JPH0314495B2 - - Google Patents

Info

Publication number
JPH0314495B2
JPH0314495B2 JP57168269A JP16826982A JPH0314495B2 JP H0314495 B2 JPH0314495 B2 JP H0314495B2 JP 57168269 A JP57168269 A JP 57168269A JP 16826982 A JP16826982 A JP 16826982A JP H0314495 B2 JPH0314495 B2 JP H0314495B2
Authority
JP
Japan
Prior art keywords
catalyst
cbn
boron nitride
powder
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57168269A
Other languages
Japanese (ja)
Other versions
JPS5957905A (en
Inventor
Eiichi Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP57168269A priority Critical patent/JPS5957905A/en
Publication of JPS5957905A publication Critical patent/JPS5957905A/en
Publication of JPH0314495B2 publication Critical patent/JPH0314495B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な触媒を使用して六方晶窒化ホウ
素(以下HBNという)から立方晶窒化ホウ素
(以下CBNという)を製造する方法に関する。 周知のようにCBNはダイヤモンドに近い硬さ
を有し、しかも化学的安定性の点ではダイヤモン
ドより優れているため、研削材料(砥粒)として
の需要が増大しつつある。 上記のごときCBNの工業的な製造方法として
は、HBNの粉末と触媒粉末とを混合し、これを
40〜60kbar程度の高圧力、1400〜1600℃程度の
高温で処理して、HBNをCBNに変換する方法が
一般的である。このような方法に使用される触媒
としては、アルカリ金属もしくはアルカリ土類金
属の窒化物、またはアルカリ金属もしくはアルカ
リ土類金属と窒素およびホウ素からなる窒化ホウ
素系3元化合物例えばCa3B2N4やLi3BN2等が知
られている。このような方法は、六方晶窒化ホウ
素を触媒融液へ溶け込ませ、合成条件下での共晶
融体への溶解度がHBNよりCBNの方が小さいこ
とを利用してCBNを析出させるものである。 ところで研削材料(砥粒)としては、機械的強
度、特に圧壊強度が高いことが必要であり、また
強度に関連して粒子の形状性が良好なこと、すな
わち扁平な形状であつたり鋭角状の形状であつた
りせずに可及的に球体に近い形状であること、あ
るいは表面の凹凸が少ないこと等が要求される。
しかるに前述の如く窒化物(2元化合物)や窒化
ホウ素系3元化合物を触媒として用いた従来の立
方晶窒化ホウ素製造方法においては、必ずしも充
分な機械的強度、良好な形状性を有するCBNを
得ることができるとは限らないのが実情である。
すなわち従来の触媒を用いた方法では、製造条件
の制御等を相当に精密かつ複雑にしなければ強度
改善や形状性改善がなされないのが実情である。 そこで本発明者等はCBNの強度改善、形状性
改善を図る方法を確立すべく鋭意実験・研究を行
ない、新規な触媒を開発し、これを用いることに
より、強度、形状等の優れたCBNの製造に成功
したものである。 この新規な触媒はLi3N:X:BNをモル比で
(1〜1.4):(1〜1.4):3の割合に配合し、N2
しくはAr等の不活性雰囲気下、800〜1300℃で加
熱して得られるものである。上記でXはMg3N又
はSr3N2又はBe3N2である。 この加熱処理によつて生成する物質の構造等は
明らかではない。しかも単なる混合物ではないと
考えられる。なぜならこれらの混合物を触媒に用
い、CBNを製造した場合とこの生成物を触媒と
した場合とでは効果が異なるからである。 上記の処理において800℃未満では加熱の効果
が現れない。また1300℃を越えると、生成物の分
解が起つていると考えられる。加熱時間は20〜60
分程度あれば充分である。上記の温度範囲で混合
物は発熱しながら溶融する。これらの点から混合
物から何らかの化合物が生成したものと推測され
る。なお、前記でモル比を特定した理由は、この
割合に混合加熱した場合が、触媒としてその効果
が大となるからである。 溶融物は不活性ガス中雰囲気中で冷却凝固さ
せ、150メツシユ以下程度に粉砕し、触媒として
用いる。 次に前述のようにして得られる触媒を用いて立
方晶窒化ホウ素を製造する方法を説明する。 先ず六方晶窒化ホウ素の望ましくは150メツシ
ユ以下の粉末100重量部に対し、触媒として 前記生成物の望ましくは150メツシユ以下の粉
末5〜50重量部、望ましくは10〜30重量部を配合
し、均一に混合して圧粉成形する。あるいはまた
六方晶窒化ホウ素の粉末および上述の触媒粉末
を、それぞれ各別に薄い板状に圧粉成形し、これ
らを前述の配合比で交互に積層する。このように
して得られた混合圧粉成形体もしくは積層体に対
しCBNの熱力学的安定頒域、好ましくは1300〜
1600℃の高温下で40〜60kbarの高圧を加え、5
分〜40分保持する。斯くすれば立方晶窒化ホウ素
の結晶粒が得られる。なおこれらの温度、圧力、
保持時間は従来と同様である。 上述のように高温・高圧を与える手段としては
種々考えられるが、例えば第1図に示すような反
応容器に前記混合圧粉成形体もしくは積層体を収
容し、通電するとともにプレスにて加圧すれば良
い。第1図において、容器外壁1は伝圧体として
のパイロフイライトによつて円筒状に作られ、そ
の内側には黒鉛円筒体からなるヒーター2および
隔壁材としてパイロフイライト8が配設されてい
る。また容器の上下端にはそれぞれ通電用鋼製リ
ング3および通電用鋼板4が配設され、その内側
には焼結アルミナ板5および伝圧体としてのパイ
ロフイライト6が配設され、そしてそのパイロフ
イライト6および隔壁材としてのパイロフイライ
ト8によつて取囲まれる空間が反応原料を収容す
る収容室7となつている。 以下に本発明の触媒を用いて立方晶窒化ホウ素
を製造した実施例および既知の物質を触媒として
用いて立方晶窒化ホウ素を製造した比較例を示
す。 実施例 1〜6 それぞれ150メツシユ以下に粉砕された化合物
を第1表に示す割合に混合し、白金容器に収容し
てN2ガスを8/分の流量で流しながら電気炉
にて加熱昇温させ、同表に示す条件下に保持し
た。反応生成物をN2ガス気流中にて電気炉内で
冷却し、その後N2ガス雰囲気中で150メツシユ以
下に粉砕した。
The present invention relates to a method for producing cubic boron nitride (hereinafter referred to as CBN) from hexagonal boron nitride (hereinafter referred to as HBN) using a novel catalyst. As is well known, CBN has a hardness close to that of diamond, and is superior to diamond in terms of chemical stability, so its demand as a grinding material (abrasive grain) is increasing. The industrial method for producing CBN as described above involves mixing HBN powder and catalyst powder, and then
A common method is to convert HBN into CBN by processing at high pressures of about 40 to 60 kbar and high temperatures of about 1,400 to 1,600 degrees Celsius. Catalysts used in such methods include nitrides of alkali metals or alkaline earth metals, or boron nitride-based ternary compounds consisting of alkali metals or alkaline earth metals, nitrogen, and boron, such as Ca 3 B 2 N 4 and Li 3 BN 2 are known. In this method, hexagonal boron nitride is dissolved in the catalyst melt, and CBN is precipitated by taking advantage of the fact that CBN has a lower solubility in the eutectic melt than HBN under the synthesis conditions. . By the way, grinding materials (abrasive grains) need to have high mechanical strength, especially crushing strength, and in relation to strength, the particles must have good shape, that is, flat or acutely angled. It is required that the shape be as close to a sphere as possible without any irregularities, or that the surface have few irregularities.
