JPS5957905A - Production of cubic boron nitride - Google Patents
Production of cubic boron nitrideInfo
- Publication number
- JPS5957905A JPS5957905A JP57168269A JP16826982A JPS5957905A JP S5957905 A JPS5957905 A JP S5957905A JP 57168269 A JP57168269 A JP 57168269A JP 16826982 A JP16826982 A JP 16826982A JP S5957905 A JPS5957905 A JP S5957905A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- mixture
- powder
- boron nitride
- obtd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 13
- 229910052582 BN Inorganic materials 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000012298 atmosphere Substances 0.000 claims abstract description 8
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910020056 Mg3N2 Inorganic materials 0.000 claims abstract 2
- 239000003054 catalyst Substances 0.000 abstract description 25
- 239000000843 powder Substances 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 239000000155 melt Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 150000004767 nitrides Chemical class 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000005056 compaction Methods 0.000 abstract 1
- 238000013329 compounding Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000227 grinding Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229910052903 pyrophyllite Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- -1 C83B2N Chemical compound 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は新規な触媒を使用して六方晶窒化ホウ素(以下
HBNという)から立方晶窒化ホウ素(以下CBNとい
う)を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cubic boron nitride (hereinafter referred to as CBN) from hexagonal boron nitride (hereinafter referred to as HBN) using a novel catalyst.
周知のようにCB N1−tダイヤモンドに近い硬さを
有し、しかも化学的安定性の点ではダイヤモンドよ、!
lll優nているため、研削材料(砥粒)とじての需要
が増大しつつある。As is well known, CB N1-t has a hardness close to that of diamond, and is even more chemically stable than diamond!
As a result, the demand for grinding materials (abrasive grains) is increasing.
上記のごときCBNの工業的な製造方法としては、HB
Nの粉末と触媒粉末とを混合し、こ九を40〜60kb
ar程度の高圧力、1400〜1600℃程度の高幅で
処理して、HBNをCBNに変換する方法が一般的であ
る。このような方法に使用される触媒としては、アルカ
リ金属もしくはアルカリ土類金属の窒化物、またはアル
カリ金属もしくはアルカリ土類金属と窒素およびホウ素
からなる窒化ホウ素系3元化合物例えばC83B2N、
や下での共晶融体への溶解度がHBNよりCBNの方が
小さいことを利用してCBNを析出させるものである。As an industrial manufacturing method of CBN as described above, HB
Mix N powder and catalyst powder to form a powder of 40 to 60 kb.
A common method is to convert HBN into CBN by processing at a high pressure of about ar and a high temperature range of about 1400 to 1600°C. Catalysts used in such methods include nitrides of alkali metals or alkaline earth metals, or boron nitride-based ternary compounds consisting of alkali metals or alkaline earth metals, nitrogen, and boron, such as C83B2N,
CBN is precipitated by taking advantage of the fact that CBN has a lower solubility in the eutectic melt than HBN at low temperatures.
ところで研削材料(砥粒)としては、機械的強度、特に
圧壊強度が高いことが必要であシ、また強度に関連して
粒子の形状性が良好なこと、すなわち扁平な形状であっ
たり鋭角状の形状であったすせずに可及的に球体に近い
形状であること、あるいは表面の凹凸が少ないこと等が
要求さnる。By the way, grinding materials (abrasive grains) need to have high mechanical strength, especially crushing strength, and in relation to strength, the particles must have good shape, such as flat or acute-angled shapes. It is required that the shape be as close to a sphere as possible, or that the surface have few irregularities.
しかるに前述の如く窒化物(2元化合物)や窒化ホウ素
系3元化合物を触媒として用いた従来の立方晶窒化ホウ
素製造方法においては、必ずしも充分な機械的強度、良
好な形状性を有するCBNを得ることができるとは限ら
ないのが実情である。However, as mentioned above, in the conventional cubic boron nitride production method using a nitride (binary compound) or boron nitride-based ternary compound as a catalyst, it is not always possible to obtain CBN with sufficient mechanical strength and good shape. The reality is that this is not always possible.
すなわち従来の触媒を用いた方法では、製造条件の制御
等を相当に精密かつ複雑にしなければ強度改善や形状性
改善がなされないのが実情である。In other words, in the conventional method using a catalyst, the actual situation is that strength and shape cannot be improved unless manufacturing conditions are controlled very precisely and complicated.
