JPH052369B2 - - Google Patents

Info

Publication number
JPH052369B2
JPH052369B2 JP23745884A JP23745884A JPH052369B2 JP H052369 B2 JPH052369 B2 JP H052369B2 JP 23745884 A JP23745884 A JP 23745884A JP 23745884 A JP23745884 A JP 23745884A JP H052369 B2 JPH052369 B2 JP H052369B2
Authority
JP
Japan
Prior art keywords
seeds
hbn
cbn
boron nitride
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23745884A
Other languages
Japanese (ja)
Other versions
JPS61117106A (en
Inventor
Masakazu Maki
Eiichi Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP23745884A priority Critical patent/JPS61117106A/en
Publication of JPS61117106A publication Critical patent/JPS61117106A/en
Publication of JPH052369B2 publication Critical patent/JPH052369B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は研削、切削工具等に使用される立方晶
窒化ホウ素(以下CBNという)の合成法に関す
る。 従来技術 立方晶窒化ホウ素はダイヤモンドに次ぐ硬さを
有し、特に鉄に対してはダイヤモンドより安定な
ことから、鉄鋼の研削等に重要視されている。 一般にCBNは六方晶窒化ホウ素(以下HBNと
いう)を原料とし、触媒を使用してCBNの安定
領域下に保持して合成される。この際、CBNの
種子を原料中に混合し、種子を成長させることも
行なわれている。 研削等に使用されるCBNは粒度が揃つたしか
もある程度以上の大きさを持つたブロツキーなも
のが望ましい。 これらの要請のため従来触媒の改良、例えば
Li3BN2、Ca3B2N4のような複合触媒の使用が提
案されている。また合成方法にも温度差法、膜成
長法等の工夫がなされている。前者は合成反応室
においてHBNの溶解域とCBNの析出域に温度差
を設ける方法であり、後者はCBNの種子の周囲
に触媒の薄い膜を設け、その膜を通してHBNの
溶解、CBNの析出を行なう方法である。 触媒の改良によつてかなりブロツキーなものが
得られるが、未だ十分でなく、また大きな粒子は
得難い。温度差法は合成の時間がかかること、多
量に出来ないことが難点である。膜成長法は粒成
長とともに膜が薄くなり、やがて切れるので粒径
に限界がある。 本発明の目的 本発明はブロツキーで粒度の揃つたしかも大き
なCBN粒子を多量に合成することを目的とする。 目的達成手段 本発明はCBNの種子を使用すると共に原料と
なるHBN成形体を触媒物質中で加熱することに
より、該成形体中に触媒物質を拡散させ、これを
出発材料としてCBNの合成を行ない、種子を成
長させる方法である。この場合望ましくは種子を
成形体に規則的に分散配置する。 HBN成形体は触媒を拡散させるため0.5〜10mm
程度の薄板状にすることが望ましい。この成形体
に種子を配置すると共に触媒物質を拡散させる。
この順序は種子を配置後触媒を拡散させてもよ
く、またその逆でもよい。種子の配置はHBNの
成形体の表面に多数の小孔を開け、この中に種子
を装入する方法、成形体表面に種子を分散付着す
る方法、さらにHBNの成形体をつくる際この中
に種子を含める方法でもよい。種子は望ましくは
等間隔で規則的に配置することが望ましい。これ
によつて各種子が等しく成長し、粒度の揃つたも
のが得られるからである。種子を規則的に配置す
るにはHBN成型体の表面に所定間隔で規則的に
小孔を開け、多数の種子をこの表面に載せ、揺動
すればよく、これにより簡単に夫々の小孔に一個
づつの種子を装入することができる。 CBNの合成においては成長の量には限界があ
るが種子の成長倍率は高い方がよいので、種子は
あまり大きいのは望ましくなく、また小さ過ぎて
も大きなCBN粒子は得られないので20〜500μm
程度が適当である。これらの種子を見かけ上大き
くして、取扱易くするため、金属、セラミツク等
でコートしてから用いることも出来る。 さらにCBN種子をHBN成形体に配置する方法
としてCBNの微粉を接着剤例えば電気回路形成
等に用いられる印刷インクに混合し、これを
HBN成形体表面に等間隔でプロツトする方法を
用いることもできる。この場合は微粉の粒度は上
記のものより小さくてもよく、一つのプロツトの
中に一つ以上の種子があつてもよい。この種子の
成長はいずれかの種子が優先的に成長して他を排
斥したり、あるいは全体を集合したような形の粒
