JP2012057212A - Composite plated material, and electric component and electronic component using the same - Google Patents

Composite plated material, and electric component and electronic component using the same Download PDF

Info

Publication number
JP2012057212A
JP2012057212A JP2010201302A JP2010201302A JP2012057212A JP 2012057212 A JP2012057212 A JP 2012057212A JP 2010201302 A JP2010201302 A JP 2010201302A JP 2010201302 A JP2010201302 A JP 2010201302A JP 2012057212 A JP2012057212 A JP 2012057212A
Authority
JP
Japan
Prior art keywords
plating layer
plating
layer
fine particles
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010201302A
Other languages
Japanese (ja)
Inventor
Shigeto Fujii
恵人 藤井
Shuichi Kitagawa
秀一 北河
Kazuo Yoshida
和生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010201302A priority Critical patent/JP2012057212A/en
Publication of JP2012057212A publication Critical patent/JP2012057212A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a composite plated material which has excellent conductivity, strength and wear resistance, exhibits a contact resistance that hardly increases, and thereby has good contact reliability.SOLUTION: In the composite plated material, at least one first-plating layer composed of copper, nickel, cobalt, iron or an alloy containing two or more elements selected from these elements is formed on a conductive base material, and a surface plated layer composed of tin, silver or an alloy containing these elements is formed on the first-plating layer. The surface plated layer contains fine particles, including carbon as a main component, in an amount of 5-10 vol.%. In the surface plated layer, the distribution of the fine particles is increased toward the outer surface of the surface plated layer, and the number of the particles of 50-80 vol.% of the total volume of the fine particles contained in the whole surface plated layer is included in the range to the half of the thickness from the outer surface of the surface plated layer.

Description

本発明は、複合めっき材料、及びその複合めっき材料を用いた電気・電子部品に関する。更に詳しくは、摺動性や耐磨耗性に優れ、例えば嵌合型端子やコネクタ、摺動型や回転型の接点・スイッチの材料として好適な複合めっき材料と、それを用いた嵌合型端子やコネクタ、接点、スイッチなどの電気・電子部品に関する。   The present invention relates to a composite plating material and an electric / electronic component using the composite plating material. More specifically, it is excellent in slidability and wear resistance. For example, a composite plating material suitable as a material for fitting type terminals and connectors, sliding type and rotary type contacts and switches, and a fitting type using the same. It relates to electrical / electronic components such as terminals, connectors, contacts, and switches.

銅(Cu)やCu合金などからなる導電性基材上に、錫(Sn)またはSn合金からなるめっき層を設けた材料は、基材の優れた導電性や強度と、SnまたはSn合金の良好な電気接触特性とを兼ね備えた高性能導体として知られており、各種の端子や接点などに広く用いられている。   A material in which a plating layer made of tin (Sn) or Sn alloy is provided on a conductive base material made of copper (Cu) or Cu alloy, etc., has excellent conductivity and strength of the base material, and Sn or Sn alloy. It is known as a high-performance conductor that combines good electrical contact characteristics and is widely used for various terminals and contacts.

このような材料としては、基材上に直接、あるいはCuまたはニッケル(Ni)などの下地めっきを施した上に、SnまたはSn合金のめっきを表面めっき層として施して製造したものが用いられている。この下地層は、基材成分(Cuや亜鉛(Zn)などの合金成分)が表面のSnまたはSn合金へ拡散することを抑制するために設けられている。下地層がNiまたはNi合金からなる場合には、基材上のめっき皮膜の硬度を増加させて摺動性を良好とする効果もあり、下地めっきとして好適である。   As such a material, a material produced by applying a plating of Sn or Sn alloy as a surface plating layer directly on a base material or after applying a base plating such as Cu or nickel (Ni) is used. Yes. This underlayer is provided in order to prevent the base material component (alloy component such as Cu or zinc (Zn)) from diffusing into the surface Sn or Sn alloy. When the underlayer is made of Ni or a Ni alloy, it has an effect of improving the slidability by increasing the hardness of the plating film on the substrate, which is suitable as the undercoat.

近年では、自動車用途に代表されるように電気・電子部品への通電量の増大や、高負荷での使用が増加しており、それに伴い端子や接点にはこれまで以上の電気的な接触信頼性が要求されるようになっている。   In recent years, as represented by automotive applications, the amount of electricity applied to electrical and electronic components has increased and the use of high loads has increased. Sex is required.

しかしSnめっき材は軟質で変形し易く、接点摺動時の摩擦係数が高くなり、また摺動や回転に伴う磨耗によりSnめっき皮膜の厚みが減少するという問題がある。Snめっき層の厚みの減少が進み、ついには消失した場合、Niめっき等の下地層やCuやCu合金等の基材が表面に露出する。このような状態においては、更なる摺動や回転により下地材や基材の酸化物が形成され、その結果、接触抵抗が上昇して相手材との接触信頼性を喪失してしまう。   However, the Sn plating material is soft and easily deformed, and there is a problem that the friction coefficient at the time of sliding the contact becomes high, and the thickness of the Sn plating film decreases due to wear due to sliding and rotation. When the thickness of the Sn plating layer decreases and eventually disappears, a base layer such as Ni plating or a substrate such as Cu or Cu alloy is exposed on the surface. In such a state, an oxide of the base material or the base material is formed by further sliding or rotation, and as a result, the contact resistance increases and the contact reliability with the counterpart material is lost.

このような問題の解決策には、Snめっき層の厚みを厚くして、めっき層消失までの時間を長くすることが挙げられる。しかしながら、そのようなめっき材料では、生産性の低下やコストの上昇が避けられないという問題が生じる。   A solution to such a problem includes increasing the time until the plating layer disappears by increasing the thickness of the Sn plating layer. However, such a plating material has a problem that a decrease in productivity and an increase in cost are unavoidable.

別の方法として、Snめっき後にリフロー処理を施し、Snリフロー材とすることが挙げられる。Snリフロー材は、軟質なSnめっき層の厚さを薄くし、リフロー処理により下地めっき層とSnめっき層の間に硬質なSn化合物層を形成させて、摩擦・磨耗を低減させる。しかしながら、Snリフロー処理単独による摩擦・磨耗低減効果は比較的小さく、接触信頼性の向上はそれほど望めない。   As another method, a reflow treatment is performed after Sn plating to obtain a Sn reflow material. The Sn reflow material reduces the friction and wear by reducing the thickness of the soft Sn plating layer and forming a hard Sn compound layer between the base plating layer and the Sn plating layer by reflow treatment. However, the effect of reducing the friction and wear due to the Sn reflow process alone is relatively small, and improvement in contact reliability cannot be expected so much.

