JPH02237634A - Method and device for impact-compressing solid material - Google Patents

Method and device for impact-compressing solid material

Info

Publication number
JPH02237634A
JPH02237634A JP5823989A JP5823989A JPH02237634A JP H02237634 A JPH02237634 A JP H02237634A JP 5823989 A JP5823989 A JP 5823989A JP 5823989 A JP5823989 A JP 5823989A JP H02237634 A JPH02237634 A JP H02237634A
Authority
JP
Japan
Prior art keywords
impact
explosive
sample container
sample
shock wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5823989A
Other languages
Japanese (ja)
Inventor
Horie Yasuyuki
ヤスユキ・ホリエ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N R D KK
Original Assignee
N R D KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N R D KK filed Critical N R D KK
Priority to JP5823989A priority Critical patent/JPH02237634A/en
Publication of JPH02237634A publication Critical patent/JPH02237634A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

PURPOSE:To enable mass transfer at a relatively low temp. and to synthesize a dense sintered body with the highly efficient synthesis of a high-pressure-phase material and a chemical reaction by forming >=1 kind of oblique shock waves in a material and impact-compressing the material. CONSTITUTION:A sample 8 is formed to the prescribed initial density, inserted into a sample vessel and fastened by a plug 9. The sample vessel 7 is then inserted into a first momentum trap 10a, and placed them on a second momentum trap 10b. When detonator 1 is then ignited to initiate an explosion lens 2, the plane detonation wave is propagated to a main explosive 3, and the lower flying body 5 is accelerated toward the sample vessel 7 downward and allowed to collide with the upper surface of the sample vessel 7. at a high speed. Consequently, the shock wave is generated on the surfaces obliquely vertical to the collisional direction of the flying body 5, and propagated to the sample 8 through the sample vessel 7. In this case, two kinds of shock waves having the same magnitude in the different directions are generated in the sample vessel 7, and the sample 8 is impact-compressed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体材料を衝撃圧縮する方法及び装置に関する
ものであり、詳しくは、ダイヤモンドを始めとする高圧
相材料の合成や粉末の焼結反応を含めた広範囲の化学反
応を利用した材料合成に通,した固体材料の衝撃圧縮方
法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for impact compression of solid materials. This article relates to a method and apparatus for impact compression of solid materials, which are used to synthesize materials using a wide range of chemical reactions, including.

(従来の技術) 高速の飛翔体の衝突に伴って発生する衝撃波や爆薬の爆
発に伴って発生する爆轟衝撃波を利用することにより、
固体材料を衝撃圧縮することが出来る。衝撃圧縮の持続
時間は一般に極めて短く、10−’秒のオーダーである
。この間に対象材料中に数GPa〜数十GPaという高
い圧力と同時に、必要であれば高温を発生出来る。この
ような性質を持つ衝撃波が固体材料中を伝播すると材料
を単に圧縮するだけでなく、衝撃圧縮中及びその後の材
料の物理的及び化学的性質を変化させることが知られて
いる。又、この変化の程度は、気孔を持った材料の場合
の方が一層顕著となる。固体材料の衝撃圧縮に伴うその
ような物理的、化学的効果を利用して、難焼結性材料の
衝撃焼結やユニークな新材料の合成に関する研究が広く
進められて来ている。その中でダイヤモンドの衝撃合成
は良く知られており、この方法によるダイヤモンド合成
は既に工業化されている。
(Prior art) By utilizing the shock waves generated by the collision of high-speed projectiles and the detonation shock waves generated by the explosion of explosives,
Solid materials can be impact compressed. The duration of impact compression is generally very short, on the order of 10-' seconds. During this time, a high pressure of several GPa to several tens of GPa and, if necessary, high temperature can be generated in the target material. It is known that when a shock wave with such properties propagates through a solid material, it not only compresses the material, but also changes the physical and chemical properties of the material during and after the shock compression. Furthermore, the degree of this change is even more remarkable in the case of a material with pores. Utilizing such physical and chemical effects associated with impact compression of solid materials, research on impact sintering of difficult-to-sinter materials and the synthesis of unique new materials has been widely conducted. Among them, impact synthesis of diamond is well known, and diamond synthesis using this method has already been industrialized.

従来の衝撃圧縮の方法は、次の2つに大別される。即ち
、爆薬の爆発に伴う爆轟波をそのまま材料に伝える直接
法と、爆薬の爆発等により加速された飛翔体を材料に衝
突させて衝撃波を発生させ、これを材料に伝える間接法
である。
Conventional impact compression methods can be roughly divided into the following two types. That is, there are two methods: a direct method in which the detonation wave accompanying the explosion of an explosive is directly transmitted to the material, and an indirect method in which a flying object accelerated by the explosion of an explosive or the like collides with the material to generate a shock wave, which is then transmitted to the material.

前者の直接法で発生する圧力は、使用する爆薬の特性と
対象材料により決定される。粉体材料の衝撃圧縮では、
試料は一般に金属製容器に充填され、その外側に爆薬を
配置する。この場合、試料容器材質を適当に選ぶことに
より試料部分に発生する圧力を調節することが出来る。
The pressure generated in the former direct method is determined by the characteristics of the explosive used and the target material. In impact compression of powder materials,
The sample is generally filled in a metal container, and the explosive is placed on the outside. In this case, the pressure generated in the sample portion can be adjusted by appropriately selecting the material of the sample container.

第1図は従来の直接法による垂直平面衝撃圧縮装置の一
例の縦断面を示したものである。図中の1は雷管、2は
爆薬レンズ、3は主爆薬、4は爆薬容器、7は試料容器
、8は試料、9はプラグ、10はモーメンタムトラップ
で、10aは第1モーメンタムトラップ、10bは第2
モーメンタムトラップである。これらは後述する各図面
と共通である。試料8を金属製の試料容器7に充填しブ
ラグ9で閉塞した後、これを第1モーメンタムトラップ
10aの中央部の孔に挿入してセットし、このセットを
第2モーメンタムトラップ10bの上に置く。この試料
容器7及び第1モーメンタムトラップ10aの上に爆薬
容器4に収納“されている主爆薬4を乗せ、更にその上
に爆薬レンズ2を乗せる。
FIG. 1 shows a longitudinal section of an example of a conventional direct method vertical plane impact compression device. In the figure, 1 is a detonator, 2 is an explosive lens, 3 is a main explosive, 4 is an explosive container, 7 is a sample container, 8 is a sample, 9 is a plug, 10 is a momentum trap, 10a is a first momentum trap, and 10b is a momentum trap. Second
It's a momentum trap. These are common to each drawing described later. After filling a metal sample container 7 with a sample 8 and closing it with a plug 9, this is inserted and set into the hole in the center of the first momentum trap 10a, and this set is placed on the second momentum trap 10b. . The main explosive 4 stored in the explosive container 4 is placed on the sample container 7 and the first momentum trap 10a, and the explosive lens 2 is placed on top of it.

この爆薬レンズ2は底面が主爆薬3の水平断面と同形の
角錐若しくは円錐のもので、錐面ば高速爆薬2aで被覆
され、内部は低速爆薬2bで構成されており、その頂点
に雷管1が設けてある。
This explosive lens 2 is a pyramid or cone whose bottom surface has the same shape as the horizontal cross section of the main explosive 3. The conical surface is covered with a high-velocity explosive 2a, and the inside is composed of a low-velocity explosive 2b, with a detonator 1 at its apex. It is provided.

この爆薬レンズ2を雷管1で爆発させると、高速爆薬2
aと低速爆薬2bの燃焼速度の差により、底面に燃焼が
到達する時間は各点で同一になるように作られてあるの
で、爆薬レンズ2により作られた垂直平面衝撃波が下の
主爆薬3に伝わり、主爆薬3はその燃焼面が水平状態で
燃焼爆発し、平面爆轟衝撃波が下の試料容器7に伝播し
、更に試料8へ伝播して試料8が衝撃圧縮される。
When this explosive lens 2 is detonated with detonator 1, high-speed explosive 2
Due to the difference in the burning speed between a and the slow explosive 2b, the time taken for the combustion to reach the bottom surface is the same at each point, so the vertical plane shock wave created by the explosive lens 2 is caused by the main explosive 3 below. The main explosive 3 burns and explodes with its combustion surface horizontal, and the planar detonation shock wave propagates to the sample container 7 below, and further propagates to the sample 8, where the sample 8 is compressed by impact.

この場合、第1及び第2モーメンタムトラップ10a 
、10bは各々試料容器7の外周方向及び下方向への試
料容器7の運動エネルギーを吸収し、試料容器7の変形
を防止してその回収を容易にするものである。
In this case, the first and second momentum traps 10a
, 10b absorb the kinetic energy of the sample container 7 in the outer circumferential direction and downward direction of the sample container 7, respectively, to prevent deformation of the sample container 7 and facilitate its recovery.

上述の直接法より更に高い圧力を必要とする場合、前述
後者の間接法を用いれば良い。
If a pressure higher than the above-mentioned direct method is required, the latter indirect method may be used.

この方法は第2図にその縦断面を示したように、平面衝
撃波発生装置として前述の直接法と同じ爆薬レンズ2を
用い、雷管1、主爆薬3の配置も同じである。ここで主
爆薬3の下側に接して飛翔体5を配置し、前述の直接法
と同じ試料容器7、第1モーメンタムトラップ10及び
第2モーメンタムトラップ10bより構成されている試
料構成部分と上記飛翔体5との間の外周部分にスペーサ
−6を配置してある。
As shown in the longitudinal section of FIG. 2, this method uses the same explosive lens 2 as the above-mentioned direct method as a planar shock wave generator, and the arrangement of the detonator 1 and main explosive 3 is also the same. Here, the flying object 5 is placed in contact with the lower side of the main explosive 3, and the sample component part consisting of the same sample container 7, the first momentum trap 10, and the second momentum trap 10b as in the above-mentioned direct method, and the above-mentioned flying object are placed in contact with the lower side of the main explosive 3. A spacer 6 is arranged at the outer peripheral portion between the body 5 and the body 5.

このような構成の装置で、爆薬レンズ2が雷管1で起爆
されて垂直平面衝撃波を作り、これにより下の主爆薬3
の平面爆発が始まる。この平面爆轟衝撃波によりその下
の飛翔体5が下方に加速され、試料容器7に衝突する。
In a device with such a configuration, the explosive lens 2 is detonated by the detonator 1 to create a vertical plane shock wave, which causes the main explosive 3 below to explode.
A plane explosion begins. This planar detonation shock wave accelerates the flying object 5 below, and collides with the sample container 7.

この衝突により試料容器7内に垂直平面衝撃波が発生し
、この平面衝撃波が試料8に伝播して試料8を衝撃圧縮
する。
This collision generates a vertical plane shock wave within the sample container 7, and this plane shock wave propagates to the sample 8 and shock-compresses the sample 8.

以上の2つの方法においては、爆轟衝撃波又は衝撃波の
作用し始める面(試料容器7及び第1モーメンタムトラ
ップ10aの上面)は何れも飛翔体5の飛翔方向又は主
爆薬3の爆発方向に対して垂直な位置関係となるように
設計されており、特に材料の衝撃圧縮曲線(ウゴニオ)
測定や各種物性の研究に通している。又高圧相材料の合
成にも利用されている。
In the above two methods, the surfaces on which the detonation shock wave or shock wave starts to act (the upper surfaces of the sample container 7 and the first momentum trap 10a) are both relative to the flight direction of the projectile 5 or the explosion direction of the main explosive 3. Designed for vertical positioning, especially for material impact compression curves (Ugonio)
He is involved in measurements and research on various physical properties. It is also used in the synthesis of high-pressure phase materials.

衝撃圧縮方法によるダイヤモンドの合成は、1961年
にP.S.DeCarli とJ.C.Jamieso
nにより報告され、その後、米国デュポン社によりその
製造技術が確立され、現在工業化されている。
Synthesis of diamond by impact compression method was described in 1961 by P. S. DeCarli and J. C. Jamieso
After that, the manufacturing technology was established by DuPont in the United States and is currently being industrialized.

静的超高圧で合成したダイヤモンド粒子は主に単結晶で
あるが、衝撃圧縮で合成したダイヤモンド粒子は多結晶
体であり、粒の強度が大きいため研削能力に優れ、又微
細結晶としても得られるため、電子部品分野での超精密
仕上げの分野にも適し、その利用範囲は拡大傾向にある
Diamond particles synthesized using static ultra-high pressure are mainly single crystals, but diamond particles synthesized using impact compression are polycrystalline and have excellent grinding ability due to their high grain strength, and can also be obtained as fine crystals. Therefore, it is also suitable for ultra-precision finishing in the field of electronic components, and its range of use is expanding.

しかし、この衝撃合成ダイヤモンドにはこの利用分野の
拡大と、需要の増大を妨げている大きな問題がある。そ
れは生産コストが静的方法で合成されるダイヤモンド粉
末の3倍以上もかかることである。静的方法によるダイ
ヤモンドの合成では、大型で高価な超高圧発生装置を必
要とし、又その運転の経費も高いことを考慮すれば、静
的に合成されたダイヤモンドのコストは妥当と考えられ
るが、それに比較し、衝撃合成ダイヤモンド粉末は異常
と言えるほど高価である。
However, there are major problems with impact synthetic diamonds that are hindering the expansion of their use and increasing demand. The production cost is more than three times that of diamond powder synthesized by static methods. The cost of statically synthesized diamonds is considered to be reasonable, considering that synthesis of diamonds using static methods requires large and expensive ultra-high pressure generators, and the cost of operating them is also high. By comparison, impact synthetic diamond powder is insanely expensive.

このように衝撃合成ダイヤモンドが高価となる原因は、
衝撃圧縮により黒鉛から転移したダイヤモンドの回収率
が低過ぎることにある。更にこの回収試料にみられるダ
イヤモンドへの低い転換率の原因は、衝撃圧縮中にダイ
ヤモンドへ転移してもその大部分が衝撃波通過後に残る
温度(残留温度)により低圧相の炭素へ戻ってしまうと
考えられている。
The reason why impact synthetic diamonds are so expensive is that
The reason is that the recovery rate of diamond transferred from graphite by impact compression is too low. Furthermore, the reason for the low conversion rate to diamond observed in this recovered sample is that even if it transforms to diamond during shock compression, most of it returns to the low-pressure phase carbon due to the temperature that remains after the shock wave passes (residual temperature). It is considered.

D.G.Morrisは、最近黒鉛のみの圧粉体と金属
コバルトに22体積%黒鉛を加えた混合体の圧粉体を銃
を使って40GPaまで平面衝撃圧縮し、その時の各系
での黒鉛のダイヤモンドへの転換率を測定し、報告した
。この報告によると、黒鉛のみの場合でのダイヤモンド
への最高の転換率は2.5%であり、又、金属コバルト
との混合系の場合の最高転換率も14%にしか達してい
ない。ここで、金属粉末に黒鉛粉末を分散させた後者の
方法でダイヤモンドへの高い転換率の得られた理由の1
つとして、同じ飛翔体の衝突速度でも、衝撃インピーダ
ンスの高い金属を混合した場合、黒鉛部分に発生する圧
力が高くなったことも考えられる。
D. G. Morris recently used a gun to flat impact compress a powder compact of only graphite and a compact of a mixture of metallic cobalt and 22 vol.% graphite to 40 GPa, and investigated the effects of graphite on diamond in each system. Conversion rates were measured and reported. According to this report, the highest conversion rate to diamond in the case of graphite alone is 2.5%, and the highest conversion rate in the case of a mixed system with metallic cobalt also reaches only 14%. Here, we will explain one of the reasons why the latter method, in which graphite powder is dispersed in metal powder, achieves a high conversion rate to diamond.
Another possibility is that even if the impact speed of the projectile remains the same, if a metal with a high impact impedance is mixed, the pressure generated in the graphite part will increase.

