JP2010242160A - Abrasion-resistant electroconductive member, and method for manufacturing the same - Google Patents

Abrasion-resistant electroconductive member, and method for manufacturing the same Download PDF

Info

Publication number
JP2010242160A
JP2010242160A JP2009091932A JP2009091932A JP2010242160A JP 2010242160 A JP2010242160 A JP 2010242160A JP 2009091932 A JP2009091932 A JP 2009091932A JP 2009091932 A JP2009091932 A JP 2009091932A JP 2010242160 A JP2010242160 A JP 2010242160A
Authority
JP
Japan
Prior art keywords
metal
wear
fine particles
conductive member
resistant conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009091932A
Other languages
Japanese (ja)
Inventor
Makoto Kano
眞 加納
Hisataka Satsuta
寿隆 薩田
Masahiko Mihashi
雅彦 三橋
Eiji Shimodaira
英二 下平
Yoshio Miyasaka
四志男 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI WPC KK
Kanagawa Prefecture
Fuji Kihan Co Ltd
Original Assignee
FUJI WPC KK
Kanagawa Prefecture
Fuji Kihan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI WPC KK, Kanagawa Prefecture, Fuji Kihan Co Ltd filed Critical FUJI WPC KK
Priority to JP2009091932A priority Critical patent/JP2010242160A/en
Publication of JP2010242160A publication Critical patent/JP2010242160A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasion-resistant electroconductive member which has both of excellent abrasion resistance and high electroconductivity, and shows superior durability, and to provide a method for manufacturing the member. <P>SOLUTION: The manufacturing method includes making metal particulates which have a specific gravity of 5 or more and have a specific electric resistance of 14×10<SP>-6</SP>Ωcm or less, for instance, metal particulates formed of tungsten collide onto a surface of a substrate of a soft metal having a specific electric resistance of 5×10<SP>-6</SP>Ωcm or less, for instance, a substrate made from copper, thereby to form a structure in which the metal particulates are dispersed, on the surface of the substrate of the soft metal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気伝導性と耐摩耗性に優れ、例えば種々の電気接点、電極、モータ用の整流子やブラシ、鉄道用の架線(トロリー線)やパンタグラフのすり板などに好適に用いられる耐摩耗性導電部材と、当該部材の製造方法に関するものである。   The present invention is excellent in electrical conductivity and wear resistance, and is preferably used for various electrical contacts, electrodes, motor commutators and brushes, railway overhead wires (trolley wires), pantograph slip plates, and the like. The present invention relates to a wearable conductive member and a method for manufacturing the member.

現今の鉄道車両、例えば新幹線等の高速鉄道車両に用いられるパンタグラフのすり板と架線との電気接点となる摺動部においては、車両の高速化に伴う摩擦速度の上昇や電流の増大によって、摩耗寿命が非常に短くなっている。このために、摺動部材には、導電性と耐摩耗性を両立させることに対するニーズが非常に高いものとなっている。
しかし、導電材料として使われている銅系材料では、一般に耐摩耗性が著しく低い。一方、耐摩耗性に優れる合金鋼やセラミックス材料では、導電性が大幅に悪化(電気抵抗が高い)してしまい、両特性を最大限に発揮することにできる材料は存在していない。すなわち、導電性と耐摩耗性の特性は、典型的なトレードオフ特性であることが分かる。
The sliding part, which is the electrical contact between the pantograph slide plate and overhead wire used in high-speed railway vehicles such as the current railway vehicles, such as the Shinkansen, wears due to an increase in friction speed and an increase in current accompanying the increase in vehicle speed. Life is very short. For this reason, there is a very high need for the sliding member to achieve both conductivity and wear resistance.
However, the copper-based material used as the conductive material generally has extremely low wear resistance. On the other hand, in alloy steels and ceramic materials having excellent wear resistance, the conductivity is greatly deteriorated (electrical resistance is high), and there is no material that can maximize both characteristics. That is, it can be seen that the characteristics of conductivity and wear resistance are typical trade-off characteristics.

このため、現状では、銅系材料を基材として、これに種々の固体潤滑剤を混合し、導電特性を大きく犠牲にして、耐摩耗性を向上させた材料を混合した銅合金系焼結材料が使われている(非特許文献1参照)。
また、上記のようなトレードオフ特性の改善を図るべく、硬い微粒子を電極またはノズルチップ表面にショットし、表面の金属組織を微細化することにより、耐摩耗性を高めることが行われている(特許文献1参照)。
Therefore, at present, a copper alloy-based sintered material in which a copper-based material is used as a base material, various solid lubricants are mixed with the base material, and a material with improved wear resistance is mixed at the expense of conductive properties. Is used (see Non-Patent Document 1).
In addition, in order to improve the trade-off characteristics as described above, hard particles are shot on the surface of the electrode or nozzle tip, and the metal structure on the surface is refined to improve wear resistance ( Patent Document 1).

しかしながら、上記引用文献記載の技術において、使用する金属の材質自体は、いずれも、銅等に代表される非鉄金属材料であるために、摺動する相手の接点となる金属材料との凝着性を大きく改善することは困難である。   However, in the technique described in the above cited document, since the metal material itself is a non-ferrous metal material typified by copper or the like, it adheres to the metal material that becomes the contact point of the sliding counterpart. It is difficult to greatly improve

特開平8−150483号公報Japanese Patent Laid-Open No. 8-150483

「しゅう動電気接点と層状固体潤滑剤」,トライボロジスト第53巻,第11号(2008)、p.731“Sliding Electric Contact and Layered Solid Lubricant”, Tribologist Vol. 53, No. 11 (2008), p. 731

上記した先行技術文献からも分かるように、優れた耐摩耗性と高い導電性(低い電気抵抗)を同時に発現できる材料の開発が強く求められている。このような耐摩耗性と導電性を兼ね備えた材料によれば、摩耗条件が過酷な鉄道用の給電部品だけに留まらず、電極、電気接点やIT分野の実装技術分野への応用が期待できる。   As can be seen from the above-mentioned prior art documents, there is a strong demand for the development of materials that can simultaneously exhibit excellent wear resistance and high electrical conductivity (low electrical resistance). According to such a material having both wear resistance and conductivity, it can be expected to be applied not only to power supply parts for railways with severe wear conditions but also to electrodes, electrical contacts, and mounting technology fields in the IT field.