また、Snめっき層上に導電性グリースを塗布することも、摺動時の磨耗抑制に効果がある。しかしながら、静止状態においては接触抵抗が低く安定しているものの、摺動時や高温環境下ではグリースの劣化や固化により接触抵抗が上昇し易く、接触信頼性に劣る問題がある。   In addition, applying conductive grease on the Sn plating layer is also effective in suppressing wear during sliding. However, although the contact resistance is low and stable in the stationary state, there is a problem that the contact resistance is likely to increase due to deterioration or solidification of the grease during sliding or in a high temperature environment, resulting in poor contact reliability.

この他に、上記の要望に応える別のめっき材料としては、Snに他の金属元素を添加したSn合金めっきが挙げられる。Sn合金めっきでは、Snめっきと比べてめっき皮膜の硬度が増して耐磨耗性が向上するので、摺動用途において多く使用される。しかしながら、Sn以外の元素を含有する合金においては導電性が低下するため、通電量の増加に対しては接触信頼性の点からは好ましくない。   In addition to this, as another plating material that meets the above-described demand, Sn alloy plating in which other metal elements are added to Sn can be cited. Sn alloy plating is often used in sliding applications because the hardness of the plating film is increased and the wear resistance is improved as compared with Sn plating. However, in an alloy containing an element other than Sn, the conductivity is lowered. Therefore, it is not preferable from the viewpoint of contact reliability with respect to an increase in the amount of energization.

SnまたはSn合金めっきの摺動特性を向上させるため、Snめっき層中に耐摩耗性や潤滑性の固体粒子を分散させる方法が開示されている(例えば、特許文献1〜3参照)。しかしながら、この方法で形成されたSnめっき層の場合、Snの磨耗に伴い固体粒子が表面に露出した際に、個体粒子の導電性が低いために接触抵抗が大きく上昇する問題が生じる。   In order to improve the sliding characteristics of Sn or Sn alloy plating, a method of dispersing wear-resistant or lubricating solid particles in the Sn plating layer is disclosed (for example, see Patent Documents 1 to 3). However, in the case of the Sn plating layer formed by this method, when solid particles are exposed on the surface due to wear of Sn, there is a problem that the contact resistance is greatly increased due to the low conductivity of the solid particles.

またSnまたはSn合金めっき層中に黒鉛を分散させた複合めっき層を導体素材上に形成させ、摺動特性に優れた導体性皮膜を得ることが提案されている(例えば特許文献4、5参照)。しかしながらこの方法で形成されたSnめっき層の場合、黒鉛の形状に異方性があり、めっき層中での分散状態は不規則配向となる。このため、Snの磨耗に伴い黒鉛が表層に露出した際に、黒鉛自体の導電性は金属並みであるものの、接点における接触面積が減少することにより接触抵抗が上昇してしまう。またこの方法で形成されたSnめっきの場合、黒鉛の粒径が大きいため、めっき層中の黒鉛の分布を制御することや薄めっきへの適用はできない。   It has also been proposed to form a composite plating layer in which graphite is dispersed in an Sn or Sn alloy plating layer on a conductor material to obtain a conductive film having excellent sliding characteristics (see, for example, Patent Documents 4 and 5). ). However, in the case of the Sn plating layer formed by this method, the shape of the graphite is anisotropic, and the dispersed state in the plating layer is irregularly oriented. For this reason, when the graphite is exposed on the surface layer with the wear of Sn, the conductivity of the graphite itself is comparable to that of metal, but the contact resistance increases due to the decrease in the contact area at the contact. In addition, in the case of Sn plating formed by this method, since the particle size of graphite is large, it is impossible to control the distribution of graphite in the plating layer or to apply to thin plating.

このように、表面にSnまたはSn合金からなるめっき層を形成した従来のめっき材料の場合、その耐磨耗性と導電性を両立することは困難であるという問題があった。   Thus, in the case of the conventional plating material which formed the plating layer which consists of Sn or a Sn alloy on the surface, there existed a problem that it was difficult to make the wear resistance and electroconductivity compatible.

銅(Cu)やCu合金、ステンレス(SUS)、鉄合金などからなる導電性基材上に、銀(Ag)またはAg合金からなるめっき層を設けた材料も高性能導体として知られており、各種の接点やスイッチなどに広く用いられている。   A material provided with a plating layer made of silver (Ag) or an Ag alloy on a conductive base material made of copper (Cu), Cu alloy, stainless steel (SUS), iron alloy or the like is also known as a high-performance conductor. Widely used for various contacts and switches.

Agめっき材の場合もSnめっき材と同様の問題があり上記のような対応が取られているが(例えば特許文献6〜11)、やはりその耐磨耗性と導電性を両立することは困難である。   In the case of an Ag plating material, there are the same problems as the Sn plating material, and the above measures are taken (for example, Patent Documents 6 to 11), but it is still difficult to achieve both wear resistance and conductivity. It is.

特開昭54−45634号公報JP 54-45634 A 特開昭53−11131号公報Japanese Patent Laid-Open No. 53-11131 特開昭63−145819号公報JP 63-145819 A 特開昭61−227196号公報Japanese Patent Laid-Open No. 61-227196 特開2006−265642号公報JP 2006-265642 A 特開昭61−101919号公報JP-A-61-101919 特表2000−508379号公報JP 2000-508379 特開平4−126314号公報JP-A-4-126314 特開平9−326227号公報Japanese Patent Laid-Open No. 9-326227 特開平11−149840号公報JP-A-11-149840 特開2006−37225号公報JP 2006-37225 A

本発明は、導電性、強度、耐磨耗性に優れ、しかも接触抵抗が上昇しにくい接触信頼性が良好である複合めっき材料の提供を目的とする。更に、本発明は、上記した複合めっき材料を用いた電気・電子部品、および嵌合型の端子・コネクタ、摺動型または回転型の接点、スイッチの提供を目的とする。   An object of this invention is to provide the composite plating material which is excellent in electroconductivity, intensity | strength, and abrasion resistance, and also has good contact reliability which a contact resistance does not raise easily. Furthermore, an object of the present invention is to provide an electric / electronic component, a fitting type terminal / connector, a sliding type or rotating type contact, and a switch using the composite plating material.