又、黒鉛の衝撃圧縮による体積収縮が大きいことと、黒
鉛→ダイ.ヤモンドの転換で体積が36%も減少するこ
とのため、黒鉛部分のiE撃圧縮中の温度は相当上がる
が、金属との混合の場合、衝撃温度の低い金属相がその
熱を吸収するように働き、ダイヤモンドの合成されてい
る黒鉛部分を急冷する効果をすることも上記理由の1つ
である。
In addition, the volumetric shrinkage due to impact compression of graphite is large, and graphite → die. Due to the volume reduction of 36% due to Yamond conversion, the temperature of the graphite part increases considerably during iE impact compression, but when mixed with metal, the metal phase with a lower impact temperature absorbs the heat. One of the reasons mentioned above is that it has the effect of rapidly cooling the graphite part in which diamond is synthesized.

以上のようにダイヤモンドの衝撃合成では、収量を多く
するためにその出発原料の黒鉛の量を多くすると残留温
度が高くなり、ダイヤモンドの低圧相への逆変換が多く
なり、結果的に回収物中でのダイヤモンドへの回収率は
減少する。又、金属中への黒鉛の分散量が減少すると、
回収物でみるダイヤモンドへの回収率は上がるが、1回
の衝撃処理当たりの合成量は減少することになり、何れ
の場合も問題が残る。
As described above, in the shock synthesis of diamond, when the amount of graphite as a starting material is increased in order to increase the yield, the residual temperature becomes high and the reverse conversion of diamond to the low-pressure phase increases, resulting in a high yield in the recovered material. The recovery rate to diamond decreases. Also, when the amount of graphite dispersed in the metal decreases,
Although the recovery rate of diamond in terms of recovered materials increases, the amount of synthesis per one impact treatment decreases, and a problem remains in either case.

ここで衝撃圧縮下での黒鉛一ダイヤモンドへの転移の本
質に立ち返ってみると、この転移の発見された当初は、
この黒鉛一ダイヤモンドの転換は極短い距離の原子の集
団的変位によるもの、つまり、マルテンサイト的転移と
考えられていた。それは、衝撃圧縮の持続時間が10−
6秒と短く、原子の拡散は困難と考えられていたからで
ある。しかし、その後の詳細な研究から、このダイヤモ
ンドへの転移はそのような無拡散型でなく、拡散を伴っ
たものであることが分かって来た。つまり、衝撃圧縮下
での黒鉛の結晶構造は1度壊され、ダイヤモンドのSP
3混成結合を単位とするかなり乱れたガラス状態に近い
構造が作られ、次にこれがダイヤモンドとして再結晶化
するという機構である。
Returning to the essence of the graphite-diamond transition under impact compression, when this transition was first discovered,
This transition between graphite and diamond was thought to be due to collective displacement of atoms over an extremely short distance, that is, martensitic transition. That is, the duration of impact compression is 10-
This is because the duration was as short as 6 seconds, and it was thought that diffusion of atoms would be difficult. However, subsequent detailed research has revealed that this transition to diamond is not diffusion-free, but involves diffusion. In other words, the crystal structure of graphite under impact compression is destroyed once, and the SP of diamond
The mechanism is that a highly disordered structure similar to a glass state is created, consisting of three-hybrid bonds, and then this recrystallizes as diamond.

このメカニズムはガラス状炭素の衝撃圧縮によるダイヤ
モンドの合成や有機物の炭化により得られた非品質炭素
の衝撃圧縮によるダイヤモンドの合成結果から強く支持
されている。従って、衝撃圧縮により黒鉛からダイヤモ
ンドを合成しようとする場合には、一度、黒鉛の結晶構
造を壊して非品質に近い状態にすることが必要であるこ
とが分かる。このような状態を作り出す1つの方法は、
黒鉛の衝撃圧縮下の温度を上げ、炭素の液相領域に近づ
けることである。第3図は炭素の圧カー温度相関図であ
る。この図から分かるように、炭素の液相線は圧力増加
と共に低温側へ移動する傾向にある。炭素の衝撃圧縮曲
線からダイヤモンドの合成には、35GPa以上の圧力
が必要であることが知られている。この圧力条件を第3
図の炭素の温度−圧力相関図でみてみると、炭素の液相
領域は3500’Kl上の高い温度に相当する。しかし
、現在の衝撃圧縮技術では、そのような高い温度を衝撃
圧縮中に得ようとすると、必然的に衝撃波通過後の残留
温度が高くなり、そこでのダイヤモンドの低圧相への逆
変換が多くなる結果、回収物でみる転換率は低下する。
This mechanism is strongly supported by the results of diamond synthesis by impact compression of glassy carbon and impact compression of non-quality carbon obtained by carbonization of organic matter. Therefore, it can be seen that when trying to synthesize diamond from graphite by impact compression, it is necessary to destroy the crystal structure of graphite and bring it into a state close to non-quality. One way to create such a situation is to
The goal is to raise the temperature of graphite under shock compression, bringing it closer to the liquid phase region of carbon. FIG. 3 is a graph showing the relationship between pressure and temperature of carbon. As can be seen from this figure, the liquidus line of carbon tends to move toward lower temperatures as pressure increases. It is known from the impact compression curve of carbon that a pressure of 35 GPa or higher is required to synthesize diamond. This pressure condition is
Looking at the carbon temperature-pressure correlation diagram shown in the figure, the liquid phase region of carbon corresponds to a high temperature above 3500'Kl. However, with current shock compression technology, attempting to obtain such a high temperature during shock compression will inevitably result in a high residual temperature after the shock wave passes, where there will be more back-conversion of diamond to the low-pressure phase. As a result, the conversion rate in terms of recovered materials decreases.

前述の黒鉛のダイヤモンドへの転換率を測定した報告で
もそのようなプラスとマイナスの効果が認められている
。第4図は飛翔体速度とダイヤモンドへの転換率をプロ
ットした飛翔体衝突速度とダイヤモンドへの転換率の関
係図であり、この場合、出発原料の状態は同一であるこ
とから、この横軸は衝撃温度の変化とも解釈出来る。従
って、この図はある温度までは急激に転換率は増加し、
ピークに達するが、更に温度が上がると次第に回収率は
減少することを示している。ここで初めの急激な転換率
の増加は衝撃温度が炭素の液相線に近づいたか、又はそ
れを超す領域に相当し、その後の回収率の減少は残留温
度によるダイヤモンドの低圧相への逆変換の増加に対応
づけられる。以上のように従来の衝撃圧縮によるダイヤ
モンドの合成では、衝撃温度とその後の残留温度を独立
に制御することが出来ず、黒鉛のダイヤモンドへの転換
率を高く出来ないという問題があった。
Such positive and negative effects have also been recognized in the aforementioned report that measured the conversion rate of graphite to diamond. Figure 4 is a diagram showing the relationship between the projectile impact velocity and the conversion rate to diamond, in which the projectile velocity and the conversion rate to diamond are plotted.In this case, since the state of the starting material is the same, the horizontal axis This can also be interpreted as a change in shock temperature. Therefore, this figure shows that the conversion rate increases rapidly up to a certain temperature,
It shows that although a peak is reached, the recovery rate gradually decreases as the temperature increases further. Here, the initial rapid increase in conversion corresponds to the region where the shock temperature approaches or exceeds the liquidus of carbon, and the subsequent decrease in recovery is due to the back conversion of diamond to the low-pressure phase due to the residual temperature. This corresponds to an increase in As described above, in the conventional synthesis of diamond by impact compression, the impact temperature and the subsequent residual temperature cannot be independently controlled, and the conversion rate of graphite to diamond cannot be increased.

このような衝撃温度と残留温度に関する問題は、ダイヤ
モンドの衝撃合成の場合だけでなく、高正相窒化ほう素
(BN)の合成においても同様であった。
Such problems regarding impact temperature and residual temperature are not only present in the case of impact synthesis of diamond but also in the synthesis of high positive phase boron nitride (BN).

BNの場合には、低圧相BNから高圧相への転移は黒鉛
からダイヤモンドへの転移以上に起き難い上、残留温度
で容易に逆変換が起きるため、高圧相BNの合成は一層
難しい。又、材料合成や焼結反応では、原子の移動や拡
散を必要とするが、衝撃圧縮の持続時間は10−6秒の
オーダーであり極めて短い。
In the case of BN, the transition from low-pressure phase BN to high-pressure phase is more difficult to occur than the transition from graphite to diamond, and the reverse conversion easily occurs at residual temperature, so synthesis of high-pressure phase BN is even more difficult. Furthermore, material synthesis and sintering reactions require the movement and diffusion of atoms, but the duration of impact compression is on the order of 10-6 seconds, which is extremely short.

合成や焼結反応を利用して、衝撃圧縮下で緻密な焼結体
を製造しようとする場合、衝撃圧縮の持続時間10−6
秒のオーダー間に原子の移動を伴った反応を完了しなけ
ればならない。従来の衝撃圧縮の方法ではこの目的を達
成するには、前述のダイヤモンドの合成の場合の方法と
同様に、先ず、原子の移動を容易にするように衝撃温度
を高くすることが考えられる。しかし、一定の出発原料
で考えると、このためには衝撃圧力自体を上げなければ
ならない。対象材料が高圧相材料を含む場合には、この
ような方法を採ることは難しく、又、他の場合でも衝撃
圧力を高くすると得られる材料に著しい割れが発生した
り、又、残留応力が発生し易いという問題があった。更
に残留温度が高すぎると圧力解放後に液相の固化が起こ
ることがあり、その時の固化収縮のための気孔が回収材
料に取残されるという問題もあった。
When attempting to produce a dense sintered body under impact compression using synthesis or sintering reactions, the duration of impact compression is 10-6.
Reactions involving the movement of atoms must be completed within seconds. In order to achieve this objective in the conventional shock compression method, it is thought to first increase the shock temperature to facilitate the movement of atoms, similar to the method in the case of diamond synthesis described above. However, given a constant starting material, this requires increasing the impact pressure itself. It is difficult to use this method when the target material contains a high-pressure phase material, and in other cases, increasing the impact pressure may cause significant cracking or residual stress in the resulting material. The problem was that it was easy to do. Furthermore, if the residual temperature is too high, solidification of the liquid phase may occur after the pressure is released, and there is also the problem that pores due to solidification shrinkage are left behind in the recovered material.

(発明が達成しようとする課題) 上述のように、従来の固体材料のfi撃圧縮方法と装置
を用いた高圧相材料の合成や化学反応を伴った焼結体の
合成では、上述のような幾つかの問題があった。
(Problems to be achieved by the invention) As mentioned above, in the synthesis of high-pressure phase materials using the conventional FI impact compression method and apparatus for solid materials, and in the synthesis of sintered bodies accompanied by chemical reactions, the above-mentioned problems occur. There were some problems.

本発明者は固体材料の衝撃圧縮において比較的低い温度
での物質移動を可能にし、それによって、高圧相材料の
高効率な合成や化学反応を伴った粉末からの緻密な焼結
体の合成を可能とする衝撃圧縮の方法及びそのための装
置の開発のために鋭意研究して来た結果、単純に平面衝
撃波により材料を衝撃圧縮するのでなく、1種以上の斜
め衝撃波を材料中に形成させながら衝撃圧縮することに
より、それらの上述の目的を達成し得ることを見出した
The present inventors have enabled mass transfer at relatively low temperatures in impact compression of solid materials, thereby enabling highly efficient synthesis of high-pressure phase materials and synthesis of dense sintered bodies from powders accompanied by chemical reactions. As a result of intensive research into the development of impact compression methods and devices that enable impact compression, we have discovered that, instead of simply impact compression of materials using plane shock waves, we can create one or more types of oblique shock waves in the material. It has been found that by impact compression these above objectives can be achieved.

即ち、固体材料の衝撃圧縮の方法は、衝撃圧縮下での剪
断応力及び剪断変形の作用により一層積極的に利用しよ
うとするものであり、これにより、黒鉛からダイヤモン
ドを初めとする高圧相の高率的合成や反応を伴った焼結
に好適な衝撃圧縮の方法とそのための装置を提供するこ
とを課題とする。
In other words, the method of impact compression of solid materials attempts to make more active use of the effects of shear stress and shear deformation under impact compression. It is an object of the present invention to provide a method of impact compression suitable for efficient synthesis and sintering accompanied by reaction, and an apparatus for the same.

(課題を達成するための手段) 上述の課題を達成するために、高速の飛翔体5の衝突に
伴う衝撃波若しくは爆薬の爆発に伴う爆轟衝撃波を利用
して、固体材料を衝撃圧縮する場合に、固体材料を装填
した試料容器7に前記衝撃波若しくは前記爆轟衝撃波の
作用し始める面の一部若しくは全部が前記高速の飛翔体
5の衝突方向若しくは前記爆薬の爆発方向に垂直な面に
対して垂直斜めの位置関係にある1つ以上の平面又は曲
面若しくはこれらの複合面よりなり、前記衝撃波若しく
は前記爆轟衝撃波の作用により、前記試料容器7及び前
記固体材料に1種以上の斜め衝撃波を形成させながら衝
撃圧縮するものである。
(Means for Achieving the Object) In order to achieve the above-mentioned object, a solid material is compressed by impact using a shock wave caused by a collision of a high-speed flying object 5 or a detonation shock wave caused by an explosion of an explosive. , a part or all of the surface on which the shock wave or the detonation shock wave starts acting on the sample container 7 loaded with the solid material is perpendicular to the direction of impact of the high-speed projectile 5 or the direction of detonation of the explosive. It is made up of one or more planes, curved surfaces, or a combination of these surfaces in a vertical and oblique positional relationship, and forms one or more types of oblique shock waves in the sample container 7 and the solid material by the action of the shock wave or the detonation shock wave. It performs impact compression while

又、この衝撃圧縮を実施する装置として、次の2N類の
装置がある。
Further, as a device for performing this impact compression, there is the following 2N type device.

その1として、高速の飛翔体5を衝突せしめる固体材料
の衝撃圧縮装置の固体材料を装填した試料容器,7に前
記高速の飛翔体5が衝突して衝撃波の入射し始める面の
上側に平行な空間を置いて前記高速の飛翔体5を配置し
、更にこの高速の飛翔体5の上側に爆薬及び起爆手段を
設け、この起爆手段による爆薬の爆発により下側の前記
高速の飛翔体5を下方若しくは斜め下方へ加速し、前記
固体材料を装填した前記試料容器7に衝突させることに
より前記固体材料を衝撃圧縮する装置において、前記試
料容器7及び飛翔体5の衝撃波の作用し始める面の一部
若しくは全部が前記高速の飛翔体5の衝突方向に対して
垂直斜めの位置関係にある1つ以上の平面又は曲面若し
くはこれらの複合面よりなるものである。
First, a sample container 7 loaded with a solid material of a solid material impact compression device that causes a high-speed flying object 5 to collide with the sample container 7 is parallel to the upper side of the surface where the shock wave starts to be incident upon impact of the high-speed flying object 5. The high-speed flying object 5 is placed with a space in between, and an explosive and detonation means are provided above the high-speed flying object 5, and the explosion of the explosive by the detonation means causes the lower high-speed flying object 5 to move downward. Alternatively, in a device that shock-compresses the solid material by accelerating diagonally downward and colliding with the sample container 7 loaded with the solid material, a part of the surface of the sample container 7 and the flying object 5 on which the shock wave begins to act. Alternatively, the entire surface is composed of one or more planes, curved surfaces, or a combination of these surfaces, which are perpendicularly and obliquely positioned relative to the collision direction of the high-speed flying object 5.

