JP2987415B2 - Method for producing boron nitride - Google Patents

Method for producing boron nitride

Info

Publication number
JP2987415B2
JP2987415B2 JP3021345A JP2134591A JP2987415B2 JP 2987415 B2 JP2987415 B2 JP 2987415B2 JP 3021345 A JP3021345 A JP 3021345A JP 2134591 A JP2134591 A JP 2134591A JP 2987415 B2 JP2987415 B2 JP 2987415B2
Authority
JP
Japan
Prior art keywords
boron nitride
matrix
cubic boron
sample
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3021345A
Other languages
Japanese (ja)
Other versions
JPH04349931A (en
Inventor
修三 藤原
勝敏 青木
正典 吉田
洋三 角舘
州 薄葉
浩 山脇
茂 藤原
恭一郎 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3021345A priority Critical patent/JP2987415B2/en
Publication of JPH04349931A publication Critical patent/JPH04349931A/en
Application granted granted Critical
Publication of JP2987415B2 publication Critical patent/JP2987415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、動的高圧力を利用して
低圧相窒化ほう素から高圧相窒化ほう素を製造する方法
に関する。
The present invention relates to a method for producing high-pressure boron nitride from low-pressure boron nitride using dynamic high pressure.

【0002】[0002]

【従来の技術】窒化ほう素は、優れた特性を有するセラ
ミックスの一つであり、新しい機能材料として広く使用
されるようになってきている。このうち、高圧相窒化ほ
う素である立方晶窒化ほう素は、ダイヤモンドと同程度
の硬度をもち、切削工具や研磨剤として用途拡大が期待
されているものであるが、六方晶窒化ほう素等の低圧相
窒化ほう素に静的高圧力あるいは動的高圧力を作用させ
て転移させることによって製造されている。
2. Description of the Related Art Boron nitride is one of ceramics having excellent characteristics, and has been widely used as a new functional material. Among them, cubic boron nitride, which is high-pressure phase boron nitride, has the same hardness as diamond and is expected to be used in a wide range of applications as cutting tools and abrasives. Is produced by applying a static high pressure or a dynamic high pressure to low-pressure boron nitride.

【0003】静的高圧力を用いる方法では、アルカリ金
属やアルカリ土類金属の窒化物を触媒として六方晶窒化
ほう素から立方晶窒化ほう素が製造され、工業生産も行
われている。
In the method using a static high pressure, cubic boron nitride is produced from hexagonal boron nitride by using a nitride of an alkali metal or an alkaline earth metal as a catalyst, and is also industrially produced.

【0004】また、火薬類の爆発あるいは高速の飛翔体
の衝突等により発生する衝撃波にともなう動的高圧力を
利用して各種の低圧相窒化ほう素から立方晶窒化ほう素
を製造する方法も多数報告されているが、転換率や工業
的プロセスの面で問題が多い。これらの製造方法では、
一般に、衝撃圧力を高めるために原料の低圧相窒化ほう
素と金属粉末等のマトリックスを混合して衝撃圧縮して
いる。原料の低圧相窒化ほう素としては六方晶窒化ほう
素が最も一般的であるが、この場合には1回の衝撃圧縮
では立方晶窒化ほう素はほとんど生成せず、立方晶窒化
ほう素と六方晶窒化ほう素の中間相であるウルツ型窒化
ほう素が生成し、このウルツ型窒化ほう素を再度衝撃圧
縮するという作業を繰り返すことによって立方晶窒化ほ
う素がすこしずつ増えていき、衝撃圧縮を2〜3回繰り
返してようやくX線回折ピークが僅かに認められる程度
になる。従って原料から立方晶窒化ほう素への転換率を
充分に高くするにはかなりの回数の衝撃圧縮を繰り返す
必要があるため工業的な生産方法としては不適当であっ
た。
Further, there are many methods for producing cubic boron nitride from various low-pressure phase boron nitrides by utilizing dynamic high pressure caused by shock waves generated by explosives of explosives or collision of a high-speed projectile. Although reported, there are many problems with conversion rates and industrial processes. In these manufacturing methods,
Generally, in order to increase the impact pressure, a low pressure phase boron nitride as a raw material and a matrix such as a metal powder are mixed and subjected to impact compression. Hexagonal boron nitride is the most common low-pressure phase boron nitride as a raw material, but in this case, cubic boron nitride is hardly produced by one impact compression, and cubic boron nitride and hexagonal boron nitride are hardly formed. The wurtz-type boron nitride, which is the intermediate phase of crystalline boron nitride, is generated, and the work of shock-compressing the wurtz-type boron nitride is repeated, whereby the cubic boron nitride increases little by little, and the impact compression is reduced. Only after a few repetitions are the X-ray diffraction peaks slightly noticeable. Therefore, impact compression must be repeated a considerable number of times in order to sufficiently increase the conversion rate of the raw material to cubic boron nitride, which is unsuitable as an industrial production method.