However, as mentioned above, in the conventional cubic boron nitride manufacturing method using nitride (binary compound) or boron nitride-based ternary compound as a catalyst, it is not always possible to obtain CBN with sufficient mechanical strength and good shape. The reality is that this is not always possible.
In other words, in the conventional method using a catalyst, the actual situation is that strength and shape cannot be improved unless manufacturing conditions are controlled very precisely and complicated. Therefore, the present inventors conducted extensive experiments and research in order to establish a method for improving the strength and shape of CBN, and developed a new catalyst.By using this, CBN with excellent strength, shape, etc. It was successfully manufactured. This new catalyst contains Li 3 N: It is obtained by heating. In the above, X is Mg 3 N, Sr 3 N 2 or Be 3 N 2 . The structure of the substance produced by this heat treatment is not clear. Moreover, it is thought that it is not just a mixture. This is because the effects are different when CBN is produced using a mixture of these as a catalyst and when this product is used as a catalyst. In the above treatment, the effect of heating does not appear below 800°C. Moreover, when the temperature exceeds 1300°C, it is thought that decomposition of the product occurs. Heating time is 20-60
A minute or so is sufficient. The mixture melts exothermically in the above temperature range. From these points, it is presumed that some kind of compound was produced from the mixture. The reason for specifying the molar ratio above is that when mixed and heated to this ratio, the effect as a catalyst becomes greater. The molten material is cooled and solidified in an inert gas atmosphere, pulverized to about 150 mesh or less, and used as a catalyst. Next, a method for producing cubic boron nitride using the catalyst obtained as described above will be explained. First, 5 to 50 parts by weight, preferably 10 to 30 parts by weight of powder of the above product, preferably 150 mesh or less, is blended as a catalyst to 100 parts by weight of hexagonal boron nitride powder, preferably 150 mesh or less, and homogeneously mixed. The mixture is mixed and compacted. Alternatively, the hexagonal boron nitride powder and the above-mentioned catalyst powder are individually compacted into thin plate shapes, and these are alternately stacked in the above-mentioned mixing ratio. The thermodynamically stable distribution range of CBN for the mixed powder compact or laminate obtained in this way, preferably 1300~
Applying high pressure of 40 to 60 kbar at a high temperature of 1600℃,
Hold for ~40 minutes. In this way, cubic boron nitride crystal grains are obtained. Note that these temperatures, pressures,
The retention time is the same as before. As mentioned above, various means for applying high temperature and high pressure can be considered, but for example, the mixed powder compact or laminate is placed in a reaction vessel as shown in Fig. 1, and electricity is applied and pressure is applied using a press. Good. In FIG. 1, a container outer wall 1 is made of pyrofluorite as a pressure transmitting body in a cylindrical shape, and inside thereof a heater 2 made of a graphite cylinder and pyrophyllite 8 as a partition wall material are arranged. There is. Further, a current-carrying steel ring 3 and a current-carrying steel plate 4 are arranged at the upper and lower ends of the container, respectively, and inside thereof, a sintered alumina plate 5 and a pyrofilite 6 as a pressure transmitting body are arranged. A space surrounded by the pyrophyllite 6 and the pyrophyllite 8 serving as a partition wall material serves as a storage chamber 7 for accommodating the reaction raw materials. Examples in which cubic boron nitride was produced using the catalyst of the present invention and comparative examples in which cubic boron nitride was produced using a known substance as a catalyst are shown below. Examples 1 to 6 Compounds each pulverized to 150 mesh or less were mixed in the proportions shown in Table 1, placed in a platinum container, and heated and heated in an electric furnace while flowing N 2 gas at a flow rate of 8/min. and maintained under the conditions shown in the same table. The reaction product was cooled in an electric furnace in a N2 gas stream, and then ground to 150 mesh or less in a N2 gas atmosphere.