上記した目標を達成するために、本発明においては、以下のめっき材料、電気・電子部品、および嵌合型の端子・コネクタ、摺動型や回転型の接点またはスイッチにより上記した目標を達成した。
すなわち、本発明は、下記の手段を提供するものである。
(1)導電性基材の上に、銅、ニッケル、コバルト、鉄またはこれらの元素の2つ以上を含む合金からなる下地めっき層が少なくとも1層形成され、その上に錫、銀またはこれらの元素を含む合金からなる表面めっき層が形成された複合めっき材料であって、
当該表面めっき層は炭素を主成分とする微粒子を5〜10体積%含有し、その微粒子は前記表面めっき層の外表面に近づくほどその分布が大きくなり、かつ、全表面めっき層中に含まれる微粒子の総体積に対して50体積%超80体積%以下のものが前記表面めっき層の外表面からの厚さの半分までに含まれることを特徴とする複合めっき材料。
(2)前記表面めっき層が、錫、銀またはこれらの元素を含む合金からなる金属めっき層中に炭素を主成分とする微粒子を含む単層構造であることを特徴とする(1)に記載の複合めっき材料。
(3)前記表面めっき層が、錫、銀またはそれらの元素を含む合金からなる金属めっき層と炭素を主成分とする微粒子からなる微粒子層を交互に形成させ、金属めっき層が2〜3層含まれる多層構造であることを特徴とする(1)に記載の複合めっき材料。
(4)前記微粒子が、平均粒径が20〜400nmであり球形であることを特徴とする(1)〜(3)のいずれか1項に記載の複合めっき材料。
(5)前記下地めっき層の厚さが0.05〜2.0μmであり、また前記表面めっき層の厚さが0.5〜5μmであることを特徴とする(1)〜(4)のいずれか1項に記載の複合めっき材料。
(6)(1)〜(5)のいずれか1項に記載の複合めっき材料を用いて形成された電気・電子部品。
(7)(1)〜(5)のいずれか1項に記載の複合めっき材料を用いて形成された、嵌合型の端子・コネクタ、摺動型もしくは回転型の接点部材またはスイッチ。
In order to achieve the above-described goal, in the present invention, the above-described goal is achieved by the following plating materials, electrical / electronic components, fitting-type terminals / connectors, sliding-type or rotary-type contacts or switches. .
That is, the present invention provides the following means.
(1) At least one base plating layer made of copper, nickel, cobalt, iron or an alloy containing two or more of these elements is formed on the conductive substrate, and tin, silver, or these A composite plating material in which a surface plating layer made of an alloy containing an element is formed,
The surface plating layer contains 5 to 10% by volume of fine particles containing carbon as a main component, and the distribution of the fine particles increases toward the outer surface of the surface plating layer, and is included in the entire surface plating layer. What is more than 50 volume% and not more than 80 volume% with respect to the total volume of microparticles | fine-particles is contained to the half of the thickness from the outer surface of the said surface plating layer, The composite plating material characterized by the above-mentioned.
(2) The surface plating layer has a single-layer structure including fine particles mainly composed of carbon in a metal plating layer made of tin, silver or an alloy containing these elements. Composite plating material.
(3) The surface plating layer is formed by alternately forming a metal plating layer made of tin, silver or an alloy containing these elements and a fine particle layer made of fine particles mainly composed of carbon. The composite plating material as described in (1), which has a multilayer structure.
(4) The composite plating material according to any one of (1) to (3), wherein the fine particles have an average particle diameter of 20 to 400 nm and are spherical.
(5) The thickness of the base plating layer is 0.05 to 2.0 μm, and the thickness of the surface plating layer is 0.5 to 5 μm. The composite plating material according to any one of the above.
(6) An electrical / electronic component formed using the composite plating material according to any one of (1) to (5).
(7) A fitting type terminal / connector, sliding type or rotary type contact member or switch formed using the composite plating material according to any one of (1) to (5).

本発明の複合めっき材料は、Sn、Agまたはこれらの元素を含む合金からなる表面めっき層の表層部に黒鉛を主成分とする微粒子を分散させることで、その耐摩耗性が向上され、しかも接触信頼性が良好に維持される。
このような特性を有しているため、本発明の複合めっき材料は、例えば電気・電子部品の嵌合型の端子・コネクタ、摺動型や回転型の接点、スイッチの材料として好適である。
In the composite plating material of the present invention, the wear resistance is improved by dispersing fine particles mainly composed of graphite in the surface layer portion of the surface plating layer made of Sn, Ag or an alloy containing these elements. Reliability is maintained well.
Since it has such characteristics, the composite plating material of the present invention is suitable as a material for fitting terminals / connectors of electric / electronic parts, sliding and rotating contacts, and switches, for example.

本発明のめっき材料の好ましい一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically preferable one Embodiment of the plating material of this invention. 本発明のめっき材料の好ましい他の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other preferable one Embodiment of the plating material of this invention. 図1に示す実施形態の表面めっき層における微粒子の好ましい分散構造を模式的に示す断面図である。It is sectional drawing which shows typically the preferable dispersion structure of the microparticles | fine-particles in the surface plating layer of embodiment shown in FIG. 図2に示す実施形態の表面めっき層における微粒子の好ましい分散構造を模式的に示す断面図である。It is sectional drawing which shows typically the preferable dispersion structure of the microparticles | fine-particles in the surface plating layer of embodiment shown in FIG.

本発明の複合めっき材料は、導電性基材上にSn、Agまたはそれらの元素を含む合金からなる表面めっき層が形成され、そこに炭素を主成分とする微粒子を含有し、その外表面に近づくほど微粒子の分布(存在率)が大きくなっているものである。微粒子の存在状態は特に限定されず、表層部に露出していても、層全体あるいは内部に所定の分布で存在していてよく、下地めっき層/表面めっき層界面に粒子が存在していてもよい。本発明においてはこのような多様な存在形態を含む意味で、「含有」するという。   In the composite plating material of the present invention, a surface plating layer made of Sn, Ag, or an alloy containing these elements is formed on a conductive substrate, containing fine particles mainly composed of carbon, and on the outer surface thereof. The closer the particles are, the larger the distribution (presence rate) of the fine particles. The state of the presence of the fine particles is not particularly limited. Even if the fine particles are exposed to the surface layer portion, they may exist in a predetermined distribution in the whole layer or inside, and even if particles exist at the interface between the underlying plating layer and the surface plating layer. Good. In the present invention, the term “includes” is meant to include such various forms of existence.

本発明の複合めっき材料の好ましい一実施形態は、図1に示した通り、導電性基材1の上に下地めっき層2が少なくとも一層形成され、さらにその上に表面めっき層が形成されており、該表面めっき層はSn、Agまたはこれらの元素を含む合金からなる金属めっき層31中に炭素を主成分とする微粒子4が分散された単層構造である(以下、単層めっき層3という。)。本実施形態において、外表面とは、図1における符号32で示すとおり、複合めっき材料において単層めっき層3が外方に露出している面を意味する。また、表面めっき層である単層めっき層3全体の厚みとは、外表面32から下地めっき層2との界面33までの厚みのことである。   In a preferred embodiment of the composite plating material of the present invention, as shown in FIG. 1, at least one base plating layer 2 is formed on a conductive substrate 1, and a surface plating layer is further formed thereon. The surface plating layer has a single layer structure in which fine particles 4 mainly composed of carbon are dispersed in a metal plating layer 31 made of Sn, Ag, or an alloy containing these elements (hereinafter referred to as a single layer plating layer 3). .) In this embodiment, an outer surface means the surface where the single-layer plating layer 3 is exposed to the outside in the composite plating material, as indicated by reference numeral 32 in FIG. Moreover, the thickness of the single-layer plating layer 3 as a surface plating layer is the thickness from the outer surface 32 to the interface 33 with the base plating layer 2.