本発明は、鉄道車両や各種電気機器などの摺動部に用いられる導電性材料における上記課題に鑑みてなされたものであって、その目的とするところは、優れた耐摩耗性と高い導電性を兼ね備え、優れた耐久性を発揮する耐摩耗性導電部材と、このような部材の製造方法を提供することにある。   The present invention has been made in view of the above problems in conductive materials used for sliding parts of railway vehicles and various electric devices, and the object thereof is excellent wear resistance and high conductivity. And providing a wear-resistant conductive member that exhibits excellent durability and a method for producing such a member.

本発明者らは、上記目的を達成すべく、材料や表面処理など、鋭意検討を繰り返した結果、例えば、銅に代表される電気良導性軟質金属材料に、タングステンに代表される硬質金属微粒子を衝突させ、もって軟質金属表面下に金属微粒子を分散させることにより、上記課題が解決できることを見出し、本発明を完成するに到った。   In order to achieve the above object, the present inventors have conducted intensive studies such as materials and surface treatment. As a result, for example, electrically conductive soft metal materials represented by copper, hard metal fine particles represented by tungsten, and the like. It was found that the above-mentioned problems can be solved by dispersing metal fine particles below the surface of the soft metal, and the present invention has been completed.

本発明は上記知見に基づくものであって、本発明の耐摩耗性導電部材は、5×10−6Ω・cm以下の比電気抵抗を有する軟質金属基材の表面下に、5以上の比重を有し、14×10−6Ω・cm以下の比電気抵抗を有する金属微細粒子が分散していることを特徴とする。
また、本発明による上記耐摩耗性導電部材の製造方法においては、上記軟質金属基材、すなわち比電気抵抗が5×10−6Ω・cm以下の軟質金属基材の表面に、上記金属微細粒子、すなわち比重が5以上で、比電気抵抗が14×10−6Ω・cm以下の金属微細粒子を衝突させて、当該金属微粒子を基材金属表面下に分散させることを特徴としている。
The present invention is based on the above findings, and the wear-resistant conductive member of the present invention has a specific gravity of 5 or more below the surface of a soft metal substrate having a specific electric resistance of 5 × 10 −6 Ω · cm or less. And fine metal particles having a specific electric resistance of 14 × 10 −6 Ω · cm or less are dispersed.
In the method for producing the wear-resistant conductive member according to the present invention, the metal fine particles are formed on the surface of the soft metal substrate, that is, the soft metal substrate having a specific electric resistance of 5 × 10 −6 Ω · cm or less. That is, it is characterized in that metal fine particles having a specific gravity of 5 or more and a specific electric resistance of 14 × 10 −6 Ω · cm or less are collided to disperse the metal fine particles below the surface of the base metal.

本発明によれば、比電気抵抗が5×10−6Ω・cm以下という良好な導電性を備えた軟質金属基材の表面下に、5以上の高比重を有し、比電気抵抗が14×10−6Ω・cm以下という比較的良好な導電性を備えた金属微細粒子を分散させたため、高い導電性と耐摩耗性を同時に発揮することができ、導電部材の耐用寿命を向上させることができる。 According to the present invention, the specific electric resistance is 5 × 10 −6 Ω · cm or less, and the surface of the soft metal substrate having a good conductivity has a high specific gravity of 5 or more, and the specific electric resistance is 14 × 10 −6 Ω · cm or less metal fine particles having relatively good conductivity are dispersed, so that high conductivity and wear resistance can be exhibited at the same time, and the service life of the conductive member is improved. Can do.

実施例におけるボールオンディスク摩擦摩耗試験の要領を示す概略説明図である。It is a schematic explanatory drawing which shows the point of the ball-on-disk friction wear test in an Example. 本発明の実施例1により得られたディスク試験片の表面近傍部における元素の分布を示すEPMA分析画像である。It is an EPMA analysis image which shows element distribution in the surface vicinity part of the disk test piece obtained by Example 1 of this invention.

以下、本発明の耐摩耗性導電部材について、その実施形態や製造方法などと共に、さらに詳細に説明する。なお、本発明において、「%」については、特記しない限り質量百分率を意味するものとする。   Hereinafter, the wear-resistant conductive member of the present invention will be described in more detail together with embodiments and manufacturing methods thereof. In the present invention, “%” means mass percentage unless otherwise specified.

本発明の耐摩耗性導電部材は、上記したように、比電気抵抗が5×10−6Ω・cm以下の軟質金属基材の表面に、5以上の比重を有し、かつ比電気抵抗が14×10−6Ω・cm以下の金属微細粒子が基材金属中に分散した組織を有するものである。
すなわち、導電性の良好な軟質基材の表面部に、比重が比較的高く、しかも導電性にも比較的優れた金属微細粒子が分散することによって、電気伝導性をほとんど損なうことなく、基材表面の硬さを増すことができると共に、異種金属分散層の形成によって耐凝着性を大幅に改善させることができ、導電性と耐摩耗性との両立が可能となり、導電部材としての耐久性が向上することになる。
As described above, the wear-resistant conductive member of the present invention has a specific gravity of 5 or more on the surface of a soft metal substrate having a specific electric resistance of 5 × 10 −6 Ω · cm or less, and a specific electric resistance. It has a structure in which fine metal particles of 14 × 10 −6 Ω · cm or less are dispersed in the base metal.
That is, the surface of a soft base material with good conductivity is dispersed with fine metal particles having a relatively high specific gravity and a relatively good conductivity, so that the base material is hardly damaged. The hardness of the surface can be increased and the adhesion resistance can be greatly improved by forming a dissimilar metal dispersion layer, making it possible to achieve both conductivity and wear resistance, and durability as a conductive member. Will be improved.

