JPH0595B2 - - Google Patents

Info

Publication number
JPH0595B2
JPH0595B2 JP15127684A JP15127684A JPH0595B2 JP H0595 B2 JPH0595 B2 JP H0595B2 JP 15127684 A JP15127684 A JP 15127684A JP 15127684 A JP15127684 A JP 15127684A JP H0595 B2 JPH0595 B2 JP H0595B2
Authority
JP
Japan
Prior art keywords
cbn
parts
weight
hbn
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15127684A
Other languages
Japanese (ja)
Other versions
JPS6131306A (en
Inventor
Masakazu Maki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15127684A priority Critical patent/JPS6131306A/en
Publication of JPS6131306A publication Critical patent/JPS6131306A/en
Publication of JPH0595B2 publication Critical patent/JPH0595B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は研削材、切削材等に用いられる立方晶
窒化ホウ素(以下CBNという)の製造法に関す
る。 (従来技術) 一般にCBNは六方晶窒化ホウ素(以下HBNと
いう)からCBNの熱力学安定域である高温、高
圧下で製造される。 CBNはダイヤモンドに次ぐ硬さを有し、しか
も化学的安定性、特に鉄系被削材に対し安定性が
ダイヤモンドより優れているため研削材としての
需要が増大している。 CBNの工業的製造方法としてはHBN粉末と触
媒粉末(アルカリ金属、アルカリ土類金属及びそ
の窒化物、合金、又はホウ窒化物が知られてい
る)を混合し1300〜1600℃、40〜60kbarの高温、
高圧を加える方法が行なわれている。 ところで研削材としてのCBN粒子は緻密で透
明性が良く、鋭い切刃を有し圧壊強度の高い良質
なものであることが望ましい。しかし従来の方法
では必ずしも充分な品質のものが得られていない
のが実情である。特願昭58−73359にはHBNに
対しSiとして0.01〜1.0重量%添加することで上記
目的を満足するCBN砥粒が得られることが記載
されているが、HBNとの混合が機械的混合であ
るため完全に均一に混合されず、Siの効果を出す
ために過剰のSi分を添加しなくてはならず、収率
の低下をもたらす結果となつている。 (発明の目的) 本発明は上記の事情に鑑み、粒子の角が鋭い切
刃となつており、結晶の(111)面が発達した強
靭なCBNを提供することを目的とする。さらに
他の目的は比較的取扱い易い触媒を使用して自形
性に優れたCBNを提供することにある。 (発明の構成) 本発明の要旨はHBNからCBNを合成する方法
において、LiMBN2(Mはアルカリ土類金属)と
Ca5Si2N6を触媒として用いることにある。Siが
触媒物質中に含有されているため、CBN合成時
にSiが均一に作用し、CBN粒子の角が鋭い切刃
をもち、かつ強靭なCBNを得ることができる。
同様の効果はCa5Si2N6の代りにLi8SiN4を用いて
も得られるが、Ca5Si2N6の場合はさらに自形性
の優れたCBNとなる効果を有する。また
Ca5Si2N6はLi8SiN4より水分に対して安定性が大
であり、取扱いが容易である。 Ca5Si2N6はBNの溶解度は小さいが触媒作用が
あるので過剰に入れてもCBNの成長が抑制され
ることは少ない。 以下本発明を詳しく説明する。 本発明は触媒としてLiMBN2とCa5Si2N6を用
いるが、これらは粉末にして所定量HBN粉末に
混合する。上記でMはアルカリ土類金属である
が、好ましくはCa、Ba、Srである。 LiMBN2の製法は1例としてLi3N、M3N2
BNを出発物質とし、これらを前記の順にモル比
で1〜1.4:1〜1.4:3の割合で混合し、加熱溶
解して反応させる。溶解温度より約200℃高い温
度が適当である。溶解温度は前記の組成で約800
〜1000℃である。上記の温度で約1時間保持した
後冷却すればLiMBN2が得られる。 Ca5SiN6の製法はCa3N2:Si3N4を2.5〜3:1
の割合で混合し、不活性ガス中で約1000℃に1時
間程度保持して反応させればよい。 上記2種の触媒は不活性ガス雰囲気下で150メ
ツシユ以下に粉砕して用いる。 触媒の使用量はHBN100重量部に対し、
LiMBN25〜50重量部、望ましくは10〜30重量部
である。5重量部未満ではCBNの収率が低下し、
50重量部を越えるとCBNの良品が得られない。 またCa5Si2N6はHBN100重量部に対し、0.01〜
5.0重量部、望ましくは0.05〜20重量部である。
0.01重量部未満ではCBNに鋭い切刃を形成させ
る効果が少なく、丸味をもつた形状となり5.0重
量部を越えるとCBNの収率が低下する。 CBNの合成に際して原料HBN及び上記触媒の
構成方法としては、これら3者を所定量均一に混
合し、圧粉成形する方法、Li8SiN4をHBN又は
LiMBN2に混合し、夫々圧粉成形して薄板とな
し、所定の比率になるように積層する方法などが
採用される。 本発明においては触媒は予じめLiMBN2
Ca5Si2N6を合成しておくことが重要である。こ
れらの構成成分を用いてCBNを合成すれば、そ
の昇温過程で上記と同じ触媒化合物が生成するこ
とは考えられるが、その方法では構成成分を触媒
とした結晶が得られてしまう。Li3N、M3N2のみ
から生成する結晶は自形性の優れた透明感のある
結晶は得られない。 上記成形体或いは積層体は周知の高温、高圧装
置に装填され、所定の条件に保持されてCBNが
合成される。合成はCBNの熱力学的安定域であ
る1300℃〜1600℃、40〜60Kbarの条件で行なわ
れる。 (効果) 本発明の方法によれば成長するCBN粒子内に
微量のSiが取り込まれ、それが特定面に現れるの
で結晶の(111)面が発達して粒子の角が鋭くな
り、またSiとCBNが固溶体となつて格子定数が
大きくなり、CBN粒子が強靭となる。さらに
CBN粒子は偏平粒が殆んどなく、自形性に優れ
たものとなる。 このため本発明の砥粒を使用すれば研削比の向