【0005】この他に、原料としてアモルファス状窒化
ほう素や菱面体窒化ほう素を用いる方法も知られてお
り、この場合は1回の衝撃圧縮により立方晶窒化ほう素
が得られるが、原料として用いるアモルファス状窒化ほ
う素や菱面体窒化ほう素が特殊な製造工程を必要とする
ため、原料の確保にも問題があった。
[0005] In addition, a method using amorphous boron nitride or rhombohedral boron nitride as a raw material is also known. In this case, cubic boron nitride can be obtained by a single impact compression. Since the amorphous boron nitride and the rhombohedral boron nitride require a special manufacturing process, there is also a problem in securing the raw materials.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の動的
高圧力を利用した立方晶窒化ほう素の製造方法における
前記問題点を解決し、特殊な製造方法工程を要する原料
を必要とせず、かつ1回の衝撃圧縮のみで高転換率で立
方晶窒化ほう素を得ることができる製造方法を提供する
ことをその課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the conventional method for producing cubic boron nitride utilizing dynamic high pressure, and does not require a raw material requiring a special production method step. It is another object of the present invention to provide a production method capable of obtaining cubic boron nitride at a high conversion rate by only one impact compression.

【0007】[0007]

【課題を解決するための手段】本発明者らは、低圧相窒
化ほう素から衝撃圧縮法により立方晶窒化ほう素を製造
する方法について鋭意検討した結果、マトリックスとし
て添加する粒子の形状が低圧相窒化ほう素から立方晶窒
化ほう素への転換率に大きな影響を与えることを見出
し、本発明を完成した。すなわち本発明は、低圧相窒化
ほう素をマトリックス中に均一に分散させた混合物に動
的高圧力を作用させ、低圧相窒化ほう素を高圧相窒化ほ
う素へと転移せしめるにあたり、該マトリックスとして
球状の粒子を使用することを特徴とする高圧相窒化ほう
素の製造方法である。
Means for Solving the Problems The present inventors have conducted intensive studies on a method of producing cubic boron nitride from a low-pressure phase boron nitride by an impact compression method. The present inventors have found that the conversion rate from boron nitride to cubic boron nitride is greatly affected, and completed the present invention. That is, the present invention applies a dynamic high pressure to a mixture in which low-pressure phase boron nitride is uniformly dispersed in a matrix to transfer low-pressure phase boron nitride to high-pressure phase boron nitride. A method for producing high-pressure phase boron nitride, characterized by using the following particles.

【0008】本発明においては、原料の低圧相窒化ほう
素として、望ましくは粒子径が100μm 以下で、粒子
形状が球形に近い六方晶窒化ほう素を使用する。六方晶
窒化ほう素の粒径が小さく、また、形状が球形に近い方
が立方晶窒化ほう素への転換率が向上する傾向があるの
で好ましい。中間相であるウルツ型窒化ほう素も使用す
ることができる。
In the present invention, hexagonal boron nitride having a particle diameter of 100 μm or less and a particle shape close to spherical is preferably used as the low-pressure phase boron nitride as a raw material. It is preferable that the hexagonal boron nitride has a small particle size and a shape close to a sphere because the conversion rate to cubic boron nitride tends to be improved. An intermediate phase, wurtz-type boron nitride, can also be used.