その2として、爆薬を爆発せしめて直接固体材料を衝撃
圧縮する衝撃圧縮装置の固体材料を装填した試料容器7
に前記爆薬の爆発による爆轟衝撃波を入射せしめる面の
上側に爆薬層を配置し、この爆薬層に起爆手段を設け、
この起爆手段により爆薬層を爆発させ、それに伴う爆轟
衝撃波により固体材料を衝撃圧縮する装置において、前
記固体材料を装填した試料容器7の爆轟衝撃波の作用し
始める面の一部若しくは全部が、前記爆薬の爆発方向に
対して垂直斜めの位置関係にある1つ以上の平面又は曲
面若しくはこれらの複合面よりなるものである。
Part 2 is a sample container 7 loaded with a solid material of an impact compression device that detonates an explosive and directly impact compresses the solid material.
an explosive layer is arranged above the surface on which the detonation shock wave caused by the explosion of the explosive is incident, and a detonation means is provided on this explosive layer,
In a device that detonates an explosive layer using this detonation means and shock-compresses a solid material by the accompanying detonation shock wave, a part or all of the surface of the sample container 7 loaded with the solid material on which the detonation shock wave begins to act, It consists of one or more planes, curved surfaces, or a combination of these surfaces, which are vertically and obliquely positioned relative to the explosion direction of the explosive.

(作用) 一般に固体材料に機械的な破砕や麿砕その他の機械加工
を加えていくと、粒子の微細化だけでな《、個々の粒子
内では構造欠陥が増加し、歪みエネルギーが蓄積される
。結晶質固体の場合、このような構造欠陥の増加と格子
歪みの増加により結晶構造は著しく不安定となり、場合
によっては初めの結晶構造が壊されて非晶質化すること
がある。
(Function) In general, when mechanical crushing, crushing, and other machining processes are applied to a solid material, not only the particles become finer, but also structural defects increase within each particle and strain energy is accumulated. . In the case of a crystalline solid, the crystal structure becomes extremely unstable due to the increase in structural defects and lattice strain, and in some cases, the initial crystal structure may be destroyed and become amorphous.

このような非晶質化によりエネルギーが放出され、エネ
ルギー的により安定な状態となる。このような非晶質化
の例として、石英粉末の例が知られている。又、同様に
歪みエネルギーを放出して安定なエネルギー状態となる
方法として、原子の再配列、又はクラスターとしての再
配列が起きて、初めと異なる結晶構造へ転移することも
ある。このような例としては、酸化鉛(PbO2)や炭
酸カルシウム(CaCOs)の例が知られている。又、
このような機械的破砕や磨砕では処理された材料の化学
反応性が高められるだけでなく、その破砕、磨砕中でも
固相反応が著しく促進される。これらの一連の機械加工
の固体材料に与える物理的、化学的効果は、特にメカノ
ケミカル効果と呼ばれ、粉体材料の性質を改良したり、
改質したりする1つの重要な手段となっている。
Energy is released by such amorphization, resulting in a more energetically stable state. As an example of such amorphization, quartz powder is known. Similarly, as a method of releasing strain energy and achieving a stable energy state, rearrangement of atoms or rearrangement as clusters may occur, resulting in a transition to a crystal structure different from the initial one. As such examples, lead oxide (PbO2) and calcium carbonate (CaCOs) are known. or,
Such mechanical crushing and grinding not only increases the chemical reactivity of the treated material, but also significantly accelerates solid phase reactions even during the crushing and grinding. The physical and chemical effects of a series of these mechanical processes on solid materials are particularly called mechanochemical effects, which improve the properties of powder materials,
It is an important means for reforming.

メカノケミカル効果は、例えば、らかい操作であれば、
その過程で粒子にかかる衝撃、圧縮や粒子同士間の摩擦
等により、結晶構造中へもたらされる構造不安定領域の
形成に起因するものである。
For example, mechanochemical effects can be caused by gentle operation.
This is due to the formation of structurally unstable regions in the crystal structure due to impact, compression, friction between particles, etc. applied to the particles during this process.

特にこの中での、非等方的な粒子の圧縮や粒間摩擦に伴
う粒内部及び粒間でのミクロな剪断応力の発生とそれに
伴う変形はメカノケミカル効果に顕著な影響を与えるも
のと考えられる。らかい操作中に起きる固相反応の例と
して多くの例が知られているが、そのような固相反応に
おいて、剪断応力、更にそれに伴う変形が如何に重要で
あるかをドラマチックに示した例もある。例えばアルミ
ニウム(AI)と酸化銅(Cub)の混合粉末を出発原
料としてこれを一軸性加圧装置を用いて加圧し、そこで
の酸化、還元反応の起こり方を調べた。その結果、円柱
状試料の厚みが試料径よりかなり大きい場合、つまり、
試料内で剪断応力の発生し難い条件では、上記の期待し
た反応は起きなかった。
In particular, the generation of microscopic shear stress within and between grains due to anisotropic particle compression and intergranular friction, and the resulting deformation, are thought to have a significant impact on mechanochemical effects. It will be done. There are many known examples of solid phase reactions that occur during rough operations, but this example dramatically shows how important shear stress and the accompanying deformation are in such solid phase reactions. There is also. For example, using a mixed powder of aluminum (AI) and copper oxide (Cub) as a starting material, this was pressurized using a uniaxial pressurizer, and the manner in which oxidation and reduction reactions occurred there was investigated. As a result, if the thickness of the cylindrical sample is much larger than the sample diameter, i.e.
The above expected reaction did not occur under conditions where it was difficult for shear stress to occur within the sample.

方、試料の厚みが試料径より小さくなると、つまり、剪
断応力が発生し易い条件では、上記の固相反応が爆発的
に進行することを見いだした。この結果は、ここの反応
が試料内に発生する剪断応力と変形に極めて敏感であり
、この反応は剪断変形に励発されたことを示している。
On the other hand, we have found that when the thickness of the sample is smaller than the sample diameter, that is, under conditions where shear stress is likely to occur, the solid phase reaction described above proceeds explosively. This result indicates that the reaction here is extremely sensitive to the shear stress and deformation occurring within the sample, and that this reaction was stimulated by shear deformation.

又、そこでの反応が温度に無関係であり、一軸性加圧の
圧力、つまり、剪断応力と変形の程度にのみ依存したこ
とが報告されている。このような固相反応に対して、剪
断応力及び変形が温度以上に重要な作用をしたことを示
すものである。
It has also been reported that the reaction therein was independent of temperature and depended only on the pressure of uniaxial pressing, that is, the shear stress and the degree of deformation. This shows that shear stress and deformation have more important effects than temperature on such solid phase reactions.

従来の方法による固体材料、特に粉体では衝撃圧縮でも
上記のようなメカノケミカル現象が起きることが知られ
ている。衝撃圧縮では上記の機械的な破砕や磨砕に比べ
て、加える応力レベルが高く、又その応力負荷速度も極
めて速いという特徴を持っている。衝撃圧縮では、固体
材料は、簡単にいえば圧力レベルの低い所では弾性体と
して振る舞い、圧力レベルの高い所では塑性体として振
る舞う。詳しくいうと、衝撃波の通過により固体は瞬間
的に一軸性圧縮状態になり、そのため高い剪断応力が衝
撃波面に垂直斜め方向に発生する。
It is known that the mechanochemical phenomenon described above occurs even when impact compression is performed on solid materials, especially powders, produced by conventional methods. Impact compression is characterized in that the level of stress applied is higher than in the mechanical crushing and grinding described above, and the rate of stress application is also extremely fast. In impact compression, a solid material simply behaves as an elastic body at low pressure levels and as a plastic body at high pressure levels. Specifically, the passage of the shock wave causes the solid to instantaneously enter a state of uniaxial compression, resulting in high shear stress occurring in an oblique direction perpendicular to the front of the shock wave.

そしてそのレベルが物質に固有な剪断応力の限界に達す
ると塑性変形が起こる。このとき、弾性的振る舞いから
塑性的振る舞いに変わる境界となる衝撃波進行方向の応
力をウゴニオ限界と呼ぶ。衝撃圧縮の場合、ウゴニオ限
界は静的一軸圧縮より2〜3倍高いことが知られている
。従って、衝撃圧縮では応力レベルの高い剪断プロセス
で固体に結晶格子の歪みや欠陥の異常な増加が起きる。
When this level reaches the limit of shear stress inherent in the material, plastic deformation occurs. At this time, the stress in the direction of shock wave propagation that marks the boundary between elastic behavior and plastic behavior is called the Ugoniot limit. For impact compression, the Ugonio limit is known to be 2-3 times higher than for static uniaxial compression. Therefore, in shock compression, the shear process with high stress levels causes crystal lattice distortion and an abnormal increase in defects in the solid.

しかし、垂直衝撃波の場合、一軸性圧縮のため剪断変形
は非常に拘束される。このマクロな拘束は粉体でも変わ
りない。しかし、粉体の場合、粒子レベルでは空孔があ
る限りこの拘束が破れる。従って、粒子の剪断変化は局
所的に大きな剪断変化が起きる。そして、それは結晶質
固体の非品質化や他の結晶構造への転移にも大きな影響
を与える。
However, in the case of vertical shock waves, the shear deformation is highly constrained due to uniaxial compression. This macroscopic constraint does not change even with powder. However, in the case of powder, this constraint is broken at the particle level as long as there are pores. Therefore, large shear changes occur locally in the particles. This also has a significant impact on the deterioration of crystalline solids and the transition to other crystal structures.

前者の例では石英粉末(Si02)の例があり、結晶質
のSi02を低いレベルから衝撃圧縮処理していくと、
圧力増加に連れて次第に非晶質化していくプロセスを見
ることが出来る。又、後者の例として、低圧相の黒鉛類
似構造のBN(以下g−BNという)から高圧相のウル
ツ鉱型BN(以下一BNという)への転移がある。この
転移は、g−BNの結晶構造の一連の原子層が僅かにず
れることにより達成されるマルテンサイト型転移であり
、この種の転移は、衝撃圧縮下で作用する剪断応力は有
効に作用するため、衝撃圧縮によるg−BNからwBN
への転換率は比較的高い。このような他の相への転移や
非品質化は、衝撃圧縮方法により、結晶質固体材料を高
温からの急冷方法でなしに、非晶質化したい場合には、
衝撃圧縮下での剪断応力の発生、つまり剪断歪みの量を
増す方向にもっていけば良いことを示唆するものである
An example of the former is quartz powder (Si02), and when crystalline Si02 is subjected to impact compression treatment from a low level,
The process of gradual amorphization as the pressure increases can be seen. Further, as an example of the latter, there is a transition from BN having a graphite-like structure (hereinafter referred to as g-BN) in the low pressure phase to wurtzite type BN (hereinafter referred to as 1BN) in the high pressure phase. This transition is a martensitic type transition that is achieved by a slight displacement of a series of atomic layers in the crystal structure of g-BN, and this type of transition is achieved by the shear stress acting under impact compression. Therefore, g-BN to wBN due to impact compression
The conversion rate is relatively high. Such transition to other phases and deterioration of quality can be avoided by impact compression method, if you want to make crystalline solid material amorphous without quenching it from high temperature.
This suggests that it is better to increase the amount of shear stress generated under impact compression, that is, the amount of shear strain.

熱伝導の低いセラミックスのような物質では上記のよう
な剪断変形を起こした領域ではそこでのスベリ変形が局
所的に集中し高い温度が発生する。
In materials such as ceramics, which have low thermal conductivity, in areas where shear deformation occurs as described above, the sliding deformation there is locally concentrated and high temperatures occur.

従って、衝撃圧縮下で剪断変形が集中している部分では
、結晶質固体は非品質化し易い。更に、ここでの温度は
周りより高くなり、そこでの原子の動きは一層拘束がな
くなり、原子の拡散を伴うような合成反応には好都合と
なる。
Therefore, in areas where shear deformation is concentrated under impact compression, the crystalline solid is likely to deteriorate. Furthermore, the temperature here is higher than the surrounding area, and the movement of atoms there is less constrained, which is favorable for synthetic reactions involving diffusion of atoms.

粉体の場合の剪断応力及びそれに伴った変化は非常に複
雑であるが、その影響は固体と同じである。
Shear stress and its associated changes in powders are very complex, but the effects are the same as in solids.

(実施例) 固体同士を斜めに衝突させると、その両方に縦波衝撃波
と横波衝撃波が発生する。このような方法で得られる衝
撃波は斜め衝撃波と呼ばれるものの一例である。この斜
め衝撃波による圧縮では、固体の弾性的性質のうち、縦
波成分と横波成分を各々独立に解析出来るという利点が
あり、この性質を利用して、固体の状態方程式に関する
研究や高圧下での物性測定等、主に計測実験に用いられ
てきている。斜め衝撃波を発生させる手段としては固体
同士を平行斜めに衝突させる方法、2次元及び3次元的
爆轟衝撃波を使う方法、ある角度で平面同士を衝突させ
る方法及び異方性結晶中を伝播してきた平面衝撃波を用
いる方法が提案されている。しかし、斜め衝撃波を使う
従来の目的は計測実験であり、従って、その発生手段も
軽ガスや火薬を使った衝撃銃方式に限られていた。爆薬
の爆発力を利用して斜め衝撃波を発生させ、かつそれを
材料合成に利用した例はない。
(Example) When solid objects collide obliquely, a longitudinal shock wave and a transverse shock wave are generated on both sides. The shock wave obtained by such a method is an example of what is called an oblique shock wave. Compression using oblique shock waves has the advantage that longitudinal wave components and transverse wave components of the elastic properties of solids can be analyzed independently, and this property can be used to study the equation of state of solids and to conduct research under high pressure. It has been mainly used for measurement experiments such as physical property measurements. Methods for generating oblique shock waves include colliding solid bodies in parallel and oblique directions, using two-dimensional and three-dimensional detonation shock waves, colliding planes at a certain angle, and propagating through anisotropic crystals. A method using plane shock waves has been proposed. However, the conventional purpose of using oblique shock waves was for measurement experiments, and therefore the means of generating them was limited to the shock gun method using light gas or gunpowder. There is no example of using the explosive power of explosives to generate diagonal shock waves and using them for material synthesis.

第5図は衝突速度2vで固体同士を斜めに衝突させた時
の斜め衝撃波の模式図で、弾性限応力以上の斜め衝撃波
が発生した直後の状態を示す2次元的な模式図である。
FIG. 5 is a schematic diagram of an oblique shock wave when solid bodies are obliquely collided with each other at a collision speed of 2V, and is a two-dimensional schematic diagram showing the state immediately after the oblique shock wave having a stress exceeding the elastic limit is generated.