そこで本発明者等はCBNの強度改善、形状性改善を図
る方法を確立すべく鋭意実験・研究を行ない、新規な触
媒を開発し、これを用いることにより、強度、形状等の
優れたCBHの製造に成功したものである。Therefore, the present inventors conducted extensive experiments and research in order to establish a method for improving the strength and shape of CBN, and developed a new catalyst.By using this, CBH with excellent strength, shape, etc. It was successfully manufactured.
この新規な触媒はLi3N :X : B Nをモル比
で(1〜1.4): (1〜1.4):3の割合に配
合し、N2もしく¥′iAr等の不活性雰囲気下、80
0〜1300℃で加熱して得られるものである。゛上記
でXはMg5N 又は5r3N2又はBe、N2である
。This new catalyst contains Li3N:X:BN in a molar ratio of (1-1.4): (1-1.4):3 and is prepared under an inert atmosphere such as N2 or \'iAr. , 80
It is obtained by heating at 0 to 1300°C. ``In the above, X is Mg5N, 5r3N2, Be, or N2.
この加熱処理によって生成する物質の構造等は明らかで
はない。しかし単なる混合物ではないと考えられる。な
ぜならこれらの混合物を触媒に用い、CBNを製造した
場合とこの生成物を触媒とした場合とでは効果が異なる
からである。The structure of the substance produced by this heat treatment is not clear. However, it is thought that it is not just a mixture. This is because the effects are different when CBN is produced using a mixture of these as a catalyst and when this product is used as a catalyst.
上記の処理において800℃未満では加熱の効果が現れ
ない。また1300℃を越えると、生成物の分解が起っ
ていると考えられる。加熱時間は20〜60分程度あれ
ば充分である。上記の温度範囲で混合物は発熱しながら
溶融する。こ九らの点から混合物から何らかの化合物が
生成したものと推測される。なお、前記でモル比を特定
した理由は、この割合に混合加熱した場合が、触媒とし
てその効果が大となるからである。In the above treatment, the effect of heating does not appear below 800°C. Moreover, when the temperature exceeds 1300°C, it is thought that decomposition of the product occurs. A heating time of about 20 to 60 minutes is sufficient. The mixture melts exothermically in the above temperature range. From these points, it is presumed that some kind of compound was produced from the mixture. The reason for specifying the molar ratio above is that when mixed and heated to this ratio, the effect as a catalyst becomes greater.
溶融物は不活性ガス中雰囲気中で冷却凝固させ、150
メツシュ以下程度に粉砕し、触媒として用いる。The melt was cooled and solidified in an inert gas atmosphere at 150
Grind it to a size smaller than mesh and use it as a catalyst.
次に前述のようにして得られた。触媒を用いて立方晶窒
化ホウ素を製造する方法を説明する。It was then obtained as described above. A method for producing cubic boron nitride using a catalyst will be explained.
先ず六方晶窒化ホウ素の望ましくは150メツシユ以下
の粉末100重量部に対し、触媒とじて前記生成物の望
ましくは150メツシユ以下の粉末5〜50重量部、望
ましくは10〜30重量部を配合し、均一に混合して圧
粉成形する。あるいはまた六方晶窒化ホウ素の粉末およ
び上述の触媒粉末を、そ九ぞれ各別に薄い板状に圧粉成
形し、これらを前述の配合比で交互に積層する。このよ
うにして得られた混合圧粉成形体もしくは積層体に対し
CBNの熱力学的安定領域、好ましくI/i、1300
〜1600℃の高温下で40〜60 kbarの高圧を
加え、5分〜40分保持する。斯ぐす九ば立方晶窒化ホ
ウ素の結晶粒が得らnる。なおこ1%らの湯度、圧力、
保持時間は従来と同様である。First, 5 to 50 parts by weight, preferably 10 to 30 parts by weight of powder of the above product, preferably 150 mesh or less, is blended as a catalyst to 100 parts by weight of hexagonal boron nitride powder, preferably 150 mesh or less; Mix uniformly and compact. Alternatively, the hexagonal boron nitride powder and the above-mentioned catalyst powder are individually compacted into thin plate shapes, and these are alternately stacked in the above-mentioned mixing ratio. The thermodynamic stability range of CBN for the mixed powder compact or laminate thus obtained, preferably I/i, 1300
A high pressure of 40-60 kbar is applied at a high temperature of ~1600°C and held for 5-40 minutes. In this way, crystal grains of cubic boron nitride are obtained. Naoko 1% hot water temperature, pressure,
The retention time is the same as before.
