JP5857279B2 - Self-lubricating coating and method for producing self-lubricating coating - Google Patents

Self-lubricating coating and method for producing self-lubricating coating Download PDF

Info

Publication number
JP5857279B2
JP5857279B2 JP2012523300A JP2012523300A JP5857279B2 JP 5857279 B2 JP5857279 B2 JP 5857279B2 JP 2012523300 A JP2012523300 A JP 2012523300A JP 2012523300 A JP2012523300 A JP 2012523300A JP 5857279 B2 JP5857279 B2 JP 5857279B2
Authority
JP
Japan
Prior art keywords
coating
lubricating
organic compound
lubricant
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012523300A
Other languages
Japanese (ja)
Other versions
JP2013501145A (en
Inventor
ドミニク フレックマン
ドミニク フレックマン
ヘルゲ シュミット
ヘルゲ シュミット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Germany GmbH
TE Connectivity Corp
Original Assignee
TE Connectivity Germany GmbH
Tyco Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TE Connectivity Germany GmbH, Tyco Electronics Corp filed Critical TE Connectivity Germany GmbH
Publication of JP2013501145A publication Critical patent/JP2013501145A/en
Application granted granted Critical
Publication of JP5857279B2 publication Critical patent/JP5857279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Lubricants (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は、摩耗によって解放可能な潤滑剤が埋め込まれた金属層を構成するコーティングに関する。本発明は、さらに、少なくとも所定部分において塗布されたコーティングを備えた自己潤滑性部品、コーティングおよび自己潤滑性部品の生産方法、イオンまたは錯体として溶解した金属の少なくとも1つの形態および少なくとも1つの潤滑剤を含むコーティング電解質に関する。   The present invention relates to a coating comprising a metal layer embedded with a lubricant that can be released by wear. The invention further provides a self-lubricating part with a coating applied at least in a predetermined part, a method for producing the coating and the self-lubricating part, at least one form of metal dissolved as an ion or complex and at least one lubricant It relates to the coating electrolyte containing.

材料の表面におけるコーティングは、物理的特性、電気的特性、および/または、化学的特性に影響を与えることが知られている。表面は、例えば、表面コーティングが摩耗からの機械的保護を与え、耐食性を示し、生体適合性および/または導電性の向上性を有するなどの表面技術加工で補助することで取り扱うことが可能である。   Coatings on the surface of a material are known to affect physical properties, electrical properties, and / or chemical properties. The surface can be handled, for example, with the aid of surface engineering processes such that the surface coating provides mechanical protection from wear, exhibits corrosion resistance, and has improved biocompatibility and / or conductivity. .

プラグイン接続コンタクトおよびプレスインコネクタにおいて、トライボロジーおよび摩耗は、多くの場合、可能な作動数を決定し、適切な動作を確実にする。プラグイン接続コンタクトおよびプレスイン接続の部品の外側にオイルまたは潤滑油を塗布することによる摩擦の低減すなわち摩耗の低減は、制限された作動においてのみ効果的であり、長期的なものではなく、化学的に変化してしまう可能性もある。   In plug-in connection contacts and press-in connectors, tribology and wear often determine the number of possible actuations and ensure proper operation. Friction or wear reduction by applying oil or lubricating oil on the outside of plug-in connection and press-in connection parts is effective only in limited operation, not long-term, chemical May change.

それゆえに、摩耗抵抗の増強が長持ちするようにコーティングを得ることが望ましい。   Therefore, it is desirable to obtain a coating so that the increased wear resistance lasts.

PCT国際公開2008/122570号明細書には、例えば、少なくとも1種のマトリックス金属を備えたマトリックスを備えるプラグの電気的導電部などの部品のためのコーティングが開示されている。50nmよりも小さい平均サイズであり、かつ、各々が少なくとも1つの機能キャリアを備えるナノ粒子が、金属マトリックス中に埋め込まれる。機能キャリアは、所望状態で金属マトリックスに影響を与えるように機能する。例えば、機能キャリアとしての金属は、コーティングの導電性を変化させる。シリコンカーバイド、窒化ホウ素、酸化アルミニウムおよび/またはダイヤモンドなどの特定の硬質材料で形成された機能キャリアは、金属マトリックスの硬度を増強し、コーティングされた材料の摩耗特性を改善する。   PCT WO 2008/122570 discloses coatings for parts such as, for example, electrically conductive parts of plugs comprising a matrix with at least one matrix metal. Nanoparticles with an average size of less than 50 nm and each comprising at least one functional carrier are embedded in the metal matrix. The functional carrier functions to affect the metal matrix in the desired state. For example, a metal as a functional carrier changes the conductivity of the coating. Functional carriers formed of certain hard materials such as silicon carbide, boron nitride, aluminum oxide and / or diamond enhance the hardness of the metal matrix and improve the wear properties of the coated material.

付加的な潤滑剤の注入が不要な部品の摩耗低減コーティングは、例えば欧州特許公開0748883号明細書などで知られている。本文献のコーティングは、摩耗減少物質が埋め込まれたナノ粒子が不均一に拡散した状態で導入された金属層によって区別される。このナノ粒子は、例えば、Al,ZrOまたはTiOからなり、その表面に石鹸化合物を備えてもよい。 A wear-reducing coating on parts that does not require additional lubricant injection is known, for example, from EP 0 488 883. The coatings in this document are distinguished by a metal layer introduced in a non-uniformly diffused state of nanoparticles embedded with wear-reducing substances. The nanoparticles are made of, for example, Al 2 O 3 , ZrO or TiO 2 and may have a soap compound on the surface thereof.