また本発明の複合めっき材料の好ましい他の一実施形態としては、図2に示した通り、下地めっき層2の上にSn、Agまたはそれらの元素を含む合金からなる金属めっき層51と炭素を主成分とする微粒子からなる微粒子層52を交互に形成させた多層構造の表面めっき層(以下、多層めっき層5という。)が形成されている。
本実施形態における多層めっき層5は、下地めっき層2を含まない前記多層構造の全体を表層めっき層とするものである。外表面とは、図2における符号53で示すとおり、複合めっき材料において多層構造の最も外側に位置して外方に露出している最外表面を意味する。また、表面めっき層である多層めっき層5の厚みとは、外表面53から下地めっき層2との界面54までの厚みのことである。
表面めっき層を多層めっき層5とした場合、表面めっき層が単層めっき層3である場合に比べ、表面めっき層の金属部と微粒子部を個々に形成させることができ、層形成時の微粒子分布の制御を容易に行うことができる。多層めっき層5において、金属めっき層51はめっき金属単相の構造からなるものであり、微粒子層52はめっき金属相中に微粒子が含まれた複合相の構造からなるものである。金属めっき層51と微粒子層52とは多層めっき層5を形成させた後は、金属めっき層51と微粒子層52のめっき金属相が連続的に結合し、明確な境界は見られなくなる。多層めっき層5には、金属めっき層51が2または3層含まれることが好ましい。この層数とすることで、多層めっき層5の厚さが必要以上に厚くならず、また生産性の観点からも好ましい。
As another preferred embodiment of the composite plating material of the present invention, as shown in FIG. 2, a metal plating layer 51 made of Sn, Ag or an alloy containing these elements and carbon are formed on the base plating layer 2 and carbon. A surface plating layer having a multilayer structure (hereinafter referred to as multilayer plating layer 5) is formed by alternately forming fine particle layers 52 made of fine particles as a main component.
The multilayer plating layer 5 in the present embodiment is a surface plating layer that is the entire multilayer structure that does not include the base plating layer 2. The outer surface means the outermost surface that is located on the outermost side of the multilayer structure and exposed outward in the composite plating material, as indicated by reference numeral 53 in FIG. Moreover, the thickness of the multilayer plating layer 5 which is a surface plating layer is the thickness from the outer surface 53 to the interface 54 with the base plating layer 2.
When the surface plating layer is the multilayer plating layer 5, the metal part and the fine particle part of the surface plating layer can be individually formed as compared with the case where the surface plating layer is the single-layer plating layer 3. The distribution can be easily controlled. In the multilayer plating layer 5, the metal plating layer 51 has a structure of a single plating metal phase, and the fine particle layer 52 has a structure of a composite phase in which fine particles are contained in the plating metal phase. After the metal plating layer 51 and the fine particle layer 52 form the multilayer plating layer 5, the plating metal phases of the metal plating layer 51 and the fine particle layer 52 are continuously bonded, and a clear boundary is not seen. The multilayer plating layer 5 preferably includes two or three metal plating layers 51. By setting it as this number of layers, the thickness of the multilayer plating layer 5 is not increased more than necessary, and it is also preferable from the viewpoint of productivity.

図3は単層めっき層3の外表面において炭素微粒子の分散濃度が高い複合めっき層を模式的に示す断面図であり、図4は多層めっき層5の外表面において炭素微粒子の分散濃度が高い複合めっき層を模式的に示す断面図である。図3及び図4において、各表面めっき層の厚さ方向の中心線cを一点鎖線で示す。
本発明においては、単層めっき層3及び多層めっき層5のいずれにおいても、全表面めっき層中に含まれる微粒子の総体積量に対して50体積%超80体積%以下の体積量が前記表面めっき層の外表面からの厚さの半分までに含まれ(以下、この割合を表面側含有量ともいう。)、残りがめっき層の基材側に含まれることが望ましい。つまり、図3に示す単層めっき層3においては、中心線cから外表面32側の上部3aの微粒子の体積量が、下部3bの微粒子の体積量よりも多く配されている。また、図4に示す多層めっき層5においては、中心線cから外表面53側の上部5aにおける各微粒子層52の微粒子の体積量の合計が、下部5bの微粒子の体積量の合計よりも多く配されている。めっき層中の微粒子濃度に傾斜をつけることで、摺動によりめっき層の磨耗が進み、摺動部の微粒子が残留したとしても、摺動部における微粒子濃度の上昇を防ぐことができる。上記表面側含有量の下限値としては、55体積%以上であることが好ましく、60体積%以上であることがより好ましい。上限値としては、特に制約がなく、80体積%以下であってもよい。上記下限値を超えると(あるいはそれ以上であると)、摺動初期に微粒子による摺動性及び磨耗性の改善効果が効果的に得られ、上記上限値以下になると、接触信頼性、摺動性及び耐磨耗性が十分に実現される。
3 is a cross-sectional view schematically showing a composite plating layer having a high dispersion concentration of carbon fine particles on the outer surface of the single-layer plating layer 3, and FIG. 4 shows a high dispersion concentration of carbon fine particles on the outer surface of the multilayer plating layer 5. It is sectional drawing which shows a composite plating layer typically. 3 and 4, the center line c in the thickness direction of each surface plating layer is indicated by a one-dot chain line.
In the present invention, both the single-layer plating layer 3 and the multilayer plating layer 5 have a volume amount of more than 50% by volume and 80% by volume or less with respect to the total volume of fine particles contained in the entire surface plating layer. It is desirable that the plating layer is contained within half of the thickness from the outer surface (hereinafter, this ratio is also referred to as surface side content), and the rest is contained on the substrate side of the plating layer. That is, in the single-layer plating layer 3 shown in FIG. 3, the volume of fine particles in the upper part 3a on the outer surface 32 side from the center line c is larger than the volume of fine particles in the lower part 3b. Moreover, in the multilayer plating layer 5 shown in FIG. 4, the sum of the volume of fine particles of each fine particle layer 52 in the upper part 5a on the outer surface 53 side from the center line c is larger than the sum of the volume of fine particles in the lower part 5b. It is arranged. By inclining the fine particle concentration in the plating layer, even if the plating layer wears by sliding and the fine particles in the sliding portion remain, an increase in the fine particle concentration in the sliding portion can be prevented. The lower limit of the surface side content is preferably 55% by volume or more, and more preferably 60% by volume or more. There is no restriction | limiting in particular as an upper limit, 80 volume% or less may be sufficient. When the above lower limit is exceeded (or more), the effect of improving the slidability and wear by fine particles is effectively obtained in the early stage of sliding, and when the upper limit is not reached, contact reliability, sliding And wear resistance are fully realized.