上述のように高温・高圧を与える手段としては種々考え
られるが、例えば第1図に示すような反応容器に前記混
合圧粉成形体もしくは積層体を収容し、通電するととも
にプレスにて加圧すれば良い。第1図にお−て、容器外
壁1は伝圧体としてのパイロフィライトによって円筒状
に作られ、その内側には黒鉛円筒体からなるヒーター2
および隔壁材としてパイロフィライト8が配設されてい
る。また容器の上下端にはそれぞれ通電用鋼製リング3
および通電用鋼板4が配設され、その内側には焼結アル
ばす板5および伝圧体としてのパイロフィライト6が配
設され、そしてそのパイロフィライト6および隔壁材と
してのパイロフィライト8によって取囲まれる空間が反
応原料を収容する収容室7となっている。As mentioned above, various means for applying high temperature and high pressure can be considered, but for example, the mixed powder compact or laminate is placed in a reaction vessel as shown in Fig. 1, and electricity is applied and pressure is applied using a press. Good. In Fig. 1, the outer wall 1 of the container is made of pyrophyllite as a pressure transmitting body in a cylindrical shape, and inside the outer wall 1 there is a heater 2 made of a graphite cylinder.
And pyrophyllite 8 is provided as a partition wall material. In addition, steel rings 3 for energizing are attached to the upper and lower ends of the container.
A sintered aluminum plate 5 and a pyrophyllite 6 as a pressure transmitting body are disposed inside thereof, and the pyrophyllite 6 and pyrophyllite 8 as a partition wall material are disposed. The space surrounded by is a storage chamber 7 that accommodates reaction raw materials.
以下に本発明の触媒を用いて立方晶窒化中つ素を製造し
た実施例および既知の物質を触媒として用いて立方晶窒
化ホウ素を製造した比較例を示す。Examples in which cubic boron nitride was produced using the catalyst of the present invention and comparative examples in which cubic boron nitride was produced using a known substance as a catalyst are shown below.
実施例1〜6
そ九ぞi”L 150メツシユ以下に粉砕さnた化合物
を第1表に示す割合に混合し、白金容器に収容してN2
ガスをst7分の流量で流しながら電気炉にて加熱昇温
させ、同表に示す条件下に保持した。Examples 1 to 6 Compounds pulverized to 150 mesh or less were mixed in the proportions shown in Table 1, placed in a platinum container, and heated with N2
The sample was heated and heated in an electric furnace while flowing gas at a flow rate of st7 minutes, and maintained under the conditions shown in the table.
反応生成物をN2ガス気流中にて電気炉内で冷却し、そ
の後N2ガス雰囲気中で150メツシユ以下に粉砕した
。The reaction product was cooled in an electric furnace in a N2 gas stream, and then ground to 150 meshes or less in a N2 gas atmosphere.
第 1 表
上記各実施例によって得られた150メツシユ以下の粉
末と150メツシユ以下のHBN粉末とを窒素雰囲気中
にて均一に混合し、面圧カフ00Kq / cJrで外
径20tans長さ20喘の円柱状に成形し、第1図に
示す容器内に収容し、高圧プレスにびLi3N粉末、M
g s N2粉末、ハ粉末をモル比で1.1:1.2二
3に混合したもの(比較例2)及びLi3N粉末、S
r3N2粉末、BN粉末をモル比で1=1:3に混合し
たもの(比較例3)を夫々触媒にして実施例と同様にC
BHの製造を行なった。Table 1 The powder of 150 mesh or less obtained in each of the above Examples and the HBN powder of 150 mesh or less were uniformly mixed in a nitrogen atmosphere, and a surface pressure cuff of 00 Kq/cJr, an outer diameter of 20 tans and a length of 20 mm was prepared. It is molded into a cylindrical shape, placed in a container shown in Fig. 1, and pressed under high pressure to form Li3N powder and M
g s N2 powder, C powder mixed at a molar ratio of 1.1:1.22 (Comparative Example 2), Li3N powder, S
C
BH was produced.