欧州特許公開0748883号明細書およびPCT国際公開2008/122570号明細書のコーティングは、表面コーティングの特性に影響を与える実際の機能キャリアがキャリアと結合しつつ金属層中に埋め込まれるという欠点がある。この結合過程は付加的なステップとなり、材料消費量を増加させ、コーティングがより高コストとなることになる。   The coatings of EP 0 748 883 and PCT WO 2008/122570 have the disadvantage that the actual functional carriers that influence the properties of the surface coating are embedded in the metal layer while bonded to the carrier. This bonding process is an additional step, increasing material consumption and making the coating more expensive.

それゆえに、本発明の目的は、耐摩耗性が改善されたコーティングを簡単な構造で経済的に生産することにある。   The object of the present invention is therefore to economically produce coatings with improved wear resistance with a simple structure.

本発明によれば、はじめに言及したコーティングおよび上述のコーティング電解質は、金属層に埋め込まれる潤滑剤が少なくとも1つが分岐した有機化合物からなることで、その目的が達成される。   According to the present invention, the purpose of the coating mentioned above and the above-described coating electrolyte is achieved when the lubricant embedded in the metal layer is made of an organic compound having at least one branch.

本発明によれば、はじめに言及したコーティングの生産方法は、
a)少なくとも1つが分岐した有機化合物からなる少なくとも1つの潤滑剤をイオンまたは錯体として溶解された少なくとも1種の金属を含む電解質溶液に加える工程と、
b)部品へのコーティング材として、前記電解質溶液から前記溶解された金属および前記潤滑剤を塗布する工程と、によってその目的が達成される。
According to the present invention, the method of producing the coating mentioned at the beginning is
a) adding at least one lubricant comprising at least one branched organic compound to an electrolyte solution comprising at least one metal dissolved as an ion or complex;
b) The object is achieved by applying the dissolved metal and the lubricant from the electrolyte solution as a coating material for the parts.

本発明において、金属層に埋め込まれた有機化合物は、本発明のコーティングが剥離や摩耗に晒される間、コーティングの表面において部分的に露出する潤滑剤であり、そこで摩耗を減少する潤滑膜を形成する。本発明では、欧州特許公開0748883号明細書およびPCT国際公開2008/122570号明細書に記載の無機物のナノ粒子などのようなキャリア要素は、必要とされない。このため、機能キャリア、すなわち、PCT国際公開2008/122570号明細書に記載の金属や欧州特許公開0748883号明細書に記載の石鹸化合物などをキャリア粒子と結合させる別工程を省略できる。   In the present invention, the organic compound embedded in the metal layer is a lubricant that is partially exposed on the surface of the coating while the coating of the present invention is exposed to peeling and wear, where it forms a lubricating film that reduces wear. To do. In the present invention, carrier elements such as inorganic nanoparticles described in European Patent Publication No. 0748883 and PCT International Publication No. 2008/122570 are not required. For this reason, the separate process which combines the functional carrier, ie, the metal described in PCT International Publication No. 2008/122570, the soap compound described in European Patent Publication No. 074883, and the like with carrier particles can be omitted.

本発明によるコーティングの所望の潤滑効果は、潤滑性有機化合物の最小の単原子中間層または二層の接触部において、予め達成されるので、本発明によるコーティングの耐摩耗性は、複合的に増強される。よって、必要となる層厚も小さくして、原材料の消費低減およびコスト削減とすることができる。   Since the desired lubricating effect of the coating according to the invention is achieved in advance at the smallest monoatomic intermediate layer or bilayer contact of the lubricating organic compound, the wear resistance of the coating according to the invention is compounded Is done. Therefore, the required layer thickness can be reduced, and the consumption of raw materials and the cost can be reduced.

有機化合物とは、無機化学とされる例外を除く、全ての炭素化合物であり、例えばシリコンなどのカーボンを殆ど含んでいない例えばカーバイド、それ自身および他の元素、例えば、H,N,O,Si,B,F,Cl,Br,S,Pなどまたはこれら元素の組み合わせを有するものを挙げることができる。   Organic compounds are all carbon compounds with the exception of inorganic chemistry, for example, carbides that contain little carbon such as silicon, for example, themselves and other elements such as H, N, O, Si. , B, F, Cl, Br, S, P, etc., or those having a combination of these elements.

本発明による解決によって、各々が互いに独立する配置の数をさらに改善することができる。これら配置およびこれらに関連する利点については、後述で簡潔に説明する。   The solution according to the invention makes it possible to further improve the number of arrangements each independent of each other. These arrangements and their associated advantages are briefly described below.

