JP2006225208A - Highly dispersible single crystal diamond fine powder and its producing method - Google Patents

Highly dispersible single crystal diamond fine powder and its producing method Download PDF

Info

Publication number
JP2006225208A
JP2006225208A JP2005042082A JP2005042082A JP2006225208A JP 2006225208 A JP2006225208 A JP 2006225208A JP 2005042082 A JP2005042082 A JP 2005042082A JP 2005042082 A JP2005042082 A JP 2005042082A JP 2006225208 A JP2006225208 A JP 2006225208A
Authority
JP
Japan
Prior art keywords
diamond
carbon
fine powder
particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005042082A
Other languages
Japanese (ja)
Inventor
Nobuyuki Saito
斎藤信之
Hiroshi Yamanaka
山中博
Akira Hosomi
暁 細見
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005042082A priority Critical patent/JP2006225208A/en
Publication of JP2006225208A publication Critical patent/JP2006225208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diamond fine powder which has excellent polishing performance and hardly forms rigid agglomerates and which has a D50 value of <50 nm. <P>SOLUTION: 1. The diamond fine powder is an assembly of single crystal diamond particles in which the D50 value is <50 nm. A portion of the surface of each particle is converted into carbon having a non-diamond structure, and the carbon having the non-diamond structure, which is formed in heating operation, is disposed between the particles. 2. A method for producing the diamond fine particles comprises pulverizing a single crystal raw material diamond with a mechanical impact-crushing means, then obtaining the diamond fine powder having a D50 value of <50 nm in a precise classification process, sticking a carbon generating agent on the particle surface by dipping the particles into a solution or a dispersion of the carbon generating agent, and heating the particles at 800-1,400°C in an inert atmosphere. At this time, the carbon having the non-diamond structure, previously formed or formed from the carbon generating agent in situ, is used as a separation agent between the diamond particles, and thereby, the agglomeration of the particles is effectively avoided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はスラリー状研磨材として微細研磨加工、並びに固体潤滑剤としての用途に適したサブミクロン級のダイヤモンド微粉、特に分散液中におげる分散性の向上した50nm未満のダイヤモンド微粉、およびその製造方法に関する。   The present invention relates to a fine polishing process as a slurry-like abrasive, and a submicron-grade diamond fine powder suitable for use as a solid lubricant, particularly a diamond fine powder of less than 50 nm with improved dispersibility in a dispersion, and its It relates to a manufacturing method.

近年の急速なハードディスクにおける記録密度の上昇に伴い、ハードディスク本体ならびに磁気ヘッド等に対して要求される加工精度が高度化している。その結果、研磨材として用いられるダイヤモンド粉末の粒度は次第に細かな方へ移行してきており、仕上げ面粗さ1Åというような高精度を達成可能な砥粒も求められている。このような微細加工には、サブミクロンサイズのダイヤモンドを、水系または油系の分散媒中に懸濁させたスラリーが広く用いられている。   With the recent rapid increase in recording density in hard disks, the processing accuracy required for hard disk bodies and magnetic heads has become higher. As a result, the particle size of diamond powder used as an abrasive is gradually shifting to a finer one, and there is also a demand for abrasive grains capable of achieving high accuracy such as a finished surface roughness of 1 mm. For such fine processing, a slurry in which submicron-sized diamond is suspended in an aqueous or oil-based dispersion medium is widely used.

研磨剤としてこれまでに得られている最も細かなダイヤモンドは、デトネーション(爆轟)ダイヤモンドと呼ばれる5〜10nmの一次粒子で構成された凝集粒子である。このタイプのダイヤモンドは爆薬を不完全燃焼させることによって合成されているが、合成時間がμ秒のオーダーであることから、得られた結晶は多量の欠陥を含み、また外形は一般に球状を呈していることが、TEM観察などによって知られている。   The finest diamond obtained so far as an abrasive is an agglomerated particle composed of primary particles of 5 to 10 nm called detonation diamond. This type of diamond is synthesized by incomplete combustion of explosives, but since the synthesis time is on the order of microseconds, the resulting crystals contain a large amount of defects and the outer shape is generally spherical. It is known by TEM observation.

爆轟(ごう)ダイヤモンドの一次粒子は上述のとおり微細であることから、表面が非常に活性であり、非ダイヤモンド炭素質材や製造の際の雰囲気中に含まれる物質などを介して強く凝集しており、見かけ上は100nm以上の二次粒子として挙動する。この二次粒子は強力な酸化処理を施すことにより、一次粒子に解砕可能なことも知られている。   The primary particles of detonated diamond are fine as described above, so the surface is very active and strongly agglomerates through non-diamond carbonaceous materials and substances contained in the atmosphere during production. It apparently behaves as a secondary particle of 100 nm or more. It is also known that the secondary particles can be crushed into primary particles by performing a strong oxidation treatment.

爆発・爆轟エネルギーによる超高圧力を利用したダイヤモンドとしては、黒鉛を原料に用いる、いわゆるデュポンタイプの多結晶質ダイヤモンドも広く知られている。このタイプのダイヤモンドは一次粒子径が一般に20〜30nm程度であるが、30GPaを超える合成反応時の超高圧力によって、粒子同士が未反応のグラファイトを取り込んだ状態で部分的に融着し、見かけ上は100nm以上の二次粒子となっており、強力な酸化処理を施しても一次粒子に解砕することは困難である。なお一次粒子は、短い合成反応時間を反映して、自形面を持たない球に近い外形を呈することが、TEM観察によって認められている。   A so-called DuPont-type polycrystalline diamond using graphite as a raw material is also widely known as a diamond using ultrahigh pressure due to explosion / detonation energy. This type of diamond generally has a primary particle size of about 20 to 30 nm, but the particles are partially fused with the unreacted graphite taken in by the ultrahigh pressure during the synthesis reaction exceeding 30 GPa. The top is secondary particles of 100 nm or more, and it is difficult to disintegrate into primary particles even if a strong oxidation treatment is applied. In addition, it is recognized by TEM observation that the primary particles exhibit an outer shape close to a sphere having no self-shaped surface, reflecting a short synthesis reaction time.

上記2種類のダイヤモンドの合成では、いずれも低圧相乃至非ダイヤモンド構造炭素を高圧相のダイヤモンドに変換するのに必要な超高圧力の発生は爆轟によるもので、持続時間がμ秒オーダーと短いことから自形晶を形成するのに十分でなく、研磨砥粒として望まれる鋭利な刃先を得ることは困難である。従って研磨作業では、粒子サイズに相応した研磨痕は得られるものの、エッジのない砥粒による研磨加工であることから、研磨速度を大きくできなかった。従ってさらに細かな研磨痕の形成と、より大きな研磨速度の確保という要求を同時に満たす、超微細研磨に適した形状のダイヤモンド微粉が求められていた。   In the synthesis of the above two types of diamond, the generation of ultra-high pressure necessary to convert low-pressure or non-diamond structural carbon into high-pressure diamond is due to detonation, and the duration is as short as microseconds. Therefore, it is not sufficient to form a self-shaped crystal, and it is difficult to obtain a sharp cutting edge desired as an abrasive grain. Accordingly, although polishing marks corresponding to the particle size can be obtained in the polishing operation, the polishing rate cannot be increased because the polishing is performed with abrasive grains having no edge. Accordingly, there has been a demand for diamond fine powder having a shape suitable for ultrafine polishing that simultaneously satisfies the requirements of forming finer polishing marks and ensuring a higher polishing rate.