子が得られる。 種子の成長は周囲にある他の種子の影響を受け
ないようにする必要があり、このためにはある程
度の間隔を設けて配置する。一方間隔が大き過ぎ
ることは生産性が低下する。これらのことより種
子の間隔(表面間の間隔)は、種子の大きさにも
よるが、0.1mm〜3mmの範囲とすることが好まし
い。この間隔は、前記の種子を配置した成形体を
多数積層して使用する場合は各成形体の平面にお
ける間隔及び各成形体間の種子の間隔である。従
つて本発明において種子の規則的分散配置とは平
面又は立体的な配置を意味する。 HBN成形体の表面に種子を配置する場合は、
種子を触媒作用の妨げとならないような金属、例
えばCo、Cu等の薄い板に配置し、これをHBN成
形体に重ね、多数使用する場合はこれらを交互に
積層して使用することもできる。 HBN成形体にCBN合成触媒を拡散させるに
は、後者の粉末中に前者を埋没して加熱する方法
などの通常の固体拡散による方法、触媒融液中に
HBN成形体を浸漬する方法、触媒蒸気中に
HBN成形体を置く方法などがあり、いずれの場
合に於ても、触媒が必要量、成形体中へ取りこま
れれば良い。 使用される触媒としてはアルカリ金属、アルカ
リ土類金属、これらの窒化物、該窒化物とHBN
との複合化物、Alの合金、窒化物などCBN合成
に有効なすべての触媒を使用することができる。
この場合触媒物質が拡散し、そこでHBNと反応
し、新たな触媒が形成されるのも本発明に含まれ
ることは当然である。拡散される触媒の量は
HBN1モルに対し、0.01〜0.5モルが適当である。 本発明は触媒物質をHBN成形体中に拡散した
ものを使用することが一つの特徴である。公知の
方法であるこれら両者の混合、成形法に較べて本
発明が前記目的達成に有効な理由は以下のように
考えられる。 (1) 反応表面の純化性 混合粉末ではHBNや触媒粒子表面が外部雰
囲気にさらされることが多くなる。そのために
これら粒子表面の活性が失われ易い。 (2) 拡散の場合は混合が均一 混合粉末では粒子オーダーの混合であるのに
対し、拡散では原子オーダーの混合になるた
め、非常に均一な混合になる。従つて種子に対
し常に均等な触媒補給が行われ、CBNの良晶
生成に必要な等方的原料供給が達成される。 本発明の他の利点はHBN成形体を薄板にして
用いることが可能なことである。HBNは焼結し
難いため成形体にする場合は高温に焼成しなけれ
ばならない。そして薄板は通常この成形体を切削
加工することによつてつくられる。 ところが触媒はこのような高温で焼成すること
はできないため、触媒を混合したHBNは低温で
焼成せざるを得ず、成形体の強度が不十分である
ため、薄板に切削加工することは困難であるし、
また最初から薄板に成形することもむずかしい。 これに対し、触媒拡散法ではこのような制限が
ないのでHBNの薄板が容易に得られる。このこ
とはCBN種子を成形体に等間隔で配置する場合
極めて有利である。等間隔配置ではCBN種子は
事実上成形体の表面配置に限られる。その場合薄
板であればこれの多数重ねて使用でき、生産性が
大巾に向上する。 CBNの合成はベルト型、ガードル型等の超高
圧装置を用い、CBNの安定領域下で行なわれる
が、この中で特に40〜60Kb、1300〜1800℃の範
囲が好ましい。合成時間は最終的に得られる
300μ以下の粒に対しては10〜60分それ以上では
10時間程度必要とするものもある。 合成後の生成物は公知の方法、例えば酸洗及び
アルカリ溶融法等の処理により、触媒、未反応
HBNの除去により、CBNが分離抽出される。 実施例 1 HBN成形体を薄い円板状に加工した(直径25
mm、厚さ1.0mm)。この円板を予じめ合成した
LiCaBN2触媒粉末に埋め、N2雰囲気中、850℃
で24時間加熱した。LiCaBN2が約5モル%拡散
含有していた。(付着分を除き重量増加より測定) これに剣山を用いて前後左右の間隔(中心間)
1mm、穴の直径130μm、深さ80μmの小孔を開
け、この小孔に約100μmのCBN種子を1粒づつ
装入し、この円板を35枚重ねてベルト型高圧装置
に装填した。 合成条件は先ず圧力を50Kb迄上げ、次いで温
度を1500℃にし、2分保持した後30分間で57Kb
迄昇圧した。温度を下げてから圧力を大気圧に戻
した。 生成物を高圧装置から取出し、まず塩酸処理に
より触媒を除去した後、アルカリ溶融法により
HBNを除去し、CBN粒子を抽出した。なお、生
成物の断面を顕微鏡観察すると種子が成長した
CBNのみであり、新たな発生はみられなかつた。
生成粒子は平均径300μの黄橙色のブロツキーな
粒子が得られた。 比較のため前記触媒を拡散量に相当する量を
HBNに混合し、成形して種子を用い同様にして
CBNの合成を行なつた。ただし、粉末成形では
厚さ1mmの薄板の成形は困難なので、厚さを5mm
として成形し、これに実施例1と同様にCBN種
子を配置した。この比較ではCBNの種子は実施
例1より少ないので生成するCBNの収量は当然
少ない。粒子の粒度のバラツキ、形状等を本発明
のと比較するための実験である。これらの結果を