【表】 上記各実施例によつて得られた150メツシユ以
下の粉末と150メツシユ以下のHBN粉末とを窒
素雰囲気中にて均一に混合し、面圧力700Kg/cm2
で外径20mm、長さ20mmの円柱状に成形し、第1図
に示す容器内に収容し、高圧プレスにて処理し、
CBNを生成させた。 なお、比較のため、Li3BN2粉末(比較例1)
及びLi3N粉末、Mg3N2粉末、BN粉末をモル比
で1.1:1.2:3に混合したもの(比較例2)及び
Li3N粉末、Sr3N2粉末、BN粉末をモル比で1:
1:3に混合したもの(比較例3)を夫々触媒に
して実施例と同様にCBNの製造を行なつた。 これらの実施例及び比較例の各条件及び結果を
第2表に示す。
[Table] The powder of 150 mesh or less obtained in each of the above examples and the HBN powder of 150 mesh or less were uniformly mixed in a nitrogen atmosphere, and the surface pressure was 700 Kg/cm 2
It was formed into a cylindrical shape with an outer diameter of 20 mm and a length of 20 mm, placed in a container shown in Figure 1, and processed with a high-pressure press.
CBN was generated. For comparison, Li 3 BN 2 powder (Comparative Example 1)
and a mixture of Li 3 N powder, Mg 3 N 2 powder, and BN powder at a molar ratio of 1.1:1.2:3 (Comparative Example 2) and
Li 3 N powder, Sr 3 N 2 powder, and BN powder in a molar ratio of 1:
CBN was produced in the same manner as in the example using a 1:3 mixture (comparative example 3) as a catalyst. Table 2 shows the conditions and results of these Examples and Comparative Examples.