本発明者等は、静的超高圧力下で合成された単結晶質ダイヤモンドの微粉を原料として用い、粉砕、化学処理、加熱処理の各工程を加えることによって、上記精密加工用のスラリーとしての用途において求められる、単位時間当りの大きな加工量、研磨面に深い傷を生じない、軟質の被加工材に対して研磨面に食い込んだ粒子を残さない、という3要件を同時に満たす微粉状(サブミクロン)研磨材を完成し、先に特許出願した。このような特異な性能は、ダイヤモンド粉末表面に形成された非ダイヤモンド構造炭素材層に由来すると考えられる。
特開2000-136376号公報
The present inventors use fine powder of single crystalline diamond synthesized under static ultra-high pressure as a raw material, and by adding each step of pulverization, chemical treatment, and heat treatment, Fine powder that satisfies the three requirements at the same time required for the application: a large amount of processing per unit time, that does not cause deep scratches on the polished surface, and does not leave particles encroached on the polished surface for soft workpieces A micron) abrasive was completed and a patent application was filed earlier. Such unique performance is considered to be derived from the non-diamond structure carbon material layer formed on the surface of the diamond powder.
JP 2000-136376 A

静的超高圧力を用いて合成されるダイヤモンドは、負荷される圧力・温度及び保持時間の組み合わせを選ぶことにより、結晶形状、硬さ、脆さなどのコントロールが可能である。また得られたダイヤモンドは、鋼球を用いた衝撃破砕によって容易に微粉砕できる。粉砕は主として劈(へき)開割れによることから、破砕粉は10nmのオーダーになっても、大部分が鋭いエッジを有する自形晶片であることが、TEM観察によって認められており、約5nmの三角板状結晶片が存在することも観察されている。   Diamond synthesized using a static ultra-high pressure can be controlled in terms of crystal shape, hardness, brittleness, etc. by selecting a combination of applied pressure / temperature and holding time. The obtained diamond can be easily pulverized by impact crushing using a steel ball. Since pulverization is mainly due to cracking of the cracks, even if the crushed powder is on the order of 10 nm, it is confirmed by TEM observation that most of the crushed powder is a self-shaped crystal piece having a sharp edge. The presence of triangular plate crystal pieces has also been observed.

本発明者らはまた、微粉砕技術と精密分級技術とを組み合わせることによって、D50値の粒度表示(以下同様)において100nm〜50nmの範囲の単結晶質ダイヤモンド微粉の製造が可能であることを知見し、先に特許出願した。
特開2002-035636号公報
The present inventors have also found that by combining a fine pulverization technique and a precision classification technique, it is possible to produce single crystalline diamond fine powder in the range of 100 nm to 50 nm in the D50 value particle size display (the same applies hereinafter). And filed a patent earlier.
JP 2002-035636 JP

しかし加熱処理を施したサブミクロン級のダイヤモンド微粉は、平均粒径(D50値)150nm以下のものは、そのままの表面状態で水中に投じると直ちに沈降し、スラリー化が困難であり、平均粒径が50nm以下のものについては不可能とも言える。この理由としては、加熱によって粉末表面の親水性が失われること、また加熱の際に粉末粒子間に強固な結合が形成され、凝集粒子となることが挙げられる。この結果、スラリー化の前処理として、凝集粒子を解砕して強い力を加えて凝集粒子を機械的に解砕する工程を必要とし、多大の工数と時間とを要するという欠点があった。   However, heat-treated submicron-grade diamond fine powders with an average particle size (D50 value) of 150 nm or less settle immediately when poured into water in the same surface state and are difficult to slurry. However, it can be said that it is impossible for those below 50 nm. The reason for this is that the hydrophilicity of the powder surface is lost by heating, and that a strong bond is formed between the powder particles during heating, resulting in aggregated particles. As a result, as a pretreatment for forming a slurry, there is a drawback that a step of pulverizing the aggregated particles and applying a strong force to mechanically pulverize the aggregated particles is required, which requires a lot of man-hours and time.

さらに粉末が、粒子間の強い凝集力のために充分に解砕されないままユーザーに供給されて、加工の際に見掛け上粗大粒子として挙動し、スクラッチの発生原因となるトラブルも、避けることができなかった。   Furthermore, the powder is supplied to the user without being sufficiently crushed due to the strong cohesive force between the particles, and it can be seen that the powder behaves as coarse particles during processing, and troubles that cause scratches can be avoided. There wasn't.

しかもこの長時間にわたる解砕操作によってダイヤモンド粉末表面の非ダイヤモンド構造炭素層が破壊される結果、加熱処理粒子としての固有な性能の低下も認められる。   Moreover, as a result of the non-diamond structure carbon layer on the surface of the diamond powder being destroyed by this long crushing operation, a decrease in performance inherent to the heat-treated particles is also observed.

本発明者等の知見によれば、上掲トラブルの原因は次のように推測される。即ち一般的には化学的に安定なダイヤモンドであっても、サブミクロン級の微粉では表面の反応性が無視できない。ダイヤモンドの表面には、水素や酸素、カルボキシル基、カルボニル基、水酸基など、各種の原子や官能基が付着乃至吸着している。前記単結晶質ダイヤモンド微粉の場合、粉砕、酸洗浄の工程を経る結果、表面に親水性の官能基を有することが多い。   According to the knowledge of the present inventors, the cause of the above trouble is estimated as follows. That is, in general, even with chemically stable diamond, the surface reactivity cannot be ignored with submicron fine powder. Various atoms and functional groups such as hydrogen, oxygen, carboxyl group, carbonyl group, and hydroxyl group are attached to or adsorbed on the surface of diamond. In the case of the monocrystalline diamond fine powder, as a result of passing through the steps of pulverization and acid washing, the surface often has a hydrophilic functional group.

表面に親水性の官能基を持つダイヤモンド微粉を加熱すると、官能基の分解に伴うCO2、COの脱離が認められる。炭素原子の抜けた箇所は活性点になると考えられるので、従来のダイヤモンド微粉においては、このような活性点が起点となって隣接粒子間に結合が生じているものと推測される。 When diamond fine powder having a hydrophilic functional group on the surface is heated, the elimination of CO 2 and CO accompanying the decomposition of the functional group is observed. Since it is considered that the point where the carbon atom is removed becomes an active point, it is presumed that in the conventional diamond fine powder, such an active point is the starting point and a bond is formed between adjacent particles.

従って本発明の主な目的の一つは、加熱処理を施した単結晶質サブミクロンのダイヤモンド微細粉末において避けられなかった強固な凝集の問題を解決した、分離性および分散液中での分散性の良いダイヤモンド微粉を提供することである。   Therefore, one of the main objects of the present invention is to solve the problem of strong agglomeration, which was unavoidable in the heat-treated single crystalline submicron diamond fine powder, and the dispersibility and dispersibility in the dispersion liquid. Is to provide good diamond fine powder.

本発明の別の目的は、劈開に基づく鋭利な形状及び狭い粒度範囲を持つ単結晶質(自形晶)の、さらに細かい50nm未満の粒度のダイヤモンド微粉を提供することにある。   Another object of the present invention is to provide a finely divided diamond fine powder having a particle size of less than 50 nm which is a single crystal (automorphous crystal) having a sharp shape based on cleavage and a narrow particle size range.

本発明の更なる目的は、かかるダイヤモンド微粉を高効率で生産するための方法を提供することにある。   It is a further object of the present invention to provide a method for producing such diamond fine powder with high efficiency.