本発明の耐摩耗性導電部材において、軟質金属基材及び金属微粒子の比電気抵抗をそれぞれ5×10−6Ω・cm以下及び14×10−6Ω・cm以下とするのは、軟質金属基材及び金属微粒子の比電気抵抗がこれらの値をそれぞれ超えると、電気抵抗の増加によって、導電部材としての機能が損なわれることによる。
また、上記金属微細粒子の比重を5以上としたのは、その比重が5未満となると、粒子が軟質基材に投射されたときのエネルギーが不足するために表面への分散による硬さの増加が不十分となることによる。なお、このような条件を満たす金属材料の代表例としては、例えば、タングステンやタンタルを挙げることができる。また、これら金属を50%以上含有する金属を用いることも可能である。
In the wear-resistant conductive member of the present invention, the specific resistances of the soft metal substrate and the metal fine particles are 5 × 10 −6 Ω · cm or less and 14 × 10 −6 Ω · cm or less, respectively. When the specific electric resistance of the material and the metal fine particles exceeds these values, the function as the conductive member is impaired due to the increase in electric resistance.
In addition, the specific gravity of the metal fine particles is set to 5 or more. When the specific gravity is less than 5, the energy when the particles are projected onto the soft substrate is insufficient, and thus the hardness increases due to dispersion on the surface. Is due to insufficient. In addition, as a typical example of the metal material satisfying such a condition, for example, tungsten or tantalum can be given. It is also possible to use a metal containing 50% or more of these metals.

一方、上記軟質金属基材としては、ビッカース硬度Hvが150以下のものを適用することが望ましく、具体的な材料としては、金、銀、銅、あるいはこれら金属を50%以上含有する合金を挙げることができる。なお、基材のビッカース硬度としてHv150以下が望ましいのは、投射粒子が軟質基材中へ練り込まれ易いためであり、後述する製造方法による基材金属中への金属微細粒子の分散が容易になることによる。   On the other hand, as the soft metal substrate, it is desirable to apply a Vickers hardness Hv of 150 or less, and specific materials include gold, silver, copper, or an alloy containing 50% or more of these metals. be able to. The reason why the Vickers hardness of the base material is preferably Hv 150 or less is that the projected particles are easily kneaded into the soft base material, and the metal fine particles are easily dispersed in the base metal by the manufacturing method described later. By becoming.

本発明の耐摩耗性導電部材の表面粗さ、すなわち金属微細粒子が分散した表面の粗さについては、JIS B 0601に規定される最大高さ粗さRzで、1〜10μmであることが望ましい。Rzが10μmを超えると摩擦係数が増加する一方、分散層が形成されるのに必要な投射時のエネルギーを有する条件においては、1μmに満たない表面粗さを得ることが困難となる傾向がある。   The surface roughness of the wear-resistant conductive member of the present invention, that is, the roughness of the surface on which the fine metal particles are dispersed is desirably 1 to 10 μm at the maximum height roughness Rz defined in JIS B 0601. . When Rz exceeds 10 μm, the friction coefficient increases, but on the condition having the energy at the time of projection necessary to form the dispersion layer, it tends to be difficult to obtain a surface roughness of less than 1 μm. .

本発明の耐摩耗性導電部材は、上記のような材料から成る軟質金属基材のごく表面に、上記のような材料から成る金属微細粒子を分散させたものであり、このような金属微細粒子の分散によって、その電気抵抗の値が分散前の基材に較べて多少増加することは避けられない。
このような抵抗値の増加幅は、少ないほど好ましいことは言うまでもないが、その増加率が5%未満であれば、導電部材としての機能が実質的に損なわれることはなく、抵抗値の増加率が5%を超えない程度に、金属微細粒子を分散させることが望ましい。
なお、ここで言う抵抗値の増加率とは、後述する実施例において説明する方法による測定値を意味する。
The wear-resistant conductive member of the present invention is obtained by dispersing fine metal particles made of the above material on the very surface of the soft metal base material made of the above material. It is inevitable that the value of the electrical resistance slightly increases due to the dispersion of the substrate as compared with the base material before the dispersion.
Needless to say, the increase in the resistance value is preferably as small as possible, but if the increase rate is less than 5%, the function as the conductive member is not substantially impaired, and the increase rate in the resistance value. It is desirable to disperse the metal fine particles to the extent that does not exceed 5%.
In addition, the increase rate of resistance value said here means the measured value by the method demonstrated in the Example mentioned later.

また、本発明の耐摩耗性導電部材は、その表面に、金属微細粒子が分散した組織、言い換えると金属微細粒子の分散によって硬さが向上した硬化層を備えていることになり、このような硬化層の厚さとしては、1〜50μmの厚さに形成することが望ましい。
すなわち、当該硬化層の厚さが1μmに満たない場合には、十分に耐摩耗性を向上させることができず、逆に50μmを超えると、導電部材としての導電性が損なわれる可能性があることによる。この硬化層は、5〜20μmの厚さであることがより好ましい。
In addition, the wear-resistant conductive member of the present invention includes a hardened layer whose hardness is improved by the dispersion of metal fine particles on the surface, in other words, the dispersion of metal fine particles. The thickness of the hardened layer is desirably formed to a thickness of 1 to 50 μm.
That is, when the thickness of the hardened layer is less than 1 μm, the wear resistance cannot be sufficiently improved. Conversely, when the thickness exceeds 50 μm, the conductivity as the conductive member may be impaired. It depends. More preferably, the cured layer has a thickness of 5 to 20 μm.