【0009】マトリックスは、圧力媒体として作用し、
衝撃圧縮力を増幅させる効果を有し、その材質として
は、銅、タングステン、鉄、ニッケル、コバルト等の金
属類あるいはアルカリ金属やアルカリ土類金属の炭酸
塩、硫酸塩、水酸化物等の無機化合物類を使用すること
ができる。本発明の方法においては、このマトリックス
として、粒子径が約10μm 〜500μm で、粒子形状
が球状、好ましくは真球に近いものを使用する。マトリ
ックスとして球状の粒子を使用することにより六方晶窒
化ほう素から立方晶窒化ほう素への転換率が大幅に向上
する理由としては、球状のマトリックス粒子が細密充填
されるとこれらの粒子に囲まれた試料が等方的に加圧さ
れ、良好な圧縮状態になるためと考えられる。
The matrix acts as a pressure medium,
It has the effect of amplifying the impact compression force, and its material is made of metals such as copper, tungsten, iron, nickel and cobalt or inorganic metals such as carbonates, sulfates and hydroxides of alkali metals and alkaline earth metals. Compounds can be used. In the method of the present invention, a matrix having a particle diameter of about 10 μm to 500 μm and a particle shape of a sphere, preferably a true sphere is used as the matrix. The reason that the conversion rate from hexagonal boron nitride to cubic boron nitride is greatly improved by using spherical particles as a matrix is that when spherical matrix particles are closely packed, they are surrounded by these particles. It is considered that the sample was pressed isotropically and brought into a good compression state.

【0010】本発明の方法においては、先ず、原料の六
方晶窒化ほう素の粉末とマトリックス成分の粉末とを、
望ましくは六方晶窒化ほう素50〜2重量%に対しマト
リックス成分が50〜98重量%となるような割合で均
一に混合する。次にこの原料混合物を金属製の容器に充
填する。金属製容器の材質としては、真鍮、ステンレス
スチール、クロム鋼等を用いることができ、その形状は
円管状、ポックス状等任意の形状とすることができる。
次に、金属製容器に充填した原料混合物に対し、各種の
衝撃圧縮処理装置、例えば特開昭58−93598号公
報、特開昭58−95546号公報、特開昭58−95
547号公報、特開昭58−104629号公報あるい
は特開平2−222723号公報等に詳述されている円
筒型や平面型の衝撃圧縮処理装置を用いて、爆薬の爆発
により駆動された高速の飛翔体の衝突により生じる高
温、高圧を伴う衝撃波により衝撃圧縮処理を施す。
In the method of the present invention, first, a powder of hexagonal boron nitride as a raw material and a powder of a matrix component are
Desirably, the matrix component is uniformly mixed at a ratio of 50 to 98% by weight with respect to 50 to 2% by weight of hexagonal boron nitride. Next, this raw material mixture is filled in a metal container. As the material of the metal container, brass, stainless steel, chromium steel, or the like can be used, and the shape can be any shape such as a tubular shape or a pox shape.
Next, the raw material mixture filled in the metal container is subjected to various impact compression treatment apparatuses, for example, JP-A-58-93598, JP-A-58-95546, and JP-A-58-95.
No. 547, Japanese Patent Application Laid-Open No. 58-104629 or Japanese Patent Application Laid-Open No. 2-222723, etc., using a cylindrical or flat type impact compression processing device, a high-speed driven by an explosion of an explosive. A shock compression process is performed by a shock wave with high temperature and high pressure generated by the collision of the flying object.