以下に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for synthesizing cubic boron nitride (hereinafter referred to as CBN) used for grinding, cutting tools, etc. Prior Art Cubic boron nitride has a hardness second only to diamond, and is particularly stable against iron than diamond, so it is considered important for grinding steel. Generally, CBN is synthesized using hexagonal boron nitride (hereinafter referred to as HBN) as a raw material and using a catalyst to keep it below the stable region of CBN. At this time, CBN seeds are also mixed into the raw material and grown. CBN used for grinding, etc. is preferably Brodsky, with uniform particle size and a certain size or more. In response to these demands, improvements to conventional catalysts, such as
The use of composite catalysts such as Li 3 BN 2 , Ca 3 B 2 N 4 has been proposed. In addition, the synthesis method has also been devised, such as the temperature difference method and the film growth method. The former is a method in which a temperature difference is created between the HBN dissolution region and the CBN precipitation region in the synthesis reaction chamber, while the latter is a method in which a thin film of catalyst is provided around the CBN seeds, and HBN dissolution and CBN precipitation occur through the film. This is the way to do it. By improving the catalyst, a fairly Brodsky product can be obtained, but it is still insufficient and it is difficult to obtain large particles. The disadvantages of the temperature difference method are that it takes a long time to synthesize and cannot be produced in large quantities. In the film growth method, the film becomes thinner as the grains grow and eventually breaks, so there is a limit to the grain size. Purpose of the present invention The purpose of the present invention is to synthesize a large amount of CBN particles with uniform particle size using Brodsky. Means for Achieving the Objective The present invention uses CBN seeds and heats an HBN molded body as a raw material in a catalyst substance to diffuse the catalyst substance into the molded body, and synthesizes CBN using this as a starting material. , is a method of growing seeds. In this case, the seeds are preferably distributed regularly in the molded body. HBN molded body is 0.5 to 10 mm to diffuse the catalyst.