衝突と同時に衝突面から両方の材料中に第5図に示した
ように衝突面に垂直な方向への縦波衝撃波と、衝突面に
平行な横波衝撃波がそれぞれ伝播し始める。ここでの衝
突面の飛翔体の衝突方向に対して垂直な面からのプレ角
をαとし、衝突面に滑りがないとすると縦波と横波に伴
う粒子速度Vl..v2はそれぞれVcos α、Vs
irαで与えられる。ここで例えば、鉄ブロックに同じ
鉄製の飛翔体が垂直からのズレ角αが15゜で衝突速度
2km/sで衝突し、衝突面の滑りがないとすると、鉄
ブロックと鉄製飛翔体に発生する縦波衝撃波と横波衝撃
波での粒子速度は各々0.95km/sと0.25km
/sとなる。単純な垂直平面衝撃圧縮の場合(α=0)
では、同じ条件で粒子は衝突面に垂直な方向にのみ1 
km/sで加速され移動する。しかし、本発明に係る衝
撃圧縮方法に利用する斜め衝撃波による衝撃圧縮では、
その衝突面に垂直な方向だけでなく、その面と平行した
面での粒子速度も相当速く、単なる垂直平面衝撃波に比
べて格段に高速かつ高効率の物質移動が可能であること
が分かる。又、ここでの、このような高速の物質移動は
、従来の化学反応プロセスに見られるような熱による励
起でなく、系の温度とはほぼ無関係であるという特徴を
持っている。この効果により比較的低い温度での高速の
物質移動が可能となり、ダイヤモンドの合成等、高圧相
の合成に適した条件が得られる。
Simultaneously with the collision, a longitudinal shock wave in a direction perpendicular to the collision surface and a transverse shock wave parallel to the collision surface begin to propagate from the collision surface into both materials, as shown in FIG. Let α be the pre-angle of the collision surface from a plane perpendicular to the direction of impact of the projectile, and assuming that there is no slippage on the collision surface, the particle velocity Vl due to longitudinal waves and transverse waves. .. v2 are Vcos α and Vs, respectively
It is given by irα. For example, if the same iron projectile collides with an iron block at a deviation angle α from the vertical of 15 degrees and a collision speed of 2 km/s, and there is no slippage on the collision surface, then this will occur between the iron block and the iron projectile. The particle velocities in longitudinal shock waves and transverse shock waves are 0.95 km/s and 0.25 km, respectively.
/s. For simple vertical plane impact compression (α=0)
Then, under the same conditions, the particle moves only in the direction perpendicular to the collision surface.
It moves at an acceleration of km/s. However, in the impact compression using oblique shock waves used in the impact compression method according to the present invention,
It can be seen that the particle velocity is considerably high not only in the direction perpendicular to the collision surface but also in the plane parallel to the collision surface, making it possible to transfer mass at a much higher speed and efficiency than with a simple vertical plane shock wave. Furthermore, such high-speed mass transfer here is not caused by excitation due to heat as seen in conventional chemical reaction processes, and is characterized in that it is almost independent of the temperature of the system. This effect enables high-speed mass transfer at relatively low temperatures, providing conditions suitable for high-pressure phase synthesis, such as diamond synthesis.

このような重要な効果を持つ斜め衝撃波の伝播は、縦波
衝撃波の応力が弾性限以上の塑性域に達しても、材料の
剛性あるいは粘性が残っている限り、存在し得る。
The propagation of oblique shock waves, which has such an important effect, can exist as long as the material remains rigid or viscous, even if the stress of the longitudinal shock wave reaches the plastic region exceeding the elastic limit.

従来の垂直平面衝撃波による圧縮では、衝撃波面通過後
の粒子は一方向に高速に加速され、その方向への高速の
物質移動を起こすが、この流れは一軸性のため高い剪断
力が作用し、高速な剪断変形が衝撃波の伝播方向に対し
て垂直斜めの方向に起こる。これにより非品質化や異な
る結晶構造への転移が助成されることは前述の通りであ
る。
In conventional compression by vertical plane shock waves, particles after passing through the shock wave front are accelerated in one direction at high speed, causing high-speed mass transfer in that direction, but because this flow is uniaxial, a high shear force acts, High-speed shear deformation occurs in a direction perpendicular to and oblique to the direction of shock wave propagation. As described above, this facilitates deterioration of quality and transition to a different crystal structure.

本発明に係る衝撃圧縮方法に用いる斜め衝撃波による圧
縮の場合には、この剪断応力及びそれによる変形は一層
著しいものとなる。斜め衝撃波の通過した材料は、衝突
面に垂直な方向に高速で加速され圧縮されながら、間時
にその圧縮方向に垂直な面、つまり剪断面に相当する方
向へも高速で加〆 速されることになる。
In the case of compression by oblique shock waves used in the impact compression method according to the present invention, this shear stress and the resulting deformation become even more significant. The material through which the oblique shock wave has passed is accelerated and compressed at high speed in the direction perpendicular to the collision surface, and at times is also accelerated at high speed in the direction perpendicular to the direction of compression, which corresponds to the shear plane. become.

例えば、上記の例で衝突面の衝突方向に垂直な面からの
ズレ角が15゜の場合についてみると、衝突面に垂直な
方向の粒子速度は0.95km/sであり、その圧力は
約40GPaに相当する。一方、衝突面でのすベリを無
視すると、剪断方向の粒子速度は0.25km/sであ
り、この方向での応力はその方向の弾性限界まで高まる
。このことは材料を一軸的に40GPaまで加圧した状
態で、これに瞬間的に剪断のかかる方向から極めて大き
な剪断歪みを加えることに相当する。粉体材料のメカノ
ケミストリーに与える剪断応力及び剪断変形の効果は前
述の通りであり、斜め衝撃波により圧縮された材料は著
しく活性化された状態にあるだけでなく、同時にそこで
の物質移動は極めて高速になることが分かる。
For example, in the above example, if the deviation angle of the collision surface from the plane perpendicular to the collision direction is 15 degrees, the particle velocity in the direction perpendicular to the collision surface is 0.95 km/s, and the pressure is approximately This corresponds to 40 GPa. On the other hand, if slippage on the collision surface is ignored, the particle velocity in the shear direction is 0.25 km/s, and the stress in this direction increases to the elastic limit in that direction. This corresponds to applying an extremely large shear strain to the material in a uniaxially pressurized state of up to 40 GPa in the direction of instantaneous shearing. The effects of shear stress and shear deformation on the mechanochemistry of powder materials are as described above, and the material compressed by oblique shock waves is not only in a significantly activated state, but also the mass transfer there is extremely fast. I understand that it will become.

更に、上述のように、剪断応力が作用し、剪断変形が集
中した領域では、高い温度が発生する。
Furthermore, as described above, high temperatures occur in areas where shear stress acts and shear deformation is concentrated.

従って、斜め衝撃波を用いた材料の衝撃圧縮では、垂直
平面衝撃波の場合に比べ、剪断応力の作用による変形の
程度は増し、剪断変形の集中する領域も増加する。そし
て、それらの領域では結晶質材料は容易に非品質化する
筈である。更にそのような領域での温度は周囲より高く
なり、そこでの原子の移動に対する拘束は一層なくなり
、原子の拡散を伴うような合成反応、焼結反応に好適な
場所が多数用意されることになる。前述のように、ダイ
ヤモンドの衝撃圧縮による合成では、その転移の性質か
ら、その出発材料である黒鉛の結晶構造を一度壊した状
態からダイヤモンドの結晶核を発生させ、生長させなけ
ればならない。このような合成プロセスを可能にし、か
つ、衝撃波通過後の逆変換を起こさない程度に低くする
には、比較的低い温度で黒鉛の非品質構造が容易に得ら
れ、かつ、その条件で高速の物質移動の出来るプロセス
が必要であった。
Therefore, in impact compression of a material using oblique shock waves, the degree of deformation due to the action of shear stress increases and the area where shear deformation concentrates also increases compared to the case of vertical plane shock waves. In these regions, crystalline materials should easily deteriorate in quality. Furthermore, the temperature in such a region will be higher than the surrounding area, and the restrictions on the movement of atoms there will be further removed, creating many suitable locations for synthetic reactions and sintering reactions that involve atomic diffusion. . As mentioned above, in the synthesis of diamond by impact compression, due to the nature of its transition, diamond crystal nuclei must be generated and grown from a state in which the crystal structure of graphite, the starting material, has been destroyed. To make such a synthesis process possible and low enough to avoid inversion after passing the shock wave, a non-quality structure of graphite can be easily obtained at a relatively low temperature and a high-speed A process capable of mass transfer was needed.

上記の斜め衝撃波を用いた材料の衝撃圧縮で得られるプ
ロセスは正にそのようなプロセスであることが分かる。
It can be seen that the process obtained by shock compression of materials using the above-mentioned oblique shock waves is exactly such a process.

ここで著しい剪断変形を起こした領域での温度は、瞬間
的にかなり高い温度まで達するが、周囲の温度は低いた
め、次に瞬間に急冷され、ダイヤモンドの逆変換に悪影
響をあたえることは少ない。
The temperature in the region where significant shear deformation occurs instantaneously reaches a fairly high temperature, but because the surrounding temperature is low, the area is rapidly cooled down and has little negative impact on the inversion of the diamond.

本発明に係る斜め衝撃波を用いた固体材料の衝撃圧縮で
は材料を装瞑した試料容器において、衝撃波又は爆轟衝
撃波の作用し始める面の一部又は全部が飛翔体の衝突方
向又は爆薬の爆発方向に対して垂直斜めの位置関係にあ
る1つ以上の平面又は曲面若しくはそれらの複合面(以
下複合面等という)よりなるが、ここでの垂直な面から
のズレの角度αの範囲は、第6図の斜め衝突の範囲図に
示すように、垂直な衝突面が左右に5゜以上、60゜未
満であり、好ましくは、7.5゜以上、45゜以下であ
る。ズレ角が5゜未満では剪断方向の衝撃波成分の粒子
速度は、垂直の成分の粒子速度の10%にも達しないた
め、剪断応力、変形の効果が小さすぎ、本発明の効果が
発揮出来ない。
In the shock compression of a solid material using an oblique shock wave according to the present invention, in a sample container loaded with the material, part or all of the surface on which the shock wave or detonation shock wave starts to act is in the direction of the impact of the projectile or the detonation direction of the explosive. It consists of one or more planes, curved surfaces, or composite surfaces thereof (hereinafter referred to as composite surfaces, etc.) that are perpendicular to or oblique to the surface, and the range of the angle α of deviation from the perpendicular surface is As shown in the oblique collision range diagram of FIG. 6, the vertical collision surface is 5 degrees or more and less than 60 degrees left and right, preferably 7.5 degrees or more and 45 degrees or less. When the deviation angle is less than 5°, the particle velocity of the shock wave component in the shear direction does not reach even 10% of the particle velocity of the perpendicular component, so the effects of shear stress and deformation are too small, and the effects of the present invention cannot be exhibited. .

一方、ズレ角αが60”以上では、逆に剪断方向の成分
の粒子速度は大きくなりすぎ、衝突面の滑りや試料容器
や試料の変形が著しくなり、安定して斜め衝撃波を利用
した衝撃圧縮が出来ず、好ましくない。斜め衝撃波を用
いた圧縮の効果は、1つには、上記のズレ角αを上記の
好ましい範囲内で大きくすることにより、顕著にするこ
とが出来る。
On the other hand, when the deviation angle α is 60" or more, the particle velocity in the component in the shear direction becomes too large, and the sliding of the collision surface and the deformation of the sample container and sample become significant. This results in stable impact compression using oblique shock waves. The effect of compression using an oblique shock wave can be made significant, in part, by increasing the deviation angle α within the preferable range.

又、上記の垂直斜めの位置関係にある複合面等を増すこ
とも効果的である。しかし、この際、そのような複合面
等を余り多く設け過ぎると、斜め衝撃波同士の干渉が無
視出来なくなり、本来の効果が期待出来なくなり好まし
くない。更に試料容器に設けるそれらの複合面等の大き
さはその効果を発揮させるため少なくとも11n2以上
必要である。
Furthermore, it is also effective to increase the number of composite surfaces in the above-mentioned vertical and diagonal positional relationship. However, in this case, if too many such composite surfaces are provided, the interference between oblique shock waves cannot be ignored, and the original effect cannot be expected, which is not preferable. Furthermore, the size of these composite surfaces provided on the sample container must be at least 11n2 or more in order to exhibit the effect.

次に本発明に係る衝撃圧縮方法を実施するための装置に
ついて説明する。
Next, an apparatus for carrying out the impact compression method according to the present invention will be explained.

第7図は間接法の1実施例を示したもので、図中の符号
は前述の第1図の場合と同様である。ここで爆薬レンズ
2について追加説明する。爆薬レンズ2は底面が主爆薬
3の水平断面と同形の円錐形若しくは角錐形のもので、
各錐面は高速爆薬2aで覆われており、内部の椎体は低
速爆薬2bが充墳されている構造である。
FIG. 7 shows one embodiment of the indirect method, and the reference numerals in the figure are the same as in the case of FIG. 1 described above. Here, the explosive lens 2 will be additionally explained. The explosive lens 2 has a conical or pyramidal bottom with the same shape as the horizontal cross section of the main explosive 3,
Each conical surface is covered with a high-velocity explosive 2a, and the internal vertebral bodies are filled with a low-velocity explosive 2b.

この実施例においては、爆薬レンズ2の底面、主爆薬3
及び飛翔体5の水平断面は試料容器7の水平断面と同形
のものであり、従来例の第1図のように第1モーメンタ
ムトラソプ10aにはかからないような構造である。
In this embodiment, the bottom surface of the explosive lens 2, the main explosive 3
The horizontal cross section of the flying object 5 has the same shape as the horizontal cross section of the sample container 7, and has a structure in which it does not cross the first momentum truss 10a as in the conventional example shown in FIG.

本発明の実施例の最大の特徴は、飛翔体5の下面と試料
容器7の上面に複合面等が構成されており、それぞれの
複合面等の突出方向が逆になっており、接触時に全面が
同時に完全に接触するように構成されているものである
The biggest feature of the embodiment of the present invention is that composite surfaces, etc. are formed on the lower surface of the flying object 5 and the upper surface of the sample container 7, and the protruding directions of each composite surface, etc. are reversed, so that when they make contact, the entire surface is are constructed so that they are in complete contact with each other at the same time.

即ち、第8図に示したように、試料容器7の上面(飛翔
体5が衝突する面)は同図(イ)及び(ハ)の断面図に
示すようにその陵と谷が同心円状となるような飛翔体衝
突方向に対して垂直斜めの位置関係となるいくつかの面
が設けてある。
That is, as shown in FIG. 8, the upper surface of the sample container 7 (the surface that the flying object 5 collides with) has ridges and valleys that are concentric circles, as shown in the cross-sectional views of FIG. 8 (a) and (c). Several surfaces are provided that are perpendicular to and diagonal to the projectile impact direction.

一方、飛翔体5の主爆薬3に対向した面は平面であるが
、試料容器7に対向した面は上記試料容器7の上面の突
出方向が逆の同形の面となっている。
On the other hand, the surface of the flying object 5 facing the main explosive 3 is a flat surface, but the surface facing the sample container 7 has the same shape as the upper surface of the sample container 7 in the opposite direction of protrusion.