本発明者等は、従来の微粉における上記の欠点は、50nm未満の粒子を含有すべく微粉砕され、所定粒度範囲内に精密分級されたダイヤモンド微粉を、予め生成した非ダイヤモンド構造炭素材乃至その場で(800℃以上1400℃以下への加熱下で)非ダイヤモンド構造炭素材を生成し得る物質から成る分離剤(スペーサ)を介して分離した状態において、所定処理温度に加熱処理することによって達成されることを知見した。即ち実質的に全隣接粒子の対向表面にかかる分離剤物質を堆積させ、各粒子を個々に分離しておくことによって、加熱時に構成粒子が孤立状態に保たれ、粒子相互間の結合が阻止される。   The above-mentioned drawbacks of the conventional fine powders are that the non-diamond structure carbon material produced in advance from diamond fine powder finely pulverized to contain particles of less than 50 nm and finely classified within a predetermined particle size range. In-situ (under heating to 800 ° C or higher and 1400 ° C or lower) through a separating agent (spacer) made of a substance that can produce a non-diamond structured carbon material. I found out that That is, by depositing the separating agent material on the opposing surfaces of substantially all adjacent particles and separating each particle individually, the constituent particles are kept in an isolated state during heating and the bonding between the particles is prevented. The

従って本発明の要旨は第一に、(1)静的超高圧力下で非ダイヤモンド構造炭素からの転換により合成され、超微砕及び精密分級され鋭利な稜、或はさらに尖点を有し、(2)粒度分布測定装置マイクロトラックUPAによる測定値におけるD50値が50nm未満であるダイヤモンド粒子の集合体であり、さらに(3)該集合体の実質的に全ダイヤモンド粒子が、熱影響構造を有しかつ上記非ダイヤモンド構造炭素材を介して相互に分離されていることを特徴とする、熱処理されたダイヤモンド微粉にある。   Accordingly, the gist of the present invention is as follows. (1) It is synthesized by conversion from non-diamond structure carbon under static ultra-high pressure, and is ultra-finely divided and precision-classified, and has sharp edges, or even cusps. (2) an aggregate of diamond particles having a D50 value of less than 50 nm as measured by a particle size distribution measuring device Microtrack UPA; and (3) substantially all of the diamond particles in the aggregate have a heat-affected structure. The heat-treated diamond fine powder is characterized in that it is separated from each other through the non-diamond structural carbon material.

上記ダイヤモンド微粉は、次の各段階を含む方法により効果的に製造される:
(1) 単結晶質原料ダイヤモンドを機械的な衝撃破砕手段によって、粗微粒ダイヤモンドに粉砕し、さらに水簸又は遠心分離或は両者の組み合わせに基づく精密分級工程に供することによりD50値が50nm未満のダイヤモンド粒子の集合体からなるダイヤモンド微粉とする段階。
(2) 上記ダイヤモンド微粉を、非ダイヤモンド構造炭素又は非ダイヤモンド構造炭素をその場で生成する物質(以下「カーボン発生剤」と称する)の溶液乃至分散液に浸し、少なくとも一部分の粒子表面に上記カーボン発生剤を付着せしめる段階。
(3) 該ダイヤモンド微粉を不活性雰囲気中、800℃以上1400℃以下の処理温度で加熱し、以てダイヤモンド粒子の表層を非ダイヤモンド構造炭素に転化すると同時に、上記カーボン発生剤を分解して非ダイヤモンド構造炭素を生成させ、以て隣接ダイヤモンド粒子を相互に、非ダイヤモンド構造炭素炭素質材を介して分離せしめる段階。
The diamond fine powder is effectively produced by a method including the following steps:
(1) D50 value is less than 50nm by pulverizing single-crystal raw material diamond into coarse-grained diamond by mechanical impact crushing means, and further subjecting to precision classification process based on water tank or centrifugal separation or a combination of both A step of making a diamond fine powder composed of an aggregate of diamond particles.
(2) The diamond fine powder is immersed in a solution or dispersion of non-diamond structure carbon or a substance that generates non-diamond structure carbon in situ (hereinafter referred to as “carbon generator”), and at least a part of the particle surface has the carbon. The stage to attach the generating agent.
(3) The diamond fine powder is heated at a treatment temperature of 800 ° C. or higher and 1400 ° C. or lower in an inert atmosphere, so that the surface layer of the diamond particles is converted into non-diamond structured carbon, and at the same time, the carbon generator is decomposed to be non-decomposed. Producing diamond-structured carbon, thereby separating adjacent diamond particles from each other via a non-diamond-structured carbon-carbon material.

本発明方法においては、50nm未満に微粉砕精密分級されたダイヤモンド微粉の加熱処理に先立ち、ダイヤモンド粒子間に、非ダイヤモンド構造炭素又は処理条件下で非ダイヤモンド構造炭素材を生じるカーボン発生剤を、粒子隔離物質乃至スペーサとして配置する。この手法により、加熱処理時にダイヤモンド粒子間に生じる凝集現象が効果的に回避され、実質的に一次粒子で構成されたスラリーを得ることが可能となった。この結果オングストロームオーダーの微細な仕上げ面を得るための研磨剤として、加熱処理を施したサブミクロンダイヤモンドを実用に供することが可能となった。   In the method of the present invention, prior to the heat treatment of fine diamond powder finely pulverized and finely classified to less than 50 nm, a carbon generating agent that produces non-diamond structured carbon or a non-diamond structured carbon material under the processing conditions between the diamond particles, Arranged as a separator or spacer. By this method, the agglomeration phenomenon generated between the diamond particles during the heat treatment is effectively avoided, and it becomes possible to obtain a slurry substantially composed of primary particles. As a result, submicron diamond subjected to heat treatment can be put to practical use as an abrasive for obtaining a fine finished surface on the order of angstroms.

本発明のダイヤモンド微粉製造方法においては、原料のダイヤモンド粉末として、単結晶質で表面に親水基を有する整粒されたダイヤモンド微粉を用い、上記非ダイヤモンド炭素質材乃至カーボン発生剤を溶解または分散した水質処理液に浸漬して粒子を分散させる。この際、ダイヤモンド粒子の表面に溶質または分散質を付着乃至堆積させて粒子ごとに被覆し、実質的に全粒子をばらばらの孤立粒子状態とした後、加熱処理する。   In the method for producing diamond fine powder according to the present invention, the non-diamond carbonaceous material or the carbon generator is dissolved or dispersed using a monocrystalline, fine-grained diamond powder having a hydrophilic group on the surface as a raw material diamond powder. Immerse in water treatment solution to disperse particles. At this time, a solute or dispersoid is attached or deposited on the surface of the diamond particles to coat each particle, and after substantially changing all the particles into discrete particles, heat treatment is performed.

このようなダイヤモンド微粉は典型的にはプレスを用い、静的超高圧・高温条件下で黒鉛や不定形炭素等の非ダイヤモンド構造炭素からの転化により合成・単離されたダイヤモンドを微粉砕し、親水処理・分級することにより得ることができる。本発明のダイヤモンド微粉は単結晶質(自形晶)ダイヤモンドの破砕片からなる。   Such diamond fine powder typically uses a press to finely pulverize diamond synthesized and isolated by conversion from non-diamond carbon such as graphite and amorphous carbon under static ultrahigh pressure and high temperature conditions. It can be obtained by hydrophilic treatment and classification. The diamond fine powder of the present invention comprises a fragment of single crystalline (automorphous) diamond.