【0011】図1は本発明の方法に用いる装置の好まし
い例を示すもので、平面型衝撃圧縮処理装置の縦断面図
である。この処理装置は公知のものであって、雷管1,
平面爆轟波発生装置2、爆薬3、飛翔部材4、飛翔部材
支持円筒5、運動補足部材6、7、8、保護容器9、
試料容器10、試料11、空隙12から構成される。こ
の装置において、雷管を爆発させると平面爆轟波発生装
置により平面爆轟波が形成され、爆薬を平面上に起爆す
る。爆薬の平面状の爆発により飛翔部材はその平面性を
保ったまま駆動され保護容器に衝突し、平面衝撃波を発
生させる。平面衝撃波は保護容器から試料容器、次いで
試料へと伝播する。衝突波が試料中を通過すると試料は
衝撃圧縮され、高温高圧の状態となる。
FIG. 1 shows a preferred example of an apparatus used in the method of the present invention, and is a longitudinal sectional view of a flat type impact compression processing apparatus. This processing device is a known device,
Plane detonation wave generator 2, explosive 3, flying member 4, flying member support cylinder 5, momentum supplement members 6, 7, 8, protective container 9,
It is composed of a sample container 10, a sample 11, and a void 12. In this device, when the primer is detonated, a plane detonation wave is formed by the plane detonation wave generator, and the explosive is detonated on a plane. Due to the planar explosion of the explosive, the flying member is driven while maintaining its planarity and collides with the protective container, generating a planar shock wave. The plane shock wave propagates from the protective container to the sample container and then to the sample. When the collision wave passes through the sample, the sample is shock-compressed and is in a state of high temperature and high pressure.

【0012】爆薬3としては、ニトロメタン、ヘキソー
ゲン、ペンスリットあるいは高融点爆薬(HMX)等が
用いられ、平面爆轟波発生装置2としては、硝酸ヒドラ
ジンの飽水ヒドラジン溶液、ニトロメタン等を用いるこ
とができる。
As the explosive 3, nitromethane, hexogen, pen slit or high melting point explosive (HMX) is used. As the plane detonation wave generator 2, a saturated hydrazine solution of hydrazine nitrate, nitromethane or the like is used. it can.

【0013】また、爆薬の爆発による衝撃波は、高速の
飛翔体を介して試料の入った容器に加えることができる
ほか、直接原料の入った容器に加えることもできる。す
なわち、図1において、飛翔部材4、飛翔部材支持円筒
5を取り除き、爆薬3を試料の入った容器に接触させた
状態で爆発させ、爆薬の爆発による衝撃波を直接試料の
入った容器に加えることもできる。爆薬の使用量は使用
する装置の形状、衝撃波の伝達方法等により大幅に異な
るが、資料に加えられる衝撃圧が30万〜100万気圧
となるようにするのが好ましい。
Further, the shock wave generated by the explosion of the explosive can be applied to the container containing the sample via a high-speed flying object, or directly to the container containing the raw material. That is, in FIG. 1, the flying member 4 and the flying member supporting cylinder 5 are removed, the explosive 3 is made to explode in a state of being in contact with the container containing the sample, and the shock wave due to the explosion of the explosive is directly added to the container containing the sample. Can also. The amount of explosive used varies greatly depending on the shape of the device used, the method of transmitting shock waves, and the like, but it is preferable that the shock pressure applied to the material be 300,000 to 1,000,000 atmospheres.

【0014】[0014]