第8図(口)に示したものは、上記陵と谷が平行になっ
ているもので、この平行線と垂直方向の断面図は(ハ)
図と一致するものである。
The one shown in Figure 8 (opening) has the above-mentioned ridges and valleys parallel to each other, and the cross-sectional view perpendicular to these parallel lines is (c).
It is consistent with the figure.

次にこの装置の操作について説明する。Next, the operation of this device will be explained.

先ず、試料8を所定の初期密度に成形した後、これを試
料容器7に挿入し、試料8の周りに空間が出来ないよう
にプラグ9で締付ける。
First, after molding the sample 8 to a predetermined initial density, it is inserted into the sample container 7 and tightened with a plug 9 so that there is no space around the sample 8.

このようにして試料8をセントした試料容器7を第1モ
ーメンタムトラップ10aに挿入し、これを第2モーメ
ンタムトラップ10bの上に載置する。
The sample container 7 containing the sample 8 in this manner is inserted into the first momentum trap 10a, and placed on the second momentum trap 10b.

次に雷管1に点火して爆薬レンズ2を起爆する。Next, the detonator 1 is ignited to detonate the explosive lens 2.

ここで爆薬レンズ2の円錐形の頂角の角度をθ、高速爆
薬2aの爆速をvh、低速爆薬2bの爆速をVlとした
とき、 Cos (θ/ 2) =Vl/Vh となるようにすることにより、頂点での起爆をそこから
底面への爆発の間に平面爆轟波に替えることが出来る。
Here, when the angle of the apex of the conical shape of the explosive lens 2 is θ, the detonation speed of the high-speed explosive 2a is vh, and the detonation speed of the low-velocity explosive 2b is Vl, it is made so that Cos (θ/2) = Vl/Vh. This allows the detonation at the apex to be replaced by a planar detonation wave during the detonation from there to the bottom.

このようにして爆薬レンズ2で形成した平面爆轟波がそ
の下の主爆薬3に伝播され、その主爆薬3の爆轟波によ
り下の飛翔体5が下の試料容器7の方向へ加速され、高
速で試料容器7の上面に衝突する。この衝突により、飛
翔体5の衝突方向にたいして垂直斜めの位置関係にある
各面に斜め衝撃波が発生し、これが試料容器7を通じて
試料8に伝播される。この場合、第7図の断面で見ると
、大きさは同じであるが、方向の異なる2種類の斜め衝
撃が試料容器7に発生し、試料8に伝播し、試料8が斜
め衝撃波により衝撃圧縮される。
In this way, the plane detonation wave formed by the explosive lens 2 is propagated to the main explosive 3 below, and the detonation wave of the main explosive 3 accelerates the projectile 5 below towards the sample container 7 below. , collides with the upper surface of the sample container 7 at high speed. As a result of this collision, oblique shock waves are generated on each surface that is perpendicular to and oblique to the collision direction of the flying object 5, and this is propagated to the sample 8 through the sample container 7. In this case, when viewed in the cross section of Fig. 7, two types of oblique shocks of the same magnitude but different directions occur on the sample container 7 and propagate to the sample 8, causing the sample 8 to be compressed by the shock wave. be done.

第1及び第2のモーメンタムトラップ10a , 10
bは衝撃圧縮後の試料8の回収を容易にするためのもの
であり、特に第1モーメンタムトラップ10aは試料容
器7の外周方向、第2モーメンタムトラップ10bは下
方向の対する運動エネルギーを吸収する目的で設けられ
ているもので、質量が大きく、強度も高い鉄製のものが
好ましい。試料容器7及びプラグ9もなるべく強度の高
い金属で作製するのが好ましい。実用的にはステンレス
製等の高張力鋼材が望ましい。試料容器7の肉厚は試料
容器7の破損防止の面からは厚い方が好ましいが、ここ
ではステンレス製とした場合、外周方向の肉厚は2〜1
0 +nで充分であり、上面の肉厚は薄い部分でも21
1以上は必要であり、好ましくは4〜10flである。
First and second momentum traps 10a, 10
b is for facilitating recovery of the sample 8 after impact compression, and in particular, the first momentum trap 10a is for the purpose of absorbing the kinetic energy in the outer circumferential direction of the sample container 7, and the second momentum trap 10b is for absorbing the kinetic energy in the downward direction. Preferably, it is made of iron, which has a large mass and high strength. It is also preferable that the sample container 7 and the plug 9 be made of a metal as strong as possible. Practically speaking, high-tensile steel such as stainless steel is preferable. The thicker the wall thickness of the sample container 7 is, the better from the perspective of preventing damage to the sample container 7. Here, when the sample container 7 is made of stainless steel, the wall thickness in the outer circumferential direction is 2 to 1 mm.
0 + n is sufficient, and the thickness of the top surface is 21 even in the thin part.
1 or more is required, preferably 4 to 10 fl.

又、プラグ9は衝撃圧縮された試料8が下方向への吹き
出しを防止するためのものであり、処理圧力が低い場合
にはネジ込み式にする必要はないが、圧力が高《なると
プラグ9が抜け易くなるため、試料容器7との間はネジ
による蝮合方式が好ましい。
In addition, the plug 9 is to prevent the impact-compressed sample 8 from blowing out downward, and when the processing pressure is low, it is not necessary to use a screw-in type, but when the pressure is high, the plug 9 is Since the sample container 7 can easily come off, it is preferable to connect it with the sample container 7 using screws.

なお、このプラグ9を長くすることによっても試料容器
7の回収は容易となる。これは高圧の衝撃波が通過後、
底面から反射して来る希薄波が長いブラグ9の内部で減
衰して試料8に殆ど到達しないからである。
In addition, collection of the sample container 7 can also be facilitated by making the plug 9 longer. After the high-pressure shock wave passes through,
This is because the rarefied wave reflected from the bottom surface is attenuated inside the long brag 9 and hardly reaches the sample 8.

更に、飛翔体5もなるべく強度の高い金属製の平板で作
るのが良く、実用上は鉄板、ステンレス鋼板や銅板が用
いられる。その厚みは、衝撃圧縮の持続時間を決定する
ものであるが、本発明に係る方法の装置では飛翔体5の
最も薄い部分でも1龍以上、好ましくは2l重以上必要
である。スペーサ6は金属棒、木材、プラスチック、ダ
ンボール紙等で作製出来る。爆薬容器4は主爆薬3とし
てANFOや粒状ダイナマイトのような不定形の爆薬を
利用する場合に引くようなものであり、プラスチック、
木材、ダンボール紙等で作製することが出来る。
Further, the flying object 5 is preferably made of a flat metal plate with high strength, and in practice, an iron plate, a stainless steel plate, or a copper plate is used. Its thickness, which determines the duration of impact compression, requires that even the thinnest part of the projectile 5 in the device of the method according to the invention be at least 1 liter, preferably at least 2 liters. The spacer 6 can be made of metal rod, wood, plastic, cardboard, etc. The explosive container 4 is of a type that is used when an amorphous explosive such as ANFO or granular dynamite is used as the main explosive 3, and is made of plastic,
It can be made from wood, cardboard, etc.

第9図(イ)(口)(ハ)(二)は本発明に係る衝撃圧
縮方法の実施に利用出来る装直における飛翔体5、試料
容器7、試料8及びプラグ9の縦断面図である。これら
の装置を用いた場合も上記の例と同じく、試料容器7の
上面の形状は複合面等で構成されているものである。た
だし、(二)示の場合には試料容器7は円筒形で、試料
8には飛翔体5が直接衝突する構造となっている。
FIGS. 9(a), 9(c), and 9(ii) are longitudinal cross-sectional views of the flying object 5, sample container 7, sample 8, and plug 9 in reloading that can be used to implement the impact compression method according to the present invention. . When these devices are used, the shape of the upper surface of the sample container 7 is composed of a composite surface or the like, as in the above example. However, in the case shown in (2), the sample container 7 is cylindrical and has a structure in which the flying object 5 directly collides with the sample 8.

第9図(イ)の例は、試料8が均一でなく、異なる2つ
の試料8、8が同心的に装填されており、異なる条件で
各々を衝撃圧縮したい場合に適合する方法である。
The example shown in FIG. 9(a) is a method suitable for a case where the sample 8 is not uniform, two different samples 8, 8 are loaded concentrically, and it is desired to impact-compress each sample under different conditions.

同図(口)の例は、断面形状が鋭い角形でなく、ゆるや
かな曲線になる場合であり、斜め衝撃波の強度と形が連
続して変化出来、反応を利用した焼結体の合成等に適し
た方法である。
The example in the same figure (opening) is a case where the cross-sectional shape is not a sharp square but a gentle curve, and the intensity and shape of the oblique shock wave can change continuously, making it useful for synthesizing sintered bodies using reactions, etc. This is a suitable method.

同図(ハ)の例は、上記(イ)と同様な用途に適した方
法である。
The example shown in FIG. 3(c) is a method suitable for the same application as in (a) above.

同図(二)の例は、飛翔体5を直接試料8に衝突させる
方法の一例で、衝突面の形状は上記(イ)(口)(ハ)
のように目的に応じて変化させることが容易である。
The example in (2) of the same figure is an example of a method in which the flying object 5 directly collides with the sample 8, and the shape of the collision surface is as shown in (a), (mouth), and (c) above.
It is easy to change it depending on the purpose.

第10図は第7図と同じく飛翔体5を利用した間接法に
よる別の実施例で、(イ)は斜視図、(口)は飛翔体衝
突方向の断面図(縦断面図)、(ハ)は起爆装置部分の
平面図である。この装置は細長い試料8を斜め衝撃波で
衝撃圧縮処理する場合に好適である。
FIG. 10 shows another embodiment using the indirect method using the flying object 5, as in FIG. ) is a plan view of the detonator part. This apparatus is suitable for performing shock compression treatment on the elongated sample 8 using oblique shock waves.

先ず、試料8を試料容器7に充堪し、プラグ9で固定し
た後、これを第2モーメンタムトラップ10bの上に置
く。試料容器7の飛翔体衝突方向の断面図(口)で示し
たような形状になっており、その上面は凸状部の陵が互
いに平行に並ぶようになっている。
First, the sample container 7 is filled with the sample 8, fixed with the plug 9, and then placed on the second momentum trap 10b. It has a shape as shown in the cross-sectional view (mouth) of the sample container 7 in the direction of projectile collision, and the ridges of the convex portions of the upper surface are arranged parallel to each other.

一方、飛翔体5は前述の例と同様に、試料容器7に対向
した面は、試料容器7の上面(衝突面)の形状を転写し
た三次元形状を持ち、反対側の主爆薬3を載せる上面は
平面である。
On the other hand, as in the previous example, the surface of the flying object 5 facing the sample container 7 has a three-dimensional shape that is a copy of the top surface (impact surface) of the sample container 7, and the main explosive 3 on the opposite side is placed thereon. The upper surface is flat.

主爆薬層とほぼ同一平面になるようにその一端に(ハ)
に示すように線起爆するような起爆装置を設けてある。
At one end so that it is almost flush with the main explosive layer (c)
As shown in the figure, a detonator for line detonation is installed.

この起爆装置は主爆薬3側に金属板11を、反対側にシ
ート状爆薬12を設け、これらの一端に雷管1を設け、
他端は主爆薬3の一端から開き角θで設けてある。
This detonator has a metal plate 11 on the main explosive 3 side, a sheet explosive 12 on the opposite side, and a detonator 1 on one end of these.
The other end is provided at an opening angle θ from one end of the main explosive 3.

ここでシート状爆薬12の爆速をI/d、その爆発によ
り内側の金属板11が内側に吹き飛ばされる速度をVm
とすると、 Vm/Vd = tanθ となるようにθを設定する。
Here, the detonation speed of the sheet explosive 12 is I/d, and the speed at which the inner metal plate 11 is blown away by the explosion is Vm.
Then, θ is set so that Vm/Vd = tanθ.

この構成で雷管1によりシート状爆薬12を起爆すると
、その内側の金属板11が飛ばされて、主爆薬3の一端
に同時に衝突し、そこで線起爆を起こす。この線起爆に
より主爆薬3の直線的爆発が図中右から左へ伝播し、下
側の飛翔体5が上記起爆装置側から主爆薬3の爆発に伴
って順次下の試料容器7に衝突し、試料容器7には斜め
衝撃波が発生し、これが試料8に伝播して斜め衝撃波で
試料8を衝撃圧縮する。
When the sheet-like explosive 12 is detonated by the detonator 1 in this configuration, the metal plate 11 inside is blown off and simultaneously collides with one end of the main explosive 3, causing line detonation there. Due to this linear detonation, the linear explosion of the main explosive 3 propagates from right to left in the figure, and the lower flying object 5 sequentially collides with the lower sample container 7 from the detonator side as the main explosive 3 explodes. , an oblique shock wave is generated in the sample container 7, which propagates to the sample 8 and shock-compresses the sample 8 with the oblique shock wave.

第12図は全体を円筒形に構成した装置で、(イ)は縦
断面図、(口)は(イ)図のB−8断面図である。この
装置は中心に試料8を収容した円筒形の試料容器7が配
置してあり、この試料容器7の内面は円筒面であるが、
外面は交互に上向き及び下向きの円錐面が連続している
環状の連続円錐面で構成され、上下両端はプラグ9、9
で閉塞されている。この上下のブラグ9、9で上下両端
が保持されている円筒形の飛翔体5が上記試料容器7の
外面(外周面)から一定の距離を置いて同心状態に保持
されている。この飛翔体5の内面(内周面)は上記試料
容器7の外周面を転写した形状の面であり、外周面は円
筒面である。なお、必要に応じて1個の円筒でなく、1
個の円筒を複数個に縦に分割した各片を寄せ合わせて元
の円筒状に配列したものでも良いことは勿論である。
FIG. 12 shows a device whose entire structure is cylindrical, and (A) is a longitudinal sectional view, and (B) is a sectional view taken along line B-8 in FIG. This device has a cylindrical sample container 7 containing a sample 8 in the center, and the inner surface of this sample container 7 is a cylindrical surface.
The outer surface is composed of an annular continuous conical surface in which upward and downward conical surfaces are continuous, and the upper and lower ends are plugs 9, 9.
is blocked by. A cylindrical flying object 5, whose upper and lower ends are held by the upper and lower plugs 9, is held concentrically at a constant distance from the outer surface (outer peripheral surface) of the sample container 7. The inner surface (inner circumferential surface) of this flying object 5 is a surface having a shape that is a transfer of the outer circumferential surface of the sample container 7, and the outer circumferential surface is a cylindrical surface. In addition, if necessary, instead of one cylinder, one
It goes without saying that a cylinder may be vertically divided into a plurality of pieces, each piece being brought together and arranged in the original cylindrical shape.

上述の各部材、即ち試料8、試料容器7、飛翔体5及び
上下のプラグ9、9で構成された中心部材を下端が閉塞
されている爆薬容器4の中心線に沿って配置し、中心部
材の周囲には主爆薬3を充處し、上端を蓋13で閉塞し
、この蓋13の中心部に雷管1が配置してある。
The central member composed of the above-mentioned members, that is, the sample 8, the sample container 7, the flying object 5, and the upper and lower plugs 9, is arranged along the center line of the explosive container 4 whose lower end is closed. The main explosive 3 is filled around the main explosive 3, the upper end is closed with a lid 13, and the detonator 1 is placed in the center of the lid 13.