即ち、まず静的超高圧力下で合成された、原料としての単結晶質ダイヤモンドを衝撃破砕に供して粗微粒ダイヤモンドにする。周知のように衝撃荷重を受けるとダイヤモンドは111面に沿って劈開割れし、割れた結晶片は一般に鋭い角、稜(エッジ)や尖点を持ち、正三角形の平板状結晶片もしばしば認められる。   That is, first, single crystal diamond as a raw material synthesized under static ultra-high pressure is subjected to impact crushing to make coarse diamond. As is well known, diamond is cleaved along the 111 plane when subjected to an impact load, and the broken crystal pieces generally have sharp corners, edges, and cusps, and equilateral triangular plate crystals are often found. .

衝撃破砕には鋼球を用いるボールミル粉砕が簡便であるが、より衝撃負荷の大きな振動ミル、遊星ミルも使用できる。粉砕メディアとしては密度の大きな鋼球が好ましいが、メディアに起因する汚染を回避する目的で、合成ダイヤモンドの粗粒も利用可能である。   Ball crushing using steel balls is simple for impact crushing, but vibration mills and planetary mills with larger impact loads can also be used. Although a steel ball having a high density is preferable as the grinding media, coarse particles of synthetic diamond can be used for the purpose of avoiding contamination caused by the media.

粉砕したダイヤモンド微粉は、次に薬品処理に供し、粉砕の際に混入した粉砕メディアの破片を溶解除去する。また後続の分級操作では、水簸、遠心分離のどちらも水中で処理されることから、微粉の表面を水になじむ状態にして、水中で懸濁状態を保つことが要求される。   The pulverized diamond fine powder is then subjected to chemical treatment to dissolve and remove crushed media fragments mixed during the pulverization. Further, in the subsequent classification operation, both the elutriation and the centrifugal separation are processed in water. Therefore, it is required that the surface of the fine powder be in a state of being familiar with water and kept suspended in water.

この目的のために、本発明においては有効的な処理法として、ダイヤモンド微粉の表面を酸化処理し、表面に酸素または酸素を含む官能基、例えば水酸基、カルボニル基、カルボキシル基を付ける。表面酸化のためには、空気中で300℃以上への加熱も一定の効果があるが、硫酸、硝酸、過塩素酸、過酸化水素水や、これらのいずれかと、過マンガン酸カリ、硝酸カリ、または酸化クロムとの組み合わせから成る浴を用いた湿式処理方法が、より確実である。   For this purpose, as an effective treatment method in the present invention, the surface of diamond fine powder is oxidized, and oxygen or a functional group containing oxygen such as a hydroxyl group, a carbonyl group, or a carboxyl group is attached to the surface. For surface oxidation, heating to 300 ° C or higher in air has a certain effect, but sulfuric acid, nitric acid, perchloric acid, hydrogen peroxide, and any of these, potassium permanganate, potassium nitrate Or a wet processing method using a bath composed of a combination with chromium oxide is more reliable.

水中でダイヤモンドの懸濁状態を良好に保つために、水中に共存する各種のイオンを可能な限り低減させると共に、微粉の表面電位を分散に好ましい範囲に保つ。ダイヤモンド微粉は弱アルカリ性において、表面電荷が反発しあって懸濁状態を保つことが知られており、この点において好ましい水素イオン濃度はpH7.0〜10.0、ゼータ(ζ)電位は-40〜-60mVの範囲である。   In order to keep the suspended state of diamond well in water, various ions coexisting in water are reduced as much as possible, and the surface potential of fine powder is kept in a preferable range for dispersion. It is known that diamond fine powder is weakly alkaline and the surface charge repels and remains suspended. In this respect, the preferred hydrogen ion concentration is pH 7.0 to 10.0, and the zeta (ζ) potential is −40 to − The range is 60 mV.

上記のように、ダイヤモンド粒子の表面状態、スラリーの水素イオン濃度及びゼータ電位を最適化し、遠心分離機を用いて効果的に精密分級工程を行うことにより、D50値に対するD10値およびD90値の比がそれぞれ50%以上および200%以下の、粒度範囲の狭い、D50値が50nm未満のダイヤモンド微粉を得ることができる。   As described above, by optimizing the surface condition of the diamond particles, the hydrogen ion concentration of the slurry, and the zeta potential, and effectively performing a precise classification process using a centrifuge, the ratio of the D10 value and the D90 value to the D50 value is achieved. Can be obtained as fine diamond particles having a narrow particle size range of 50% or more and 200% or less, respectively, and a D50 value of less than 50 nm.

なお、微細なダイヤモンド粒子の分級に従来広く用いられている水簸は、100nm以下のダイヤモンド微粉に対しては沈降速度が小さいことから分離に長時間を要し、生産性が低い。この解決策としては遠心分離機の利用が有効である。   In addition, the water tank that has been widely used for classification of fine diamond particles conventionally requires a long time for separation and has low productivity for diamond fine powder of 100 nm or less because of its low sedimentation rate. The use of a centrifuge is an effective solution.

整粒されたダイヤモンド微粉は、カーボン発生剤、即ち加熱分解により上記非ダイヤモンド構造炭素材を生成する物質と密に接触配置させて800〜1400℃の範囲の温度で加熱処理に供する。このように、微粉を構成する隣接ダイヤモンド粒子同士を、非ダイヤモンド構造炭素層によって相互に隔て、分離・孤立状態を確保して加熱処理することによって、粒子同士の強い凝集を生じさせることなく、ダイヤモンド微粉の表面層の少なくとも一部分を非ダイヤモンド構造炭素に転化することができる。   The finely sized diamond fine powder is subjected to heat treatment at a temperature in the range of 800 to 1400 ° C. in close contact with a carbon generator, that is, a substance that generates the non-diamond structure carbon material by thermal decomposition. In this way, the adjacent diamond particles constituting the fine powder are separated from each other by the non-diamond structure carbon layer, and heat treatment is performed while ensuring a separated / isolated state, so that the diamond does not cause strong aggregation between the particles. At least a portion of the fine powder surface layer can be converted to non-diamond structured carbon.

加熱処理は、ダイヤモンドの酸化を避けるために不活性雰囲気中で行う。この条件下において粒子表面の被覆物質は非ダイヤモンド構造炭素に転化するが、隣接粒子間のスペーサとしての機能は確保されるので、ダイヤモンド面間に、化学結合に近い強固な結合の形成が阻止されるものと考えられる。この結果加熱処理から回収したダイヤモンド粉末は、乳鉢中で容易に微粉化することができ、スラリー化も容易である。   The heat treatment is performed in an inert atmosphere to avoid oxidation of the diamond. Under these conditions, the coating material on the particle surface is converted to non-diamond carbon, but the function as a spacer between adjacent particles is ensured, so that formation of a strong bond close to a chemical bond is prevented between the diamond surfaces. It is thought that. As a result, the diamond powder recovered from the heat treatment can be easily pulverized in a mortar and is easily slurried.

スペーサとして機能する被覆層材料としては、ダイヤモンド表面に濡れ、加熱によって分解し実質的に炭素のみを残す、多様な物質が利用可能である。例えば、強力な包囲被膜を形成する材料として、ポリカルボン酸等のノニオン系の界面活性剤が挙げられる。   As the coating layer material functioning as a spacer, various substances can be used that wet the diamond surface and decompose by heating, leaving substantially only carbon. For example, nonionic surfactants such as polycarboxylic acid can be used as a material for forming a strong enveloping film.

