an embodiment of a cylindrical impact compression device which can be used in the method of the present invention.

図中、17は円筒爆薬容器であり、外円筒17aとこの外円
筒の上下に配置された上方板17bと下方板17cとから構成
されている。
In the figure, reference numeral 17 denotes a cylindrical explosive container, which is composed of an outer cylinder 17a, and an upper plate 17b and a lower plate 17c arranged above and below the outer cylinder 17a.

14は円筒爆薬容器17と同軸的にその中心に位置した円筒
状試料容器であり、13は同じく円筒爆薬容器17と同軸的
に円筒状試料容器14の外側に空間15を設けて設置された
駆動管である。
Reference numeral 14 denotes a cylindrical sample container coaxially located at the center of the cylindrical explosive container 17, and 13 also has a driving chamber provided coaxially with the cylindrical explosive container 17 with a space 15 provided outside the cylindrical sample container 14. It is a tube.

円筒状試料容器14と駆動管13の位置決めを兼ねてそれら
の上下には上プラグ16aと下プラグ16bが設けられてい
る。
An upper plug 16a and a lower plug 16b are provided above and below the cylindrical sample container 14 and the driving tube 13 for the purpose of positioning them.

11は前述の金属板を用いて黒鉛原料粉末を配向させて得
た出発原料であり、ここでは黒鉛原料粉末のc軸は、円
筒状試料容器の中心軸方向に対して垂直方向となるよう
に充填する。
Reference numeral 11 is a starting material obtained by orienting the graphite raw material powder using the above-mentioned metal plate. Here, the c-axis of the graphite raw material powder is set to be perpendicular to the central axis direction of the cylindrical sample container. Fill.

1は雷管、12は爆薬を示している。1 is a detonator and 12 is explosive.

この装置においては、まず、爆薬12がその上端で雷管1
により起爆され、その爆轟は下方へ伝播し、順次駆動管
13を中心軸方向に絞り込むように加速していき、内側の
円筒状試料容器14に衝突する。
In this device, first, the explosive 12 is placed at the upper end of the detonator 1
The detonation propagates downward, and the
It accelerates so as to narrow 13 in the central axis direction, and collides with the inner cylindrical sample container 14.

この衝突により円筒状試料容器14の中心軸方向に進む衝
撃波が発生し、円筒状試料容器14を通して出発原料11に
伝播し出発原料が衝撃圧縮される。
Due to this collision, a shock wave traveling in the direction of the central axis of the cylindrical sample container 14 is generated, propagates through the cylindrical sample container 14 to the starting material 11, and the starting material is shock-compressed.

これにより、出発原料中の黒鉛原料粉末粒子はc軸方向
に伝播する衝撃波により衝撃圧縮される。
As a result, the graphite raw material powder particles in the starting raw material are shock-compressed by the shock wave propagating in the c-axis direction.

出発原料中に発生する衝撃圧力、温度は用いる爆薬の種
類と量、出発原料中の空隙率により制御できる。
The impact pressure and temperature generated in the starting material can be controlled by the type and amount of explosive used and the porosity in the starting material.

ここで円筒爆薬容器17の材質としては、金属、紙、木、
プラスチックが利用できるが、円筒状試料容器14及び駆
動管13の材料は、コスト、強度の面から鉄系の材料が適
する。
Here, as the material of the cylindrical explosive container 17, metal, paper, wood,
Although plastic can be used, an iron-based material is suitable as the material for the cylindrical sample container 14 and the drive tube 13 in terms of cost and strength.

以下、実施例により本発明をさらに詳しく説明する。Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1) X線回折において鋭い回折線を示し、層状構造の良く発
達した粒径5−30μmのリン片状の黒鉛粉末を黒鉛原料
粉末として用い、この粉末4gにエタノール3ccを加えて
スラリー化し、これを外径11.9mm、厚み0.1mmの銅板の
片面に刷毛を用いて塗布し、乾燥させた後、第2図の試
料容器10の出発原料11に空隙率が25%となるように加圧
しながら一枚ずつ積層し、本実施例の出発原料とした。
Example 1 A flaky graphite powder showing a sharp diffraction line in X-ray diffraction and having a well-developed layered structure and a particle size of 5 to 30 μm was used as a graphite raw material powder, and 3 g of ethanol was added to 4 g of this powder to prepare a slurry. After applying this to one side of a copper plate having an outer diameter of 11.9 mm and a thickness of 0.1 mm using a brush and drying it, the starting material 11 of the sample container 10 in FIG. 2 has a porosity of 25%. The sheets were laminated one by one while applying pressure to obtain a starting material for this example.