従って、この装置では第1及び第2モーメンタムトラッ
プ10a , 10b及び爆薬レンズ2を省略するもの
である。
Therefore, in this device, the first and second momentum traps 10a, 10b and the explosive lens 2 are omitted.

第13図は第7図の変形例で、試料容器7の上面は中央
部が窪んでいる湾曲面となっており、飛翔体5は平面板
で、その上側に爆薬容器4に充填された主爆薬3が配置
してあり、この主爆薬3の上面中央部に直接雷管1を配
置し、爆薬レンズ2は省略してある。なお、第1及び第
2のモーメンタムトラップ10a , 10bは第7図
の場合と同じである。
FIG. 13 is a modification of FIG. 7, in which the upper surface of the sample container 7 is a curved surface with a concave center, and the projectile 5 is a flat plate, with the main material filled in the explosive container 4 on the upper side. An explosive charge 3 is arranged, a detonator 1 is arranged directly at the center of the upper surface of the main explosive charge 3, and an explosive lens 2 is omitted. Note that the first and second momentum traps 10a and 10b are the same as those in FIG. 7.

上述の主爆薬3の爆発状況は、雷管1により爆発する爆
燃面は雷管1をほぼ中心とした球面状に進行して行くの
で、飛翔体5に到達する時間差により、飛翔体5は湾曲
状態となって試料容器7に衝突する。この場合、飛翔体
5が元の平面から試料容器7に衝突するまでの間に湾曲
する曲率は主爆薬3の形状と、その爆燃速度等で変化す
るが、この曲率は予め測定が可能であるので、この測定
値に基づき同じ湾曲面となるように上記試料容器7の上
面を形成しておくものである。
In the above-mentioned explosion situation of the main explosive 3, the deflagration surface exploded by the detonator 1 advances in a spherical shape with the detonator 1 as the center, so the projectile 5 becomes curved due to the time difference in reaching the projectile 5. and collides with the sample container 7. In this case, the curvature of the projectile 5 from its original plane until it collides with the sample container 7 changes depending on the shape of the main explosive 3, its deflagration speed, etc., but this curvature can be measured in advance. Therefore, based on this measurement value, the upper surface of the sample container 7 is formed so as to have the same curved surface.

以上の各実施例は試料容器7と飛翔体5の間に平行な空
間を設けた間接法による衝撃圧縮方法であるが、第11
図は直接法の一実施例を示したちのである。試料8を充
填し、第1及び第2モーメンタムトラップ10a 、1
0bを使用することは上述の間接法と同じであるが、試
料容器7の上面と主爆薬3の下面とは第11図に示すよ
うに直接接触している。
Each of the above embodiments is an impact compression method using an indirect method in which a parallel space is provided between the sample container 7 and the flying object 5.
The figure shows an example of the direct method. Filled with sample 8, first and second momentum traps 10a, 1
Using 0b is the same as the above-mentioned indirect method, but the upper surface of the sample container 7 and the lower surface of the main explosive 3 are in direct contact as shown in FIG.

この場合、試料容器7の上面は凸状の三角形部の陵が同
心円状となる形状のものと、陵が互いに平行となる形状
のものが採用出来る。
In this case, the upper surface of the sample container 7 may have a shape in which the ridges of the convex triangular portion are concentric circles or a shape in which the ridges are parallel to each other.

次にこの装置を使用する操作を説明する。Next, the operation of using this device will be explained.

試料8を試料容器7に充填し第1及び第2モーメンタム
トラップ10a 、10bにセントすることは前述の間
接法の場合と同じである。
Filling the sample container 7 with the sample 8 and feeding it into the first and second momentum traps 10a and 10b is the same as in the indirect method described above.

次に主爆薬3を爆薬容器4に充填し、これを試料容器7
の上に載せ、更にその上に爆薬レンズ2と雷管1を置く
Next, the main explosive 3 is filled into the explosive container 4, and this is transferred to the sample container 7.
Place the explosive lens 2 and detonator 1 on top of it.

なお、第12図及び第13図に示す装置の場合には爆薬
レンズ2は使用せず、雷管1は直接主爆薬3に接触して
配置する。
In the case of the apparatus shown in FIGS. 12 and 13, the explosive lens 2 is not used, and the detonator 1 is placed in direct contact with the main explosive 3.

衝撃圧縮を行う場合には、雷管1により爆薬レンズ2を
起爆し、そこで形成された平面衝撃波が下の主爆薬3に
伝播され、主爆薬3が上側から下側へ平面爆発してその
平面爆轟波が下の試料容器7に伝播される。ここで試料
容器7の上面の中で主爆薬3の爆発方向に対して垂直斜
めの位置となっていた面では上記平面爆轟波は斜め衝撃
波として、先ず、試料容器7に入射し、続いて試料8に
伝播し、試料8が斜め衝撃波で衝撃圧縮される。
When performing shock compression, the explosive lens 2 is detonated by the detonator 1, and the plane shock wave formed there is propagated to the main explosive 3 below, causing the main explosive 3 to explode in a plane from the top to the bottom. A roaring wave is propagated to the sample container 7 below. Here, on the surface of the upper surface of the sample container 7 that is perpendicular to and oblique to the detonation direction of the main explosive 3, the plane detonation wave first enters the sample container 7 as an oblique shock wave, and then The wave propagates to the sample 8, and the sample 8 is subjected to impact compression by the oblique shock wave.

この直接法による方法でも上述の間接法の場合と同様に
第9図に(イ)(口)(ハ)に示した試料容器形状を利
用出来る。
This direct method can also utilize the sample container shapes shown in FIG.

第11図に示したように、飛翔体5を用いない方法は構
造が簡単で有利ではあるが、この方法は前述のように発
生出来る圧力が低いという欠点がある。従って、必要な
圧力レベルに応じて直接法と間接法を使い分ける必要が
ある。
As shown in FIG. 11, the method that does not use the flying object 5 has a simple structure and is advantageous, but this method has the disadvantage that the pressure that can be generated is low as described above. Therefore, it is necessary to use either the direct method or the indirect method depending on the required pressure level.

(実験例1一第7図参照) 平均粒径10μの黒鉛粉末と325メッシュ以下の粒径
の銅粉を体積比1:1となるように混合し、ダイヤモン
ド合成用の混合粉末とした。この混合粉末を第7図に示
す装置で試料容器7の上面図が第8図(イ)のようであ
る装1を用いて衝撃圧縮した。第7図の試料容器7及び
ブラグ9は鉄製とし、試料容器7の飛翔体5に面した上
面の同心円状の凸部の断面は三角形であり、この三角形
の頂角は140゜の二等辺三角形とした。つまり、飛翔
体5の衝突方向に対して垂直な面からのズレの角を20
”となるようにそれぞれの面を設けた。
(See Experimental Example 1 - Figure 7) Graphite powder with an average particle size of 10 μm and copper powder with a particle size of 325 mesh or less were mixed at a volume ratio of 1:1 to obtain a mixed powder for diamond synthesis. This mixed powder was subjected to impact compression using the apparatus shown in FIG. 7 using a device 1 whose top view of the sample container 7 was as shown in FIG. 8(a). The sample container 7 and the plug 9 in FIG. 7 are made of iron, and the cross section of the concentric convex portion of the upper surface of the sample container 7 facing the flying object 5 is triangular, and the apex angle of this triangle is an isosceles triangle of 140°. And so. In other words, the angle of deviation from the plane perpendicular to the collision direction of the flying object 5 is 20
” Each side was set up so that

又、この断面が三角形となる凸状部の外径は試料8の外
径と同じ21mとし、それらの三角形の底辺の長さはそ
の1/3の71mであり、高さは1.3+mである。試
料容器7の外径は40龍で、高さは30龍とし、その中
の試料8を入れる空間(試料室)の大きさは直径21m
m、高さ5龍とし、ブラグ9の長さは20鶴とした。
In addition, the outer diameter of the convex portion with a triangular cross section is 21 m, which is the same as the outer diameter of sample 8, the length of the base of these triangles is 1/3 of that, 71 m, and the height is 1.3 + m. be. The outer diameter of the sample container 7 is 40 mm, the height is 30 mm, and the space (sample chamber) in which the sample 8 is placed is 21 m in diameter.
m, the height was 5 dragons, and the length of Brag 9 was 20 cranes.

この試料容器7の試料室に上記の混合粉末を初期密度6
5%となるように充填し、ねじ込み式にしたプラグ9で
締め付け固定した。このようにした試料容器7を外径1
00龍、高さ30mで中央部に試料容器用の孔のあいた
鉄製の第1モーメンタムトラップ10aに挿入し、これ
を更に外径100mm、高さ30鶴の鉄製の第2モーメ
ンタムトラップ10bの上に置いた。
The above mixed powder is placed in the sample chamber of this sample container 7 at an initial density of 6.
It was filled to a concentration of 5% and fixed by tightening with a screw-in plug 9. The sample container 7 thus constructed has an outer diameter of 1
00 dragon, inserted into the first iron momentum trap 10a with a height of 30 m and a hole for a sample container in the center, and then placed on the second iron momentum trap 10b with an outer diameter of 100 mm and a height of 30 m. placed.

飛翔体5は鉄製とし、試料容器7に対向した面は試料容
器7の上面の三次元形状を転写した形状に旋盤加工し、
これと反対側の面は平面としてある。この飛翔体5の外
径は40mで、厚さは加工のない所で4.0mm、加工
した最も薄い所で2.7*nとなるようにした。
The flying object 5 is made of iron, and the surface facing the sample container 7 is lathed into a shape that transfers the three-dimensional shape of the top surface of the sample container 7.
The opposite side is a flat surface. The outer diameter of this flying object 5 was 40 m, and the thickness was 4.0 mm at the unprocessed part and 2.7*n at the thinnest part.

この鉄製の飛翔体5を第7図に示すように5fl角のバ
ルサ材をスベーサ−6として用い、下の試料容器7との
間に15龍の空間を設けて設置した。
As shown in FIG. 7, this iron flying object 5 was installed using a 5 fl square piece of balsa wood as a spacer 6 with a space of 15 mm between it and the sample container 7 below.

更に、この飛翔体5の上に塩化ビニール製の爆薬容器4
に充填した主爆薬3を載せた。この主爆薬3として、爆
速7 . 2 km八のジュボン社製データ・シ一トC
−6を66MXの厚さになるように用いた。
Furthermore, an explosive container 4 made of vinyl chloride is placed on top of this flying object 5.
The main explosive charge 3 was loaded on the tank. As this main explosive 3, the explosion speed is 7. 2km8 Jubon data sheet C
-6 was used to give a thickness of 66MX.

爆薬容器4は内径130鶴、外径140N、高さ66m
のものを用いた。
Explosive container 4 has an inner diameter of 130 N, an outer diameter of 140 N, and a height of 66 m.
I used the one from

主爆薬3の上に高速爆薬2aとしてデータ・シ一トC−
2を、低速爆薬2bとしてエマルジョン爆薬を用いた爆
薬レンズ2を載せ、更にその上に起爆用の雷管1を取付
けた。この爆薬レンズ2の底面の外径は主爆薬3を入れ
た爆薬容器4の外径と一致するようにしてある。
Data sheet C- as high velocity explosive 2a on top of main explosive 3
2 was mounted with an explosive lens 2 using an emulsion explosive as a low-velocity explosive 2b, and a detonator 1 for detonation was further attached thereon. The outer diameter of the bottom surface of this explosive lens 2 is made to match the outer diameter of the explosive container 4 containing the main explosive 3.

以上のようにして衝撃圧縮用に装置を組み立てた後、雷
管1により爆薬レンズ2を起爆して平面衝撃波を作り、
その作用で下の主爆薬3の平面爆発を行い、それによっ
て下の飛翔体5をこの場合約1 . 8km /sまで
加速して下の試料容器7に衝突させた。
After assembling the device for shock compression as described above, the explosive lens 2 is detonated by the detonator 1 to create a plane shock wave.
The action causes a planar explosion of the lower main explosive 3, thereby detonating the lower projectile 5 by about 1.5 mm in this case. It was accelerated to 8 km/s and collided with the sample container 7 below.

衝撃処理後、試料容器7は外側の変色はあったが、大き
な変形はな《回収した。この回収した試料容器7から切
削加工により試料8を取出し、先ず、銅を酸処理して除
き、次に黒鉛を酸化鉛を用いて酸化除去し、黒鉛からの
ダイヤモンドへの転換率を調べた。その結果、この方法
によるダイヤモンドへの転換率は約68%であった。
After the impact treatment, the sample container 7 had discoloration on the outside, but was recovered without major deformation. Sample 8 was taken out from the collected sample container 7 by cutting, and first, copper was removed by acid treatment, then graphite was oxidized and removed using lead oxide, and the conversion rate from graphite to diamond was examined. As a result, the conversion rate to diamond by this method was about 68%.

又、この実験の装置による方法との比較のため、上記実
験例と同じ混合粉末を用い、従来の平面衝撃波による衝
撃処理を試みた。この場合、第7図の試料容器7の上部
の三角形の凸部なしで、又飛翔体5としては厚さ3龍の
鉄板を用いた。他の条件として装置構成部品の材質、形
状、寸法の他、使用爆薬等は上記実験例と同じとした。
In addition, for comparison with the apparatus-based method of this experiment, using the same mixed powder as in the above experimental example, impact treatment using a conventional planar shock wave was attempted. In this case, the triangular convex portion at the top of the sample container 7 shown in FIG. 7 was not provided, and the flying object 5 was made of an iron plate with a thickness of 3 mm. Other conditions such as the materials, shapes, and dimensions of the device components, as well as the explosives used, were the same as in the above experimental example.

この条件の時の飛翔体5の試料容器7への衝突速度は2
.0km/sであった。衝撃処理後、試料8を上記と同
じ方法で回収し、ダイヤモンドへの転換率を測定した。
Under these conditions, the collision speed of the flying object 5 with the sample container 7 is 2
.. The speed was 0km/s. After the impact treatment, Sample 8 was recovered in the same manner as above and the conversion rate to diamond was measured.

この結果、この単純な平面衝撃波を用いた場合の転換率
は13%にしか達していなかった。
As a result, the conversion rate when using this simple plane shock wave reached only 13%.

(実験例2〜第7図参照) 実験例1においては、試料容器7の飛翔体5に対向した
面の断面形状は三角形の凸状であったが、この実験例で
は第9図(口)に示したような曲面状で、かつ第8図(
口)に示したように平行な凸部としてある。飛翔体5の
下面もこれに対応した形状の三次元形状の面としてある
。その他は上記実験例1と同じにしてある。
(See Experimental Examples 2 to 7) In Experimental Example 1, the cross-sectional shape of the surface of the sample container 7 facing the flying object 5 was a triangular convex shape, but in this experimental example, as shown in FIG. It has a curved surface shape as shown in Figure 8 (
They are parallel convex portions as shown in Figure 1). The lower surface of the flying object 5 is also a three-dimensional surface with a shape corresponding to this. Other details were the same as in Experimental Example 1 above.

この場合、試料容器7の上面は、1つの山の幅は実験例
1と同じ7+nとし、尾根と谷の部分の曲率は約5.5
鰭とした。
In this case, the width of each peak on the upper surface of the sample container 7 is 7+n, which is the same as in Experimental Example 1, and the curvature of the ridges and valleys is approximately 5.5.
It was made into a fin.