好適には、有機化合物は、三次元分子構造を有する。三次元であるゆえに嵩張らない分子構造により、潤滑剤分子が電解質溶液中により均一に拡散し、凝集や塊となってしまう不具合が低減される。それゆえに、電解質溶液中およびコーティング中に潤滑剤を特に均一拡散とさせることも可能となる。しかしながら、アプリケーションによっては、ほぼ鎖状または平面分子構造(すなわち有機化合物における原子配置が実質的に直線状またはシート状)を有する有機化合物を用いることも可能である。   Preferably, the organic compound has a three-dimensional molecular structure. Due to the three-dimensional molecular structure which is not bulky, the problem that the lubricant molecules diffuse more uniformly in the electrolyte solution and become aggregates or lumps is reduced. Therefore, it is possible to make the lubricant particularly uniformly diffused in the electrolyte solution and in the coating. However, depending on the application, it is also possible to use an organic compound having a substantially chain-like or planar molecular structure (that is, the atomic arrangement in the organic compound is substantially linear or sheet-like).

好適な態様において、有機化合物は、本願において減摩分子または潤滑分子としても後述されるが、マクロ分子である。”マクロ分子”は、同じまたは異なる原子または原子群からなり、分子間の最大空間次元の距離に沿って少なくとも15分子を有する分子のことを称する。この種のマクロ分子潤滑剤は、ポリマーを含み、幅広い使用領域で用いることができ、対応するアプリケーションに最適化されたものを選択できるという利点がある。マクロ分子とその鎖状部がコポリマー、混合ポリマーおよびブロック重合体を含み、これらはコンタクトに備えられた層システムの潤滑特性を有し、かつ、電気特性に悪影響を与えないようして選択されることだけに注意しなければならない。さらには、潤滑剤として使用される有機化合物は、当然、有機化合物が悪影響を与えないコーティングを生産するために、電解質溶液中で化学的に安定であるべきである。   In a preferred embodiment, the organic compound is a macromolecule, which is also described herein as an anti-friction or lubricating molecule. A “macromolecule” refers to a molecule that consists of the same or different atoms or groups of atoms and that has at least 15 molecules along the maximum spatial dimension distance between the molecules. This type of macromolecular lubricant has the advantage that it contains a polymer, can be used in a wide range of applications, and can be selected to be optimized for the corresponding application. Macromolecules and their chains include copolymers, mixed polymers and block polymers, which are selected to have the lubricating properties of the layer system provided in the contact and not adversely affect the electrical properties You just have to be careful. Furthermore, the organic compound used as a lubricant should of course be chemically stable in the electrolyte solution in order to produce a coating in which the organic compound does not adversely affect.

有機化合物は、約10nm、好適には上限約3nmの最大空間次元距離を有すると特によい潤滑特性を有する。特にこの大きさのオーダーの分子の潤滑性は、トンネル効果によって導電的であり、導電性のためのコーティングに用いることも可能である。本願明細書において、”最大空間次元”という言葉は、空間軸に沿っての分子の最大延伸距離(例えば、球状または平面形状の潤滑剤では直径)を示す。有機化合物としては、最大空間次元に沿って、約200原子、好適には約60原子の最大鎖長にほぼ対応する。   The organic compound has particularly good lubricating properties with a maximum spatial dimension distance of about 10 nm, preferably an upper limit of about 3 nm. In particular, the lubricity of molecules of this size order is conductive by the tunnel effect and can also be used for coatings for conductivity. As used herein, the term “maximum spatial dimension” refers to the maximum stretch distance of a molecule along the spatial axis (eg, the diameter for a spherical or planar lubricant). Organic compounds approximately correspond to a maximum chain length of about 200 atoms, preferably about 60 atoms, along the maximum spatial dimension.

本発明に用いられる潤滑分子の比較的低い空間次元(50nmの大きさのオーダーより小さい)のために、使用されるナノ粒子のコーティングにおいて、コーティングにおける金属粒子サイズが、潤滑分子自体のナノスケール範囲まで小さくすることが可能である。   Due to the relatively low spatial dimension (less than the order of 50 nm) of the lubricating molecules used in the present invention, in the coating of nanoparticles used, the metal particle size in the coating is in the nanoscale range of the lubricating molecule itself. It is possible to make it smaller.

潤滑性の有機化合物は、特に樹枝状構造、すなわち、多分岐かつ著しく分岐させる態様の構造であってもよい。多分岐かつ著しい分岐は、対称形状でも非対称形状であってもよい。潤滑分子として樹枝状基質およびポリマーは、特にナノ粒子において低粘度でナノ構造を形成する傾向であると電解質溶液中に良好に拡散する点で特によい。   The lubricious organic compound may in particular have a dendritic structure, i.e. a multi-branched and highly branched structure. The multi-branch and significant branch may be symmetric or asymmetric. Dendritic substrates and polymers as lubricating molecules are particularly good in that they tend to diffuse well into the electrolyte solution, especially when they tend to form nanostructures with low viscosity in the nanoparticles.

潤滑剤の埋め込み度を増加させるために、有機化合物は、金属層の金属への親和性を有する少なくとも1つの官能基を備えてもよい。この官能基によって、潤滑分子を、付着工程中に金属層の浅い部分に配置されても、金属層方向へ移動させ、金属層中に沈殿させる。原則的には、金属層への官能基の親和性は、潤滑剤の埋め込みまたは沈殿を促進させるために、電解質溶液の溶媒よりも高い。   In order to increase the degree of embedding of the lubricant, the organic compound may comprise at least one functional group having an affinity for the metal of the metal layer. Due to this functional group, even if the lubricating molecules are arranged in the shallow part of the metal layer during the deposition process, they move toward the metal layer and precipitate in the metal layer. In principle, the affinity of the functional group to the metal layer is higher than the solvent of the electrolyte solution in order to promote the embedding or precipitation of the lubricant.