It is desirable to make it into a thin plate shape. Seeds are placed in this molded body and a catalyst substance is diffused therein.
This order may be such that the seeds are placed and then the catalyst is diffused, or vice versa. Seeds can be arranged by making a large number of small holes on the surface of the HBN molded body and charging the seeds into these, or by dispersing and adhering the seeds to the surface of the HBN molded body. A method of including seeds may also be used. It is desirable that the seeds are arranged regularly, preferably at equal intervals. This is because each seed grows equally and grains of uniform size can be obtained. To arrange seeds regularly, it is sufficient to make small holes at regular intervals on the surface of the HBN molded body, place a large number of seeds on this surface, and shake them. Seeds can be charged one at a time. In the synthesis of CBN, there is a limit to the amount of growth, but the higher the growth rate of the seeds, the better, so it is undesirable for the seeds to be too large, and if they are too small, large CBN particles cannot be obtained, so the size is 20 to 500 μm.
The degree is appropriate. In order to make these seeds appear larger and easier to handle, they can be coated with metal, ceramic, etc. before use. Furthermore, as a method for placing CBN seeds in HBN molded bodies, fine CBN powder is mixed with an adhesive such as printing ink used for forming electric circuits, etc.
A method of plotting at equal intervals on the surface of the HBN molded body can also be used. In this case, the particle size of the fine powder may be smaller than those mentioned above, and there may be one or more seeds in one plot. In this seed growth, some seeds grow preferentially and exclude others, or particles are obtained in the form of aggregates of all seeds. It is necessary to ensure that the growth of the seeds is not affected by other seeds around them, and for this purpose they are placed at a certain distance. On the other hand, if the interval is too large, productivity will decrease. For these reasons, the spacing between seeds (the spacing between surfaces) is preferably in the range of 0.1 mm to 3 mm, although it depends on the size of the seeds. When a large number of molded bodies having seeds arranged thereon are used in a stacked manner, this interval is the interval in the plane of each molded body and the distance between the seeds between each molded body. Therefore, in the present invention, the regularly distributed arrangement of seeds means a planar or three-dimensional arrangement. When placing seeds on the surface of the HBN compact,
Seeds can be placed on a thin plate of metal such as Co or Cu that does not interfere with the catalytic action, and this can be stacked on the HBN molded body, and if a large number of them are used, these can be stacked alternately. To diffuse the CBN synthesis catalyst into the HBN molded body, there are two ways to diffuse the CBN synthesis catalyst into the HBN molded body.
Method of immersing HBN molded body in catalyst vapor
There are methods such as placing an HBN molded body, and in either case, it is sufficient to incorporate the required amount of catalyst into the molded body. Catalysts used include alkali metals, alkaline earth metals, nitrides thereof, and nitrides and HBN.
All catalysts effective for CBN synthesis can be used, such as composites with Al, alloys of Al, and nitrides.