上、使用電力の削減をもたらす。 さらに本発明においては触媒物質にSiが含まれ
ているため、CBN合成時にSiが均一に作用し、
Si又は触媒でないSi化合物を混合する場合に較べ
Si量が少なくてすみ、CBNの収率低下を来たす
ことがない。 以下、実施例、比較例を示し、本発明の作用効
果を明確にする。 実施例 325メツシユ以下のHBN、LiCaBN2
Ca5Si2N6を重量比で100:10:1の割合で混合
し、成形圧1.5t/cm2で26mmφ×32mmhの円柱状に
成形した。その密度は1.72g/cm3であつた。これ
を高温、高圧反応器に装填し、圧力50kbar、温
度1450℃の条件で10分保持し、CBNを合成した。
その結果CBNのHBNに対する変換率は32%であ
つた。粒子を顕微鏡で観察すると角が鋭く切刃を
有しているのが見られた。 比較例 Ca5Si2N6を使用しない以外は実施例と同じに
してCBNを合成した。変換率は実施例と変らな
かつたが、粒子の角の鋭さがやや劣つていた。 上記実施例、比較例のCBN粒子をそれぞれ
JIS、B4130の方法で分級し、#120/140のCBN
粒子を得た。次いでそれぞれの粒子によつて砥石
を作成して砥削比および使用動力を比較した。 砥石の作成方法は、先ずCBNの#120/140粒
度の粒子をNi/(Ni+CBN)が60%となるよう
にNiメツキを施し、このNiメツキしたCBN粒子
35部、フエノール樹脂25部、微粉炭化けい素40部
を混合、成形し、熱硬化させ砥石とした。 これらの砥石を用いて研削試験を行なつた。研
削試験に使用した鋼種は、特殊鋼SKH−57
(HRc64)を用い、砥石周速度1500m/min、切
込み20μm、テーブル送り15m/分、クロス送り
2mm/パスで湿式平面研削により、研削比(=研
削量/砥石の摩耗量)、及びその場合の使用電力
Wを比較した。その結果を次の表に示す。
(Technical Field) The present invention relates to a method for producing cubic boron nitride (hereinafter referred to as CBN) used for abrasive materials, cutting materials, etc. (Prior Art) Generally, CBN is produced from hexagonal boron nitride (hereinafter referred to as HBN) at high temperatures and high pressures, which are the thermodynamic stability range of CBN. CBN has a hardness second only to diamond, and its chemical stability, especially with respect to ferrous work materials, is superior to that of diamond, so demand for it as an abrasive is increasing. An industrial method for producing CBN is to mix HBN powder and catalyst powder (alkali metals, alkaline earth metals and their nitrides, alloys, or boronitrides) and heat the mixture at 1300-1600℃ and 40-60kbar. high temperature,
A method of applying high pressure is being used. By the way, it is desirable that the CBN particles used as the abrasive be of high quality, dense and transparent, have sharp cutting edges, and have high crushing strength. However, the reality is that conventional methods do not necessarily yield products of sufficient quality. Patent Application No. 73359/1989 states that CBN abrasive grains that satisfy the above objectives can be obtained by adding 0.01 to 1.0% by weight of Si to HBN, but it is not possible to obtain CBN abrasive grains that satisfy the above objectives by mechanically mixing. As a result, they are not mixed completely uniformly, and in order to obtain the effect of Si, it is necessary to add an excess amount of Si, resulting in a decrease in yield. (Objective of the Invention) In view of the above circumstances, an object of the present invention is to provide a strong CBN in which the corners of the particles form sharp cutting edges and the (111) crystal planes are developed. Still another object is to provide CBN with excellent esomorphism using a relatively easy-to-handle catalyst. (Structure of the Invention) The gist of the present invention is to provide a method for synthesizing CBN from HBN, in which LiMBN 2 (M is an alkaline earth metal) and