表面めっき層中の微粒子濃度と濃度傾斜は、表面めっき層の断面を電子顕微鏡を用いて観察し、粒子の平均円相当直径を求め、そこから体積を算出して得ることができる。その測定はまず、表面めっき層の断面観察面の、単位面積中に観察される微粒子数を測定し、そこから単位体積の表面めっき層中に含まれる微粒子数を算出する。ここで上記の平均円相当直径の微粒子体積を用いて、単位体積の表面めっき層中に含まれる微粒子の総体積を求め、その結果から体積%を算出する。   The fine particle concentration and concentration gradient in the surface plating layer can be obtained by observing the cross section of the surface plating layer using an electron microscope, obtaining the average equivalent circle diameter of the particles, and calculating the volume therefrom. First, the number of fine particles observed in a unit area on the cross-sectional observation surface of the surface plating layer is measured, and the number of fine particles contained in the unit volume of the surface plating layer is calculated therefrom. Here, the total volume of the fine particles contained in the surface plating layer of the unit volume is obtained using the fine particle volume having the average equivalent circle diameter, and the volume% is calculated from the result.

導電性基材1の材料は格別限定されるものではなく、例えば接続コネクタとしての用途を考慮し、要求される機械的強度、耐熱性、導電性に応じて、例えば、純銅;リン青銅、黄銅、洋白、ベリリウム銅、コルソン合金のような銅合金;純鉄;ステンレス鋼のような鉄合金;各種Ni合金;Cu被覆材料やNi被覆材料のような複合材料などから適宜に選定すればよい。また、導電性基材の形状としては、条材や線材のいずれの形状でも良い。   The material of the conductive substrate 1 is not particularly limited. For example, in consideration of the use as a connector, depending on the required mechanical strength, heat resistance, and conductivity, for example, pure copper; phosphor bronze, brass Copper alloy such as iron white, beryllium copper, corson alloy; pure iron; iron alloy such as stainless steel; various Ni alloys; composite materials such as Cu coating materials and Ni coating materials may be appropriately selected. . Moreover, as a shape of an electroconductive base material, any shape of a strip and a wire may be sufficient.

これらの材料のうち、CuまたはCu合金が好ましい。なお、導電性基材1がCu系材料でない場合も、銅、ニッケル、コバルト、鉄などが含まれる下地めっきを施してから実使用に供することにより、めっき膜の密着性や耐食性の向上が期待できる。   Of these materials, Cu or Cu alloys are preferred. In addition, even when the conductive substrate 1 is not a Cu-based material, it is expected to improve the adhesion and corrosion resistance of the plating film by applying the base plating containing copper, nickel, cobalt, iron, and the like to actual use. it can.

表面めっき層のうち、多層めっき層5の金属めっき層51の部分は、電解めっきまたは無電解めっきによりSn、Agまたはそれらの元素を含む合金を形成させることで得られ、めっき材料としての電気接触特性、耐食性、半田付け性を確保するために設けられる。表面めっき層が合金である場合、耐磨耗性を向上させることができる。また表面めっき層がSnまたはSnを含む合金である場合、めっき後にリフロー処理を施すことでリフロー材とし、摩擦・磨耗を低減することができる。表面めっき層の厚さは0.5μm以上であることが好ましく、寿命と生産性の観点から1〜5μmであることがさらに好ましい。表面めっき層が0.5μm以下の場合、熱処理時の接触抵抗上昇が著しく、また複合めっき材の寿命が短くなる。   Of the surface plating layer, the portion of the metal plating layer 51 of the multilayer plating layer 5 is obtained by forming Sn, Ag or an alloy containing these elements by electrolytic plating or electroless plating, and is used as an electrical contact as a plating material. Provided to ensure characteristics, corrosion resistance, and solderability. When the surface plating layer is an alloy, the wear resistance can be improved. Moreover, when a surface plating layer is Sn or the alloy containing Sn, it can be set as a reflow material by performing a reflow process after metal plating, and friction and wear can be reduced. The thickness of the surface plating layer is preferably 0.5 μm or more, and more preferably 1 to 5 μm from the viewpoint of life and productivity. When the surface plating layer is 0.5 μm or less, the contact resistance during heat treatment is remarkably increased, and the life of the composite plating material is shortened.

単層めっき層3および多層めっき層5の微粒子層52の部分は、Sn、Agまたはこれらの元素を含む合金めっき浴中に炭素を主成分とする微粒子を分散させ、これらの金属と同時に析出させることで得られる。この場合、微粒子層52は電解めっきまたは無電解めっきにより形成される。また微粒子層は、微粒子を分散させた溶液に基材を浸漬させ、その表面に微粒子を吸着させることによっても得られる。   Part of the fine particle layer 52 of the single-layer plating layer 3 and the multilayer plating layer 5 disperses fine particles mainly composed of carbon in an alloy plating bath containing Sn, Ag, or these elements, and deposits them simultaneously with these metals. Can be obtained. In this case, the fine particle layer 52 is formed by electrolytic plating or electroless plating. The fine particle layer can also be obtained by immersing a base material in a solution in which fine particles are dispersed and adsorbing the fine particles on the surface thereof.

表面めっき層中(単層めっき層3及び多層めっき層5)に微粒子を共析させるためには、めっき液中で微粒子が分散状態にあるほうが好ましい。この場合、めっき液中での微粒子の分散性を高めるために、界面活性剤を使用してもよい。界面活性剤の種類に特に制限は無く、例えば陰イオン性・陽イオン性・非イオン性・両性の界面活性剤が使用できる。界面活性剤処理を行わず、液中での分散性が悪い場合、微粒子がめっき液中で凝集・粗大化し、めっき層形成時に微粒子の取り込みが十分に行われなくなることもある。   In order to cause the fine particles to co-deposit in the surface plating layer (single-layer plating layer 3 and multilayer plating layer 5), it is preferable that the fine particles are in a dispersed state in the plating solution. In this case, a surfactant may be used in order to improve the dispersibility of the fine particles in the plating solution. There is no restriction | limiting in particular in the kind of surfactant, For example, anionic, cationic, nonionic, and amphoteric surfactant can be used. When the surfactant treatment is not performed and the dispersibility in the liquid is poor, the fine particles may be aggregated and coarsened in the plating solution, and the fine particles may not be sufficiently taken up when the plating layer is formed.

単層めっき層3及び多層めっき層5の表層部に微粒子を有する複合めっき材料としては、図1及び図2に示すような表面めっき層を複合めっき層として、その外表面近くに微粒子の分散濃度が高い複合めっき層としたものとして提供される。   As the composite plating material having fine particles in the surface layer portion of the single layer plating layer 3 and the multilayer plating layer 5, the surface plating layer as shown in FIG. 1 and FIG. 2 is used as the composite plating layer, and the fine particle dispersion concentration is close to the outer surface. Is provided as a high composite plating layer.