これらの実施例及び比較例の各条件及び結果を第2表に
示す。Table 2 shows the conditions and results of these Examples and Comparative Examples.
なお、第2表中圧壊試験は次のようにして行なったもの
である。すなわちWC−Co製の直径10節の上下のシ
リンダの下部シリンダ上に直径100〜150μmのサ
ンプル粒を1個置き、上部のシリンダを直流モータ駆動
によシ降下させた。そして上部シリンダが下部シリンダ
上のサンプル粒に接触する位置を電気的に検出し、これ
に対応する上下シリンダの表面間の距離りを求めてこn
を粒の直径とした。さらに荷重を増して行き、粒が破壊
する総荷重Wから、周知のように次の(1)式%式%(
1)
によシ粒の破壊強度σtを求めた。但し実際にはそ九ぞ
f150サンプルについて上述のような試験を行ない、
Dの平均値およびWの平均値を求め、(1)式から平均
破壊強度を算出した。なお(1)式は、例えば「理化学
研究所報告Vo139.Nα6」(昭和38年発行)、
第310頁に吉川弘之によって明らかにされている。The crush test in Table 2 was conducted as follows. That is, one sample grain with a diameter of 100 to 150 μm was placed on the lower cylinder of the upper and lower cylinders each having a diameter of 10 sections made of WC-Co, and the upper cylinder was lowered by driving a DC motor. Then, the position where the upper cylinder contacts the sample grain on the lower cylinder is electrically detected, and the corresponding distance between the surfaces of the upper and lower cylinders is determined.
is the grain diameter. As the load is further increased, from the total load W at which the grains break, as is well known, the following formula (1) % formula % (
1) The fracture strength σt of the Yoshi grains was determined. However, in reality, we conducted the above-mentioned test on the F150 sample.
The average value of D and the average value of W were determined, and the average breaking strength was calculated from equation (1). In addition, formula (1) is, for example, "RIKEN Report Vo139.Nα6" (published in 1960),
This is clarified by Hiroyuki Yoshikawa on page 310.
また表中、収率は配合したHBN (触媒は除く)に対
して生成したCBNの比である。Furthermore, in the table, the yield is the ratio of CBN produced to blended HBN (excluding catalyst).
上記実施例及び比較例で得ら九たCBH粒の代図は比較
例3のものである。他の実施例、比較例についても同様
であった。この写真かられかるように本発明によるCB
Nは全体として球形に近く、しかも表面に微細な凹凸が
少なく滑らかな形状をしていることがわかる。A representative diagram of the nine CBH grains obtained in the above Examples and Comparative Examples is that of Comparative Example 3. The same was true for other Examples and Comparative Examples. As you can see from this photo, CB according to the present invention
It can be seen that N has a nearly spherical shape as a whole and has a smooth shape with few minute irregularities on the surface.
さらに本発明によればCBNの収率を上げることができ
る外、以下のような効果がある。Further, according to the present invention, in addition to being able to increase the yield of CBN, there are the following effects.
触媒組成物は予じめ焼成されてbるので、CBN生成の
高温高圧処理時間が短縮でき、その公金型が高幅高圧に
曝されている時間が短かくなるため金型の寿命が延びる
。Li3N%Mg5N、等は予じめBNと混合し、処理
されているので、この間に反応が起っていると考えらf
’L、CBN生成中にこの反応が起ることかなく、触媒
中にスムーズなHBHの溶解−析出が可能となり、高品
位のCBNが生成する。予じめ焼成さnた触媒は安定な
組織が出来ると思われ、従来輩素等の雰囲気ボックス中
でしか扱えなかったものが大気中で充分安定であるため
、保管、取扱いか極めて容易になり、CBN製造におけ
る再現性がよくなる。Since the catalyst composition is calcined in advance, the time required for high-temperature, high-pressure treatment to produce CBN can be shortened, and the time that the public mold is exposed to high pressure and high pressure is shortened, thereby extending the life of the mold. Since Li3N%Mg5N, etc. have been mixed with BN and treated in advance, it is thought that a reaction is occurring during this time.