官能基の金属親和性は拡散層中(すなわちコーティング表面に直近した箇所)だけに効果があるので、潤滑分子の凝集すなわち潤滑分子によって金属層が完全に覆われるようなことはなくなる。電解質溶液中の潤滑分子の凝集リスクを除外するために、有機化合物中に官能基を与え、電解質溶液中の個々の潤滑分子を相互反発させる。この官能基は好適には端部、すなわち鎖状部の端部または鎖状部の各分岐部に配置される。   Since the metal affinity of the functional group is effective only in the diffusion layer (that is, the portion closest to the coating surface), the metal layer is not completely covered by the aggregation of the lubricating molecules, that is, the lubricating molecules. In order to eliminate the risk of aggregation of the lubricating molecules in the electrolyte solution, functional groups are provided in the organic compound to repel individual lubricating molecules in the electrolyte solution. This functional group is preferably arranged at the end, ie at the end of the chain or at each branch of the chain.

対応官能基が有機化合物の表面に配置されると、金属層への親和性のためと潤滑分子の相互反発のための両方に好適である。官能基は、潤滑分子の外側に露出し、それゆえに、潤滑分子が電解質溶液中で金属層とまたは互い同士が接触するように配置される。   When the corresponding functional group is arranged on the surface of the organic compound, it is suitable both for the affinity for the metal layer and for the mutual repulsion of the lubricating molecules. The functional groups are exposed to the outside of the lubricating molecules and are therefore arranged such that the lubricating molecules are in contact with the metal layer or with each other in the electrolyte solution.

特に好適な実施形態において、官能基は、金属への高親和性を有し、かつ、分極によって潤滑分子の相互反発を確実にするので、チオール基であってもよい。   In a particularly preferred embodiment, the functional group may be a thiol group because it has a high affinity for the metal and ensures reciprocal repulsion of the lubricating molecules by polarization.

本発明において、官能基の選択は、コーティングの金属層にも依存する。金属層は、Cu,Ni,Co,Fe,Ag,Au,Pd,Pt,Rh,W,Cr,Zn,Sn,Pbおよびこれらの合金の群から選択されると好適である。特には、AuまたはAgからなる金属層は、これら金属へのチオール基の高親和性のために、チオール基を有する潤滑分子に対して効果的に相互作用する。   In the present invention, the functional group selection also depends on the metal layer of the coating. The metal layer is preferably selected from the group of Cu, Ni, Co, Fe, Ag, Au, Pd, Pt, Rh, W, Cr, Zn, Sn, Pb and alloys thereof. In particular, metal layers made of Au or Ag effectively interact with lubricating molecules having thiol groups because of the high affinity of thiol groups for these metals.

本発明に係るコーティング電解質には、例えば本発明におけるa)の段階で生産されるなどすることで、少なくとも1種の金属イオンおよび本発明のコーティング中に埋め込まれる上述の実施形態のうちの1つにおける少なくとも1種の有機化合物からなる潤滑剤を含ませる。   The coating electrolyte according to the present invention includes at least one metal ion and one of the above-described embodiments embedded in the coating of the present invention, for example, by being produced in the step a) of the present invention. And a lubricant composed of at least one organic compound.

さらに、本発明は、上述の実施形態のコーティングが少なくとも一部分に塗布される自己潤滑性部品に関する。本発明における自己潤滑性部品において、コーティングは、電気コンタクトの表面に付着されると好適であり、本発明のコーティングによって耐摩耗性が増強するために、より薄い層で良好なコンタクト接触を提供することが可能となり、対応するコンタクトの小型化および簡素化に貢献し、低重量化および原材料の消費量削減にも貢献する。   The present invention further relates to a self-lubricating component to which the coating of the above-described embodiment is applied at least in part. In the self-lubricating part according to the invention, the coating is preferably applied to the surface of the electrical contact and provides good contact contact with a thinner layer because the wear resistance is enhanced by the coating according to the invention. This contributes to the miniaturization and simplification of the corresponding contact, and also contributes to the reduction in weight and the consumption of raw materials.

コーティングは、プラグおよびその他の接続部品、特に、プラグイン接続部分またはプレスイン接続部分に特に適する。   The coating is particularly suitable for plugs and other connecting parts, in particular plug-in connection parts or press-in connection parts.

図1は、本発明において使用される潤滑剤の概略図である。FIG. 1 is a schematic view of a lubricant used in the present invention. 図2は、図1の潤滑剤を含む本発明のコーティング電解質の概略図である。FIG. 2 is a schematic diagram of a coating electrolyte of the present invention containing the lubricant of FIG. 図3は、本発明において塗布された図1の潤滑剤が埋め込まれた自己潤滑性部品の詳細の概略図である。FIG. 3 is a schematic diagram of details of a self-lubricating component embedded with the lubricant of FIG. 1 applied in the present invention. 図4は、各接続要素が図3に示される本発明のコーティングをそれぞれ有して接続配置されたコンタクト領域の詳細の概略図である。FIG. 4 is a schematic diagram of the details of the contact area where each connecting element is connected and arranged with the coating of the present invention shown in FIG.