この出発原料中の黒鉛原料粉末/金属成分の体積比は25
/75であった。ここで、試料容器10としてステンレス製
のものを用い、出発原料の入る大きさは12mmφ*5mmで
あった。
The volume ratio of graphite raw material powder / metal component in this starting material is 25.
It was / 75. Here, a stainless steel container was used as the sample container 10, and the size into which the starting material was placed was 12 mmφ * 5 mm.

なお、銅板上に塗布に、乾燥した黒鉛原料粉末の断面を
樹脂で固定後、光学顕微鏡及び走査型電子顕微鏡により
観察したところ、90%以上の黒鉛粒子は、リン片状粒子
の板状面が銅板面に平行となるように配向、つまり、銅
板上に黒鉛原料粉末粒子のc軸が垂直となるように粒子
が配向して並んでいた。上記出発原料を第1図に示した
平面衝撃圧縮装置を用いて衝撃処理した。
Incidentally, coating on a copper plate, after fixing the cross section of the dried graphite raw material powder with a resin, when observed by an optical microscope and a scanning electron microscope, 90% or more of the graphite particles, the plate-shaped surface of the flaky particles The particles were oriented so as to be parallel to the surface of the copper plate, that is, the particles of the graphite raw material powder were aligned and arranged on the copper plate so that the c-axis of the particles was vertical. The above starting material was subjected to impact treatment using the plane impact compression device shown in FIG.

ここでは、主爆薬4として爆速7Km/sのダイナマイトを
使用し、駆動板として厚さ3.2mmの鉄板を用いた。駆動
板の試料容器への衝突速度は2.2Km/sであり、このとき
の出発原料に発生する衝撃圧力は計算の結果、52GPaで
あった。
Here, dynamite with an explosion velocity of 7 Km / s was used as the main explosive 4, and a 3.2 mm thick iron plate was used as the drive plate. The impact velocity of the drive plate to the sample container was 2.2 Km / s, and the impact pressure generated in the starting material at this time was 52 GPa as a result of calculation.

衝撃処理後、試料容器を回収し、試料外側のステンレス
を施削により取り除き、試料を取り出した後、希硝酸の
19%溶液に一昼夜浸し、銅を溶解させた後、濾過して沈
殿物を回収した。
After the impact treatment, the sample container is collected, the stainless steel on the outside of the sample is removed by grinding, and the sample is taken out.
After soaking in a 19% solution for a whole day and night to dissolve copper, the precipitate was collected by filtration.

さらに、未転換の黒鉛を除去するため、一酸化鉛を加え
450℃で黒鉛を空気酸化し、酸処理で酸化鉛を除いて濾
過、乾燥して淡灰色のダイヤモンド粉末を得た。
In addition, lead monoxide was added to remove unconverted graphite.
The graphite was air-oxidized at 450 ° C., the lead oxide was removed by acid treatment, filtered, and dried to obtain a pale gray diamond powder.

ここで得られたダイヤモンドから計算で求めたダイヤモ
ンドへの転換率は62%であった。
The diamond conversion rate calculated from the diamond obtained here was 62%.

この淡灰色のダイヤモンド粉末を走査型電子顕微鏡で観
察したところ、この粉末は、50−100μmの緻密な粒子
よりなっていた。
When the light gray diamond powder was observed by a scanning electron microscope, it was found that the powder was composed of dense particles of 50 to 100 μm.

また、この粉末のX線回折の結果、ダイヤモンドの回折
強度は大きく、黒鉛による回折線は認められなかった。
As a result of X-ray diffraction of this powder, the diffraction intensity of diamond was high, and no diffraction line due to graphite was observed.