またダイヤモンドの表面が親水性の場合には、水を介する形でダイヤモンド粒子を包囲し、かつ不活性雰囲気での加熱によって分解または炭化し、加熱残渣が炭素質物質となる材料が利用できる。このような例として、保水剤(PVA、ポリアクリル酸塩等)、ゼラチン、寒天、でん粉等を挙げることができる。   When the surface of the diamond is hydrophilic, a material in which the diamond particles are surrounded by water and decomposed or carbonized by heating in an inert atmosphere, and the heating residue becomes a carbonaceous material can be used. Examples thereof include water retention agents (PVA, polyacrylate, etc.), gelatin, agar, starch and the like.

ダイヤモンド表面に存在する親水基は、800℃まで加熱するとほぼ分解することが表面分析によって確認されており、これ以上の温度では表面の活性が低下すると考えられる。従って上記の被覆層成分は800℃に達するまでスペーサ機能を維持するものであればよい。   It has been confirmed by surface analysis that the hydrophilic groups present on the diamond surface are substantially decomposed when heated to 800 ° C., and the surface activity is considered to decrease at a temperature higher than this. Therefore, the coating layer component may be any component that maintains the spacer function until reaching 800 ° C.

TEM観察によると、通常のサブミクロンダイヤモンドの表面には、1乃至数原子層の非晶質層が認められる。一方加熱処理を施したダイヤモンドでは、ダイヤモンドの格子像に連続して数層の、グラファイトと類似の格子像により、非ダイヤモンド構造炭素の存在が認められる。ワーク研磨加工面の粗さ減少という、加熱処理ダイヤモンド特有の性能は、この非ダイヤモンド構造炭素の存在に帰すことができる。なお本発明において「非ダイヤモンド構造炭素(材)」は、黒鉛、不定形炭素及びこれらが混在した、或はこれらの中間的な構造をもつ物質の総称である。   According to TEM observation, an amorphous layer of one to several atomic layers is observed on the surface of a normal submicron diamond. On the other hand, in the diamond subjected to the heat treatment, the presence of non-diamond structural carbon is recognized by a lattice image similar to graphite in several layers following the lattice image of diamond. The unique performance of heat-treated diamond, that is, the reduced roughness of the workpiece polished surface can be attributed to the presence of this non-diamond structural carbon. In the present invention, “non-diamond structured carbon (material)” is a general term for graphite, amorphous carbon, and a substance in which these are mixed or have an intermediate structure.

本発明においてダイヤモンドから非ダイヤモンド構造炭素への転化は処理温度と時間とに依存するので、転化の割合はこの組み合わせによって調節する。非ダイヤモンド構造炭素層の生成は800℃以上の温度で顕著になるので、本発明における処理温度としては800℃以上が適切である。一方過度に高い加熱温度を用いると、ダイヤモンドから非ダイヤモンド構造炭素へ転化する量が多くなりすぎ、研磨剤としての作用が低下することから、加熱温度の上限は1400℃とする。   In the present invention, the conversion from diamond to non-diamond structured carbon depends on the treatment temperature and time, so the conversion rate is adjusted by this combination. Since the formation of the non-diamond structure carbon layer becomes remarkable at a temperature of 800 ° C. or higher, the processing temperature in the present invention is suitably 800 ° C. or higher. On the other hand, if an excessively high heating temperature is used, the amount of conversion from diamond to non-diamond structure carbon becomes too large and the action as an abrasive is reduced, so the upper limit of the heating temperature is 1400 ° C.

一方、ダイヤモンド粒子同士の分離を確保するために、各ダイヤモンド粒子の表面に、ダイヤモンドに添加されたカーボン発生剤から生成した適量の上記非ダイヤモンド構造炭素を、微粒子状又は被覆として介在させる。このような非ダイヤモンド炭素質材は、隣接するダイヤモンド粒子の対向表面の少なくとも一部分に、より好ましくは全面に堆積させ、加熱処理に際して隣接粒子がダイヤモンド面同士で接触しないようにする。   On the other hand, in order to ensure the separation between the diamond particles, an appropriate amount of the non-diamond structured carbon generated from the carbon generator added to the diamond is interposed on the surface of each diamond particle as fine particles or a coating. Such a non-diamond carbonaceous material is deposited on at least a part of the opposing surface of adjacent diamond particles, more preferably over the entire surface, so that adjacent particles do not contact each other during the heat treatment.

本発明のダイヤモンド微粉中に存在する非ダイヤモンド炭素質材の量は、湿式または乾式の酸化剤処理によって決定することができる。即ち上記非ダイヤモンド炭素質材は200℃以上の硝酸や過塩素酸を用いる湿式処理、或いは350℃以上の酸素ガス等による乾式処理によって容易に分解されるが、一方、ダイヤモンドは実質的に酸化されないので、サンプルを上記のように酸化処理し、処理前後における質量変化によって評価する。   The amount of non-diamond carbonaceous material present in the diamond fine powder of the present invention can be determined by wet or dry oxidant treatment. That is, the non-diamond carbonaceous material is easily decomposed by wet treatment using nitric acid or perchloric acid at 200 ° C. or higher, or by dry treatment with oxygen gas at 350 ° C. or higher, while diamond is not substantially oxidized. Therefore, the sample is oxidized as described above and evaluated by the mass change before and after the treatment.

本発明において、カーボン発生剤に由来する非ダイヤモンド構造炭素は、TEM観察では、ダイヤモンド格子との連続性がない、孤立した、不定形炭素乃至グラファイトに似た像が得られる。この物質は、酸化剤に対してはダイヤモンドから転化した黒鉛乃至非ダイヤモンド構造炭素層と実質的に同様に挙動するので、両者を区別することは困難であり、必要な場合には、ブランクテストで定量する。   In the present invention, the non-diamond structural carbon derived from the carbon generator can be isolated by TEM observation, and can provide an isolated, amorphous carbon or graphite-like image having no continuity with the diamond lattice. This material behaves substantially the same as a graphite or non-diamond structured carbon layer converted from diamond to an oxidizer, making it difficult to distinguish between the two, and if necessary, a blank test Quantify.

カーボン発生剤に由来する非ダイヤモンド構造炭素材の総量は、ダイヤモンド粉末全体に対する質量比において0.2%以上2.0%以下(特に0.4%以上1.0%以下)が好適であり、これより少ないと充分な粒子同士の分離が得られない。一方、ダイヤモンドから転化した非ダイヤモンド構造炭素は、ダイヤモンド粉末に対して0.5質量%以上必要であるが、他方25%を超えるとワークの加工能率が大幅に低下するので、総量はこの値を超えないことが望ましい(いずれも炭素C換算値)。   The total amount of the non-diamond structural carbon material derived from the carbon generator is preferably 0.2% or more and 2.0% or less (particularly 0.4% or more and 1.0% or less) in terms of the mass ratio with respect to the entire diamond powder. Cannot be separated. On the other hand, the non-diamond structure carbon converted from diamond needs to be 0.5 mass% or more based on the diamond powder, but if it exceeds 25%, the work efficiency of the work will be greatly reduced, so the total amount will not exceed this value It is desirable (both in terms of carbon C).

本発明の方法において原料として使用するダイヤモンド粒子には、加工時の破砕性を向上させるために、加熱処理に先立つ予備加熱処理を行って、あるいはこの加熱処理中に、熱影響構造として、微細なクラックを発生させることができる。   The diamond particles used as a raw material in the method of the present invention are subjected to a preliminary heat treatment prior to the heat treatment in order to improve the crushability at the time of processing, or during this heat treatment, Cracks can be generated.