【実施例】次に本発明を実施例によりさらに具体的に説
明する。 実施例1 以下に示すようにして、六方晶窒化ほう素8重量%と球
状の銅粉92重量%の混合物を図1に示す装置により衝
撃圧縮処理し、立方晶窒化ほう素を製造した。原料とし
て平均粒径3.2μm の六方晶窒化ほう素を用い、マト
リックスとして粒径74〜147μm の球状銅粉を用い
た。両者を均一に混合し試料とした。この試料を内径2
0mm、外径30mmのスチール(SS41)製試料容器1
0に嵩密度が真密度の80%で、厚さが4mmとなるよう
に充填した。試料容器10を内径30mm、外径50mmの
真鍮製保護容器9に装填し、その周囲に2重の運動量捕
捉部材6、7(内径50mm、外径66mm及び内径66m
m、外径76mmのスチール(SS41)製円筒)を置
き、さらにその周囲を同じく運動量捕捉部材8として厚
さ45mmの鉛で取り巻いた。この装置の上部に外径76
mm、内径71mm、長さ50mmの硬質塩化ビニル製飛翔部
材支持円筒5を取り付け、その上に直径76mm、厚さ3
mmの鋼製飛翔部材4を置いた。爆薬3として、高融点爆
薬(HMX)にバインダーとして無機塩の水溶液を15
重量%添加したものを230g用いた。爆薬3の上部に
は硝酸ヒドラジンの飽水ヒドラジン溶液とニトロメタン
とからなる平面爆轟波発生装置2の頂部に差し込んだ6
号電気雷管1で起爆した。
Next, the present invention will be described more specifically with reference to examples. Example 1 As described below, a mixture of 8% by weight of hexagonal boron nitride and 92% by weight of spherical copper powder was subjected to impact compression treatment using the apparatus shown in FIG. 1 to produce cubic boron nitride. Hexagonal boron nitride having an average particle size of 3.2 μm was used as a raw material, and spherical copper powder having a particle size of 74 to 147 μm was used as a matrix. Both were uniformly mixed to obtain a sample. This sample was used for inner diameter 2
0mm, 30mm outside diameter steel (SS41) sample container 1
0 was filled so that the bulk density was 80% of the true density and the thickness was 4 mm. The sample container 10 is loaded into a brass protective container 9 having an inner diameter of 30 mm and an outer diameter of 50 mm, and a double momentum capturing member 6, 7 (inner diameter of 50 mm, outer diameter of 66 mm, and inner diameter of 66 m) is provided around the container.
m, a steel (SS41) cylinder having an outer diameter of 76 mm), and the periphery thereof was similarly surrounded by lead having a thickness of 45 mm as a momentum capturing member 8. The outer diameter of 76
A rigid vinyl chloride flying member support cylinder 5 having a diameter of 71 mm and a thickness of 3 mm is mounted thereon.
A mm flying steel member 4 was placed. As explosive 3, an aqueous solution of an inorganic salt as a binder was added to a high melting point explosive (HMX) 15
230 g of the substance added by weight% was used. The explosive 3 was inserted into the top of a plane detonation wave generator 2 composed of a saturated hydrazine solution of hydrazine nitrate and nitromethane.
It was detonated with a No. 1 electric detonator.

【0015】回収した試料容器から機械加工により試料
を取り出し、硝酸、塩酸を用いて金属分を溶解させ、分
離、洗浄、乾燥して粉末の物質を得た。この粉末の物質
からふっ酸処理法により立方晶窒化ほう素以外の窒化ほ
う素を取り除いたところ、原料の六方晶窒化ほう素の4
0重量%の重量の物質が残った。この物質を回収し、粉
末X線回折法で分析したところ、回折ピークは立方晶窒
化ほう素のみの単一相を示した。この結果から、原料の
六方晶窒化ほう素から立方晶窒化ほう素への転換率は4
0重量%と推定された。
A sample was taken out of the collected sample container by machining, and the metal was dissolved with nitric acid and hydrochloric acid, separated, washed and dried to obtain a powdery substance. When boron nitride other than cubic boron nitride was removed from the powdered material by a hydrofluoric acid treatment method, 4% of the raw material hexagonal boron nitride was removed.
0% by weight of material remained. When this substance was recovered and analyzed by powder X-ray diffraction, the diffraction peak showed a single phase of cubic boron nitride alone. From this result, the conversion rate from the raw material hexagonal boron nitride to cubic boron nitride was 4%.
It was estimated to be 0% by weight.