なお、本発明において、硬化層とは、軟質金属基材の原質部の硬さに対して10%以上の硬さを有している領域を意味するものであって、このような硬さの領域である限り、必ずしも金属微細粒子が分散した領域のみに限定されるものではない。
すなわち、粒子分散による硬化層(第1の硬化層)の直下位置に、金属微細粒子が分散していない硬化層(第2の硬化層)、つまり基材原質部よりも10%以上硬化した領域が存在していてもよく、これら第1及び第2の硬化層の合計厚さが1〜50μmであればよい。
In the present invention, the hardened layer means a region having a hardness of 10% or more with respect to the hardness of the original part of the soft metal base material. As long as it is the region, it is not necessarily limited to only the region where the fine metal particles are dispersed.
That is, the cured layer (second cured layer) in which the metal fine particles are not dispersed is cured at a position immediately below the cured layer (first cured layer) due to particle dispersion, that is, 10% or more is cured from the base material portion. The area | region may exist and the sum total thickness of these 1st and 2nd hardened layers should just be 1-50 micrometers.

本発明の耐摩耗性導電部材は、軟質金属基材、例えば銅に代表されるような比電気抵抗が5×10−6Ω・cm以下の軟質金属基材の表面に、金属微細粒子、例えばタングステンに代表されるような比重が5以上で、比電気抵抗が14×10−6Ω・cm以下の金属微細粒子を衝突させ、当該金属微粒子を基材金属表面下に分散させることによって製造することができる。
これによって、金属微細粒子が軟質金属基材の表面下に、変形あるいは粉砕した状態で埋め込まれ、基材金属中に分散して、基材表面に第1の硬化層が形成されると共に、その直下位置には、粒子の衝突によって基材金属が微視的に変形し、加工硬化による第2の硬化層が形成される。
The wear-resistant conductive member of the present invention is a soft metal substrate, such as metal fine particles, for example, on the surface of a soft metal substrate having a specific electric resistance of 5 × 10 −6 Ω · cm or less, as represented by copper. Manufactured by colliding fine metal particles having a specific gravity of 5 or more and a specific electric resistance of 14 × 10 −6 Ω · cm or less as represented by tungsten and dispersing the fine metal particles below the surface of the base metal. be able to.
As a result, the fine metal particles are embedded in the deformed or pulverized state under the surface of the soft metal base material and dispersed in the base metal to form the first hardened layer on the base material surface. In the position immediately below, the base metal is microscopically deformed by the collision of the particles, and a second hardened layer is formed by work hardening.

これに用いる装置や、金属微細粒子のサイズ、衝突速度などの諸条件、さらに処理結果としての粒子の分散密度などについては、特に限定はなく、上記した硬化層が合計で1〜50μmの厚さに形成できる程度であればよい。
例えば、金属微細粒子を基材に衝突させるための装置としては、空気噴射式やインペラ式の噴射装置を用いることができる。また、金属微細粒子としては、53μmメッシュアンダー、より好ましくは10μmメッシュアンダーのものを用いることができ、当該金属粒子の衝突時の速度としては、毎秒50m以上とすることが望ましい。
There are no particular limitations on the apparatus used for this, various conditions such as the size and collision speed of the metal fine particles, and the particle dispersion density as a result of the treatment, and the above-mentioned cured layer has a total thickness of 1 to 50 μm. As long as it can be formed to a thickness.
For example, as an apparatus for causing the metal fine particles to collide with the substrate, an air injection type or impeller type injection apparatus can be used. Further, as the fine metal particles, those having a mesh under of 53 μm, more preferably under a 10 μm mesh can be used, and the speed at the time of collision of the metal particles is desirably 50 m or more per second.

本発明の耐摩耗性導電部材においては、その表面(金属微細粒子の分散面)に、さらに錫微粒子の分散層を形成したり、ダイヤモンドライクカーボン(DLC)から成るコーティング層を形成したりすることができる。また、耐摩耗性導電部材の表面上に形成したDLCコーティング層のさらにその上に錫微粒子の分散層を形成することも必要に応じて望ましい。
これらによって、基材表面、すなわち相手部材との当接面における摩擦低減と、耐摩耗性のさらなる向上を図ることができる。
In the wear-resistant conductive member of the present invention, a tin fine particle dispersion layer or a diamond-like carbon (DLC) coating layer is formed on the surface (dispersed surface of fine metal particles). Can do. It is also desirable if necessary to form a dispersion layer of tin fine particles on the DLC coating layer formed on the surface of the wear-resistant conductive member.
By these, it is possible to reduce the friction on the surface of the base material, that is, the contact surface with the mating member, and to further improve the wear resistance.

なお、錫微粒子の分散層は、その表面に錫微粒子を衝突させることによって形成することができる。
また、DLCコーティング層の成膜方法としては、例えば、イオン化蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、プラズマイオン注入成膜法、ホローカソードアーク蒸着法、真空アーク蒸着法などを適用することができる。
The dispersion layer of tin fine particles can be formed by causing tin fine particles to collide with the surface thereof.
In addition, as a method for forming the DLC coating layer, for example, an ionization vapor deposition method, a sputtering method, an ion plating method, a plasma CVD method, a plasma ion implantation film formation method, a hollow cathode arc vapor deposition method, a vacuum arc vapor deposition method, or the like is applied. can do.

以下、本発明を実施例及び比較例により、さらに具体的に説明する。なお、本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these examples.