本発明方法を用いた効果は、加熱処理を施したダイヤモンド粉末を水中に投じ、超音波を加えて分散させて調製した濃度2%程度のスラリーについて、懸濁状態から定性的に、粒度分布測定結果から定量的に評価することができる。   The effect of using the method of the present invention is that particle size distribution measurement is performed qualitatively from a suspended state for a slurry having a concentration of about 2% prepared by pouring heat-treated diamond powder into water and dispersing by applying ultrasonic waves. It can be evaluated quantitatively from the results.

即ち粒子間に強固な結合がない粉末の場合、投入した粉末の全量が懸濁し、容器の底には沈殿物が認められない。一方、スラリー中における加熱処理粉末の粒度分布を測定すると、加熱処理前の分布にほぼ等しい結果が得られる。このことは実質的に一次粒子として研磨操作に寄与することを示しており、凝集粒子に起因する深い研磨傷の発生が回避されるのに加えて、研磨面粗さと研磨速度との組み合わせに対応した、最適な粒度範囲の粒子を選ぶことも容易である。   That is, in the case of a powder that does not have a strong bond between particles, the entire amount of the charged powder is suspended, and no precipitate is observed at the bottom of the container. On the other hand, when the particle size distribution of the heat-treated powder in the slurry is measured, a result almost equal to the distribution before the heat treatment is obtained. This indicates that it contributes to the polishing operation substantially as primary particles, and in addition to avoiding the occurrence of deep polishing scratches caused by aggregated particles, it corresponds to the combination of polishing surface roughness and polishing speed. Therefore, it is easy to select particles having an optimum particle size range.

本発明によるダイヤモンド粉末において、従来の同等加熱処理品に比してスラリー化が容易であることの第一のメリットは、自明なようにスラリー調製時の作業性の向上であるが、この他にも、従来品において必要とされていた凝集粒子解砕のための機械的負荷が不要になったことから、ダイヤモンド表面の非ダイヤモンド構造炭素材層の破壊が回避され、この結果、加熱処理砥粒の特徴である、ワークの研磨仕上面粗さが小さく保たれるという、研磨砥粒としての品質向上も確保される。   In the diamond powder according to the present invention, the first merit of being easy to slurry as compared with the conventional equivalent heat-treated product is to improve the workability at the time of slurry preparation, as obvious. However, since the mechanical load required to break up the agglomerated particles, which was required in the conventional product, is no longer required, the destruction of the non-diamond structural carbon material layer on the diamond surface is avoided. It is also possible to ensure the improvement in quality as polishing abrasive grains, which is characterized by the fact that the roughness of the polished surface of the workpiece is kept small.

次に本発明を実施例によって説明する。   Next, the present invention will be described by way of examples.

平均粒径(D50値)38nmのトーメイダイヤ製の表面親水性サブミクロンダイヤモンド粉MD40を出発原料に用いた。300ccのビーカーに、ダイヤモンド粉10gと100ccの脱イオン水とを入れ、超音波を用いて水中にダイヤモンドを懸濁させた。   Surface hydrophilic submicron diamond powder MD40 made by Tomei Dia with an average particle size (D50 value) of 38 nm was used as a starting material. A 300 cc beaker was charged with 10 g of diamond powder and 100 cc of deionized water, and the diamond was suspended in water using ultrasonic waves.

次いで分離剤としてゼラチン粉末0.5gを少しずつ振り入れ、充分に撹拌して懸濁液とした。撹拌を続けながらこの懸濁液を加熱して85℃に2分間維持した。次いで水冷し、さらに減圧乾燥して、ゼラチンの繊維にダイヤモンド粉末が絡まった、スポンジ状物質を回収した。   Next, 0.5 g of gelatin powder as a separating agent was sprinkled little by little and stirred sufficiently to obtain a suspension. The suspension was heated and maintained at 85 ° C. for 2 minutes with continued stirring. Next, the mixture was cooled with water and further dried under reduced pressure to recover a sponge-like substance in which diamond powder was entangled with gelatin fibers.

このスポンジ状物質をアルミナ製ルツボに入れ、窒素雰囲気中1100℃に2時間保持という条件で加熱処理を施し、ダイヤモンド表面の黒鉛化及びゼラチンの分解を行った。比較用として出発原料のMD40の乾燥粉末も同時に加熱処理した。   This sponge-like substance was placed in an alumina crucible and subjected to a heat treatment at 1100 ° C. for 2 hours in a nitrogen atmosphere to graphitize the diamond surface and decompose gelatin. For comparison, a dry powder of MD40 as a starting material was also heated at the same time.

加熱処理から回収されたダイヤモンドは黒色を呈していた。ダイヤモンド粒子表面に付着している非ダイヤモンド炭素質材は、酸化剤を用いた湿式処理によって定量すると5.5%であった。用いたゼラチンの1100℃における熱分解残渣量は25%だったので、加熱処理によってダイヤモンドから転化したカーボンは4.3%と見積もられた。   The diamond recovered from the heat treatment was black. The non-diamond carbonaceous material adhering to the diamond particle surface was 5.5% as determined by a wet process using an oxidizing agent. The amount of pyrolysis residue at 1100 ° C of the gelatin used was 25%, so the carbon converted from diamond by heat treatment was estimated at 4.3%.

得られた本発明による加熱処理ダイヤモンド1gを、100ccの脱イオン水中に分散してスラリーを調製した。この粒度分布を測定するとD50値は40nmであり、加熱処理を施したダイヤモンドが実質的に一次粒子状態で分散したスラリーとなっていることが認められた。   1 g of the heat-treated diamond obtained according to the present invention was dispersed in 100 cc of deionized water to prepare a slurry. When this particle size distribution was measured, the D50 value was 40 nm, and it was confirmed that the heat-treated diamond was a slurry in which primary particles were dispersed substantially.

比較のために、MD40ダイヤモンド粉を、供給された状態で加熱処理し、得られたダイヤモンドを分散してスラリーを調製した。このスラリーのD50値は120nmであり、加熱処理の際に凝集粒子が形成されることを示していた。   For comparison, MD40 diamond powder was heat-treated in the supplied state, and the resulting diamond was dispersed to prepare a slurry. The D50 value of this slurry was 120 nm, indicating that aggregated particles were formed during the heat treatment.

これらの両スラリーを用いてアルミニウム製のハードディスクのテクスチャリング加工を行い、加工面の粗さをAFMによって評価したところ、本発明品によるスラリーを用いた仕上げ面では2.3Å、比較品スラリーの場合は4.8Åであった。   Both of these slurries were used for texturing of an aluminum hard disk, and the roughness of the processed surface was evaluated by AFM. As a result, the finished surface using the slurry according to the present invention was 2.3 mm. It was 4.8cm.

平均粒径(D50値)31nmのトーメイダイヤ製の表面親水性サブミクロンダイヤモンド粉、MD30を出発原料に用いた。200ccビーカーに、ダイヤモンド粉20gと、脱イオン水で10倍に希釈した界面活性剤のポリカルボン酸液20gとを入れ、十分に練り合わせた。60℃で乾燥した後、アルミナるつぼに移して300℃に加熱し、ポリカルボン酸を部分炭化した。   Surface hydrophilic submicron diamond powder made by Tomei Diamond with an average particle diameter (D50 value) of 31 nm, MD30, was used as a starting material. In a 200 cc beaker, 20 g of diamond powder and 20 g of a surfactant polycarboxylic acid solution diluted 10-fold with deionized water were mixed thoroughly. After drying at 60 ° C., it was transferred to an alumina crucible and heated to 300 ° C. to partially carbonize the polycarboxylic acid.