【表】 なお、第2表中圧壊試験は次のようにして行な
つたものである。すなわちWC−Co製の直径10mm
の上下のシリンダの下部シリンダ上に直径100〜
150μmのサンプル粒を1個置き、上部のシリン
ダを直流モータ駆動により降下させた。そして上
部シリンダが下部シリンダ上のサンプル粒に接触
する位置を電気的に検出し、これに対応する上下
シリンダの表面間の距離Dを求めてこれを粒の直
径とした。さらに荷重を増して行き、粒が破壊す
る総荷重Wから、周知のように次の(1)式 σt=W/(0.32A) ……(1) により粒の破壊強度σtを求めた。但し実際にはそ
れぞれ50サンプルについて上述のような試験を行
ない、Dの平均値およびWの平均値を求め、(1)式
から平均破壊強度を算出した。なお(1)式は、例え
ば「理化学研究所報告Vol39、No.6」昭和38年発
行)、第310頁に吉川弘之によつて明らかにされて
いる。 また表中、収率は配合したHBN(触媒は除く)
に対して生成したCBNの比である。 上記実施例及び比較例で得られたCBN粒の代
表例について電子顕微鏡写真を示す。倍率は夫々
100倍である。第2図は実施例4のもの、第3図
は比較例3のものである。他の実施例、比較例に
ついても同様であつた。この写真からわかるよう
に本発明によるCBNは全体として球形に近く、
しかも表面に微細な凹凸が少なく滑らかな形状を
していることがわかる。 さらに本発明によればCBNの収率を上げるこ
とができる外、以下のような効果がある。 触媒組成物は予じめ焼成されているので、
CBN生成の高温高圧処理時間が短縮でき、その
分金型が高温高圧に曝されている時間が短かくな
るため金型の寿命が延びる。Li3N、Mg3N2等は
予じめBNと混合し、処理されているので、この
間に反応が起つていると考えられ、CBN生成中
にこの反応が起ることがなく、触媒中にスムーズ
なHBNの溶解−析出が可能となり、高品位の
CBNが生成する。予じめ焼成された触媒は安定
な組織が出来ると思われ、従来窒素等の雰囲気ボ
ツクス中でしか扱えなかつたものが大気中で充分
安定であるため、保管、取扱いが極めて容易にな
り、CBN製造における再現性がよくなる。 参考例 前記実施例と比較例によつて得られた砥粒の代
表例についての研削試験を次に示す。 粒度はJIS規格の#120/140を用い、常法に従
つて電着砥石を製造した。砥石仕様、研削条件は
以下の通り。 研削方式 湿式平面研削(トラバースカツト) 砥石仕様 1A1 180D×10T×3X×76.2H 粘 度 #120/140 集中度 100 砥石周速 1500m/分 テーブル送り 15m/分 クロス送り 2mm/パス 切 込 20μ/パス 研削液 ソリユブルタイプ 被削材 SKH−57(HRC=62) 結果は次の通り。 実施例4 比較例3 研削比 580 410 (研削比=被削材の研削量(体積)/砥石摩耗量(体積
))
[Table] The crushing test in Table 2 was conducted as follows. i.e. 10mm diameter made of WC-Co
Diameter 100~ on the bottom cylinder of the upper and lower cylinders
One sample particle of 150 μm was placed, and the upper cylinder was lowered by driving a DC motor. Then, the position where the upper cylinder contacts the sample grain on the lower cylinder was electrically detected, and the corresponding distance D between the surfaces of the upper and lower cylinders was determined, and this was taken as the diameter of the grain. As the load was further increased, the fracture strength σt of the grains was determined from the total load W at which the grains fractured using the following formula (1), as is well known: σt=W/(0.32A) (1). However, in reality, the above-mentioned test was conducted on 50 samples each, the average value of D and the average value of W were determined, and the average breaking strength was calculated from equation (1). Formula (1) is clarified by Hiroyuki Yoshikawa, for example, in "RIKEN Report Vol. 39, No. 6" (published in 1963), page 310. In addition, in the table, the yield is the blended HBN (excluding catalyst)
It is the ratio of CBN produced to Electron micrographs are shown of representative examples of CBN grains obtained in the above Examples and Comparative Examples. The magnification is
It is 100 times more. FIG. 2 shows Example 4, and FIG. 3 shows Comparative Example 3. The same was true for other Examples and Comparative Examples. As can be seen from this photo, the CBN according to the present invention has a nearly spherical shape as a whole;
Moreover, it can be seen that the surface has a smooth shape with few minute irregularities. Furthermore, according to the present invention, in addition to being able to increase the yield of CBN, there are the following effects. Since the catalyst composition is pre-calcined,
The high-temperature, high-pressure treatment time for CBN production can be shortened, and the time that the mold is exposed to high temperature and high pressure is shortened accordingly, extending the life of the mold. Since Li 3 N, Mg 3 N 2 , etc. are mixed with BN and treated in advance, it is thought that a reaction occurs during this time, and this reaction does not occur during CBN production, and the catalyst is This enables smooth dissolution and precipitation of HBN, resulting in high-quality
Generated by CBN. The pre-calcined catalyst is thought to have a stable structure, and although it could previously only be handled in a nitrogen atmosphere box, it is sufficiently stable in the atmosphere, making it extremely easy to store and handle. Improves reproducibility in manufacturing. Reference Example Grinding tests for representative examples of abrasive grains obtained in the above Examples and Comparative Examples are shown below. The grain size was #120/140 according to the JIS standard, and an electrodeposited grindstone was manufactured according to a conventional method. The grindstone specifications and grinding conditions are as follows. Grinding method Wet surface grinding (traverse cut) Grinding wheel specifications 1A1 180 D × 10 T × 3 20μ/pass grinding fluid Soluble type work material SKH-57 (H RC = 62) The results are as follows. Example 4 Comparative Example 3 Grinding ratio 580 410 (Grinding ratio = grinding amount of work material (volume) / grinding wheel wear amount (volume))