さらに、回折線の幅の広がりは極めて小さかった。Furthermore, the spread of the width of the diffraction line was extremely small.

回折線の幅の広がりから計算で求めた結晶子の大きさは
280nmであった。
The crystallite size calculated from the broadening of the diffraction line width is
It was 280 nm.

次に、この方法により得られたダイヤモンド粉末の粒子
強度を遊星型ボールミル装置により、超硬製のポットと
ボールを用いたボール・ミル法により評価した。内容積
250ccのポットに、得られたダイヤモンド粉末1gを入
れ、これに2ccの蒸留水を加え、直径10mmのボール40個
を入れた後、回転数360回転/分で30分間粉砕操作を行
なった後、乾燥後試料を回収した。
Next, the particle strength of the diamond powder obtained by this method was evaluated by a planetary ball mill device and a ball mill method using a cemented carbide pot and a ball. Inner volume
Put 1 g of the obtained diamond powder in a 250 cc pot, add 2 cc of distilled water to it, put 40 balls with a diameter of 10 mm, and after crushing operation for 30 minutes at a rotation speed of 360 rpm, After drying, the sample was collected.

次に、混入した超硬成分酸処理により除去した後処理し
たダイヤモンド粉末の粒径を走査型電子顕微鏡で調べ
た。
Next, the particle size of the post-treated diamond powder removed by the treatment with the mixed cemented carbide component acid was examined by a scanning electron microscope.

その結果、ダイヤモンドの粒径は50−100μmから45−9
0μmに僅かに変化したのみであった。
As a result, the diamond grain size is 50-100 μm to 45-9
It was only slightly changed to 0 μm.

(比較例1) 実施例1と同じ黒鉛を黒鉛原料粉末とし、また、実施例
1と同様の方法によりエタノールを用いてスラリーを作
成し、これを同じく0.1mm厚み、幅5mmの銅板上に塗布、
乾燥させ、この帯状銅板を渦巻状に丸めて、第2図の試
料容器10に出発原料11の空隙率が実施例1と同じ25%と
なるように充填した。
(Comparative Example 1) The same graphite as in Example 1 was used as a graphite raw material powder, and a slurry was prepared by using ethanol in the same manner as in Example 1, and the slurry was applied to a copper plate having a thickness of 0.1 mm and a width of 5 mm. ,
The strip-shaped copper plate was dried, rolled into a spiral shape, and filled in the sample container 10 of FIG. 2 so that the porosity of the starting material 11 was 25%, which is the same as in Example 1.

この出発原料を充填した試料容器を実施例1と同じ装
置、方法、条件により衝撃圧縮し、試料を回収した。
The sample container filled with this starting material was shock-compressed by the same apparatus, method and conditions as in Example 1 to collect the sample.

この出発原料中での黒鉛原料粉末/金属成分の体積比は
実施例1と同じ25/75であった。
The volume ratio of graphite raw material powder / metal component in this starting material was 25/75, which was the same as in Example 1.

この比較例の場合、黒鉛原料粉末粒子はc軸方向に垂直
な方向に伝播する衝撃波により衝撃圧縮されたことにな
る。
In the case of this comparative example, the graphite raw material powder particles were shock-compressed by the shock wave propagating in the direction perpendicular to the c-axis direction.

回収した試料容器より実施例1と同じ方法と手順により
ダイヤモンド粉末を回収した。得られたダイヤモンド粉
末の量から計算で求めたダイヤモンドへの転換率は47%
であった。
Diamond powder was recovered from the recovered sample container by the same method and procedure as in Example 1. The conversion rate to diamond calculated from the amount of diamond powder obtained is 47%.
Met.

また、得られたダイヤモンド粉末は濃い灰色を呈してい
た。
Moreover, the obtained diamond powder had a dark gray color.

この粉末を走査型電子顕微鏡で観察したところ、この粉
末は0.1μm程度の微細粒子の凝集した10μm以下の隙
間の多い粒子よりなっていた。
When the powder was observed with a scanning electron microscope, it was found that the powder consisted of aggregated fine particles of about 0.1 μm and particles with many gaps of 10 μm or less.