Naturally, the present invention also includes the diffusion of the catalyst substance in this case, where it reacts with HBN to form a new catalyst. The amount of catalyst diffused is
A suitable amount is 0.01 to 0.5 mol per 1 mol of HBN. One feature of the present invention is that it uses a catalyst substance diffused into an HBN molded body. The reason why the present invention is more effective in achieving the above object than the known methods of mixing and molding these two methods is considered to be as follows. (1) Purity of reaction surface In mixed powders, the surfaces of HBN and catalyst particles are often exposed to the external atmosphere. Therefore, the activity on the surface of these particles is likely to be lost. (2) In the case of diffusion, the mixing is uniform.While mixed powders are mixed on the particle order, diffusion is mixed on the atomic order, resulting in extremely uniform mixing. Therefore, the catalyst is always evenly supplied to the seeds, and the isotropic raw material supply necessary for producing good crystals of CBN is achieved. Another advantage of the present invention is that the HBN molded body can be used in the form of a thin plate. Since HBN is difficult to sinter, it must be fired at a high temperature if it is to be made into a molded body. A thin plate is usually produced by cutting this molded body. However, since catalysts cannot be fired at such high temperatures, HBN mixed with catalysts must be fired at low temperatures, and the strength of the compact is insufficient, making it difficult to cut into thin plates. There is,
It is also difficult to form it into a thin plate from the beginning. On the other hand, the catalyst diffusion method does not have such limitations, so thin plates of HBN can be easily obtained. This is extremely advantageous when the CBN seeds are arranged at equal intervals in the compact. In the evenly spaced arrangement, the CBN seeds are effectively confined to the surface arrangement of the compact. In this case, a large number of thin plates can be stacked and used, greatly improving productivity. Synthesis of CBN is carried out using an ultra-high pressure device such as a belt type or girdle type under the stable range of CBN, and particularly preferred is a range of 40 to 60 Kb and 1300 to 1800°C. The synthesis time is finally obtained
For grains smaller than 300μ, wait 10 to 60 minutes or longer.
Some require about 10 hours. The synthesized product is processed by known methods such as pickling and alkali melting to remove catalyst and unreacted products.
By removing HBN, CBN is separated and extracted. Example 1 An HBN molded body was processed into a thin disc shape (diameter 25
mm, thickness 1.0mm). This disk was synthesized in advance
Buried in LiCaBN2 catalyst powder, 850 °C in N2 atmosphere
heated for 24 hours. It contained about 5 mol% of LiCaBN 2 diffused. (Measured from the increase in weight excluding the adhesion) Using a tsurugisan, the distance between the front, back, left and right (center distance)
A small hole with a diameter of 1 mm, a hole diameter of 130 μm, and a depth of 80 μm was made, and one CBN seed of about 100 μm was charged into each small hole, and 35 of these disks were stacked and loaded into a belt-type high-pressure device. The synthesis conditions were: first, the pressure was raised to 50Kb, then the temperature was raised to 1500℃, held for 2 minutes, and then 57Kb was generated in 30 minutes.
The pressure was increased to After the temperature was lowered, the pressure was returned to atmospheric pressure. The product is taken out from the high-pressure equipment, first treated with hydrochloric acid to remove the catalyst, and then treated with an alkali melting method.
HBN was removed and CBN particles were extracted. In addition, when observing the cross section of the product under a microscope, it was found that the seeds had grown.
Only CBN occurred, and no new outbreaks were observed.
The resulting particles were yellow-orange, blocky particles with an average diameter of 300 μm. For comparison, the amount of the catalyst corresponding to the amount of diffusion was
Mix it with HBN, mold it and use the seeds in the same way.
Synthesized CBN. However, since it is difficult to form a thin plate with a thickness of 1 mm using powder molding, the thickness was reduced to 5 mm.
CBN seeds were placed therein in the same manner as in Example 1. In this comparison, since there are fewer CBN seeds than in Example 1, the yield of CBN produced is naturally lower. This is an experiment to compare the variation in particle size, shape, etc. of particles with those of the present invention. These results are shown below.