図3及び図4に示すような、単層めっき層3または多層めっき層5の外表面近くで微粒子の分散濃度が高い複合めっき層となるものでは、表面めっき層が磨耗するたびに微粒子が外表面に露出し、摺動時の磨耗量を低減して、単層めっき層3または多層めっき層5の厚みのほぼ全域にわたって耐磨耗性を維持することができる。単層めっき層3または多層めっき層5と、下地めっき層2あるいは導電性基材1との界面には微粒子4が含まれない構造とすることで、めっき密着性や導電性にも優れ好ましい。表面めっき層と下地めっき層2あるいは導電性基材1との界面に微粒子4が配されない構造は、下地めっき層2と表面めっき層の間に、密着改善層としてSn、Agまたはそれらの元素を含む合金からなる層を形成させるの方法によって形成される。また表面めっき層が単層めっき層3である場合、微粒子が共析されないような条件からめっきを開始することで、この構造が得られる。また多層めっき層5である場合は、金属めっき層51を先に形成させればよい。
このようなめっき材料は、例えば微粒子を分散したSn、Agまたはこれらの元素を含む合金めっき浴中において導電性基材1に表面めっき層を施す際に、単一のめっき槽中で撹拌速度や電流密度などのめっき条件を連続的に変化させることや、微粒子の濃度が異なる複数のめっき槽(浴)を用いて連続的にめっきすることにより、微粒子4の分散濃度が異なるめっき層を形成して得られる。特に多層めっき層5においては、この微粒子4の分散濃度の異なるめっき層を微粒子層52として複数配することで、微粒子の分散濃度の傾斜配置が可能となる。
In the case of a composite plating layer having a high dispersion concentration of fine particles near the outer surface of the single-layer plating layer 3 or the multilayer plating layer 5 as shown in FIGS. 3 and 4, the fine particles are removed every time the surface plating layer is worn. It is exposed to the surface, and the amount of wear during sliding can be reduced, so that the wear resistance can be maintained over almost the entire thickness of the single-layer plating layer 3 or the multilayer plating layer 5. The interface between the single-layer plating layer 3 or the multilayer plating layer 5 and the base plating layer 2 or the conductive substrate 1 is preferably excellent in plating adhesion and conductivity because it does not contain fine particles 4. In the structure in which the fine particles 4 are not arranged at the interface between the surface plating layer and the base plating layer 2 or the conductive substrate 1, Sn, Ag or their elements are used as an adhesion improving layer between the base plating layer 2 and the surface plating layer. It is formed by the method of forming the layer which consists of an alloy containing. Further, when the surface plating layer is the single-layer plating layer 3, this structure can be obtained by starting the plating from such a condition that fine particles are not co-deposited. In the case of the multilayer plating layer 5, the metal plating layer 51 may be formed first.
Such a plating material is, for example, a mixture of Sn, Ag or fine particles dispersed in an alloy plating bath containing these elements. By continuously changing the plating conditions such as current density, or by continuously using a plurality of plating tanks (baths) having different fine particle concentrations, plating layers having different dispersion concentrations of the fine particles 4 are formed. Obtained. In particular, in the multilayer plating layer 5, by arranging a plurality of plating layers having different dispersion concentrations of the fine particles 4 as the fine particle layer 52, an inclined arrangement of the fine particle dispersion concentration is possible.

図3及び図4に示すような、単層めっき層3または多層めっき層5の外表面近くで微粒子の分散濃度が高い複合めっき層となるものでは、表面めっき層が磨耗するたびに微粒子が外表面に露出し、摺動時の磨耗量を低減して、単層めっき層3または多層めっき層5の厚みのほぼ全域にわたって耐磨耗性を維持することができる。
図3に示すような単層めっき層3は、例えば微粒子を分散したSn、Agまたはこれらの元素を含む合金めっき浴中において導電性基材1に表面めっき層を施す際に、単一のめっき浴中で撹拌速度や電流密度などのめっき条件を連続的に変化させることや、微粒子の濃度が異なる複数のめっき浴を用いて連続的にめっきすることにより得られる。単一めっき浴で、微粒子が共析されない条件から徐々に共析量が増加する方向へめっき条件を連続的に変化させてめっきする、あるいは複数めっき浴の最初の浴に微粒子を分散させずにめっきすることで、単層めっき層3と下地めっき層2あるいは導電性基材1との界面に微粒子は含まれず、めっき密着性や導電性がより向上する。
また図4に示すような多層めっき層5は、金属めっき層51と微粒子層52のめっき厚を調整する、あるいは分散濃度の異なるめっき層を微粒子層52として複数配することで得られる。金属めっき層51を先に形成させることで、多層めっき層5と下地めっき層2あるいは導電性基材1との界面に微粒子は含まれず、めっき密着性や導電性がより向上する。
In the case of a composite plating layer having a high dispersion concentration of fine particles near the outer surface of the single-layer plating layer 3 or the multilayer plating layer 5 as shown in FIGS. 3 and 4, the fine particles are removed every time the surface plating layer is worn. It is exposed to the surface, and the amount of wear during sliding can be reduced, so that the wear resistance can be maintained over almost the entire thickness of the single-layer plating layer 3 or the multilayer plating layer 5.
A single-layer plating layer 3 as shown in FIG. 3 is a single plating when a surface plating layer is applied to the conductive substrate 1 in an alloy plating bath containing Sn, Ag or these elements in which fine particles are dispersed, for example. It can be obtained by continuously changing plating conditions such as stirring speed and current density in the bath or by continuously using a plurality of plating baths having different concentrations of fine particles. In a single plating bath, plating is performed by continuously changing the plating conditions from the condition where fine particles are not co-deposited to the direction in which the amount of eutectoid gradually increases, or without dispersing fine particles in the first bath of multiple plating baths. By plating, fine particles are not included in the interface between the single-layer plating layer 3 and the base plating layer 2 or the conductive substrate 1, and the plating adhesion and conductivity are further improved.
Also, the multilayer plating layer 5 as shown in FIG. 4 can be obtained by adjusting the plating thicknesses of the metal plating layer 51 and the fine particle layer 52 or by arranging a plurality of plating layers having different dispersion concentrations as the fine particle layer 52. By forming the metal plating layer 51 first, fine particles are not included in the interface between the multilayer plating layer 5 and the base plating layer 2 or the conductive substrate 1, and the plating adhesion and conductivity are further improved.