(1)ディスク試験片の作製
軟質導電性基材として、JIS H 3100に規定されるタフピッチ銅C1100材(比電気抵抗:1.67×10−6Ω・cm)を選び、直径33mm、厚さ3mmの円板形基材を作製した。この表面をRa0.02μmの粗さとなるように研磨した。
次いで、金属微細粒子として、純タングステン(比重:19.3、比電気抵抗:5.65×10−6Ω・cm)又は純タンタル(比重:16.6、比電気抵抗:12.5×10−6Ω・cm)から成る微細粒子を用いて、種々の条件のもとに、研磨表面に投射処理を施し、ディスク試験片とした(実施例1〜5)。
(1) Preparation of disc test piece As a soft conductive base material, a tough pitch copper C1100 material (specific electric resistance: 1.67 × 10 −6 Ω · cm) defined in JIS H 3100 is selected, and the diameter is 33 mm and the thickness is A 3 mm disk-shaped substrate was produced. This surface was polished to a roughness of Ra 0.02 μm.
Subsequently, pure tungsten (specific gravity: 19.3, specific electric resistance: 5.65 × 10 −6 Ω · cm) or pure tantalum (specific gravity: 16.6, specific electric resistance: 12.5 × 10) as fine metal particles Using a fine particle comprising −6 Ω · cm), the polishing surface was subjected to a projection treatment under various conditions to obtain disk test pieces (Examples 1 to 5).

また、さらなる摩擦低減を目的に、前記処理面に対して、さらに錫微粒子による投射処理を施したり(実施例6,7)、投射面を軽く研磨し、微細な鋭利凸部に滑らかな曲面を形成させたりした後、CVD(Chemical Vapor Deposition)法によって、DLCコーティング層を付加した(実施例8,9)。
なお、これら実施例に対する比較材としては、上記円板形の純銅基材から成る非処理の試験片(比較例1)、電気摺動部材に一般的に用いられる焼結合金(Cu−30%WS−6%Sn−1%Ag)から成る同一サイズの試験片(比較例2)、及び上記円板形の純銅基材にシリコンカーバイド粒子による投射処理を施したディスク試験片(比較例3)を用いた。
For further friction reduction, the treated surface is further subjected to a projection treatment with tin fine particles (Examples 6 and 7), or the projection surface is lightly polished to form a smooth curved surface on a fine sharp convex portion. After the formation, a DLC coating layer was added by a CVD (Chemical Vapor Deposition) method (Examples 8 and 9).
In addition, as a comparative material with respect to these Examples, the non-processed test piece (comparative example 1) which consists of the said disk-shaped pure copper base material, the sintered alloy (Cu-30%) generally used for an electric sliding member A test specimen (Comparative Example 2) of the same size made of WS 2 -6% Sn-1% Ag) and a disk specimen (Comparative Example 3) obtained by subjecting the disk-shaped pure copper base material to a projection treatment using silicon carbide particles. ) Was used.

(2)投射処理面の調査
得られた各ディスク試験片について、針式表面粗さ計を用い、JIS B 0601に準拠して、投射処理面の最大高さ粗さRzを測定すると共に、金属粒子の分散状況を観察した。
(2) Investigation of projection processing surface About each obtained disk test piece, while measuring the maximum height roughness Rz of a projection processing surface based on JISB0601, using a needle-type surface roughness meter, metal The state of particle dispersion was observed.

(3)硬化層の厚さ
マイクロビッカース硬度計を用いて、25gf荷重で10秒間保持することによって、各ディスク試験片における基材の板厚方向の硬度分布を測定し、硬化層厚さとして、母材(基材原質部)部分の硬さに対して10%以上硬化している領域の厚さを測定した。
(3) Thickness of hardened layer Using a micro Vickers hardness meter, the hardness distribution in the plate thickness direction of the base material in each disk test piece was measured by holding for 10 seconds at a load of 25 gf. The thickness of the region that was hardened by 10% or more relative to the hardness of the base material (base material part) was measured.

(4)電気抵抗値増加率の測定
試験片用の基材として、厚さ0.5mm、100mm×100mmの板状をなすタフピッチ銅C1100材を用い、この表面に、上記した各ディスク試験片と同様の処理を施した後、10mm×40mmの短冊状に切り出し、電気抵抗値の測定用試験片とした。
そして、各短冊状試験片の長手方向両端部を電気抵抗端子ではさみ、電気抵抗値をそれぞれ5回測定し、その平均値を求め、何も処理していない銅サイズのタフピッチ銅の抵抗値(0.4902Ω)を基準「100」として、それに対する比率を算出した。
(4) Measurement of increase rate of electric resistance value As a base material for a test piece, a tough pitch copper C1100 material having a thickness of 0.5 mm and 100 mm × 100 mm was used. After performing the same process, it cut out to the strip shape of 10 mm x 40 mm, and was set as the test piece for an electrical resistance value measurement.
Then, both ends in the longitudinal direction of each strip-shaped test piece are sandwiched between electrical resistance terminals, the electrical resistance values are measured 5 times, the average value is obtained, and the resistance value of copper-sized tough pitch copper that has not been processed at all ( 0.4902Ω) as a reference “100”, and a ratio to the reference “100” was calculated.

(5)摩擦摩耗試験
上記によって得られた各ディスク試験片を用いて、ボールオンディスク摩擦摩耗試験を実施し、ディスク試験片の摩擦、摩耗特性を評価した。
すなわち、図1は、その試験要領を示す斜視説明図であって、同図に示すように、ディスク試験片Dの上にボールBが配置されており、固定されたボールBが回転するディスク試験片上を摺動するようになっている。
(5) Friction and wear test Using each disk specimen obtained as described above, a ball-on-disk friction and abrasion test was performed to evaluate the friction and wear characteristics of the disk specimen.
That is, FIG. 1 is a perspective explanatory view showing the test procedure. As shown in FIG. 1, the ball B is arranged on the disk test piece D and the fixed ball B rotates. It slides on one side.