【0016】実施例2 マトリックスを粒径74〜147μm の球状鉄粉とした
以外は実施例1と同じ方法で衝撃圧縮処理を実施し、生
成物の分析を行った。六方晶窒化ほう素から立方晶窒化
ほう素への転換率は25重量%と推定された。
Example 2 Impact compression treatment was carried out in the same manner as in Example 1 except that the matrix was spherical iron powder having a particle size of 74 to 147 μm, and the product was analyzed. The conversion from hexagonal boron nitride to cubic boron nitride was estimated to be 25% by weight.

【0017】実施例3 マトリックスを粒径74〜147μm の球状炭酸カルシ
ウム粉とした以外は実施例1と同じ方法で衝撃圧縮処理
を実施し、生成物の分析を行った。六方晶窒化ほう素か
ら立方晶窒化ほう素への転換率は20重量%と推定され
た。
Example 3 Impact compression treatment was carried out in the same manner as in Example 1 except that the matrix was a spherical calcium carbonate powder having a particle size of 74 to 147 μm, and the product was analyzed. The conversion from hexagonal boron nitride to cubic boron nitride was estimated to be 20% by weight.

【0018】比較例1 マトリックスの粒子形状が鱗片状である以外は実施例1
と同じ方法で衝撃圧縮処理を実施し、生成物の分析を行
った。立方晶窒化ほう素はほとんど生成されておらず、
転換率は1重量%以下と推定された。
Comparative Example 1 Example 1 except that the shape of the matrix particles was scaly.
The impact compression treatment was carried out in the same manner as in the above, and the product was analyzed. Cubic boron nitride is hardly produced,
The conversion was estimated to be less than 1% by weight.

【0019】比較例2 マトリックスの粒子形状が鱗片状である以外は実施例2
と同じ方法で衝撃圧縮処理を実施し、生成物の分析を行
った。立方晶窒化ほう素はほとんど生成されておらず、
転換率は1重量%以下と推定された。
Comparative Example 2 Example 2 except that the particle shape of the matrix was scaly.
The impact compression treatment was carried out in the same manner as in the above, and the product was analyzed. Cubic boron nitride is hardly produced,
The conversion was estimated to be less than 1% by weight.

【0020】比較例3 粒径の大きい粒子を粉砕して74〜147μm にした角
張った粒子形状の炭酸カルシウム粉をマトリックスとし
た以外は実施例3と同じ方法で衝撃圧縮処理を実施し、
生成物の分析を行った。立方晶窒化ほう素はほとんど生
成されておらず、転換率は1重量%以下と推定された。
Comparative Example 3 Impact compression treatment was carried out in the same manner as in Example 3 except that a large particle size calcium carbonate powder having a particle size of 74 to 147 μm was pulverized into a matrix to form a matrix.
The product was analyzed. Cubic boron nitride was hardly produced, and the conversion was estimated to be 1% by weight or less.

【0021】実施例4 比較例1と同じ方法で衝撃圧縮処理した試料を硫酸とフ
ッ化ナトリウムの混合物で処理して六方晶窒化ほう素を
除去したところ、30重量%の物質が残った。この物質
を粉末X線回折法で分析したところ、回折ピークはウル
ツ型窒化ほう素を示し、立方晶窒化ほう素はほとんど検
出されなかった。六方晶窒化ほう素のかわりにこのウル
ツ型窒化ほう素を使用し、実施例1と同様の方法で衝撃
圧縮処理を行った結果、ウルツ型窒化ほう素から立方晶
窒化ほう素への転換率は45重量%と推定された。 比較例4 鱗片状のマトリックス粒子を使用したほかは実施例4と
同様の方法でウルツ型窒化ほう素を圧縮衝撃処理した結
果、ウルツ型窒化ほう素から立方晶窒化ほう素への転換
率は2重量%と推定された。
Example 4 A sample subjected to impact compression treatment in the same manner as in Comparative Example 1 was treated with a mixture of sulfuric acid and sodium fluoride to remove hexagonal boron nitride, leaving 30% by weight of a substance. When this substance was analyzed by a powder X-ray diffraction method, the diffraction peak showed wurtzoidal boron nitride, and cubic boron nitride was hardly detected. This wurtz-type boron nitride was used in place of hexagonal boron nitride, and shock compression was performed in the same manner as in Example 1. As a result, the conversion rate from wurtz-type boron nitride to cubic boron nitride was It was estimated to be 45% by weight. Comparative Example 4 As a result of subjecting a wurtzite boron nitride to compression impact treatment in the same manner as in Example 4 except that scale-like matrix particles were used, the conversion rate from the wurtzite boron nitride to cubic boron nitride was 2 % By weight.