【表】 ブロツキー り、特に粗大粒に多
い。
実施例 2 実施例1と同様な方法でHBN円板にLi3BN2
拡散させた。但し拡散条件は700℃、N2中48時間
とした。Li3BN2が約20モル%拡散含有していた。
装置への充填方法は実例1と同様である。52Kb
迄昇圧後1550℃に昇温した後、1時間かけて
58Kb迄昇圧した。取出したCBNは粒形が400μ付
近に集中し、平滑な成長面をもつた黄色透明なブ
ロツキーなものであつた。 実施例 3 HBN円板(大きさは実施例1と同じ)を
Ca3B2N4粉末と混合し、N2中900℃で24時間処理
した。Ca3B2N4が約7モル%拡散含有していた。
一方Co板(直径25mm、厚さ0.25mm)に、フオトエ
ツチ法により、間隔600μ、直径100μ、穴深60μの
穴を規則的に作つた。この中に粒径70〜90μの
CBN粒子を1粒/穴に入れ、上記HBN板と交互
に27組重ねてベルト型高圧装置中に装填した。 合成条件は先ず50Kb、1550℃で2分保持後60
分で57Kb迄昇圧した。温度を下げてから、圧力
を大気圧に戻した。常法によりCBN粒子を抽出
した。平均粒径が400μの黄色透明なブロツキー
粒が得られた。 実施例 4 HBN成型体(直径25mm、厚さ1.5mm)を
LiCaBN2粉末と混合しN2中750℃で60時間
LiCaBN2を拡散含有させた。LiCaBN2の拡散量
は約30mol%であつた。この円板に0.5φドリルで
前後左右の間隔2mm、深さ0.5〜0.7mmの穴を開け
た。 一方400μCBN粒子にCuコートを施し、ハンド
リング性を向上させた。コート後の粒径は410〜
420μであつた。このものを上記HBN円板の穴へ
1粒づつ入れたものを23枚積み重ね前記装置に装
填した。合成条件は先ず圧力を46Kb迄上げた後、
温度を1450℃にした。2分保持後、1時間で
57Kb迄昇圧し、5時間保持後、通常の方法で
CBNを取出した。平滑な平面を持つた相晶の整
つた黄橙色で1〜1.5mmのCBNが得られた。 実施例 5 アルミナ磁製管を炉内に入れ、長さ方向に温度
勾配を設けた。この管内にHBN円板(直径25
mm、厚さ1mm)とMg3N2粉末を離して配置し、
前者を1150℃、後者を1300℃とした。その際
HBN円板は小さい支持台に載せ、下面も大部分
雰囲気に直接触れるようにし、またMg3N2粉末
はモリブデンの容器(開放)に収納して配置し
た。アルミナ磁製管のMg3N2側よりN2ガスを流
して24時間保持した。その結果HBN成形体中に
Mg3N2が0.5重量%拡散含有した。これに70〜
90μmのCBN種子を実施例1と同様に配置した。
これを35枚積層してベルト型高圧装置に装填し、
先ず50Kb、1550℃で2分保持後、30分で56Kb迄
上昇した。温度を下げてから圧力を大気圧に戻
し、実施例1と同様にCBN粒子を抽出した。平
均粒径が320μでバラツキの少ない透明結晶が得
られた。 発明の効果 本発明によれば実施例で具体的に示すように粒
子の成長が大きく、従つて生産量の増大をもたら
し、また粒度のバラツキも小さい。さらに形状的
にも結晶面の整つたブロツキーでタフな砥粒が生
成する。又原料の均一補給が可能なため、従来よ
りも形の整つた粗大粒が得られる。 またHBN成形体を薄く加工することができ、
これに触媒の拡散、種子の規則的配置(等間隔配
置)を行ない、これを多数積層して用いることが
できるので生産性が向上する。
[Table] Brodsky, especially large grains.
stomach.
Example 2 Li 3 BN 2 was diffused into an HBN disk in the same manner as in Example 1. However, the diffusion conditions were 700°C and N 2 for 48 hours. About 20 mol% of Li 3 BN 2 was diffusely contained.
The method of filling the device is the same as in Example 1. 52Kb
After increasing the pressure to 1550℃, the temperature was increased for 1 hour.
Boosted to 58Kb. The CBN taken out had a grain shape concentrated around 400μ, and was a transparent yellow Brodsky grain with a smooth growth surface. Example 3 HBN disk (same size as Example 1)
Mixed with Ca 3 B 2 N 4 powder and treated at 900 °C in N 2 for 24 h. About 7 mol% of Ca 3 B 2 N 4 was diffusely contained.