また、このダイヤモンド粉末のX線回折分析ではダイヤ
モンドの回折線のほか、強度は低いが黒鉛の回折線が認
められた。
Further, in the X-ray diffraction analysis of this diamond powder, in addition to the diffraction line of diamond, the diffraction line of graphite having a low intensity was recognized.

さらに、回折線の幅の広がりから求めたダイヤモンドの
結晶子の大きさは25nmであった。
Furthermore, the size of the crystallite of diamond determined from the broadening of the width of the diffraction line was 25 nm.

(実施例2) 粒径50−100μmの板状の黒鉛を黒鉛原料粉末として用
い、この粉末に、平均粒径50μmのリン片状の銅粉末を
80体積%加え、鉄製ボールミルを用いて、12時間乾式混
合し、黒鉛原料粉末と銅粉末の混合粉末を得た。
Example 2 Plate-shaped graphite having a particle size of 50-100 μm was used as a graphite raw material powder, and scaly copper powder having an average particle size of 50 μm was added to this powder.
80% by volume was added, and the mixture was dry mixed for 12 hours using an iron ball mill to obtain a mixed powder of graphite raw material powder and copper powder.

この混合粉末を12mmφの成形型に入れ、よくタッピング
した後、バイブレーターを用いて上下方向より小さな振
動を加えながら充填した後、加圧し、空隙率30%の12mm
φ*5mmの成形体を作成した。
Put this mixed powder in a 12 mmφ mold, tap it well, fill it with a vibrator using a vibration smaller than the vertical direction, and then press it to 12 mm with a porosity of 30%.
A φ * 5 mm molded body was created.

この成形体の破断面を走査型電子顕微鏡で観察したとこ
ろ成形体中の板状の黒鉛粒子の80%以上はその板状面が
加圧方向に垂直に配向していた。
Observation of the fracture surface of this molded body with a scanning electron microscope revealed that 80% or more of the plate-shaped graphite particles in the molded body had the plate-shaped surface oriented perpendicular to the pressing direction.

上記混合粉末を第2図の試料容器10の出発原料11の位置
に空隙率が30%となるように上記成形体の作成方法と同
じ方法により充填、加圧し、本実施例の出発原料を作成
した。
The mixed powder is filled in the position of the starting material 11 of the sample container 10 of FIG. 2 at the position of the starting material 11 by the same method as the method of forming the above-mentioned molded body so as to have a porosity of 30%, and pressurized to prepare the starting material of this example. did.

この出発原料を充填した試料容器を実施例1と同じ装置
と方法を用いて、駆動板速度2.5Km/sで衝撃処理した。
Using the same apparatus and method as in Example 1, the sample container filled with this starting material was subjected to impact treatment at a driving plate speed of 2.5 Km / s.

このとき出発原料に発生する衝撃圧力は計算の結果60GP
aであった。
At this time, the impact pressure generated in the starting material was calculated as 60 GP
It was a.

衝撃処理後、試料容器を回収し、実施例1と同じ方法と
手順によりダイヤモンド粉末を回収した。
After the impact treatment, the sample container was recovered, and the diamond powder was recovered by the same method and procedure as in Example 1.

得られたダイヤモンド粉末の量から計算で求めたダイヤ
モンドへの転換率は57%であった。
The conversion rate to diamond calculated from the amount of the obtained diamond powder was 57%.

このダイヤモンド粉末をX線回折、走査型電子顕微鏡で
調べた結果、この粉末は主に40−120μmの緻密な粒子
よりなり、また、結晶子の大きさは230nmであった。
As a result of examining this diamond powder by X-ray diffraction and a scanning electron microscope, it was found that the powder mainly consisted of dense particles of 40 to 120 μm and the crystallite size was 230 nm.

次に、本実施例の方法により得られたダイヤモンド粉末
1gを用いて、実施例1と同じ方法により粒子強度を評価
した。
Next, the diamond powder obtained by the method of this example
Using 1 g, the particle strength was evaluated by the same method as in Example 1.

ボールミル時間は30分とした。この結果、ダイヤモンド
粒子は40−120μmから30−100μmに僅かに変化したの
みであった。
The ball mill time was 30 minutes. As a result, the diamond particles changed only slightly from 40-120 μm to 30-100 μm.