The purpose is to use Ca 5 Si 2 N 6 as a catalyst. Since Si is contained in the catalyst material, Si acts uniformly during CBN synthesis, allowing CBN particles to have sharp cutting edges and strong CBN.
A similar effect can be obtained by using Li 8 SiN 4 instead of Ca 5 Si 2 N 6 , but Ca 5 Si 2 N 6 has the effect of producing CBN with even better euhedral properties. Also
Ca 5 Si 2 N 6 has greater stability against moisture than Li 8 SiN 4 and is easier to handle. Although Ca 5 Si 2 N 6 has a low solubility in BN, it has a catalytic effect, so even if it is added in excess, the growth of CBN is hardly inhibited. The present invention will be explained in detail below. The present invention uses LiMBN 2 and Ca 5 Si 2 N 6 as catalysts, which are powdered and mixed with a predetermined amount of HBN powder. In the above, M is an alkaline earth metal, preferably Ca, Ba, or Sr. One example of the manufacturing method for LiMBN 2 is Li 3 N, M 3 N 2 ,
Using BN as a starting material, these are mixed in the above order at a molar ratio of 1 to 1.4:1 to 1.4:3, and the mixture is heated and dissolved to react. A temperature of about 200°C above the melting temperature is suitable. The melting temperature is approximately 800℃ for the above composition.
~1000℃. LiMBN 2 can be obtained by holding at the above temperature for about 1 hour and then cooling. The manufacturing method for Ca 5 SiN 6 is to mix Ca 3 N 2 :Si 3 N 4 in a ratio of 2.5 to 3:1.
They may be mixed at a ratio of 1,000° C. and kept at about 1000° C. for about 1 hour in an inert gas to react. The two types of catalysts mentioned above are used after being ground to 150 mesh or less under an inert gas atmosphere. The amount of catalyst used is based on 100 parts by weight of HBN.
LiMBN 2 5 to 50 parts by weight, preferably 10 to 30 parts by weight. If it is less than 5 parts by weight, the yield of CBN decreases,
If it exceeds 50 parts by weight, a good CBN product cannot be obtained. In addition, Ca 5 Si 2 N 6 is 0.01 to 100 parts by weight of HBN.
The amount is 5.0 parts by weight, preferably 0.05 to 20 parts by weight.
If it is less than 0.01 parts by weight, the effect of forming a sharp cutting edge in CBN is small and the shape becomes rounded, and if it exceeds 5.0 parts by weight, the yield of CBN decreases. When synthesizing CBN, the raw material HBN and the above-mentioned catalyst can be constructed by uniformly mixing a predetermined amount of these three materials and compacting, or by mixing Li 8 SiN 4 with HBN or the above catalyst.
The method used is to mix it with LiMBN 2 , compact it into a thin plate, and then stack it in a predetermined ratio. In the present invention, the catalyst is previously LiMBN 2 ,