【0022】[0022]

【発明の効果】本発明による六方晶窒化ほう素と球状粒
子からなるマトリックスとを混合して衝撃圧縮を行う方
法によれば、六方晶窒化ほう素から立方晶窒化ほう素へ
の転換率は、20重量%以上になる。得られる立方晶窒
化ほう素は、数10〜数1000Åの結晶子からなる多
結晶体で、数μm 〜数100μmの緻密な粒子であり、
研磨剤として良好な性能を有し、さらにこの粒子を焼結
させた多結晶立方晶窒化ほう素焼結体は、へき開性がな
く、靱性が高いという多結晶体の特徴を反映しており、
ダキヤモンドでの切削が難しい鉄系材料の切削工具の材
料としても優れている。また、球状粒子からなるマトリ
ックスは、衝撃圧縮処理法によりダイヤモンドや窒化け
い素、炭化けい素等、他のセラミックスを製造する場合
にも転換率を高める効果がある。
According to the method of shock compression by mixing hexagonal boron nitride and a matrix composed of spherical particles according to the present invention, the conversion rate from hexagonal boron nitride to cubic boron nitride is: 20% by weight or more. The obtained cubic boron nitride is a polycrystalline body composed of crystallites of several tens to several thousand degrees, and is dense particles of several μm to several hundred μm,
The polycrystalline cubic boron nitride sintered body having good performance as an abrasive, and further sintering the particles, has no cleavage property and reflects the characteristics of the polycrystalline body having high toughness,
It is also excellent as a material for cutting tools made of iron-based materials, which are difficult to cut with Dakimond. Further, the matrix composed of spherical particles has an effect of increasing the conversion rate even when other ceramics such as diamond, silicon nitride, silicon carbide, etc. are produced by the impact compression method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための衝撃圧縮処理装
置の一例としての平面型衝撃圧縮処理装置を縦断面図で
示す説明図である。
FIG. 1 is a longitudinal sectional view illustrating a planar shock compression processing apparatus as an example of a shock compression processing apparatus for performing a method of the present invention.

【符号の説明】 1 雷管 2 平面爆轟波発生装置 3 爆薬 4 飛翔部材 5 飛翔部材支持円筒 6、7、8 運動量捕捉部材 9 保護容器 10 試料容器 11 試料 12 空隙[Description of Signs] 1 Detonator 2 Plane detonation wave generator 3 Explosive 4 Flying member 5 Flying member support cylinder 6, 7, 8 Momentum capturing member 9 Protective container 10 Sample container 11 Sample 12 Void

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角舘 洋三 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 薄葉 州 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 山脇 浩 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 藤原 茂 栃木県栃木市国府町1番地 三井鉱山株 式会社 中央研究所内 (72)発明者 成田 恭一郎 栃木県栃木市国府町1番地 三井鉱山株 式会社 中央研究所内 (56)参考文献 特開 昭52−90500(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01J 3/08 C01B 21/064 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yozo Kakudate 1-1-1 Higashi, Tsukuba City, Ibaraki Prefecture Inside the Chemical Technology Research Institute, Industrial Technology Institute (72) Inventor Thinba State 1-1-1 Higashi Tsukuba City, Ibaraki Prefecture Industrial Technology Institute Chemical Within the Technical Research Institute (72) Inventor Hiroshi Yamawaki 1-1-1 Higashi, Tsukuba, Ibaraki Pref.Industrial Technology Institute, Research Institute for Chemical Technology (72) Inventor Shigeru Fujiwara 1, Kokufucho, Tochigi City, Tochigi Pref. 72) Inventor Kyoichiro Narita 1 Kokufucho, Tochigi City, Tochigi Pref. Central Research Laboratory, Mitsui Mining Co., Ltd. (56) References JP-A-52-90500 (JP, A) (58) Fields investigated (Int. Cl. 6) , DB name) B01J 3/08 C01B 21/064