(比較例2) 実施例2と同じ黒鉛を黒鉛原料粉末として用い、この粉
末に平均粒径70μmの球状の銅粉末を80体積%となるよ
うに加え、実施例2と同じ方法により乾式混合し、黒鉛
原料粉末と銅粉末の混合粉末を得た。
Comparative Example 2 The same graphite as in Example 2 was used as a graphite raw material powder, spherical copper powder having an average particle size of 70 μm was added to this powder so as to be 80% by volume, and dry mixing was performed by the same method as in Example 2. A mixed powder of graphite raw material powder and copper powder was obtained.

この混合粉末を実施例2と同じ12φの成形型を用い、こ
こでは上下からの小さい振動無しに一度に加圧、成形
し、その成形体の破断面を観察したところ成形体中の黒
鉛粒子はランダムに配向していた。
This mixed powder was pressed and molded at one time without using small vibrations from above and below using the same 12φ mold as in Example 2, and the fracture surface of the molded body was observed. It was randomly oriented.

上記混合粉末を、実施例2と同じく第1図の試料容器10
の出発原料11の位置に、空隙率が30%となるように上記
成形体の成形方法と同じ方法により充填することにより
本比較例の出発原料を得た。
The mixed powder was mixed with the sample container 10 shown in FIG.
The starting raw material of this comparative example was obtained by filling the starting raw material 11 in the same position as above with the same method as the molding method of the above-mentioned molded body so as to have a porosity of 30%.

この出発原料を充填した試料容器10を実施例2と同様の
方法により衝撃処理し、試料容器を回収した後、実施例
1と同様な方法と手順により、ダイヤモンド粉末を得
た。
The sample container 10 filled with this starting material was subjected to impact treatment in the same manner as in Example 2 to recover the sample container, and then diamond powder was obtained by the same method and procedure as in Example 1.

得られたダイヤモンド粉末は暗い灰色を呈しており、こ
の回収されたダイヤモンドの量から計算で求めたダイヤ
モンドへの転換率は48%であった。
The diamond powder obtained had a dark gray color, and the conversion rate to diamond calculated from the amount of this recovered diamond was 48%.

このダイヤモンド粉末を走査型電子顕微鏡で観察したと
ころ微細な粒子のほか、緻密ではないが、10−50μmの
粒子も含まれていた。
Observation of this diamond powder with a scanning electron microscope revealed that, in addition to fine particles, particles of 10 to 50 μm were included although they were not dense.

このダイヤモンド1gを用いて実施例1と同じ方法によ
り、粒子強度を評価した。
Using 1 g of this diamond, the particle strength was evaluated by the same method as in Example 1.

ボールミル時間は30分とし、その前後のダイヤモンド粒
子の粒径の変化を調べたところ、ボールミル後の試料に
は10μm以上の粒子は観察できなかった。
The ball mill time was set to 30 minutes, and the change in the particle size of the diamond particles before and after that was examined. As a result, no particles of 10 μm or more could be observed in the sample after the ball mill.

(実施例3) 六方晶黒鉛90%と残り菱面体晶黒鉛よりなる粒径0.5〜1
0μmのリン片状の黒鉛を黒鉛原料粉末として用い、こ
の粉末に、黒鉛重量1gに対しエタノール1.5ccを加えて
スラリー化し、これを厚み0.5mm、幅150mmの銅板の片面
に塗布し、乾燥した。
(Example 3) Particle size 0.5 to 1 consisting of 90% hexagonal graphite and the remaining rhombohedral graphite
Flake-shaped graphite of 0 μm was used as a graphite raw material powder, and 1.5 cc of ethanol was added to 1 g of graphite to make a slurry, which was applied to one surface of a copper plate having a thickness of 0.5 mm and a width of 150 mm and dried. .

この銅板を外径25mmとなるように渦巻状に巻き本実施例
の出発原料とした。
This copper plate was spirally wound so as to have an outer diameter of 25 mm, and was used as a starting material of this example.