It is important to synthesize Ca 5 Si 2 N 6 in advance. If CBN were synthesized using these components, it is possible that the same catalyst compound as above would be produced during the heating process, but that method would result in crystals catalyzed by the components. Crystals produced only from Li 3 N and M 3 N 2 cannot provide transparent crystals with excellent euhorphism. The above-mentioned molded body or laminate is loaded into a well-known high-temperature, high-pressure device and maintained under predetermined conditions to synthesize CBN. The synthesis is carried out under conditions of 1300°C to 1600°C and 40 to 60 Kbar, which are the thermodynamic stability range of CBN. (Effects) According to the method of the present invention, a small amount of Si is incorporated into the growing CBN particles, and it appears on a specific plane, so the (111) plane of the crystal develops and the corners of the particle become sharp. CBN becomes a solid solution, the lattice constant increases, and the CBN particles become tougher. moreover
CBN grains have almost no oblate grains and have excellent self-shape properties. Therefore, use of the abrasive grains of the present invention improves the grinding ratio and reduces power consumption. Furthermore, in the present invention, since Si is included in the catalyst material, Si acts uniformly during CBN synthesis.
Compared to mixing Si or a non-catalytic Si compound,
Only a small amount of Si is required, and the yield of CBN does not decrease. Examples and comparative examples will be shown below to clarify the effects of the present invention. Example: HBN of 325 meshes or less, LiCaBN 2 ,
Ca 5 Si 2 N 6 was mixed at a weight ratio of 100:10:1 and molded into a cylindrical shape of 26 mmφ×32 mmh at a molding pressure of 1.5 t/cm 2 . Its density was 1.72 g/cm 3 . This was loaded into a high temperature, high pressure reactor and maintained at a pressure of 50 kbar and a temperature of 1450°C for 10 minutes to synthesize CBN.
As a result, the conversion rate of CBN to HBN was 32%. When the particles were observed under a microscope, they were found to have sharp edges. Comparative Example CBN was synthesized in the same manner as in Example except that Ca 5 Si 2 N 6 was not used. Although the conversion rate was the same as in the example, the sharpness of the particle corners was slightly inferior. CBN particles of the above examples and comparative examples, respectively.
Classified according to JIS, B4130 method, #120/140 CBN
Particles were obtained. Next, grinding wheels were made using each particle, and the grinding ratio and power used were compared. The method for making a grindstone is to first plate CBN #120/140 particles so that Ni/(Ni+CBN) is 60%, and then use the Ni-plated CBN particles.
35 parts of phenolic resin, 25 parts of phenolic resin, and 40 parts of finely divided silicon carbide were mixed, molded, and heat-cured to form a grindstone. Grinding tests were conducted using these grindstones. The steel type used in the grinding test was special steel SKH-57.
(HRc64), grinding ratio (= grinding amount / grinding wheel wear amount) and the The power consumption W was compared. The results are shown in the table below.