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCBNを製造する際に使用される反応
容器の一例を示す縦断面図、第2図はこの発明の
実施例4によつて得られたCBN粒の顕微鏡拡大
写真(100倍)、第3図は比較例3によつて得られ
たCBN粒の顕微鏡拡大写真(100倍)である。 1……容器外壁、2……ヒーター、3……通電
用鋼板リング、4……通電用鋼板、5……アルミ
ナ板、7……原料収容室。
FIG. 1 is a vertical cross-sectional view showing an example of a reaction vessel used in producing CBN, and FIG. 2 is an enlarged micrograph (100x) of CBN grains obtained in Example 4 of the present invention. FIG. 3 is an enlarged micrograph (100 times magnification) of CBN grains obtained in Comparative Example 3. DESCRIPTION OF SYMBOLS 1... Container outer wall, 2... Heater, 3... Steel plate ring for energizing, 4... Steel plate for energizing, 5... Alumina plate, 7... Raw material storage chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 六方晶窒化ホウ素と触媒とを併存させた状態
で立方晶窒化ホウ素が熱力学的に安定である高
温、高圧頒域に保持して立方晶窒化ホウ素を合成
するに当り、前記触媒としてLi3N:X:BNをモ
ル比で(1〜1.4):(1〜1.4):3で配合し、予
じめ800℃〜1300℃の不活性雰囲気中で焼成した
ものを用いることを特徴とする立方晶窒化ホウ素
の製造法(上記でXはMg3N2又はSr3N2又は
Be3N2)。
1. When synthesizing cubic boron nitride by holding hexagonal boron nitride and a catalyst in a high temperature and high pressure region where cubic boron nitride is thermodynamically stable, Li 3 is used as the catalyst. It is characterized by using a mixture of N:X:BN in a molar ratio of (1 to 1.4): (1 to 1.4): 3 and calcined in an inert atmosphere at 800°C to 1300°C in advance. Manufacturing method of cubic boron nitride (in the above, X is Mg 3 N 2 or Sr 3 N 2 or
Be3N2 ) .
JP57168269A 1982-09-29 1982-09-29 Production of cubic boron nitride Granted JPS5957905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168269A JPS5957905A (en) 1982-09-29 1982-09-29 Production of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168269A JPS5957905A (en) 1982-09-29 1982-09-29 Production of cubic boron nitride