この装置を用いて実験例1と同じ混合試料を用い、これ
を試料容器7に初期密度65%となるように充填し、実
験例1と同様な方法により起爆し、衝撃処理した。
Using this device, the same mixed sample as in Experimental Example 1 was used, and the sample container 7 was filled with the mixed sample so that the initial density was 65%, and the mixture was detonated and subjected to impact treatment in the same manner as in Experimental Example 1.

衝撃処理後、試料8を同様な方法で回収し、転換率を測
定した。その結果、この装置を用いた場合の転換率は実
験例lの装置の場合と大差なく、62%であった。
After impact treatment, sample 8 was collected in a similar manner and the conversion rate was measured. As a result, the conversion rate when this device was used was 62%, which was not much different from the device of Experimental Example 1.

(実験例3一第11図参照) 平均粒径5μの黒鉛類似構造のBN( gBN )粉末
と325メッシュ以下の粒径の鉄粉を体積比で1:1に
配合し、混合粉末とした。衝撃圧縮装置は第11図に示
したもので、飛翔体5を用いず、又、試料容器7の上面
に直接主爆薬3が接する実うにしたもので、これ以外は
第7図に示した装置と同じである。
(See Experimental Example 3 - Figure 11) BN (gBN) powder with a structure similar to graphite with an average particle size of 5 μm and iron powder with a particle size of 325 mesh or less were blended at a volume ratio of 1:1 to form a mixed powder. The impact compression device is shown in FIG. 11, and does not use a flying object 5, and has the main explosive 3 in direct contact with the top surface of the sample container 7.Other than this, the device is the same as shown in FIG. is the same as

この実験例の場合、上記混合粉末を初期密度70%とな
るように試料容器7に充墳し、ねじ込み式にしたプラグ
9で締め付け固定した。
In the case of this experimental example, the sample container 7 was filled with the above-mentioned mixed powder to an initial density of 70%, and was fixed by tightening with a screw-in plug 9.

この状態で実験例1と同様に雷管1で爆薬レンズ2を起
爆して平面衝撃波を形成させ、この平面衝撃波を下の主
爆薬3に伝播させる。この伝播により主爆薬3は平面爆
発し、その平面爆轟波が下の試料容器7へ伝播され試料
8が衝撃処理される。
In this state, similarly to Experimental Example 1, the explosive lens 2 is detonated with the detonator 1 to form a plane shock wave, and this plane shock wave is propagated to the main explosive 3 below. This propagation causes the main explosive 3 to detonate in a plane, and the plane detonation wave is propagated to the sample container 7 below, and the sample 8 is subjected to impact treatment.

衝撃処理後、試料容器7を回収したが、殆ど変形はなか
った。この回収した試料容器7から実験例1と同様にし
て試料8を回収し、鉄を酸で溶解した後400℃のアル
カリ溶液処理でgBNを除き、高圧相BNを得た。この
時の高圧相への転換率は約87%に達していた。又、こ
こでは高圧相はX線回折の結果、ウルツ鉱型BN (w
BN)と立方晶BN (cBN)よりなっていたが、2
つの相の回折線が重なるため、それら2つの相の生成割
合は正確には決定出来なかった。
After the impact treatment, the sample container 7 was recovered, but there was almost no deformation. Sample 8 was collected from the collected sample container 7 in the same manner as in Experimental Example 1, and after dissolving iron with acid, gBN was removed by treatment with an alkaline solution at 400°C to obtain high-pressure phase BN. At this time, the conversion rate to the high pressure phase reached approximately 87%. Furthermore, as a result of X-ray diffraction, the high-pressure phase here is wurtzite-type BN (w
BN) and cubic BN (cBN), but 2
Because the diffraction lines of the two phases overlap, the proportions of the two phases cannot be accurately determined.

この場合でも比較のため、試料容器7の上面の三角形の
凸部のない平面の場合の実験を行った。
In this case as well, for comparison, an experiment was conducted in which the upper surface of the sample container 7 had a flat surface without a triangular convex portion.

この場合も試料8は上記と同じものを用い、試料容器7
への充墳率も同じ<70%とした。他の装置構成部品の
材質、形状、寸法及び使用爆薬の種類と量は上記実験例
と同じである。この方法で得られた試料についても上記
の方法ど同様な手順でgBNから高圧相への転換率を調
べた。その結果、この場合の転換率は28%と低かった
。又、最終的に得た高圧相粉末のX線回折測定を行った
ところ、この相はwBNのみからなり、cBNは認めら
れなかった。この結果、この単純な平面fi撃波方では
原子の拡散を必要とするようなgBNからcBNへの転
換は難しかったことを示すもめと考えられる。
In this case, the same sample 8 as above is used, and the sample container 7
The filling rate was also set at <70%. The materials, shapes, and dimensions of the other device components and the type and amount of explosives used were the same as in the above experimental example. Regarding the sample obtained by this method, the conversion rate from gBN to the high pressure phase was also investigated using the same procedure as the above method. As a result, the conversion rate in this case was as low as 28%. Furthermore, when the finally obtained high-pressure phase powder was subjected to X-ray diffraction measurement, this phase consisted only of wBN, and no cBN was observed. As a result, this conflict is thought to indicate that it was difficult to convert gBN to cBN, which requires atomic diffusion, using this simple planar fi-wave attack method.

(実験例4一第10図参照) 粒径10μ以下のチタン(Ti)粉末と粒径1μ以下の
非晶質ほう素(B)粉末を1:20モル比で混合し、混
合粉末とした。この混合粉末を第10図に示す衝撃圧縮
装置を用いて衝撃圧縮処理した。
(See Experimental Example 4 - Figure 10) Titanium (Ti) powder with a particle size of 10 μm or less and amorphous boron (B) powder with a particle size of 1 μm or less were mixed at a molar ratio of 1:20 to obtain a mixed powder. This mixed powder was subjected to impact compression treatment using an impact compression apparatus shown in FIG.

第10図(イ)の試料容器7は50鶴×500鶴×40
鶴の大きさをもち、ステンレス製とし、その上面の断面
は同図(口)に示したような三角形の凸部をもつもので
ある。この場合、三角形の頂角が120’の二等辺三角
形となる形状を用いた。つまり、飛翔体5の衝突方向に
対して垂直な面からのズレの角が30゜である。又この
三角形の底辺の長さは拭料8の幅30mの173である
10mとした。この時の各三角形の高さは約2.8鶴で
ある。この場合の三角形の凸部は、上面図で見ると互い
に平行となるように加工してある。このような上面形状
を持った試料容器7に上記の混合粉末を初期密度約60
%となるように充填し、嵌め込み式のプラグ9を嵌め込
んで試料8を固定した。
The sample container 7 in Figure 10 (a) is 50 cranes x 500 cranes x 40
It is the size of a crane, made of stainless steel, and has a triangular convex cross section as shown in the same figure (mouth). In this case, an isosceles triangle shape with an apex angle of 120' was used. In other words, the angle of deviation from the plane perpendicular to the collision direction of the flying object 5 is 30 degrees. Further, the length of the base of this triangle was set to 10 m, which is 173 of the width of the wipe 8 of 30 m. The height of each triangle at this time is approximately 2.8 cranes. In this case, the triangular convex portions are processed so that they are parallel to each other when viewed from a top view. The above mixed powder is placed in the sample container 7 having such a top surface shape at an initial density of about 60.
%, and a fitting type plug 9 was fitted to fix the sample 8.

なお、試料容器7の中の試料8を充虜する空間の大きさ
は幅30鶴、長さ400mm、高さ5mlとした.次に
試料8を充填し、プラグ9で固定した試料容器7を幅5
0鶴、長さ500l、高さ40鶴の鉄製の第2モーメン
タムトラップ10bの上に置いた。
The space in the sample container 7 that contained the sample 8 had a width of 30 mm, a length of 400 mm, and a height of 5 ml. Next, fill the sample container 7 with the sample 8 and fix it with the plug 9.
It was placed on a second iron momentum trap 10b with a length of 500 liters and a height of 40 liters.

飛翔体5は鉄製とし、その試料容器7に対向した面は試
料容器7の上面の形状を転写した三次元形状を持つよう
にフライス盤で加工した。この場合、厚さ4lの鉄板を
加工して作製したが、加工後の最少厚み部分の厚さは約
1.2+nである。この飛翔体5の形状は下の試料容器
7の形状に合わせ、幅50m、長さ500龍とした。
The flying object 5 was made of iron, and its surface facing the sample container 7 was processed with a milling machine so that it had a three-dimensional shape that copied the shape of the top surface of the sample container 7. In this case, an iron plate having a thickness of 4 l was processed and produced, but the thickness of the minimum thickness portion after processing was approximately 1.2+n. The shape of this flying object 5 was 50 m wide and 500 m long in accordance with the shape of the sample container 7 below.

この飛翔板5の上側の平面上に主爆薬3を載せた。この
主爆薬3として、ジュポン社製のデータ・シートC〜6
を48wmの厚さとなるようにして用いた。この主爆薬
3の一端に第10図に示すように線起爆用の起爆装置を
設けた。この起爆装置は厚さ2龍、幅10籠,長さ約5
0mmのアルミニウム板(金属板11)の外側にデータ
・シ一トC−2(シート爆薬12)を貼付けたものを用
いた。この金属板11の方を主爆薬3の方に向けて、そ
の一端を主爆薬3に第10図(ハ)にしめすように固定
した。この場合、主爆薬3と起爆装置とは平面上の角θ
は約11゜とし、その先端に雷管1を取付けた。
The main explosive 3 was placed on the upper plane of the flying plate 5. As this main explosive 3, data sheet C~6 manufactured by Jupon Co.
was used so as to have a thickness of 48 wm. A detonator for wire detonation was provided at one end of the main explosive 3 as shown in FIG. This detonator is 2cm thick, 10cm wide, and about 5cm long.
A 0 mm aluminum plate (metal plate 11) with data sheet C-2 (sheet explosive 12) pasted on the outside was used. This metal plate 11 was oriented toward the main explosive 3 and one end thereof was fixed to the main explosive 3 as shown in FIG. 10(c). In this case, the main explosive 3 and the detonator are at an angle θ on the plane.
The angle was approximately 11°, and detonator 1 was attached to the tip.

衝撃処理では先ず、雷管1によりシート爆薬12を起爆
し、その爆轟波により内側の金属板11が主爆薬3の方
へ飛ばされ、主爆薬3の一方の面に同時に衝突し、主爆
薬3の直線状の爆発をもたらす。
In the impact treatment, first, the sheet explosive 12 is detonated by the detonator 1, and the inner metal plate 11 is blown towards the main explosive 3 by the detonation wave, and simultaneously collides with one side of the main explosive 3, causing the main explosive 3 to explode. resulting in a linear explosion.

この直線状爆発により、下の飛翔体5が起爆装置側から
下に飛ばされ、順次試料容器7に衝突し、衝撃処理をす
る。
Due to this linear explosion, the lower flying object 5 is blown downward from the detonator side and sequentially collides with the sample container 7 to perform impact treatment.

衝撃処理後、試料容器7を回収し、フライス加工して試
料8を取出した。試料8は一塊で回収出来、緻密な焼結
体となっていた。この試料の一部を研磨し、その面でX
線回折測定を行ったところ、この焼結体はTiB2のみ
よりなっており、未反応のTI%Bは検出されなかった
。又、この焼結体の平均硬度は2600kg/mm”で
あった。
After the impact treatment, the sample container 7 was collected and milled to take out the sample 8. Sample 8 was recovered in one piece and was a dense sintered body. Polish a part of this sample and
When a line diffraction measurement was performed, this sintered body was composed only of TiB2, and no unreacted TI%B was detected. Moreover, the average hardness of this sintered body was 2600 kg/mm''.

一方、比較のための、上記の実験と同じ混合粉末を用い
て、平面衝撃波による衝撃処理を試みた。
On the other hand, for comparison, an impact treatment using a plane shock wave was attempted using the same mixed powder as in the above experiment.

この場合は第10図の試料容器7の上部は平面とし、飛
翔体5の下面も平面として厚み3flの鉄板を用いた。
In this case, the upper surface of the sample container 7 shown in FIG. 10 was made flat, and the lower surface of the flying object 5 was also made flat, using an iron plate with a thickness of 3 fl.

他の条件、つまり、装置構成部品の材質、形状、寸法や
使用爆薬の種類と量は上記実験例と同じとした。この結
果、この試料では期待したTiとBの反応は起きていず
、粉末は緻密化していたが焼結していなかった。
Other conditions, ie, the materials, shapes, and dimensions of the device components and the type and amount of explosives used, were the same as in the above experimental example. As a result, the expected reaction between Ti and B did not occur in this sample, and the powder was densified but not sintered.

(実験例5一第12図参照) 第12図に示すように、試料8を円筒形の試料容器7に
充填し、プラグ9、9で上下を閉塞する。
(Refer to Experimental Example 5 - FIG. 12) As shown in FIG. 12, a sample 8 is filled into a cylindrical sample container 7, and the top and bottom are closed with plugs 9, 9.

この場合、試料8は前述の実験例1の場合と同様な成分
配合で、同様な初期密度で充填してある。
In this case, Sample 8 had the same composition of ingredients as in Experimental Example 1 and was packed at the same initial density.

このようにして試料8を充填した試料容器7の外周に一
定距離をおいて飛翔体5を同心状に配置する。この場合
、飛翔体5は1個の筒形のものでも良いし、この筒形を
縦に分割した複数の分割片で元の形状の筒形に配列した
ものでも良い。これら試料8、試料容器7、飛翔体5及
びプラグ9、9よりなる中心部材を爆薬容器4の中心線
上に置き、中心部材の周囲に主爆薬3を充填して蓋13
で閉塞し、この蓋13の中心部に雷管1を装着する。
The flying objects 5 are arranged concentrically at a certain distance around the outer periphery of the sample container 7 filled with the sample 8 in this manner. In this case, the flying object 5 may be a single cylindrical object, or may be a plurality of pieces obtained by vertically dividing this cylindrical object and arranged in the original cylindrical shape. A central member consisting of the sample 8, sample container 7, flying object 5, and plugs 9 is placed on the center line of the explosive container 4, the main explosive 3 is filled around the central member, and the lid is closed.
The detonator 1 is attached to the center of the lid 13.

この状態で雷管lにより主爆薬3を爆発させると、主爆
薬3は上側から下側に順次爆燃して飛翔体5を試料容器
7に衝突せしめる。この結果、試料容器7の外周面の連
続円錐面により試料容器7及び試料8内に垂直斜めの衝
撃波が発生し、試料8にダイヤモンドへの転換反応を起
こさせる。
When the main explosive 3 is detonated by the detonator l in this state, the main explosive 3 deflagrates sequentially from the upper side to the lower side, causing the flying object 5 to collide with the sample container 7. As a result, vertical and oblique shock waves are generated within the sample container 7 and the sample 8 due to the continuous conical surface of the outer peripheral surface of the sample container 7, causing the sample 8 to undergo a conversion reaction into diamond.

結果は実験例1の場合とほぼ同様な数値となっているの
で、省略する。
Since the results are almost the same numerical values as in Experimental Example 1, they will be omitted.