'L, this reaction does not occur during CBN production, allowing smooth dissolution and precipitation of HBH in the catalyst, and high-grade CBN is produced. It is thought that a pre-calcined catalyst can form a stable structure, and since it is sufficiently stable in the atmosphere, it has become extremely easy to store and handle catalysts that could previously only be handled in an atmosphere box. , the reproducibility in CBN production is improved.
参考例
前記実施例と比較例によって得られた砥粒の代表例につ
いての研削試験を次に示す。Reference Example Grinding tests for representative examples of abrasive grains obtained in the above Examples and Comparative Examples are shown below.
粒度flJIs規烙の# 120 / 140を用−1
常法に従って電着砥石を製造した。砥石仕様、研削条件
は以下の通り。Particle size flJIs #120/140 -1
An electrodeposited grindstone was manufactured according to a conventional method. The grindstone specifications and grinding conditions are as follows.
O[剛力式 湿式平面研削(トラバースカット)(i
ffi石仕m IAl 180J)X10TX3
XX76.2H粒度 # 120/ 140
集中度 100
砥石周速 150077i/分
テーブル送り 15ηl/分
クロス送ジ 2喘/バス
切 込 20μ/パス
研削液 ソリュブルタイプ
被削材 5KH−57(HRC=62)結果は次の通り
。O [Rigid type wet surface grinding (traverse cut) (i
ffi stone finishing IAl 180J)X10TX3
XX76.2H Grain size # 120/140 Concentration 100 Grinding wheel peripheral speed 150077i/min Table feed 15ηl/min Cross feed 2 panes/bath cutting 20μ/pass Grinding fluid Soluble type work material 5KH-57 (HRC=62) Results is as follows.
実施例4 比較例3 研削比 580 410Example 4 Comparative example 3 Grinding ratio 580 410
第1図はCBNを製造する際に使用される反応容器の一
例を示す縦断面図、第2図はこの発明の実施例4によっ
て得られたCBN粒の顕微鏡拡大写真(100倍)、第
3図は比較例3によって得らnたCBN粒の顕微鏡拡大
写真(100倍)である。
■・・・容器外壁、 2・・・ヒーター、3・
・・通電用鋼板リング、4・・・通電用鋼板、5・・・
アルミナ板、 7・・原料収容室。
特許出願人 昭和電工株式会社
代理人 菊地精−
第1図FIG. 1 is a vertical cross-sectional view showing an example of a reaction vessel used in producing CBN, FIG. The figure is an enlarged micrograph (100 times magnification) of CBN grains obtained in Comparative Example 3. ■... Container outer wall, 2... Heater, 3...
...Steel plate ring for current-carrying, 4...Steel plate for current-carrying, 5...
Alumina plate, 7. Raw material storage chamber. Patent applicant Showa Denko K.K. agent Sei Kikuchi - Figure 1
Claims (1)
化ホウ素が熱力学的に安定である高温、高圧領域に保持
して立方晶窒化ホウ素を合成するに農シ、前記触媒とし
てLi3N : X : BN をモル比で(1〜1.
4): (1〜1.4):3で配合し、予じめ800
℃〜1300℃の不活性算囲気中で焼成したものを用い
ることを特徴とする立方晶窒化ホウ素の製造法(上記で
XはMg3N2又はS r3N2又はBe3N2) 。Li3N: : BN in molar ratio (1 to 1.