本発明について、以下図面を参照しながら例示的実施形態に基づいて詳しく説明する。   The present invention will be described in detail below based on exemplary embodiments with reference to the drawings.

図1には、好適な実施形態における潤滑剤1の分子が示される。潤滑剤1は、多分岐の有機化合物2、すなわち樹枝状ポリマー3からなる。   FIG. 1 shows the molecules of lubricant 1 in a preferred embodiment. The lubricant 1 is composed of a hyperbranched organic compound 2, that is, a dendritic polymer 3.

ポリマー3は、結合されるモノマーの構成単位4からなり、有機化合物2として樹枝状ポリマー3を形成する著しく分岐した構造で結合する。   The polymer 3 is composed of the constituent units 4 of the monomers to be bonded, and binds in a highly branched structure that forms the dendritic polymer 3 as the organic compound 2.

本実施形態に示される樹枝状ポリマー3は、三次元においてほぼ球形の分子構造のマクロ分子有機化合物2である。この有機潤滑化合物2の空間次元は、ナノスケールの領域である。図示される球形の化合物2の空間次元dは、10nmより小さく、好適には3nmよりも小さい。   The dendritic polymer 3 shown in this embodiment is a macromolecular organic compound 2 having a substantially spherical molecular structure in three dimensions. The spatial dimension of the organic lubricating compound 2 is a nanoscale region. The spatial dimension d of the illustrated spherical compound 2 is smaller than 10 nm, preferably smaller than 3 nm.

官能基5は、本実施形態ではチオール基6として示され、有機化合物2の表面に配置される。チオール基6は、好適には端部にモノマー単位で配置される。すなわち、端部モノマー4は、好適には構造において樹枝状ポリマー3の表面に配置される。   The functional group 5 is shown as a thiol group 6 in this embodiment, and is disposed on the surface of the organic compound 2. The thiol group 6 is preferably arranged in monomer units at the ends. That is, the end monomer 4 is preferably arranged on the surface of the dendritic polymer 3 in structure.

本発明において、図1に示される潤滑剤1は、機能活性されたナノスケール有機潤滑化合物2からなり、ポリマー3の化学的構造および物理的大きさによって、良好な潤滑特性を有し、摩耗によって解放されるコーティング7の金属層8中に潤滑剤1として効率的に埋め込まれる。   In the present invention, the lubricant 1 shown in FIG. 1 is composed of a functionally activated nanoscale organic lubricating compound 2, which has good lubricating properties depending on the chemical structure and physical size of the polymer 3, It is efficiently embedded as lubricant 1 in the metal layer 8 of the coating 7 to be released.

本発明の図1に示される好適な潤滑剤1を備える自己潤滑性コーティング7を生産するために、潤滑分子(すなわち有機化合物2)は、図2に概略図として示されるコーティング電解質10を生産するために、イオンまたは錯体として溶解した金属9を含む電解質溶液へ加えられる。   In order to produce a self-lubricating coating 7 with the preferred lubricant 1 shown in FIG. 1 of the present invention, a lubricating molecule (ie, organic compound 2) produces a coating electrolyte 10 shown schematically in FIG. Therefore, it is added to the electrolyte solution containing the metal 9 dissolved as an ion or complex.

コーティング電解質10は、少なくとも1種の金属イオンと、本発明の少なくとも1本は分岐している有機化合物2からなる少なくとも1種の潤滑剤1とを含む。図2には、例示的な概略図として、本発明のコーティング電解質10が示される。特に潤滑剤1に対する金属イオン9の混合比は、任意に選択され、潤滑剤1がコーティング7に含まれる割合とは通常ならない。   The coating electrolyte 10 comprises at least one metal ion and at least one lubricant 1 comprising at least one organic compound 2 which is branched in the present invention. In FIG. 2, the coating electrolyte 10 of the present invention is shown as an exemplary schematic. In particular, the mixing ratio of the metal ions 9 to the lubricant 1 is arbitrarily selected, and is not usually the ratio in which the lubricant 1 is contained in the coating 7.

本発明のコーティング7を生産するために、電解質10中の金属イオン9は、部品11に付着され、潤滑分子1も金属層8中に埋め込まれる。この共同的な付着と埋め込みは、好適には電気化学的に行われ、金属イオン9は、金属原子9’からなる金属層8としてコーティングされるように表面12上で結晶化する。この結晶化中に、潤滑分子1は、金属層8中に埋め込まれ、すなわち、金属層中に配置され。ゆえに、図3に示されるような本発明の複合コーティング7が生産される。   In order to produce the coating 7 according to the invention, the metal ions 9 in the electrolyte 10 are attached to the part 11 and the lubricating molecules 1 are also embedded in the metal layer 8. This joint deposition and embedding is preferably performed electrochemically, and the metal ions 9 crystallize on the surface 12 so that they are coated as a metal layer 8 consisting of metal atoms 9 '. During this crystallization, the lubricating molecules 1 are embedded in the metal layer 8, i.e. arranged in the metal layer. Therefore, a composite coating 7 of the present invention as shown in FIG. 3 is produced.