On the other hand, holes with an interval of 600 μm, a diameter of 100 μm, and a hole depth of 60 μm were regularly made in a Co plate (diameter 25 mm, thickness 0.25 mm) using the photo etching method. This contains particles with a particle size of 70 to 90μ.
One CBN particle was placed in each hole, and 27 sets of the above HBN plates were stacked alternately and loaded into a belt-type high-pressure device. Synthesis conditions are first 50Kb, held at 1550℃ for 2 minutes, then 60Kb.
Boosted to 57Kb in minutes. After the temperature was lowered, the pressure was returned to atmospheric pressure. CBN particles were extracted using a conventional method. Yellow transparent Brodsky grains with an average grain size of 400μ were obtained. Example 4 HBN molded body (diameter 25 mm, thickness 1.5 mm)
Mixed with LiCaBN 2 powder in N 2 at 750 °C for 60 h
LiCaBN 2 was diffused and contained. The amount of LiCaBN 2 diffused was about 30 mol%. Holes with a distance of 2 mm from front to back and left to right and a depth of 0.5 to 0.7 mm were drilled in this disk using a 0.5φ drill. On the other hand, 400μCBN particles were coated with Cu to improve their handling properties. Particle size after coating is 410 ~
It was 420μ. One grain of this material was put into each hole of the HBN disc, and 23 discs were stacked and loaded into the device. The synthesis conditions were to first increase the pressure to 46Kb, then
The temperature was 1450°C. After holding for 2 minutes, in 1 hour
Increase the pressure to 57Kb, hold it for 5 hours, and then use the usual method.
I took out CBN. A yellow-orange CBN with a smooth plane and well-organized phase crystals and a thickness of 1 to 1.5 mm was obtained. Example 5 An alumina porcelain tube was placed in a furnace, and a temperature gradient was created in the length direction. Inside this tube is an HBN disc (diameter 25
mm, thickness 1 mm) and Mg 3 N 2 powder are placed apart,
The former was set at 1150°C, and the latter at 1300°C. that time
The HBN disk was placed on a small support stand with most of its bottom surface directly exposed to the atmosphere, and the Mg 3 N 2 powder was placed in a molybdenum container (open). N 2 gas was flowed from the Mg 3 N 2 side of the alumina porcelain tube and maintained for 24 hours. As a result, in the HBN molded body
Mg 3 N 2 was contained 0.5% by weight diffused. 70~ for this
CBN seeds of 90 μm were placed as in Example 1.
35 sheets of this are stacked and loaded into a belt-type high-pressure device.
First, it was 50Kb and held at 1550°C for 2 minutes, and then increased to 56Kb in 30 minutes. After lowering the temperature, the pressure was returned to atmospheric pressure, and CBN particles were extracted in the same manner as in Example 1. Transparent crystals with an average particle size of 320μ with little variation were obtained. Effects of the Invention According to the present invention, as specifically shown in Examples, the growth of particles is large, resulting in an increase in production volume, and the variation in particle size is also small. Furthermore, it produces Brodsky and tough abrasive grains with well-organized crystal planes. Furthermore, since raw materials can be supplied uniformly, coarse grains with a better shape than before can be obtained. In addition, HBN molded bodies can be processed thinly,
In addition, the catalyst is diffused and the seeds are arranged regularly (equally spaced), and a large number of these can be stacked and used, thereby improving productivity.