この出発原料中での黒鉛原料粉末/銅成分の体積比は15
/85であり、空隙率は28%であった。
The volume ratio of graphite raw material powder / copper component in this starting material is 15
It was / 85 and the porosity was 28%.

この出発原料を第3図に示した円筒衝撃圧縮装置を用い
て衝撃処理した。
This starting material was subjected to impact treatment using the cylindrical impact compression device shown in FIG.

ここでは円筒状試料容器14、駆動管13は鉄製とし、それ
らの間の空間15は15mmとした。
Here, the cylindrical sample container 14 and the drive tube 13 were made of iron, and the space 15 between them was 15 mm.

また、爆薬12として爆速6.5Km/sのダイナマイトを使用
した。駆動管13の円筒状試料容器14への衝突速度は1.9K
m/sであり、このとき出発原料に発生する衝撃圧力は計
算の結果、42GPaであった。
Also, as explosive 12, dynamite with an explosion speed of 6.5 Km / s was used. The collision speed of the drive tube 13 to the cylindrical sample container 14 is 1.9K.
m / s, and the impact pressure generated in the starting material at this time was 42 GPa as a result of calculation.

衝撃処理後、駆動管と一体になった円筒状試料容器を回
収し、旋盤で切削して試料部を取り出した。
After the impact treatment, the cylindrical sample container integrated with the drive tube was collected, cut with a lathe, and the sample portion was taken out.

取り出した試料を実施例1と同じ方法と手順により処理
し、ダイヤモンドを回収した。
The sample taken out was treated by the same method and procedure as in Example 1 to recover diamond.

ここで得られたダイヤモンドは灰色を呈しており、その
回収量から求めたダイヤモンドへの転換率は54%であっ
た。
The diamond obtained here had a gray color, and the conversion rate to diamond determined from the recovered amount was 54%.

このダイヤモンド粉末を走査型電子顕微鏡で観察したと
ころ、主に30−70μmの緻密な粒子よりなっていた。
Observation of this diamond powder with a scanning electron microscope revealed that it was mainly composed of dense particles of 30 to 70 μm.

また、X線回折分析ではダイヤモンド以外の回折線は認
められず、回折線の幅の広がりから求めた結晶子の大き
さは250nmであった。
In addition, in the X-ray diffraction analysis, no diffraction line other than diamond was recognized, and the size of the crystallite obtained from the broadening of the width of the diffraction line was 250 nm.

さらに、このダイヤモンド粉末を1gを用いて、実施例1
と同じ方法と条件によりダイヤモンドの粒子強度を評価
した。
Furthermore, 1 g of this diamond powder was used in Example 1
The particle strength of diamond was evaluated by the same method and conditions as above.

その結果、ダイヤモンド粒子の粒径は、30−70μmから
25−60μmに僅かに減少したのみであった。
As a result, the diameter of diamond particles is 30-70 μm.
It was only slightly decreased to 25-60 μm.

[発明の効果] 本発明は、上述の通り構成されているので次に記載する
効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it has the effects described below.

以上のようにこの発明の方法によれば、衝撃圧縮法によ
り、粒子強度の優れた大粒の多結晶ダイヤモンド粉末を
簡単な装置により効率よく合成することができる。
As described above, according to the method of the present invention, a large-sized polycrystalline diamond powder having excellent particle strength can be efficiently synthesized by the impact compression method using a simple apparatus.