金属層8中に潤滑剤1を埋め込むことは、例えばチオール基6などの金属層8(特に金属層8が金または銀を含む場合)に親和性のある有機化合物2の官能基5によって促進される。   Embedding the lubricant 1 in the metal layer 8 is facilitated by the functional group 5 of the organic compound 2 having an affinity for the metal layer 8 such as the thiol group 6 (particularly when the metal layer 8 contains gold or silver). The

図3に示される実施形態において、本発明のコーティング7は、電気コンタクト11’の表面12に塗布される。本発明における自己潤滑性部品11は、このようにして得られる。コーティング7は、摩耗しても、潤滑剤1が部分的にコーティング7の表面に露出して接触領域13において潤滑膜14を形成するので、部品11の表面12のより高い摩耗抵抗を確保する。   In the embodiment shown in FIG. 3, the coating 7 of the present invention is applied to the surface 12 of the electrical contact 11 '. The self-lubricating part 11 according to the present invention is thus obtained. Even if the coating 7 is worn, the lubricant 1 is partially exposed on the surface of the coating 7 to form the lubricating film 14 in the contact region 13, thereby ensuring a higher wear resistance of the surface 12 of the part 11.

上記は、接続部15、例えばプラグイン接続部15aおよびプレスイン接続部15bを示す図4に特に明確に示されており、2つの部品11が、接続部15で互いに嵌合し、各部品それぞれが接続領域13において表面12に本発明のコーティング7を備えている。   The above is particularly clearly shown in FIG. 4 which shows a connection part 15, for example a plug-in connection part 15a and a press-in connection part 15b, in which two parts 11 are fitted together in the connection part 15 and each part is Is provided with a coating 7 according to the invention on the surface 12 in the connection region 13.

図4には、部品11が互いに接続部15で接続する際において、コーティング7のそれぞれの表面12において摩耗によって、本発明の有機化合物2の個々の分子が解放され、コンタクト領域13に潤滑膜14を形成する様子が示される。潤滑膜14は、潤滑剤1(潤滑膜14を形成する有機潤滑化合物2)の良好な摩耗特性によって、接続15の摩耗抵抗を増加させるので、ひいては、金属層8の摩耗が著しく減少し、部品11の摩耗抵抗も増加する。   In FIG. 4, when the components 11 are connected to each other at the connection 15, the individual molecules of the organic compound 2 of the present invention are released by wear on the respective surfaces 12 of the coating 7, and the lubricating film 14 is formed in the contact region 13. Is shown. The lubricating film 14 increases the wear resistance of the connection 15 due to the good wear characteristics of the lubricant 1 (the organic lubricating compound 2 forming the lubricating film 14), so that the wear of the metal layer 8 is remarkably reduced, and the component 11 wear resistance also increases.

本発明の例示的な実施形態では、1種類の潤滑剤しか用いられていないが、少なくとも1本の分岐を有する有機化合物2からなる異なる潤滑剤であれば、勿論異なる潤滑剤がコーティング7の金属層中に埋め込まれてもよい。   In the exemplary embodiment of the present invention, only one type of lubricant is used, but of course, different lubricants can be used for the metal of coating 7 as long as they are different lubricants comprising organic compound 2 having at least one branch. It may be embedded in the layer.

1・・・潤滑剤
2・・・有機(潤滑)化合物
3・・・樹枝状ポリマー
5・・・官能基
6・・・チオール基
7・・・コーティング
8・・・金属層
9・・・金属
10・・・コーティング電解質
11・・・部品
11’・・・電気コンタクト
12・・・スナップ部材
15a・・・プラグイン接続
15b・・・プレスイン接続
DESCRIPTION OF SYMBOLS 1 ... Lubricant 2 ... Organic (lubricant) compound 3 ... Dendritic polymer 5 ... Functional group 6 ... Thiol group 7 ... Coating 8 ... Metal layer 9 ... Metal DESCRIPTION OF SYMBOLS 10 ... Coating electrolyte 11 ... Component 11 '... Electrical contact 12 ... Snap member 15a ... Plug-in connection 15b ... Press-in connection

Claims (8)