ボールBは、4mmの直径を有し、同様にタフピッチ銅C1100材から成るものであって、Ra0.02μmの表面粗さに研磨されている。
図中に矢印で示すように、ディスク試験片Dに対してボールBを垂直方向に2Nの一定加重で押し付け、室温の大気中において、すべり速度0.05m/sで、15分間の摩擦試験を行った。この時、摩擦係数の測定と共に、ディスク試験片の摩耗量(摩耗痕の最大深さ)と、凝着摩耗の厳しさを示す相手ボールの表面粗さの測定も行った。なお、各ディスク試験片ごとに、新しいボールとの組み合わせで試験を実施した。
The ball B has a diameter of 4 mm and is similarly made of a tough pitch copper C1100 material, and is ground to a surface roughness of Ra 0.02 μm.
As indicated by the arrows in the figure, the ball B was pressed against the disk specimen D in the vertical direction with a constant load of 2N, and a 15 minute friction test was performed at a sliding speed of 0.05 m / s in the air at room temperature. went. At this time, along with the measurement of the friction coefficient, the amount of wear of the disk test piece (the maximum depth of the wear scar) and the surface roughness of the opponent ball indicating the severity of adhesive wear were also measured. Each disk test piece was tested in combination with a new ball.

上記した各試験結果を処理条件と共に表1に併せて示す。   The test results described above are shown together with the processing conditions in Table 1.

Figure 2010242160
Figure 2010242160

その結果、何らの処理も施されていないタフピッチ銅C1100材から成るディスク試験片による比較例1においては、電気抵抗値が最も低く、最も良好な導電性を示すものの、摩擦摩耗試験では、摩擦初期から0.5を超える非常に高い摩擦係数を示し、ディスク試験片の摩耗深さが大きい値を示すと共に、激しい凝着摩耗を生じ、相手ボールの摺動痕の表面粗さが著しく大きい値を示す結果となった。   As a result, in Comparative Example 1 using a disk test piece made of tough pitch copper C1100 material that had not been subjected to any treatment, the electric resistance value was the lowest and the best conductivity was exhibited. Shows a very high coefficient of friction exceeding 0.5 and shows a large wear depth of the disk specimen, severe adhesion wear, and a significantly large surface roughness of the sliding trace of the opponent ball. The result is shown.

また、電気摺動部材に使われている焼結合金から成るディスク試験片を用いた比較例2においては、摩擦摩耗試験による摩擦係数は0.24と、ある程度の低い値を示すものの、電気抵抗値については、上記比較例1による純銅材(タフピッチ銅)の場合に比べて1桁以上も高い値となることが確認された。
また、純銅材(タフピッチ銅)から成る円板形基材に、硬いセラミックス粒子であるSiCを用いた投射処理を施したディスク試験片による比較例3においては、電気抵抗値が低く、導電性が良好であり、摩擦試験でもディスク表面が硬化することによって摩耗深さが多少は改善されてはいるものの、相手ボールとの凝着が顕著となり、結果としてディスク試験片の摩耗量も、後述する本発明の実施例よりも大きな値を示すことが判明した。
Further, in Comparative Example 2 using a disk test piece made of a sintered alloy used for the electric sliding member, although the friction coefficient by the frictional wear test is 0.24, which is a low value to some extent, the electric resistance As for the value, it was confirmed that the value was higher by one digit or more than that of the pure copper material (tough pitch copper) according to Comparative Example 1 described above.
Moreover, in the comparative example 3 by the disk test piece which performed the projection process using SiC which is a hard ceramic particle | grain to the disk-shaped base material which consists of pure copper materials (tough pitch copper), an electrical resistance value is low and electroconductivity is low. Although the wear depth is slightly improved by hardening of the disk surface in the friction test, the adhesion with the opponent ball becomes remarkable, and as a result, the wear amount of the disk test piece is also described in the following book. It has been found that the values are greater than those of the inventive examples.

これらの比較例に対して、本発明の実施例においては、電気摺動部材に使われている焼結合金から成る比較例2に較べても、電気抵抗値が著しく低く(導電性に優れ)、摩擦摩耗試験においても非常に優れた耐摩耗性を示すことが確認された。
さらには、金属微細粒子の分散により改質された表面に、さらに錫微粒子を投射した実施例6,7や、上記改質表面に、さらにDLCをコーティングした実施例8,9においては、低い電気抵抗値、高い耐摩耗性を維持しながら、摩擦係数をさらに低減させることができることが判明した。
In contrast to these comparative examples, in the examples of the present invention, the electrical resistance value is remarkably low (excellent in conductivity) as compared with Comparative Example 2 made of a sintered alloy used for the electric sliding member. In the friction and wear test, it was confirmed that the wear resistance was extremely excellent.
Furthermore, in Examples 6 and 7 in which tin fine particles were further projected onto the surface modified by the dispersion of fine metal particles, and in Examples 8 and 9 in which DLC was further coated on the modified surface, low electrical properties were obtained. It was found that the friction coefficient can be further reduced while maintaining the resistance value and the high wear resistance.

図2は、上記実施例の代表例として、実施例1により得られた試験片の表面近傍部のEPMA分析画像情報を示すものであって、表面近傍部には、Cu(銅)の分布状態を示す図中にCuの減少部分(赤色部)が認められる一方、W(タングステン)の分布状態を示す図中には、黄色〜緑色で示されるWの濃化部分が認められ、基材金属である銅中にタングステンが分散していることが分かる。   FIG. 2 shows, as a representative example of the above example, EPMA analysis image information in the vicinity of the surface of the test piece obtained in Example 1. In the vicinity of the surface, the distribution state of Cu (copper) is shown. In the figure showing Cu, a reduced portion (red part) of Cu is recognized, while in the figure showing the distribution state of W (tungsten), a concentrated part of W shown in yellow to green is recognized, and the base metal It can be seen that tungsten is dispersed in copper.