この方法で得られる多結晶ダイヤモンド粉末はセラミッ
ク、複合材料等の高強度材料、高機能材料を加工するた
めの研削砥石用の砥粒としてや研磨作業用の砥粒として
優れた加工性能を発揮するものである。
The polycrystalline diamond powder obtained by this method exhibits excellent processing performance as an abrasive grain for a grinding wheel for processing ceramics, high-strength materials such as composite materials, and high-performance materials and as abrasive grains for polishing work. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明のダイヤモンド砥粒の製造方法に適用
できる平面衝撃圧縮装置の斜視図、 第2図はこの発明のダイヤモンド砥粒の製造方法に適用
できる平面衝撃圧縮装置の試料容器の実施例を示す縦断
面図、 第3図はこの発明のダイヤモンド砥粒の製造方法に適用
できる円筒衝撃圧縮装置の実施例を示す縦断面図であ
る。 1……雷管、 2a,2b……シート爆薬、 3a,3b……金属板、 4……主爆薬、 5……爆薬容器、 6……駆動板、 7……サイドモーメンタムトラップ、 8……容器ホルダー、 9……下方モーメンタムトラップ、 10……試料容器、 10a……試料容器本体、 10b……スペーサー、 10c……ネジ、 11……出発原料、 12……爆薬、 13……駆動管、 14……円筒状試料容器、 15……空間、 16a……上プラグ、 16b……下プラグ、 17……円筒爆薬容器、 17a……外円筒、 17b……上方板、 17c……下方板。
FIG. 1 is a perspective view of a plane impact compression apparatus applicable to the method for producing diamond abrasive grains of the present invention, and FIG. 2 is an embodiment of a sample container of the plane impact compression apparatus applicable to the method of producing diamond abrasive grains of the present invention. FIG. 3 is a vertical sectional view showing an embodiment of a cylindrical impact compression device applicable to the method for producing diamond abrasive grains of the present invention. 1 ... Detonator, 2a, 2b ... Sheet explosive, 3a, 3b ... Metal plate, 4 ... Main explosive, 5 ... Explosive container, 6 ... Drive plate, 7 ... Side momentum trap, 8 ... Container Holder, 9 ... Lower momentum trap, 10 ... Sample container, 10a ... Sample container body, 10b ... Spacer, 10c ... Screw, 11 ... Starting material, 12 ... Explosive, 13 ... Drive tube, 14 …… Cylindrical sample container, 15 …… space, 16a …… upper plug, 16b …… lower plug, 17 …… cylindrical explosive container, 17a …… outer cylinder, 17b …… upper plate, 17c …… lower plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 滋 東京都千代田区丸の内1丁目4番5号 住 友石炭鉱業株式会社内 (72)発明者 澤岡 昭 神奈川県横浜市緑区みたけ台6―36 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Matsui 1-4-5 Marunouchi, Chiyoda-ku, Tokyo Sumitomo Coal Mining Co., Ltd. (72) Inventor Akira Sawaoka 6-36 Mitakedai, Midori-ku, Yokohama-shi, Kanagawa

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】爆薬の爆発や高速飛翔体の衝突により発生
する衝撃波を用いて、金属と黒鉛原料粉末よりなる出発
原料を衝撃圧縮することによりダイヤモンド砥粒を製造
する方法において、該出発原料中の黒鉛原料粉末を一定
の結晶軸方向に配向させ、該配向させた黒鉛原料粉末粒
子のc軸方向に伝播する衝撃波により、20GPa以上の圧
力で該出発原料を衝撃圧縮することを特徴とするダイヤ
モンド砥粒の製造方法。
1. A method for producing diamond abrasive grains by shock-compressing a starting material consisting of a metal and a graphite raw material powder by using a shock wave generated by the explosion of explosives or the collision of a high-speed flying object. Characterized in that the graphite raw material powder is orientated in a certain crystal axis direction, and the starting material is shock-compressed at a pressure of 20 GPa or more by a shock wave propagating in the c-axis direction of the oriented graphite material powder particles. Abrasive grain manufacturing method.
【請求項2】該黒鉛原料粉末が、0.1μm〜1mmの粒径を
持つリン片状または板状粒子よりなることを特徴とする
請求項1記載のダイヤモンド砥粒の製造方法。
2. The method for producing diamond abrasive grains according to claim 1, wherein the graphite raw material powder is composed of flake shaped or plate shaped particles having a particle size of 0.1 μm to 1 mm.
【請求項3】該出発原料が、少なくとも片面に一定方向
に配向した黒鉛原料粉末を配置した厚み0.01mm〜2mmの
金属板を一定方向に積み重ねた構造及び/または該金属
板を渦巻状または同心円状に巻いた構造よりなることを
特徴とする請求項1記載のダイヤモンド砥粒の製造方
法。
3. The starting material has a structure in which metal plates having a thickness of 0.01 mm to 2 mm in which graphite raw material powders oriented in a certain direction are arranged on at least one surface are stacked in a certain direction and / or the metal plates are spiral or concentric. The method for producing diamond abrasive grains according to claim 1, wherein the method has a structure in which the diamond abrasive grains are wound into a roll.
JP2197089A 1990-07-24 1990-07-24 Diamond abrasive grain manufacturing method Expired - Lifetime JPH0693995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2197089A JPH0693995B2 (en) 1990-07-24 1990-07-24 Diamond abrasive grain manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2197089A JPH0693995B2 (en) 1990-07-24 1990-07-24 Diamond abrasive grain manufacturing method