微粒子4は、その種類に特に制限は無く、例えばカーボンブラック、黒鉛、カーボンナノチューブ、ケッチェン、コークスなどの、炭素を主成分とする微粒子を使用することができる。これらの中でも、カーボンブラックの微粒子を使用することがより好ましい。微
粒子中に炭素以外の成分からなる微粒子が少量存在する場合、その含量は全微粒子中の10重量%以下、特に5重量%以下であることが好ましい。他成分の微粒子が多くなると、本発明により複合めっき材を作製した際、目的とする耐磨耗性、接触信頼性が得られなくなる。ここで述べている他成分とは、水素、酸素、フッ素、硫黄、珪素などを意味する。
The kind of the fine particles 4 is not particularly limited, and fine particles mainly composed of carbon such as carbon black, graphite, carbon nanotube, ketjen, coke, etc. can be used. Among these, it is more preferable to use carbon black fine particles. When a small amount of fine particles composed of components other than carbon are present in the fine particles, the content is preferably 10% by weight or less, particularly preferably 5% by weight or less, based on the total fine particles. If the fine particles of other components are increased, the target wear resistance and contact reliability cannot be obtained when a composite plating material is produced according to the present invention. The other components mentioned here mean hydrogen, oxygen, fluorine, sulfur, silicon and the like.

微粒子4は球形であることが好ましく、またその粒径は20〜400nmであることが好ましい。粒径は平均粒径であり、実際のめっき皮膜内に分散された粒径にもばらつきがあってよい。粒径が20nm以下である場合、摺動時に微粒子による摺動性及び磨耗性の改善効果が得られなくなる。粒径が400nm以上である場合、接触抵抗の増加、表面めっき膜の基材との密着性の低下、耐磨耗性の低下といった問題が生じる。微粒子4を球形の小粒径粒子とすることで、前記した黒鉛の不規則配向による接触信頼性の低下は起こらず、接点において低接触抵抗を得られる。   The fine particles 4 are preferably spherical, and the particle diameter is preferably 20 to 400 nm. The particle size is an average particle size, and the particle size dispersed in the actual plating film may vary. When the particle diameter is 20 nm or less, the effect of improving the slidability and wear by fine particles cannot be obtained during sliding. When the particle diameter is 400 nm or more, problems such as an increase in contact resistance, a decrease in adhesion between the surface plating film and the substrate, and a decrease in wear resistance occur. By making the fine particles 4 into spherical small particle diameter particles, the contact reliability is not lowered due to the irregular orientation of the graphite, and a low contact resistance can be obtained at the contact.

複合めっき層中における微粒子の共析量は、5〜10体積%の範囲内に設定されていることが好ましい。共析量が、5体積%以下では摺動時に微粒子による摺動性及び磨耗性の改善効果が得難くなり、10体積%以上では摺動性、表面めっき層と基材の密着性、耐磨耗性および接点の接触信頼性が低下する。本発明においては、複合めっき層中に共析される微粒子の量は、めっき液中の微粒子濃度、電流密度、撹拌速度により調節することができる。また多層めっき層5においては、金属めっき層と微粒子層を交互に形成し多層化することで、より厳密な共析量の制御が可能となる。   The eutectoid amount of the fine particles in the composite plating layer is preferably set within a range of 5 to 10% by volume. When the amount of eutectoid is 5% by volume or less, it is difficult to improve the slidability and wear by fine particles during sliding, and when it is 10% by volume or more, the slidability, adhesion between the surface plating layer and the substrate, and abrasion resistance Abrasion and contact reliability of contacts are reduced. In the present invention, the amount of fine particles co-deposited in the composite plating layer can be adjusted by fine particle concentration, current density and stirring speed in the plating solution. In the multilayer plating layer 5, the metal plating layer and the fine particle layer are alternately formed to be multi-layered, thereby making it possible to control the amount of eutectoid more strictly.

導電性基材1の上部に形成される下地めっき層2は、導電性基材1と単層めっき層3または多層めっき層5の密着性を向上させるとともに、基材成分が表層側に熱拡散することを防止するバリア層としても機能する。この下地めっき層2に融点が1000℃以上の高融点金属を用いた場合、一般に接点やスイッチが受ける200℃以下の熱履歴においては、下地めっき層2は熱拡散を起こしにくく、基材成分が表層側に熱拡散することを有効に防止する。高融点金属のうち、価格の点やめっき処理が行いやすい点から、Cu、Ni、コバルト(Co)、鉄(Fe)が好適である。またこれらの元素を含む合金めっき層やめっき後に熱処理して合金化した化合物層も同様に有効であり、例えば、Cu−Sn、Ni−Sn、Ni−P、Co−P、Ni−Co、Ni−Co−P、Ni−Cu、Ni−Feなどを挙げることができる。   The base plating layer 2 formed on the upper part of the conductive substrate 1 improves the adhesion between the conductive substrate 1 and the single-layer plating layer 3 or the multilayer plating layer 5, and the base material component is thermally diffused to the surface layer side. It also functions as a barrier layer that prevents this. When a high melting point metal having a melting point of 1000 ° C. or higher is used for the base plating layer 2, the base plating layer 2 hardly causes thermal diffusion in a heat history of 200 ° C. or lower that is generally received by a contact or switch, and the base material component is It effectively prevents thermal diffusion to the surface layer side. Of the refractory metals, Cu, Ni, cobalt (Co), and iron (Fe) are preferable from the viewpoint of cost and ease of plating. Further, an alloy plating layer containing these elements and a compound layer obtained by alloying by heat treatment after plating are also effective. For example, Cu—Sn, Ni—Sn, Ni—P, Co—P, Ni—Co, Ni -Co-P, Ni-Cu, Ni-Fe, etc. can be mentioned.

また下地めっき層2は、必要に応じて成分や特性の異なる層を2層以上積層しても良い。例えば基材1の上部に第一の下地めっき層としてNi層を設け、その上部に第二の下地めっき層としてCuを設け、さらにその上に単層めっき層3または多層めっき層5を設けることができる。このような複合めっき材料では、下地層と表面めっき層の密着性のさらなる向上が得られる。   In addition, the base plating layer 2 may be a laminate of two or more layers having different components and characteristics as required. For example, an Ni layer is provided as the first undercoat layer on the upper portion of the substrate 1, Cu is provided as the second undercoat layer thereon, and the single layer plating layer 3 or the multilayer plating layer 5 is provided thereon. Can do. With such a composite plating material, further improvement in adhesion between the base layer and the surface plating layer can be obtained.

下地めっき層2の厚さは、0.05〜2.0μmとすることが好ましい。下地めっき層2の厚さが0.05μmより薄くなると、上記した基材成分の表層側への熱拡散防止効果が、十分に発揮されない。また表面めっき層の厚さが2.0μmより大きくなると、上記熱拡散防止効果が飽和し、さらに成形加工時に加工割れを起こす可能性が高くなる。   The thickness of the base plating layer 2 is preferably 0.05 to 2.0 μm. When the thickness of the base plating layer 2 is less than 0.05 μm, the effect of preventing thermal diffusion of the base material component to the surface layer side is not sufficiently exhibited. Further, when the thickness of the surface plating layer is larger than 2.0 μm, the effect of preventing thermal diffusion is saturated, and further, there is a high possibility of causing processing cracks during the forming process.