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 低圧相窒化ほう素をマトリックス中に均
一に分散させた混合物に動的高圧力を作用させ、低圧相
窒化ほう素を高圧相窒化ほう素へと転移せしめるにあた
り、該マトリックスとして球状の粒子を使用することを
特徴とする高圧相窒化ほう素の製造方法。
1. A high dynamic pressure is applied to a mixture in which low-pressure phase boron nitride is uniformly dispersed in a matrix to convert the low-pressure phase boron nitride into high-pressure phase boron nitride. A method for producing high-pressure phase boron nitride, comprising using particles of
JP3021345A 1991-01-23 1991-01-23 Method for producing boron nitride Expired - Lifetime JP2987415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3021345A JP2987415B2 (en) 1991-01-23 1991-01-23 Method for producing boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3021345A JP2987415B2 (en) 1991-01-23 1991-01-23 Method for producing boron nitride

Publications (2)

Publication Number Publication Date
JPH04349931A JPH04349931A (en) 1992-12-04
JP2987415B2 true JP2987415B2 (en) 1999-12-06

Family

ID=12052507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3021345A Expired - Lifetime JP2987415B2 (en) 1991-01-23 1991-01-23 Method for producing boron nitride

Country Status (1)

Country Link
JP (1) JP2987415B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471167B2 (en) * 1996-05-21 2003-11-25 昭和電工株式会社 Method for producing cubic boron nitride
WO2008029726A1 (en) * 2006-09-01 2008-03-13 Kuraray Luminas Co., Ltd. Impact target capsule and impact compressor
JP5059528B2 (en) * 2007-09-14 2012-10-24 住友電気工業株式会社 Cubic boron nitride sintered body and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04349931A (en) 1992-12-04

Similar Documents

Publication Publication Date Title
US11112221B2 (en) Oil well perforators
US3401019A (en) Process for synthesizing diamond
JP5509668B2 (en) Diamond production method and diamond produced by this production method
JP2987415B2 (en) Method for producing boron nitride
JP4677665B2 (en) Method for producing high-pressure phase material
US3528864A (en) High impulse explosives containing tungsten
Liepins et al. Shock-induced synthesis. I. Cubic boron nitride from ammonia borane
EP3637037A1 (en) Explosive body for nanodiamond synthesis
JP2005289677A (en) Explosive composition for synthesizing diamond and method for synthesizing diamond
US4443420A (en) Process for producing cubic system boron nitride
US4201757A (en) Large boron nitride abrasive particles
RU2327637C1 (en) Method of obtaining detonation nanodiamonds
RU2331578C2 (en) Method of obtaining of cubic silicon nitride
JPH02253838A (en) Method and device for shock compression of solid material
RU2794547C1 (en) Structure of connection of two pipes for detonation synthesis, device for detonation synthesis and their application
JPH06121923A (en) Production of diamond
US4231980A (en) Large boron nitride abrasive particles
JPS5922648A (en) Method and device for impact compression of condensable material
JPH02237634A (en) Method and device for impact-compressing solid material
RU2676614C1 (en) Method of detonation synthesis of nanodiamonds
RU2105746C1 (en) Explosive
JPH0475771B2 (en)
Maranda et al. Properties of explosive systems containing water
WO1986006057A1 (en) Preparation of solid aggregate boron nitride crystals
JP2002306949A (en) Method for generating ultrahigh pressure and method for synthesizing substance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term