このるつぼの内容物について、窒素雰囲気中で1000℃に2時間保つ加熱処理を施し、ダイヤモンド表面の黒鉛化と界面活性剤の分解とを実施した。加熱処理後のダイヤモンド粉末における表面の非ダイヤモンド構造炭素材は、酸化剤を用いた湿式処理の結果8.6%であった。これから、ポリカルボン酸に起因する非ダイヤモンド構造炭素分として0.14gを差し引き、ダイヤモンドから転化した非ダイヤモンド量を7.9%と見積もった。   The crucible contents were heat-treated at 1000 ° C. for 2 hours in a nitrogen atmosphere to graphitize the diamond surface and decompose the surfactant. The surface non-diamond structure carbon material in the diamond powder after the heat treatment was 8.6% as a result of the wet treatment using the oxidizing agent. From this, 0.14 g was subtracted as the carbon content of non-diamond derived from polycarboxylic acid, and the amount of non-diamond converted from diamond was estimated to be 7.9%.

得られた加熱処理ダイヤモンドについて、実施例1と同じ方法により粒度分布測定を行った。D50値として35nmが得られ、このダイヤモンド粉が実質的に一次粒子状態で分散していることが認められた。   The obtained heat-treated diamond was subjected to particle size distribution measurement by the same method as in Example 1. A D50 value of 35 nm was obtained, and it was confirmed that this diamond powder was substantially dispersed in a primary particle state.

Claims (13)

(1) 静的超高圧力下で非ダイヤモンド構造炭素からの転換により合成され、超微砕及び精密分級され鋭利な稜、或はさらに尖点を有し、
(2) 粒度分布測定装置マイクロトラックUPAによる測定値におけるD50値が50nm未満であるダイヤモンド粒子の集合体であり、さらに
(3) 該集合体の実質的に全ダイヤモンド粒子が、熱影響構造を有しかつダイヤモンド粒子表面又は粒子間に配置された非ダイヤモンド構造炭素を介して相互に分離されていることを特徴とする、熱処理されたダイヤモンド微粉。
(1) Synthesized by conversion from non-diamond carbon under static ultra high pressure, ultra finely divided and precision classified, with sharp edges, or even cusps,
(2) An aggregate of diamond particles having a D50 value of less than 50 nm as measured by a particle size distribution analyzer Microtrack UPA;
(3) It is characterized in that substantially all diamond particles of the aggregate are separated from each other via non-diamond structural carbon having a heat-affected structure and arranged on or between the diamond particles. Heat-treated diamond fine powder.
上記ダイヤモンド集合体において、D50値に対するD10値およびD90値の比がそれぞれ50%以上および200%以下である、請求項1に記載のダイヤモンド微粉。   The diamond fine powder according to claim 1, wherein in the diamond aggregate, the ratio of the D10 value and the D90 value to the D50 value is 50% or more and 200% or less, respectively. 上記非ダイヤモンド構造炭素が、隣接するダイヤモンド粒子の対向表面の少なくとも一部分に堆積して存在する、請求項1に記載のダイヤモンド微粉。   The diamond fine powder according to claim 1, wherein the non-diamond structural carbon is deposited on at least a part of an opposing surface of an adjacent diamond particle. 上記ダイヤモンド粒子の表面層が、少なくとも部分的に非ダイヤモンド構造炭素に転化されている、請求項1に記載のダイヤモンド微粉。   The diamond fine powder according to claim 1, wherein the surface layer of the diamond particles is at least partially converted to non-diamond structured carbon. 上記ダイヤモンド粒子の転化による非ダイヤモンド構造炭素の総量が、ダイヤモンド粉末全体に対する質量比において0.5%以上である、請求項4に記載のダイヤモンド微粉。   The diamond fine powder according to claim 4, wherein the total amount of non-diamond structured carbon due to conversion of the diamond particles is 0.5% or more in terms of mass ratio to the whole diamond powder. ダイヤモンド粒子表面及び粒子間に存在する上記非ダイヤモンド構造炭素の総量が、ダイヤモンド粉末全体に対する質量比において0.2%以上である、請求項1に記載のダイヤモンド微粉。   The diamond fine powder according to claim 1, wherein the total amount of the non-diamond structural carbon existing between the diamond particle surface and between the particles is 0.2% or more in a mass ratio with respect to the whole diamond powder. 上記ダイヤモンド粒子の集合体の、少なくとも一部分の隣接する粒子間に、ダイヤモンドに由来しない非ダイヤモンド構造のカーボン粒子が存在し、かつダイヤモンドからの転化による非ダイヤモンド構造炭素と、ダイヤモンドに起因しない非ダイヤモンド構造炭素との合計が、ダイヤモンド粉末全体に対する質量比において1.0%以上である、請求項1に記載のダイヤモンド微粉。   Non-diamond-structured carbon particles not derived from diamond exist between at least a part of adjacent diamond particle aggregates, and non-diamond-structured carbon caused by conversion from diamond, and non-diamond-structured non-diamond structure The diamond fine powder according to claim 1, wherein the total amount of carbon is 1.0% or more in a mass ratio with respect to the whole diamond powder. 上記熱影響構造が、ダイヤモンド粒子の表面乃至内部に発生したクラック及び/又は当該粒子からの転化により発生した非ダイヤモンド炭素構造材の堆積である、請求項1に記載のダイヤモンド微粉。   The diamond fine powder according to claim 1, wherein the heat-affected structure is a crack generated on the surface or inside of the diamond particle and / or a deposit of a non-diamond carbon structural material generated by conversion from the particle. 次の各段階を含む、請求項1に記載のダイヤモンド微粉の製造方法。
(1) 単結晶質原料ダイヤモンドを機械的な衝撃破砕手段によって、粗微粒ダイヤモンドに粉砕し、
(2)上記粗微粒ダイヤモンドの表面を酸化することにより、ダイヤモンドの表面に親水性の原子または官能基を結合させた後、水簸又は遠心分離或は両者の組み合わせに基づく精密分級工程に供することによりD50値が50nm未満のダイヤモンド粒子の集合体からなるダイヤモンド微粉とする段階。
(3) 上記ダイヤモンド微粉を、非ダイヤモンド構造炭素又は非ダイヤモンド構造炭素をその場で生成する物質(以下「カーボン発生剤」と称する)の溶液乃至分散液に浸し、少なくとも一部分の粒子表面に上記カーボン発生剤を付着せしめる段階。
(4) 該ダイヤモンド微粉を不活性雰囲気中、800℃以上1400℃以下の処理温度で加熱し、以てダイヤモンド粒子の表層を非ダイヤモンド構造炭素に転化すると同時に、上記カーボン発生剤を分解して非ダイヤモンド構造炭素を生成させ、以て隣接ダイヤモンド粒子を相互に、非ダイヤモンド炭素質材を介して分離せしめる段階。
The manufacturing method of the diamond fine powder of Claim 1 including each following step.
(1) Single-crystal raw material diamond is crushed into coarse-grained diamond by mechanical impact crushing means,
(2) Oxidizing the surface of the coarse-grained diamond to bond hydrophilic atoms or functional groups to the surface of the diamond, and then subjecting it to a precision classification process based on elutriation or centrifugation or a combination of both. To obtain a diamond fine powder comprising an aggregate of diamond particles having a D50 value of less than 50 nm.
(3) The diamond fine powder is immersed in a solution or dispersion of non-diamond structured carbon or a substance that generates non-diamond structured carbon in situ (hereinafter referred to as “carbon generator”), and the carbon is deposited on at least a part of the particle surface. The stage to attach the generating agent.
(4) The diamond fine powder is heated at a treatment temperature of 800 ° C. or higher and 1400 ° C. or lower in an inert atmosphere, so that the surface layer of the diamond particles is converted into non-diamond structured carbon, and at the same time, the carbon generator is decomposed and non-decomposed. Producing diamond-structured carbon, thereby separating adjacent diamond particles from each other via a non-diamond carbonaceous material.
上記親水性官能基が水酸基、カルボニル基、カルボキシル基から選ばれる、請求項9に記載のダイヤモンド微粉の製造方法。   The method for producing diamond fine powder according to claim 9, wherein the hydrophilic functional group is selected from a hydroxyl group, a carbonyl group, and a carboxyl group. 上記カーボン発生剤がノニオン系の界面活性剤である、請求項9に記載のダイヤモンド微粉の製造方法。   The method for producing diamond fine powder according to claim 9, wherein the carbon generator is a nonionic surfactant. 上記カーボン発生剤が有機保水剤、ゼラチン、寒天及び澱粉から選ばれる少なくとも1種を含む、請求項9に記載のダイヤモンド微粉の製造方法。   The method for producing diamond fine powder according to claim 9, wherein the carbon generator includes at least one selected from an organic water retention agent, gelatin, agar, and starch. 上記有機保水剤がPVA又はポリアクリル酸塩を含有する、請求項12に記載のダイヤモンド微粉の製造方法。   The manufacturing method of the diamond fine powder of Claim 12 in which the said organic water retention agent contains PVA or polyacrylate.
JP2005042082A 2005-02-18 2005-02-18 Highly dispersible single crystal diamond fine powder and its producing method Pending JP2006225208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042082A JP2006225208A (en) 2005-02-18 2005-02-18 Highly dispersible single crystal diamond fine powder and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042082A JP2006225208A (en) 2005-02-18 2005-02-18 Highly dispersible single crystal diamond fine powder and its producing method