摩耗により解放可能な潤滑剤(1)が埋め込まれた金属層(8)で構成されたコーティング(7)であって、
前記潤滑剤が、少なくとも1つが分岐した有機化合物(2)からなり、
前記有機化合物はマクロ分子であり、
前記有機化合物はチオール基(6)を備え、
前記有機化合物は、10nmまでの最大空間次元(d)を有することを特徴とするコーティング。
A coating (7) composed of a metal layer (8) embedded with a lubricant (1) releasable by wear,
The lubricant comprises an organic compound (2) at least one of which is branched;
The organic compound is a macromolecule;
The organic compound has a thiol group (6),
The organic compound coating, wherein Rukoto which have a maximum spatial dimension (d) up to 10 nm.
前記有機化合物は、三次元分子構造を有することを特徴とする請求項1記載のコーティング。   The coating according to claim 1, wherein the organic compound has a three-dimensional molecular structure. 前記有機化合物は、樹枝状構造であることを特徴とする請求項1または2記載のコーティング。  The coating according to claim 1, wherein the organic compound has a dendritic structure. 前記金属層は、Cu,Ni,Co,Fe,Ag,Au,Pd,Pt,Rh,W,Cr,Zn,Sn,Pbおよびこれらの合金の群から選択されることを特徴とする請求項1から3のうちのいずれか1項記載のコーティング。  The metal layer is selected from the group consisting of Cu, Ni, Co, Fe, Ag, Au, Pd, Pt, Rh, W, Cr, Zn, Sn, Pb, and alloys thereof. 4. The coating according to any one of items 3 to 3. 請求項1から4のうちのいずれか1項記載のコーティングが少なくとも一部分に塗布されることを特徴とする自己潤滑性部品。  Self-lubricating part, characterized in that the coating according to any one of claims 1 to 4 is applied at least in part. 前記コーティングが電気コンタクト(11’)の表面に付着されることを特徴とする請求項5記載の自己潤滑性部品。  Self-lubricating component according to claim 5, characterized in that the coating is applied to the surface of the electrical contact (11 '). 前記自己潤滑性部品がプラグイン接続(15a)またはプレスイン接続(15b)の一部であることを特徴とする請求項5または6記載の自己潤滑性部品。  Self-lubricating part according to claim 5 or 6, characterized in that the self-lubricating part is part of a plug-in connection (15a) or a press-in connection (15b). イオンまたは錯体として溶解された少なくとも1種の金属と、請求項1から4のうちのいずれか1項記載の潤滑剤を少なくとも1つ含むことを特徴とするコーティング電解質。  A coating electrolyte comprising at least one metal dissolved as an ion or a complex and at least one lubricant according to any one of claims 1 to 4.
JP2012523300A 2009-08-06 2010-07-30 Self-lubricating coating and method for producing self-lubricating coating Active JP5857279B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009036311.4 2009-08-06
DE102009036311.4A DE102009036311B4 (en) 2009-08-06 2009-08-06 Self-lubricating coating, self-lubricating component, coating electrolyte and process for producing a self-lubricating coating
PCT/EP2010/061125 WO2011015531A2 (en) 2009-08-06 2010-07-30 Self-lubricating coating and method for producing a self-lubricating coating

Publications (2)

Publication Number Publication Date
JP2013501145A JP2013501145A (en) 2013-01-10
JP5857279B2 true JP5857279B2 (en) 2016-02-10

Family

ID=43430732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012523300A Active JP5857279B2 (en) 2009-08-06 2010-07-30 Self-lubricating coating and method for producing self-lubricating coating

Country Status (14)

Country Link
US (1) US9057142B2 (en)
EP (1) EP2462261B1 (en)
JP (1) JP5857279B2 (en)
KR (1) KR101710114B1 (en)
CN (1) CN102471917B (en)
AR (1) AR078092A1 (en)
BR (1) BR112012002640A2 (en)
DE (1) DE102009036311B4 (en)
ES (1) ES2587404T3 (en)
IN (1) IN2012DN01883A (en)
MX (1) MX336028B (en)
RU (1) RU2542189C2 (en)
TW (1) TWI500758B (en)
WO (1) WO2011015531A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650148B1 (en) 2012-04-12 2019-03-20 Brink Towing Systems B.V. A ball portion of a towing hook arrangement for a vehicle
CN105733408B (en) * 2016-04-01 2019-07-23 厦门大学 A kind of self-lubricating coat in use and preparation method thereof for oscillating bearing
DE102016214693B4 (en) * 2016-08-08 2018-05-09 Steinbeiss-Forschungszentrum, Material Engineering Center Saarland An electrically conductive contact element for an electrical connector, an electrical connector comprising such a contact element, and methods for enclosing an assistant under the contact surface of such a contact element
CN108251783B (en) * 2017-12-21 2020-06-26 中国石油大学(华东) Preparation method of vacuum plasma self-lubricating coating on laser micro-texture surface
CN110315065A (en) * 2019-07-19 2019-10-11 安阳工学院 A kind of TiCoMoNb standard shaft watt lubrication Self-controlled composite material and preparation method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL126245C (en) * 1963-12-04
US5008128A (en) * 1988-02-03 1991-04-16 Hitachi, Ltd. Process for producing information recording medium
RU2033482C1 (en) * 1991-03-21 1995-04-20 Пермский государственный университет им.А.М.Горького Electrolyte for preparing of nickel-polytetrafluoroethylene coatings
JPH08157614A (en) 1994-12-02 1996-06-18 Idemitsu Petrochem Co Ltd Polystyrene-based oriented film and its production and film for phottograph, film for plate making and film for ohp
DE19521323A1 (en) * 1995-06-12 1996-12-19 Abb Management Ag Part with a galvanically applied coating and method for producing galvanic layers
JPH1067847A (en) * 1996-04-19 1998-03-10 Hitachi Maxell Ltd Highly branched spherical polymer, lubricant comprising the same and solid polyelectrolyte comprising the same
WO1998023444A1 (en) * 1996-11-26 1998-06-04 Learonal, Inc. Lead-free deposits for bearing surfaces
KR100852636B1 (en) * 2000-10-13 2008-08-18 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨 Seed repair and electroplating bath
WO2002019313A1 (en) * 2001-03-05 2002-03-07 Gotoh Gut Co., Ltd. Chord winder for stringed instrument
EP1369504A1 (en) * 2002-06-05 2003-12-10 Hille & Müller Metal strip for the manufacture of components for electrical connectors
US7125435B2 (en) * 2002-10-25 2006-10-24 Hoeganaes Corporation Powder metallurgy lubricants, compositions, and methods for using the same
WO2004113584A1 (en) * 2002-12-23 2004-12-29 Pirelli Pneumatici S.P.A. Method dor producing coated metal wire
JP2004346422A (en) * 2003-05-23 2004-12-09 Rohm & Haas Electronic Materials Llc Plating method
CN1914358A (en) * 2003-12-09 2007-02-14 关西涂料株式会社 Electroplating solution composition for organic polymer-zinc alloy composite plating and plated metal material using such composition
EP1846593A1 (en) 2005-02-04 2007-10-24 Siemens Aktiengesellschaft Surface with a wettability-reducing microstructure and method for the production thereof
FR2887256B1 (en) * 2005-06-15 2010-04-30 Rhodia Chimie Sa DRILLING FLUID COMPRISING A POLYMER AND USE OF THE POLYMER IN A DRILLING FLUID
DE102005060783A1 (en) * 2005-12-16 2007-06-28 Basf Ag Highly functional, hyperbranched polymers and a process for their preparation
JP5250937B2 (en) * 2006-02-28 2013-07-31 富士通株式会社 Lubricant, magnetic recording medium and head slider
CN101191244A (en) * 2006-11-23 2008-06-04 天津市瀚隆镀锌有限公司 Technique for producing alkaline zincate galvanizing additive
US7906214B2 (en) * 2007-01-26 2011-03-15 Transitions Optical, Inc. Optical elements comprising compatiblizing coatings and methods of making the same
JP5019591B2 (en) * 2007-03-29 2012-09-05 古河電気工業株式会社 Plating material having lubricating particles, method for producing the same, and electric / electronic component using the same
DE102007017380A1 (en) * 2007-04-05 2008-10-09 Freie Universität Berlin Material system and method for its production
WO2009034446A2 (en) 2007-09-12 2009-03-19 Australia Diamonds Limited A method of assembly of two components
TR201816579T4 (en) * 2007-12-11 2018-11-21 Macdermid Enthone Inc Electrolytic deposition of metal-based composite coatings containing nanoparticles.