以上、説明してきたように、本発明は、例えば、銅等の導電性軟質基材から成る電気摺動部材に対して、優れた耐摩耗性を付与することによって、大幅な寿命向上を図ることができるばかりでなく、高い導電性も維持できることから、高電流を流すことができ、製品となるモータ等の小型化にも貢献することができる。また、当然のことながら、摩擦条件がそれほど厳しくない電気接点部位やIT産業での実装分野においても、接点部位の高寿命化やパッケージの小型化にも貢献することができ、本発明の工業的な適用分野は極めて大きいものとなる。   As described above, the present invention, for example, greatly improves the life by imparting excellent wear resistance to an electric sliding member made of a conductive soft base material such as copper. In addition to being able to maintain high conductivity, a high current can be passed, and this contributes to the miniaturization of a product motor or the like. Of course, in the electrical contact part where the frictional conditions are not so severe and in the mounting field in the IT industry, it is possible to contribute to the extension of the life of the contact part and the miniaturization of the package. Application fields are extremely large.

Claims (17)

比電気抵抗が5×10−6Ω・cm以下の軟質金属基材の表面下に、5以上の比重を有し、かつ比電気抵抗が14×10−6Ω・cm以下の金属微細粒子が分散していることを特徴とする耐摩耗性導電部材。 Under the surface of the specific electrical resistance of 5 × 10 -6 Ω · cm or less of the soft metal substrate, having five or more specific gravity, and specific electric resistance 14 × 10 -6 Ω · cm or less of the metal fine particles A wear-resistant conductive member that is dispersed. 表面粗さが最大高さ粗さRzで1〜10μmであることを特徴とする請求項1に記載の耐摩耗性導電部材。   The wear-resistant conductive member according to claim 1, wherein the surface roughness is 1 to 10 μm in terms of a maximum height roughness Rz. 上記軟質金属基材の硬さがビッカース硬度でHv150以下であることを特徴とする請求項1又は2に記載の耐摩耗性導電部材。   The wear-resistant conductive member according to claim 1 or 2, wherein the soft metal substrate has a Vickers hardness of Hv150 or less. 上記軟質金属基材が金、銀、銅、又はこれら金属を質量比で50%以上含有する合金であることを特徴とする請求項1〜3のいずれか1つの項に記載の耐摩耗性導電部材。   The wear-resistant conductive material according to any one of claims 1 to 3, wherein the soft metal substrate is gold, silver, copper, or an alloy containing 50% or more of these metals by mass ratio. Element. 金属微細粒子が分散したことによる電気抵抗値の増加率が5%未満であることを特徴とする請求項1〜4のいずれか1つの項に記載の耐摩耗性導電部材。   The wear resistant conductive member according to any one of claims 1 to 4, wherein an increase rate of an electric resistance value due to the dispersion of metal fine particles is less than 5%. 上記金属微細粒子がタングステン、タンタル、又はこれら金属を質量比で50%以上含有する合金であることを特徴とする請求項1〜5のいずれか1つの項に記載の耐摩耗性導電部材。   The wear-resistant conductive member according to any one of claims 1 to 5, wherein the metal fine particles are tungsten, tantalum, or an alloy containing these metals in a mass ratio of 50% or more. 軟質金属基材の表面下に硬化層を備え、当該硬化層の厚さが1〜50μmであることを特徴とする請求項1〜6のいずれか1つの項に記載の耐摩耗性導電部材。   The wear-resistant conductive member according to any one of claims 1 to 6, wherein a hardened layer is provided under the surface of the soft metal substrate, and the thickness of the hardened layer is 1 to 50 µm. 上記硬化層が、上記金属微細粒子が基材金属中に分散して成る第1の硬化層と、該硬化層の直下に位置する第2の硬化層から成ることを特徴とする請求項7に記載の耐摩耗性導電部材。   8. The hardened layer comprises a first hardened layer in which the metal fine particles are dispersed in a base metal and a second hardened layer located immediately below the hardened layer. The wear-resistant conductive member described. ダイヤモンドライクカーボンのコーティング層を表面に備えていることを特徴とする請求項1〜8のいずれか1つの項に記載の耐摩耗性導電部材。   The wear-resistant conductive member according to any one of claims 1 to 8, further comprising a diamond-like carbon coating layer on a surface thereof. 錫微粒子の分散層を表面に備えていることを特徴とする請求項1〜9のいずれか1つの項に記載の耐摩耗性導電部材。   The wear-resistant conductive member according to any one of claims 1 to 9, further comprising a tin fine particle dispersion layer on a surface thereof. 請求項1〜10のいずれか1つの項に記載の耐摩耗性導電部材を製造するにあたり、上記軟質金属基材の表面に上記金属微細粒子を衝突させて、当該金属微粒子を基材金属表面下に分散させることを特徴とする耐摩耗性導電部材の製造方法。   In manufacturing the wear-resistant conductive member according to any one of claims 1 to 10, the metal fine particles are made to collide with the surface of the soft metal substrate, and the metal fine particles are placed under the surface of the substrate metal. A method for producing a wear-resistant conductive member, characterized by being dispersed in 軟質金属基材の表面に金属微細粒子を衝突させるに際して、空気噴射式又はインペラ式などの噴射装置を用いることを特徴とする請求項11に記載の製造方法。   The manufacturing method according to claim 11, wherein an air injection type or impeller type injection device is used when metal fine particles collide with the surface of the soft metal substrate. 軟質金属基材表面への衝突時における金属微細粒子の速度が50m/秒以上であることを特徴とする請求項11又は12に記載の製造方法。   The method according to claim 11 or 12, wherein the velocity of the metal fine particles at the time of collision with the surface of the soft metal substrate is 50 m / sec or more. 上記金属微細粒子のサイズが53μmメッシュアンダーであることを特徴とする請求項11〜13のいずれか1つの項に記載の製造方法。   The size of the said metal fine particle is 53 micrometers mesh under, The manufacturing method as described in any one of Claims 11-13 characterized by the above-mentioned. 上記軟質金属基材の表面に上記金属微細粒子を衝突させて、当該金属微粒子を基材金属表面下に分散させた後、当該表面にダイヤモンドライクカーボンをコーティングすることを特徴とする請求項11〜14のいずれか1つの項に記載の製造方法。   The metal fine particles collide with the surface of the soft metal base material to disperse the metal fine particles below the surface of the base metal, and then the surface is coated with diamond-like carbon. 14. The manufacturing method according to any one of items 14. 上記軟質金属基材の表面に上記金属微細粒子を衝突させて、当該金属微粒子を基材金属表面下に分散させた後、当該表面に錫微粒子を衝突させることを特徴とする請求項11〜14のいずれか1つの項に記載の製造方法。   15. The fine metal particles collide with the surface of the soft metal substrate, the fine metal particles are dispersed below the surface of the metal substrate, and then the fine tin particles collide with the surface. The manufacturing method according to any one of the items. 上記軟質金属基材の表面に上記金属微細粒子を衝突させて、当該金属微粒子を基材金属表面下に分散させた後、当該表面にダイヤモンドライクカーボンをコーティングし、さらに錫微粒子を衝突させることを特徴とする請求項11〜14のいずれか1つの項に記載の製造方法。   The metal fine particles collide with the surface of the soft metal substrate, the metal fine particles are dispersed below the surface of the substrate metal, and then the surface is coated with diamond-like carbon, and further tin particles are collided. The manufacturing method according to any one of claims 11 to 14, characterized in that:
JP2009091932A 2009-04-06 2009-04-06 Abrasion-resistant electroconductive member, and method for manufacturing the same Pending JP2010242160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091932A JP2010242160A (en) 2009-04-06 2009-04-06 Abrasion-resistant electroconductive member, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091932A JP2010242160A (en) 2009-04-06 2009-04-06 Abrasion-resistant electroconductive member, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010242160A true JP2010242160A (en) 2010-10-28