【表】 これより本発明の方法によつて合成したCBN
粒子によつて作成した砥石の研削性能が優れてい
ることがわかる。
[Table] CBN synthesized by the method of the present invention
It can be seen that the grindstone made with particles has excellent grinding performance.

Claims (1)

【特許請求の範囲】 1 六方晶窒化ホウ素から高温、高圧下で立方晶
窒化ホウ素を製造する方法において、触媒として
LiMBN2(但し、Mはアルカリ土類金属)と
Ca5Si2N6を用いることを特徴とする方法。 2 六方晶窒化ホウ素100重量部に対し、
LiMBN25〜50重量部、Ca5Si2N60.01〜5.0重量部
を用いる特許請求の範囲第1項記載の方法。
[Claims] 1. In a method for producing cubic boron nitride from hexagonal boron nitride at high temperature and under high pressure, as a catalyst
LiMBN 2 (where M is an alkaline earth metal) and
A method characterized by using Ca 5 Si 2 N 6 . 2 For 100 parts by weight of hexagonal boron nitride,
The method according to claim 1, wherein 5 to 50 parts by weight of LiMBN 2 and 0.01 to 5.0 parts by weight of Ca 5 Si 2 N 6 are used.
JP15127684A 1984-07-23 1984-07-23 Preparation of cubic boron nitride Granted JPS6131306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15127684A JPS6131306A (en) 1984-07-23 1984-07-23 Preparation of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15127684A JPS6131306A (en) 1984-07-23 1984-07-23 Preparation of cubic boron nitride

Publications (2)

Publication Number Publication Date
JPS6131306A JPS6131306A (en) 1986-02-13
JPH0595B2 true JPH0595B2 (en) 1993-01-05

Family

ID=15515137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15127684A Granted JPS6131306A (en) 1984-07-23 1984-07-23 Preparation of cubic boron nitride

Country Status (1)

Country Link
JP (1) JPS6131306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014826B2 (en) 2001-03-27 2006-03-21 Showa Dendo K.K. Method for producing cubic boron nitride and product obtained through the method
EP2177585A1 (en) 2003-08-20 2010-04-21 Showa Denko K.K. Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160898B2 (en) 2003-12-25 2008-10-08 住友電工ハードメタル株式会社 High strength and high thermal conductivity cubic boron nitride sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014826B2 (en) 2001-03-27 2006-03-21 Showa Dendo K.K. Method for producing cubic boron nitride and product obtained through the method
EP2177585A1 (en) 2003-08-20 2010-04-21 Showa Denko K.K. Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact
US7703710B2 (en) 2003-08-20 2010-04-27 Showa Denko K.K. Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact

Also Published As

Publication number Publication date
JPS6131306A (en) 1986-02-13

Similar Documents

Publication Publication Date Title
JP4684599B2 (en) Method for producing cubic boron nitride
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
US5837214A (en) Method for producing cubic boron nitride
US7014826B2 (en) Method for producing cubic boron nitride and product obtained through the method
ZA200505431B (en) Cubic boron nitride abrasive grains and method for producing the same, and grindstone and polishing cloth or paper using the same
JP3908259B2 (en) Cubic boron nitride synthesis catalyst
JPH0594B2 (en)
JP6192253B1 (en) Cubic boron nitride particle-containing single crystalline diamond particles and method for producing the same
JP2002284511A (en) Method for manufacturing cubic boron nitride
JPH0595B2 (en)
CA1157626A (en) Process for growing diamonds
JP4223518B2 (en) Cubic boron nitride abrasive and method for producing cubic boron nitride abrasive
JP2728491B2 (en) Method for producing cubic boron nitride sintered body and method for producing abrasive grains thereof
JPS6225601B2 (en)
JP4183317B2 (en) Method for producing cubic boron nitride
JPS5957905A (en) Production of cubic boron nitride
JPH02164433A (en) Manufacture of polycrystalline cubic boron nitride particles
JPS59199514A (en) Synthesis of boron nitride of cubic system
JPS6130641A (en) Production of sintered abrasive grain consisting of cubic boron nitride
JPS6225602B2 (en)
JP3563879B2 (en) Method for producing cubic boron nitride
JPH0450273B2 (en)
JPH0342933B2 (en)
JP2000290005A (en) Production of cubic boron nitride
JPS60191010A (en) Method for synthesizing cubic boron nitride