Also Published As

Publication number Publication date
AR078092A1 (en) 2011-10-12
RU2542189C2 (en) 2015-02-20
BR112012002640A2 (en) 2018-03-13
MX336028B (en) 2016-01-07
EP2462261B1 (en) 2016-05-25
KR20120081083A (en) 2012-07-18
MX2012001526A (en) 2012-03-07
IN2012DN01883A (en) 2015-08-21
WO2011015531A3 (en) 2011-05-05
RU2012108146A (en) 2013-09-20
CN102471917A (en) 2012-05-23
EP2462261A2 (en) 2012-06-13
DE102009036311A1 (en) 2011-02-17
US20120129740A1 (en) 2012-05-24
JP2013501145A (en) 2013-01-10
TW201122091A (en) 2011-07-01
US9057142B2 (en) 2015-06-16
WO2011015531A2 (en) 2011-02-10
KR101710114B1 (en) 2017-02-24
TWI500758B (en) 2015-09-21
ES2587404T3 (en) 2016-10-24
CN102471917B (en) 2015-11-25
DE102009036311B4 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP5857279B2 (en) Self-lubricating coating and method for producing self-lubricating coating
US10047450B2 (en) Self-lubricating composite coating
US7294028B2 (en) Electrical contact
Harnack et al. Tris (hydroxymethyl) phosphine-capped gold particles templated by DNA as nanowire precursors
Friedman et al. Fabrication of self-lubricating cobalt coatings on metal surfaces
JP2005529242A (en) Components for electrical connectors and metal strips therefor
US9634412B2 (en) Connector structures and methods
JP2011518944A5 (en)
KR20160009612A (en) Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
JP7129402B2 (en) Integrally-formed body and composite material, electrical contact terminal and printed wiring board having said integrally-formed body
US20070275611A1 (en) Contact Surfaces For Electrical Contacts
JP5019591B2 (en) Plating material having lubricating particles, method for producing the same, and electric / electronic component using the same
Wang et al. Au-Ni-TiO2 nano-composite coatings prepared by sol-enhanced method
Sapurina et al. Polyurethane latex modified with polyaniline
CN113491038A (en) Electrical contact element
JP5995627B2 (en) Composite plating material, its manufacturing method, electrical / electronic parts, mating type terminal / connector, sliding type / rotating type contact / switch
JP2017201053A (en) Composite plating method and hydrophilic particle
EP3725921A1 (en) Method for refining crystal grains in plating film
JP2023133183A (en) Composite material, production method of composite material, and terminal
CN116981799A (en) Tribologically improved surface for electrical contacts
Cui On the preparation, characterization, and application of Janus spheres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140701

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140708

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140801

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140808

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140901

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150910

R150 Certificate of patent or registration of utility model

Ref document number: 5857279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250