Publications (2)

Publication Number Publication Date
JPH0483525A JPH0483525A (en) 1992-03-17
JPH0693995B2 true JPH0693995B2 (en) 1994-11-24

Family

ID=16368545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2197089A Expired - Lifetime JPH0693995B2 (en) 1990-07-24 1990-07-24 Diamond abrasive grain manufacturing method

Country Status (1)

Country Link
JP (1) JPH0693995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254529A (en) * 2009-04-27 2010-11-11 Nof Corp Method for producing diamond and shock compression apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940073A (en) 1996-05-03 1999-08-17 Starsight Telecast Inc. Method and system for displaying other information in a TV program guide
JP4245310B2 (en) 2001-08-30 2009-03-25 忠正 藤村 Diamond suspension aqueous solution excellent in dispersion stability, metal film containing this diamond, and product thereof
WO2008029726A1 (en) * 2006-09-01 2008-03-13 Kuraray Luminas Co., Ltd. Impact target capsule and impact compressor
JP6015129B2 (en) * 2012-05-24 2016-10-26 住友電気工業株式会社 Polycrystalline diamond abrasives and method for producing the same, slurry, and fixed abrasive wire
JP6098044B2 (en) * 2012-05-24 2017-03-22 住友電気工業株式会社 Method for producing polycrystalline diamond abrasive grains
US10167569B2 (en) 2012-08-16 2019-01-01 National University Corporation Ehime University Hexagonal diamond bulk sintered body and its manufacturing method
CN107108231B (en) 2015-10-30 2021-06-25 住友电气工业株式会社 Composite polycrystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254529A (en) * 2009-04-27 2010-11-11 Nof Corp Method for producing diamond and shock compression apparatus

Also Published As

Publication number Publication date
JPH0483525A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US5985228A (en) Method for controlling the particle size distribution in the production of multicrystalline cubic boron nitride
US20070224105A1 (en) Superabrasive synthesis methods
US20090120009A1 (en) Polycrystalline Grits and Associated Methods
JP4684599B2 (en) Method for producing cubic boron nitride
JPS6344417B2 (en)
US3949062A (en) Method for producing polycrystalline diamond aggregates of predetermined shape
JPH0239467B2 (en)
KR100642841B1 (en) Heat-resistant composite diamond sintered product and method for production thereof
JP5509668B2 (en) Diamond production method and diamond produced by this production method
JPS6077904A (en) Implosive consolidation of particle assembly containing amorphic substance
US3399254A (en) Process for sintering diamond particles
JPH0693995B2 (en) Diamond abrasive grain manufacturing method
DE60212100T2 (en) PROCESS FOR PRODUCING CUBIC BORNITRIDS
JP4677665B2 (en) Method for producing high-pressure phase material
JP3855671B2 (en) Method for producing cubic boron nitride
JP3908259B2 (en) Cubic boron nitride synthesis catalyst
JP3346496B2 (en) Polycrystalline BCN material and method for producing the same
JP4146272B2 (en) High pressure phase type cubic spinel type silicon nitride and method for producing the same
JP4223518B2 (en) Cubic boron nitride abrasive and method for producing cubic boron nitride abrasive
JPH06121923A (en) Production of diamond
JP3498138B2 (en) Method for producing spinel-type sialon and powder thereof
KR100903910B1 (en) Cubic Boron Nitride and Grinding Stone Using the Same
RU2157335C2 (en) Method of production of polycrystalline cube boron nitride
CN114787315A (en) Breakable diamond abrasive grain and method for producing same
JPS58120505A (en) Cubic system boron nitride particle