Claims (1)

【特許請求の範囲】 1 六方晶窒化ホウ素の成形体を立方晶窒化ホウ
素の合成触媒中で加熱し、該触媒物質を前記成形
体中に拡散させ、これに立方晶窒化ホウ素の種子
を分散配置するか、又は立方晶窒化ホウ素の種子
を分散配置した六方晶窒化ホウ素成形体を立方晶
窒化ホウ素の合成触媒中で加熱し、該触媒物質を
前記成形体中に拡散させ、次いでこれらの成形体
を立方晶窒化ホウ素の安定域下で処理して前記種
子を成長させ、得られた生成物から立方晶窒化ホ
ウ素を分離することを特徴とする立方晶窒化ホウ
素の合成法。 2 立方晶窒化ホウ素の種子を規則的に分散配置
した特許請求の範囲第1項記載の立方晶窒化ホウ
素の合成法。
[Claims] 1. A hexagonal boron nitride molded body is heated in a cubic boron nitride synthesis catalyst, the catalyst material is diffused into the molded body, and cubic boron nitride seeds are dispersed therein. Alternatively, hexagonal boron nitride compacts having cubic boron nitride seeds dispersed therein are heated in a cubic boron nitride synthesis catalyst to diffuse the catalyst material into the compacts; A method for synthesizing cubic boron nitride, characterized in that the seeds are grown by treating them under the stability range of cubic boron nitride, and the cubic boron nitride is separated from the obtained product. 2. The method for synthesizing cubic boron nitride according to claim 1, wherein seeds of cubic boron nitride are regularly dispersed.
JP23745884A 1984-11-13 1984-11-13 Synthesis of cubic boron nitride Granted JPS61117106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23745884A JPS61117106A (en) 1984-11-13 1984-11-13 Synthesis of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23745884A JPS61117106A (en) 1984-11-13 1984-11-13 Synthesis of cubic boron nitride

Publications (2)

Publication Number Publication Date
JPS61117106A JPS61117106A (en) 1986-06-04
JPH052369B2 true JPH052369B2 (en) 1993-01-12

Family

ID=17015636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23745884A Granted JPS61117106A (en) 1984-11-13 1984-11-13 Synthesis of cubic boron nitride

Country Status (1)

Country Link
JP (1) JPS61117106A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA901859B (en) * 1989-06-16 1991-08-28 Gen Electric Process for preparing polycrystalline cubic boron nitride and resulting product
KR920004181B1 (en) * 1990-09-13 1992-05-30 한국과학기술연구원 Process for the production of cubic horon nitride
CA2056509A1 (en) * 1991-05-03 1992-11-04 Francis R. Corrigan Process for preparing polycrystalline cubic boron nitride and resulting product
US6627168B1 (en) 1999-10-01 2003-09-30 Showa Denko Kabushiki Kaisha Method for growing diamond and cubic boron nitride crystals

Also Published As

Publication number Publication date
JPS61117106A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
US4547257A (en) Method for growing diamond crystals
US7585366B2 (en) High pressure superabrasive particle synthesis
KR100503541B1 (en) Sintering process for diamond and diamond growth
US3233988A (en) Cubic boron nitride compact and method for its production
JPS6320792B2 (en)
US20030044613A1 (en) Self-grown monopoly compact grit
KR101603032B1 (en) Process for manufacturing synthetic single crystal diamond material
KR20060132973A (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
US20100166635A1 (en) Interrupted Diamond Growth
JP6281955B2 (en) Functionalization of cubic boron nitride and manufacturing method thereof
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPH052369B2 (en)
CN107820441B (en) The monocrystalline state diamond particles and its manufacturing method of the particle containing cubic boron nitride
US20100272627A1 (en) Multi-Faceted Diamond and Associated Methods
JPS60131811A (en) Method for synthesizing boron nitride
JP2645719B2 (en) Diamond synthesis method
JPH0433489B2 (en)
JPH0314495B2 (en)
JPS6357099B2 (en)
JP4190196B2 (en) Diamond synthesis method
JPH0594B2 (en)
JPS5938164B2 (en) Manufacturing method of cubic boron nitride
US8454714B2 (en) Diamond growth devices and methods
JPH0347132B2 (en)
JPH04300300A (en) Unsupported sintered cubic integrally bonded boron nitride/diamond molding and method of manufacuring same