Family

ID=43095491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091932A Pending JP2010242160A (en) 2009-04-06 2009-04-06 Abrasion-resistant electroconductive member, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010242160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737170A (en) * 2021-09-08 2021-12-03 广东省科学院新材料研究所 Copper alloy pantograph and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158350A (en) * 1992-11-18 1994-06-07 Isao Sugai Method for coating substrate
JPH11256303A (en) * 1998-03-10 1999-09-21 Tocalo Co Ltd Soft non-ferrous metal member excellent in wear resistance, and method for reforming surface of soft non-ferrous metal member
JP2008018455A (en) * 2006-07-13 2008-01-31 Nippon Steel Corp Mold for continuous casting and method for manufacturing the mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158350A (en) * 1992-11-18 1994-06-07 Isao Sugai Method for coating substrate
JPH11256303A (en) * 1998-03-10 1999-09-21 Tocalo Co Ltd Soft non-ferrous metal member excellent in wear resistance, and method for reforming surface of soft non-ferrous metal member
JP2008018455A (en) * 2006-07-13 2008-01-31 Nippon Steel Corp Mold for continuous casting and method for manufacturing the mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737170A (en) * 2021-09-08 2021-12-03 广东省科学院新材料研究所 Copper alloy pantograph and preparation method thereof

Similar Documents

Publication Publication Date Title
US9780513B2 (en) Slip ring assembly and components thereof
JP3465876B2 (en) Wear-resistant copper or copper-based alloy, method for producing the same, and electric component comprising the wear-resistant copper or copper-based alloy
WO2002001681A1 (en) Carbon brush for electric machine
US7202586B2 (en) Electrical contact member
JP2005529242A (en) Components for electrical connectors and metal strips therefor
JP3551411B2 (en) Contact member and method of manufacturing the same
CN1689124A (en) Electrical contact
US20130222005A1 (en) Contact probe pin
US10199788B1 (en) Monolithic MAX phase ternary alloys for sliding electrical contacts
Fei et al. Effect of La2O3 on electrical friction and wear properties of Cu-graphite composites
JP2010242160A (en) Abrasion-resistant electroconductive member, and method for manufacturing the same
JP5857279B2 (en) Self-lubricating coating and method for producing self-lubricating coating
JP2004253229A (en) Method for forming coating layer, and member having coating layer
JP2000197315A (en) Carbon brush for electric machine
CN114175420B (en) Metallic material for sliding contact, method for producing the same, brush material for motor, and vibrating motor
JP2012057212A (en) Composite plated material, and electric component and electronic component using the same
JP2007325401A (en) Carbon brush and manufacturing method therefor
Shibata et al. Friction and wear properties of Copper/Carbon/RB ceramics composite under electrical current
US20040000834A1 (en) Commutator and electric rotary device having the same
JP2013194304A (en) Electric power condudting sliding member, pantograph using the same, and manufacturing method and repairing method for the electric power condudting sliding member
EP2819280B1 (en) Sliding contact member, dc motor and generator using said sliding contact member
JP2015082910A (en) Slide contact member, electric motor, and power generator
JP2004300485A (en) Sliding parts and manufacturing method
JP2006286604A (en) Metallic material for wiring connection fixture
CN1219091C (en) Cu-base electric contact material coated by diamond coated by oxide and its preparing process

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A621 Written request for application examination

Effective date: 20120404

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20120402

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Effective date: 20120404

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20131008

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20131224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20140422

Free format text: JAPANESE INTERMEDIATE CODE: A02