Publications (2)

Publication Number Publication Date
JPS5957905A JPS5957905A (en) 1984-04-03
JPH0314495B2 true JPH0314495B2 (en) 1991-02-26

Family

ID=15864881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168269A Granted JPS5957905A (en) 1982-09-29 1982-09-29 Production of cubic boron nitride

Country Status (1)

Country Link
JP (1) JPS5957905A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264041A (en) * 1990-03-14 1991-11-25 Machida Endscope Co Ltd Curving operating device
US7214359B2 (en) 2003-02-03 2007-05-08 Showa Denko K.K. Cubic boron nitride, catalyst for synthesizing cubic boron nitride, and method for producing cubic boron nitride
EP1658348A2 (en) 2003-08-20 2006-05-24 Showa Denko K.K. Cubic boron intride, method for producing cubic boron nitride, grinding wheeel with cubic boron nitride, and sintered cubic boron nitride compact
JP4160898B2 (en) 2003-12-25 2008-10-08 住友電工ハードメタル株式会社 High strength and high thermal conductivity cubic boron nitride sintered body
CN103924288B (en) * 2014-04-01 2016-08-17 山东建筑大学 Use the cubic boron nitride monocrystal micropowder preparation method and application of magnesio composite catalyst

Also Published As

Publication number Publication date
JPS5957905A (en) 1984-04-03

Similar Documents

Publication Publication Date Title
US3944398A (en) Method of forming an abrasive compact of cubic boron nitride
US5266236A (en) Thermally stable dense electrically conductive diamond compacts
US4551316A (en) Process for producing boron nitride of cubic system
JP6281955B2 (en) Functionalization of cubic boron nitride and manufacturing method thereof
JP3471167B2 (en) Method for producing cubic boron nitride
JPH0314495B2 (en)
KR100525962B1 (en) Method for producing cubic boron nitride and product obtained through the method
JPH0347132B2 (en)
JP2002284511A (en) Method for manufacturing cubic boron nitride
JPH0315488B2 (en)
KR100572418B1 (en) Substance containing crystals
JP4183317B2 (en) Method for producing cubic boron nitride
KR100636415B1 (en) Manufacturing method of cubic boron nitride
JPH0594B2 (en)
JPH09142933A (en) Diamond sintered compact and its production
JPS6225602B2 (en)
JPH09142932A (en) Diamond sintered compact and its production
JPS6225601B2 (en)
JPH0315486B2 (en)
IE913698A1 (en) Unsupported sintered cbn/diamond conjoint compacts and their¹fabrication
JPS605007A (en) Preparation of boron nitride of cubic system
JPH052369B2 (en)
JPH0595B2 (en)
JPH0355177B2 (en)
JP3563879B2 (en) Method for producing cubic boron nitride