4): (1-1.4):3
A method for producing cubic boron nitride (X in the above is Mg3N2, Sr3N2 or Be3N2), characterized in that it is fired in an inert atmosphere at a temperature of 1300°C to 1300°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57168269A JPS5957905A (en) | 1982-09-29 | 1982-09-29 | Production of cubic boron nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57168269A JPS5957905A (en) | 1982-09-29 | 1982-09-29 | Production of cubic boron nitride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5957905A true JPS5957905A (en) | 1984-04-03 |
JPH0314495B2 JPH0314495B2 (en) | 1991-02-26 |
Family
ID=15864881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57168269A Granted JPS5957905A (en) | 1982-09-29 | 1982-09-29 | Production of cubic boron nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5957905A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5167221A (en) * | 1990-03-14 | 1992-12-01 | Kabushiki Kaisha Machida Seisakusho | Bending device |
US7081424B2 (en) | 2003-12-25 | 2006-07-25 | Sumitomo Electric Hardmetal Corp. | High-strength, highly thermally conductive sintered compact of cubic boron nitride |
US7214359B2 (en) | 2003-02-03 | 2007-05-08 | Showa Denko K.K. | Cubic boron nitride, catalyst for synthesizing cubic boron nitride, and method for producing cubic boron nitride |
EP2177585A1 (en) * | 2003-08-20 | 2010-04-21 | Showa Denko K.K. | Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact |
CN103924288A (en) * | 2014-04-01 | 2014-07-16 | 许斌 | Method for preparing cubic boron nitride monocrystal micro powder by using magnesium-based compound catalyst and application of cubic boron nitride monocrystal micro powder |
-
1982
- 1982-09-29 JP JP57168269A patent/JPS5957905A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5167221A (en) * | 1990-03-14 | 1992-12-01 | Kabushiki Kaisha Machida Seisakusho | Bending device |
US7214359B2 (en) | 2003-02-03 | 2007-05-08 | Showa Denko K.K. | Cubic boron nitride, catalyst for synthesizing cubic boron nitride, and method for producing cubic boron nitride |
EP2177585A1 (en) * | 2003-08-20 | 2010-04-21 | Showa Denko K.K. | Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact |
US7703710B2 (en) | 2003-08-20 | 2010-04-27 | Showa Denko K.K. | Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact |
US7081424B2 (en) | 2003-12-25 | 2006-07-25 | Sumitomo Electric Hardmetal Corp. | High-strength, highly thermally conductive sintered compact of cubic boron nitride |
CN103924288A (en) * | 2014-04-01 | 2014-07-16 | 许斌 | Method for preparing cubic boron nitride monocrystal micro powder by using magnesium-based compound catalyst and application of cubic boron nitride monocrystal micro powder |
CN103924288B (en) * | 2014-04-01 | 2016-08-17 | 山东建筑大学 | Use the cubic boron nitride monocrystal micropowder preparation method and application of magnesio composite catalyst |
Also Published As
Publication number | Publication date |
---|---|
JPH0314495B2 (en) | 1991-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3944398A (en) | Method of forming an abrasive compact of cubic boron nitride | |
JP6871173B2 (en) | Fragile ceramic bonded diamond composite particles and their manufacturing method | |
JPS5939362B2 (en) | Boron nitride compound and its manufacturing method | |
CN103521133B (en) | High-impact-toughness cubic boron nitride, synthetic method and application thereof | |
KR102072258B1 (en) | Functionalization of cubic boron nitride and method of making the same | |
JPS62274034A (en) | Manufacture of polycrystalline diamond sintered compact by reaction sintering | |
US7014826B2 (en) | Method for producing cubic boron nitride and product obtained through the method | |
KR100487145B1 (en) | Manufacturing method of cubic boron nitride | |
JPS5957905A (en) | Production of cubic boron nitride | |
CN107900920A (en) | A kind of porous surface diamond abrasive for high efficient grinding and preparation method thereof | |
KR102182439B1 (en) | Single crystal diamond or cbn featuring micro-fracturing during grinding | |
JP2002284511A (en) | Method for manufacturing cubic boron nitride | |
RU2223220C2 (en) | Method of preparing diamond particles, method of preparing diamond crystals, and method of preparing blanks containing diamond particles | |
JPH0347132B2 (en) | ||
JPH0594B2 (en) | ||
JPH0315488B2 (en) | ||
JPS59563B2 (en) | Manufacturing method of diamond sintered body | |
JPH0595B2 (en) | ||
KR102111284B1 (en) | Unique cubic boron nitride crystals and method of manufacturing them | |
JPS6131354A (en) | Manufacture of diamond sintered body | |
RU2449831C1 (en) | Method of producing cubic boron nitride-based polycrystalline material | |
JPH02167666A (en) | Manufacture of fine grain diamond sintering body | |
JPS61191566A (en) | Manufacture of cubic boron nitirde sintered body | |
JPH0450273B2 (en) |