(実験例6一第13図参照) この実験例の場合は実験例1の第7図の場合と同様に試
料8を試料容器7に充填し第1及び第2モーメンタムト
ラップ10a , 10bに装着する。
(See Experimental Example 6 - Figure 13) In this experimental example, the sample 8 is filled into the sample container 7 and attached to the first and second momentum traps 10a and 10b in the same way as in the case of Experimental Example 1, Figure 7. .

更に、試料容器7の上にスペーサ−6で離隔して平面の
飛翔体5を置き、その上に爆薬容器4に充填した主爆薬
3を接触して置く。この主爆薬3には爆薬レンズ2は使
用せず、雷管1を直接中心部に装着する。
Further, a flat flying object 5 is placed on top of the sample container 7 with a spacer 6 between the two, and the main explosive 3 filled in the explosive container 4 is placed on top of the flying object 5 in contact with it. The explosive lens 2 is not used for this main explosive 3, and the detonator 1 is attached directly to the center.

このように配置してから、雷管1により主爆薬3を爆発
させると、主爆薬は雷管1の所がら爆燃を開始するので
、ほぼ球面状に爆燃して行き、平面の飛翔体5をその中
心点から外側方向に順次同円状に下側に吹き飛ばす形で
球面状の湾曲面になって試料容器7の上面に衝突する。
After arranging it in this way, when the main explosive 3 is detonated by the detonator 1, the main explosive starts to deflagrate from the detonator 1, so it deflagrates in an almost spherical shape, and the planar projectile 5 is brought to its center. The particles are blown outward from the point and downward in a circular pattern, forming a spherical curved surface and colliding with the upper surface of the sample container 7.

この場合、試料容器7の上面は予め測定してある飛翔体
5の湾曲面と同一の球面に切削してあるので、全面に同
時に衝突する。この結果、中心の1点を除いて総ての面
で垂直斜め方向の衝突となり、試料容器7及び試料8に
垂直斜めの衝撃波を与えることになる。
In this case, since the upper surface of the sample container 7 is cut to have the same spherical surface as the curved surface of the flying object 5 measured in advance, the entire surface of the sample container 7 collides at the same time. As a result, collisions occur in vertical and oblique directions on all surfaces except for one point in the center, and a vertical and oblique shock wave is applied to the sample container 7 and the sample 8.

この場合の結果も実験例1の場合とほぼ同様な数値とな
っているので、省略する。
The results in this case are also approximately the same numerical values as in Experimental Example 1, so a description thereof will be omitted.

(発明の効果) 上述のように、本発明は高速飛翔体の衝突に伴う衝撃波
、又は爆薬の爆発に伴う爆轟衝撃波を利用して、固体材
料を衝撃圧縮するに際し、この固体材料中に1種以上の
斜め衝撃波を形成させながら衝撃圧縮するので、比較的
低い温度で固体材料中での活発で高速な物質移動を可能
にしたものである。
(Effects of the Invention) As described above, the present invention utilizes the shock wave caused by the collision of a high-speed flying object or the detonation shock wave caused by the explosion of an explosive to impact-compress a solid material. Since shock compression is performed while forming oblique shock waves of more than 100%, it enables active and high-speed mass transfer in solid materials at relatively low temperatures.

従って、化学反応や相変化の促進が容易となり、又、低
い温度での化学反応や相変化であるので衝撃波若しくは
爆轟衝撃波の通過後の反応等の戻り現象が殆ど無く、生
成物の回収率が向上する。
Therefore, it is easy to promote chemical reactions and phase changes, and since the chemical reactions and phase changes occur at low temperatures, there is almost no return phenomenon such as reactions after passing through shock waves or detonation shock waves, and the recovery rate of products is high. will improve.

このため、ダイヤモンドを始めとする高圧相材料の合成
や化学反応を伴った粉末からの緻密な焼結体の合成が効
率的に実施することが可能である。
Therefore, it is possible to efficiently synthesize high-pressure phase materials such as diamond and to synthesize dense sintered bodies from powders that involve chemical reactions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直接法による平面衝撃圧縮装置の縦断面
図、第2図は同じく間接法による平面衝撃圧縮装置の縦
断面図、第3図は炭素の温度一圧力相関図、第4図は飛
翔板衝突速度とダイヤモンドへの転換率の関係図、第5
図は斜め衝撃波の模式図、第6図は斜め衝突の範囲の説
明図、第7図は本発明の斜め衝撃波を利用する間接法に
よる衝撃圧縮装置の縦断面図、第8図は試料容器を示し
た図で、(イ)は同心円状の凹凸を設けた場合の上面図
、(口)は平行な凹凸を設けた場合の上面図、(ハ)は
(イ)の直径上若しくは(口)の平行線と直角方向の上
部断面図、第9図は試料容器部分及び飛翔体の断面図で
、(イ)は三角形突起の複合面の場合、(口)は曲面突
起の場合、(ハ)は三角形突起と曲面突起の複合面の場
合、(二)は円筒形試料容器の場合で三角形突起の場合
、第10図は長方形に形成するための斜め衝撃圧縮装置
の圧縮部分の説明図で、(イ)は斜視図、(口)は縦断
面図、(ハ)は起爆装置部分の平面図、第II図は本発
明の斜め衝撃波を利用する直接法による衝撃圧縮装置の
縦断面図、第12図は本発明による斜め衝撃波を利用す
る間接法による装置で円筒形のもので、(イ)はその縦
断面図、(口)は(イ)図のB−B断面図、第13図は
第7図の変形の装置で、爆薬レンズを省略した装置の縦
断面図である。 2:爆薬レンズ、 3:主爆薬、 7:試料容器、 8:試料。 :飛翔体、 ぬイモシK゛へが松教キC%) 箋5目 #jj”;4通 万力((;a) 喜7目 箋B目 箋9目 (イ) C口) (ユ) 箋11目
Fig. 1 is a longitudinal cross-sectional view of a conventional planar impact compression device using the direct method, Fig. 2 is a longitudinal cross-sectional view of a planar impact compression device also using the indirect method, Fig. 3 is a temperature-pressure correlation diagram of carbon, and Fig. 4 is the relationship diagram between the flying plate impact velocity and the conversion rate to diamond, No. 5
Figure 6 is a schematic diagram of an oblique shock wave, Figure 6 is an explanatory diagram of the range of an oblique collision, Figure 7 is a vertical cross-sectional view of the impact compression device using the indirect method using the oblique shock wave of the present invention, and Figure 8 is a sample container. In the diagrams shown, (a) is a top view when concentric unevenness is provided, (opening) is a top view when parallel unevenness is provided, and (c) is a top view on the diameter of (a) or (opening). Figure 9 is a cross-sectional view of the sample container and the flying object, where (A) is a composite surface of triangular protrusions, (A) is a curved protrusion, (C) (2) is the case of a composite surface of a triangular protrusion and a curved protrusion; (2) is the case of a cylindrical sample container with a triangular protrusion; FIG. (a) is a perspective view, (opening) is a longitudinal sectional view, (c) is a plan view of the detonator part, FIG. Figure 12 shows a cylindrical device using an indirect method using oblique shock waves according to the present invention. FIG. 8 is a longitudinal sectional view of a modification of the device shown in FIG. 7, with the explosive lens omitted; 2: Explosive lens, 3: Main explosive, 7: Sample container, 8: Sample. : Flying object, Nuimoshi K゛hegamatsukyokiC%) 5th note #jj''; 4 pieces of vise ((;a) Ki 7th note B note 9th (A) C mouth) (YU) Notebook 11

Claims (1)

【特許請求の範囲】 1)高速の飛翔体の衝突に伴う衝撃波若しくは爆薬の爆
発に伴う爆轟衝撃波を利用して、固体材料を衝撃圧縮す
る場合に、固体材料を装填した試料容器並びに飛翔体に
前記衝撃波若しくは前記爆轟衝撃波の作用し始める面の
一部若しくは全部が前記飛翔体の衝突方向若しくは前記
爆薬の爆発方向に垂直な面に対して垂直斜めの位置関係
にある1つ以上の平面又は曲面若しくはこれらの複合面
よりなり、前記衝撃波若しくは前記爆轟衝撃波の作用に
より、前記試料容器及び前記固体材料に1種以上の斜め
衝撃波を形成させながら衝撃圧縮することを特徴とする
固体材料の衝撃圧縮方法。 2)高速の飛翔体を衝突せしめる固体材料の衝撃圧縮装
置の固体材料を装填した試料容器に前記飛翔体が衝突し
て衝撃波の入射し始める面の上側に平行な空間を置いて
前記飛翔体を配置し、更にこの飛翔体の上側に爆薬及び
起爆手段を設け、この起爆手段による爆薬の爆発により
下側の前記飛翔体を下方若しくは斜め下方へ加速し、前
記固体材料を装填した前記試料容器に衝突させることに
より前記固体材料を衝撃圧縮する装置において、前記試
料容器並びに飛翔体の衝撃波の作用し始める面の一部若
しくは全部が前記飛翔体の衝突方向に対して垂直斜めの
位置関係にある1つ以上の平面又は曲面若しくはこれら
の複合面よりなることを特徴とする固体材料の衝撃圧縮
装置。 3)爆薬を爆発せしめて直接固体材料を衝撃圧縮する衝
撃圧縮装置の固体材料を装填した試料容器に前記爆薬の
爆発による爆轟衝撃波を入射せしめる面の上側に爆薬層
を配置し、この爆薬層に起爆手段を設け、この起爆手段
により爆薬層を爆発させ、それに伴う爆轟衝撃波により
固体材料を衝撃圧縮する装置において、前記固体材料を
装填した試料容器の爆轟衝撃波の作用し始める面の一部
若しくは全部が、前記爆薬の爆発方向に対して垂直斜め
の位置関係にある1つ以上の平面又は曲面若しくはこれ
らの複合面よりなることを特徴とする固体材料の衝撃圧
縮装置。
[Scope of Claims] 1) A sample container loaded with a solid material and a flying object when impact-compressing a solid material using a shock wave caused by a collision of a high-speed flying object or a detonation shock wave caused by an explosion of an explosive. one or more planes on which part or all of the surface on which the shock wave or the detonation shock wave starts acting is vertically oblique to a plane perpendicular to the collision direction of the projectile or the explosion direction of the explosive; or a curved surface or a composite surface thereof, and is characterized by impact compression while forming one or more types of oblique shock waves in the sample container and the solid material by the action of the shock wave or the detonation shock wave. Impact compression method. 2) In a solid material impact compression device that causes a high-speed flying object to collide with a sample container loaded with a solid material, a parallel space is placed above the surface where the impact wave starts to be incident upon impact of the flying object. Further, an explosive and a detonating means are provided on the upper side of the projectile, and the explosion of the explosive by the detonating means accelerates the lower projectile downward or diagonally downward, and the sample container loaded with the solid material is In an apparatus for shock-compressing the solid material by impact, part or all of the surface on which the shock wave of the sample container and the flying object starts acting is in a positional relationship perpendicular and oblique to the direction of impact of the flying object. An impact compression device for a solid material, characterized in that it is composed of two or more flat or curved surfaces or a combination of these surfaces. 3) An explosive layer is arranged above the surface on which the detonation shock wave caused by the explosion of the explosive is made to be incident on the sample container loaded with the solid material of the impact compression device which detonates the explosive and directly impact compresses the solid material, and this explosive layer is In an apparatus in which an explosive layer is detonated by the detonating means, and a solid material is impact-compressed by the accompanying detonation shock wave, one of the surfaces of the sample container loaded with the solid material on which the detonation shock wave begins to act. 1. An impact compression device for a solid material, characterized in that part or all of the device is composed of one or more flat surfaces, curved surfaces, or a combination of these surfaces, which are perpendicular to and oblique to the detonation direction of the explosive.
JP5823989A 1989-03-09 1989-03-09 Method and device for impact-compressing solid material Pending JPH02237634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5823989A JPH02237634A (en) 1989-03-09 1989-03-09 Method and device for impact-compressing solid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5823989A JPH02237634A (en) 1989-03-09 1989-03-09 Method and device for impact-compressing solid material

Publications (1)

Publication Number Publication Date
JPH02237634A true JPH02237634A (en) 1990-09-20

Family

ID=13078553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5823989A Pending JPH02237634A (en) 1989-03-09 1989-03-09 Method and device for impact-compressing solid material

Country Status (1)

Country Link
JP (1) JPH02237634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029726A1 (en) * 2006-09-01 2008-03-13 Kuraray Luminas Co., Ltd. Impact target capsule and impact compressor
JPWO2018225433A1 (en) * 2017-06-06 2020-04-23 株式会社ダイセル Explosive body for nanodiamond synthesis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939595A (en) * 1972-08-22 1974-04-13
JPS58139735A (en) * 1982-02-16 1983-08-19 Agency Of Ind Science & Technol Treatment of condensible materials by impulsive compression

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939595A (en) * 1972-08-22 1974-04-13
JPS58139735A (en) * 1982-02-16 1983-08-19 Agency Of Ind Science & Technol Treatment of condensible materials by impulsive compression

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029726A1 (en) * 2006-09-01 2008-03-13 Kuraray Luminas Co., Ltd. Impact target capsule and impact compressor
US8105060B2 (en) 2006-09-01 2012-01-31 Kuraray Co., Ltd. Impact target capsule and impact compression apparatus
JP5204654B2 (en) * 2006-09-01 2013-06-05 株式会社クラレ Impact target capsule and impact compression device
JPWO2018225433A1 (en) * 2017-06-06 2020-04-23 株式会社ダイセル Explosive body for nanodiamond synthesis
EP3637037A4 (en) * 2017-06-06 2021-03-03 Daicel Corporation Explosive body for nanodiamond synthesis

Similar Documents

Publication Publication Date Title
Dolgoborodov et al. Detonation in an aluminum-teflon mixture
Wohletz Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies
US20090255432A1 (en) Super compressed detonation method and device to effect such detonation
US3667911A (en) Method of treating solids with high dynamic pressure
US3401019A (en) Process for synthesizing diamond
US9828303B1 (en) High brisance metal powder explosive
Meyers et al. Effect of shock pressure and plastic strain on chemical reactions in Nb Si and Mo Si systems
JPH02237634A (en) Method and device for impact-compressing solid material
US20030074010A1 (en) Nanoscale explosive-implosive burst generators using nuclear-mechanical triggering of pretensioned liquids
JPH02253838A (en) Method and device for shock compression of solid material
US4201757A (en) Large boron nitride abrasive particles
Dobromyslov et al. Deformation behavior of copper under conditions of loading by spherically converging shock waves: High-intensity regime of loading
JP4960550B2 (en) Method for generating ultra-high pressure and method for synthesizing substances
Batsanov Shock and Materials
JPS602245B2 (en) Manufacturing method of cubic boron nitride
US4231980A (en) Large boron nitride abrasive particles
US4014979A (en) Method of producing wurtzite-like boron nitride
JP2987415B2 (en) Method for producing boron nitride
JPS58139735A (en) Treatment of condensible materials by impulsive compression
RU2483023C1 (en) Method for industrial production of diamonds and other solid-phase nanostructured graphite formations, apparatus and charge for production thereof
JPS5922648A (en) Method and device for impact compression of condensable material
Batsanov et al. Effect of Explosion on Materials
Frost et al. Effect of scale on the blast wave from a metalized explosive
EP1574813A2 (en) Super compressed detonation method and device to effect such detonation
RU185845U1 (en) DEVICE FOR PRODUCING DIAMONDS AND DIAMOND-LIKE MATERIALS