Publications (1)

Publication Number Publication Date
JP2006225208A true JP2006225208A (en) 2006-08-31

Family

ID=36986898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042082A Pending JP2006225208A (en) 2005-02-18 2005-02-18 Highly dispersible single crystal diamond fine powder and its producing method

Country Status (1)

Country Link
JP (1) JP2006225208A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119802A (en) * 2006-11-15 2008-05-29 Hiroshi Ishizuka Tabular resin material for polishing semiconductor and manufacturing method thereof
WO2008096854A1 (en) 2007-02-09 2008-08-14 Hiroshi Ishizuka Diamond micropowder, method of trapping the same, and diamond slurry having diamond micropowder dispersed therein
JP2010254529A (en) * 2009-04-27 2010-11-11 Nof Corp Method for producing diamond and shock compression apparatus
JP2011132117A (en) * 2009-11-26 2011-07-07 Nippon Kayaku Co Ltd Polymerizable nano-diamond and method for producing the same
KR20160003046A (en) * 2013-04-23 2016-01-08 카르보데온 엘티디 오와이 A method for producing zeta negative nanodiamond dispersion and zeta negative nanodiamond dispersion
JP2017001915A (en) * 2015-06-11 2017-01-05 株式会社ダイセル Nanodiamond-dispersed liquid and method for producing the same
JP2018182120A (en) * 2017-04-17 2018-11-15 株式会社ダイセル Polishing material composition for cmp of gallium nitride substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206476A (en) * 2002-01-10 2003-07-22 Ishizuka Kenkyusho:Kk Heat-treated diamond fine powder and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206476A (en) * 2002-01-10 2003-07-22 Ishizuka Kenkyusho:Kk Heat-treated diamond fine powder and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119802A (en) * 2006-11-15 2008-05-29 Hiroshi Ishizuka Tabular resin material for polishing semiconductor and manufacturing method thereof
WO2008096854A1 (en) 2007-02-09 2008-08-14 Hiroshi Ishizuka Diamond micropowder, method of trapping the same, and diamond slurry having diamond micropowder dispersed therein
EP2123603A4 (en) * 2007-02-09 2014-01-29 Ishizuka Hiroshi Diamond micropowder, method of trapping the same, and diamond slurry having diamond micropowder dispersed therein
US9546093B2 (en) 2007-02-09 2017-01-17 Hiroshi Ishizuka Minute diamond powder, method for collecting the same and slurry comprisng the same in suspension
JP2010254529A (en) * 2009-04-27 2010-11-11 Nof Corp Method for producing diamond and shock compression apparatus
JP2011132117A (en) * 2009-11-26 2011-07-07 Nippon Kayaku Co Ltd Polymerizable nano-diamond and method for producing the same
KR20160003046A (en) * 2013-04-23 2016-01-08 카르보데온 엘티디 오와이 A method for producing zeta negative nanodiamond dispersion and zeta negative nanodiamond dispersion
JP2016501811A (en) * 2013-04-23 2016-01-21 カルボデオン リミティド オサケユイチア Method for producing zeta-negative nanodiamond dispersion and zeta-negative nanodiamond dispersion
US9994738B2 (en) 2013-04-23 2018-06-12 Carbodeon Ltd Oy Method for producing zeta negative nanodiamond dispersion and zeta negative nanodiamond dispersion
KR102367339B1 (en) 2013-04-23 2022-02-25 카르보데온 엘티디 오와이 A method for producing zeta negative nanodiamond dispersion and zeta negative nanodiamond dispersion
JP2017001915A (en) * 2015-06-11 2017-01-05 株式会社ダイセル Nanodiamond-dispersed liquid and method for producing the same
JP2018182120A (en) * 2017-04-17 2018-11-15 株式会社ダイセル Polishing material composition for cmp of gallium nitride substrate

Similar Documents

Publication Publication Date Title
TWI405720B (en) Single crystal diamond powder and its manufacturing method
KR101484339B1 (en) method for collecting the minute diamond powder
JP2006225208A (en) Highly dispersible single crystal diamond fine powder and its producing method
TWI694971B (en) MXene particle material, manufacturing method of these particle materials and secondary battery
JP3411239B2 (en) Diamond abrasive particles and method for producing the same
Luo et al. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma
WO2007052623A1 (en) Abrasive material and process for producing the same
JP2001329252A (en) Fine diamond abrasive particle and it production method
JP2019089699A (en) Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production and method for producing silicon fine particles for hydrogen production
JP2012523305A (en) Method for producing stable oxygen-terminated semiconductor nanoparticles
UA100256C2 (en) Abrasive grain powder
JP2007149203A (en) Texture working method and working slurry
JP2002060733A (en) Diamond-polishing material particle and method for producing the same
JP4940289B2 (en) Abrasive
TWI297074B (en)
Novikov et al. Detonation diamonds in Ukraine
CN114054744B (en) Method for improving mechanical property of laser selective melting NiTi alloy
JP4237013B2 (en) Manufacturing method of surface modified fine diamond abrasive
JP2003206476A (en) Heat-treated diamond fine powder and method for producing the same
JP2007231158A (en) Cerium-based abrasive
CN114787315B (en) Breakable diamond abrasive grain and method for producing same
JP7549528B2 (en) Ceria-based composite microparticle dispersion, its manufacturing method and polishing abrasive dispersion containing the ceria-based composite microparticle dispersion
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
Artemov Mechanochemical Sense of the Technology of Chemical Mechanical Polishing of Materials
JP2022190879A (en) Ceria-based composite fine particle dispersion, manufacturing method thereof, and abrasive particle polishing dispersion containing ceria-based composite fine particle dispersion

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426