上記のめっき材料は電気・電子部品に用いられている従来の金属材料に変えて用いることができ、特に、摺動性や耐磨耗性に優れ接触信頼性が高いため、摺動型や回転型の接点またはスイッチの材料として好適に用いることができる。   The above plating materials can be used in place of conventional metal materials used for electrical and electronic parts, and in particular, they are excellent in sliding properties and wear resistance and have high contact reliability. It can be suitably used as a material for a mold contact or switch.

以下、本発明について実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。
各実施例で作製した各めっき材料について、摩擦係数、接触抵抗、密着性、耐久性、曲げ加工性の評価を実施した。評価方法は次の通りである。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this.
Each plating material produced in each example was evaluated for friction coefficient, contact resistance, adhesion, durability, and bending workability. The evaluation method is as follows.

摩擦係数:
バウデン型摩擦試験機を用いて、導電性基材の表面を摺動させた際の往復100回摺動後の動摩擦係数を評価した。測定条件は、荷重をSnめっき材においては2.94N(300gf)、Agめっき材においては0.98N(100gf)とし、摺動距離10mm、摺動速度100mm/分とした。相手材は、3mmRの鋼球プローブを用いた。
Coefficient of friction:
Using a Bowden type friction tester, the dynamic friction coefficient after sliding 100 times reciprocally when the surface of the conductive substrate was slid was evaluated. The measurement conditions were a load of 2.94 N (300 gf) for the Sn plating material, 0.98 N (100 gf) for the Ag plating material, a sliding distance of 10 mm, and a sliding speed of 100 mm / min. The mating material was a 3 mmR steel ball probe.

接触抵抗:
定電流通電時の電圧を測定することにより評価した。先端が5mmRのAgプローブを、Snめっき材においては荷重0.98N(100gf)、Agめっき材においては荷重0.49N(50gf)で接触させ、10mA通電時の電圧を測定し、n=10の平均値より接触抵抗を算出した。なお、測定は初期および加熱後に実施した。加熱温度と時間は、Snめっき材においては温度160℃で120時間、Agめっき材においては温度150℃で1000時間とした。
Contact resistance:
The evaluation was made by measuring the voltage during constant current application. An Ag probe with a tip of 5 mmR was brought into contact with a load of 0.98 N (100 gf) for an Sn plating material and a load of 0.49 N (50 gf) for an Ag plating material, and the voltage at 10 mA energization was measured. The contact resistance was calculated from the average value. Note that the measurement was performed initially and after heating. The heating temperature and time were 120 hours at 160 ° C. for the Sn plating material and 1000 hours at 150 ° C. for the Ag plating material.

密着性:
めっき表面からクロスカットを施し、テープピール試験により評価した。クロスカット後のめっき表面に、粘着テープ(寺岡製作所、商品名:631S)を貼り付けて引き剥がした際に、めっき皮膜の剥離が見られないものを○、剥離が見られたものを×として評価した。
Adhesion:
A cross cut was applied from the plating surface, and evaluation was performed by a tape peel test. When the adhesive tape (Teraoka Seisakusho, product name: 631S) is applied to the plated surface after cross-cutting and peeled off, the case where peeling of the plating film is not observed is indicated by ○, and the case where peeling is observed is indicated by ×. evaluated.

耐久性:
往復100回摺動後に、摺動部における基材または下地めっき層の露出が見られるかを評価した。摺動部を450倍でマイクロスコープ観察し、基材や下地めっき層の露出が見られないものを○、露出が見られたものを×として評価した。
durability:
After 100 reciprocating slides, it was evaluated whether exposure of the base material or the base plating layer in the sliding part was observed. The sliding part was observed with a microscope at a magnification of 450 times, and the case where the substrate and the underlying plating layer were not exposed was evaluated as ◯, and the case where the exposure was observed was evaluated as ×.

曲げ加工性:
導電性基材の圧延方向と直角に90°曲げ(0.2R)を施し、曲げ部におけるめっき皮膜の割れにより評価した。曲げ部について500倍でSEM観察し、めっき皮膜に割れが見られないものを○、割れが見られたものを×として評価した。
Bending workability:
90 ° bending (0.2R) was performed at right angles to the rolling direction of the conductive substrate, and the evaluation was made by cracking the plating film at the bent portion. SEM observation was performed at 500 times with respect to the bent part, and the case where no crack was observed in the plating film was evaluated as “◯” and the case where the crack was observed was evaluated as “X”.

[実施例1]
本発明例1〜346、比較例1〜36
表1に示す化学成分組成の銅または銅合金を鋳造、圧延、焼鈍を行い、厚さ0.2mmの純銅(C1020:基材A)、黄銅(C2600:基材B)、リン青銅(C5210:基材C)、コルソン系合金(Cu−Ni−Si:基材D)を作製した。これらの基材に対して、めっき前処理として脱脂処理及び酸洗処理を順次施し、その後下地めっき層の形成を行い、さらにその上に表面めっき層を形成させることで、めっき材料を作製した。上記CXXXXとは、JISで規定された銅合金の種類である。
各層を形成する際のめっき条件については表2に、作製しためっき材料については表3に示した。表3中の表面側含有量とは、表面めっき層の外表面側からの厚さの半分までに含まれる微粒子の、総量に対する割合である。また表3中の表面めっき層数が2または3であるとは表面めっき層が多層めっき層であることを示している。表面めっき層数が2の場合は金属めっき層及び微粒子層がそれぞれ2層であり、表面めっき層数が3の場合はそれぞれ3層である。表面めっき層が多層めっき層である場合、表3中の微粒子共析量は多層めっき層全体に対する微粒子量の割合を表しており、表面側含有量は多層めっき層全体の外方に露出している最外表面からの厚さの半分までに含まれる微粒子の総量に対する割合を表している。
[Example 1]
Invention Examples 1 to 346, Comparative Examples 1 to 36
The copper or copper alloy having the chemical composition shown in Table 1 is cast, rolled, and annealed, and pure copper (C1020: base material A), brass (C2600: base material B), phosphor bronze (C5210: thickness) having a thickness of 0.2 mm. Base material C) and a Corson alloy (Cu-Ni-Si: base material D) were produced. These base materials were sequentially subjected to a degreasing treatment and a pickling treatment as a pretreatment for plating, and thereafter a base plating layer was formed, and a surface plating layer was further formed thereon to prepare a plating material. The CXXXX is a type of copper alloy specified by JIS.
The plating conditions for forming each layer are shown in Table 2, and the prepared plating materials are shown in Table 3. The surface side content in Table 3 is the ratio of fine particles contained in up to half the thickness from the outer surface side of the surface plating layer to the total amount. The number of surface plating layers in Table 3 being 2 or 3 indicates that the surface plating layer is a multilayer plating layer. When the number of surface plating layers is 2, there are two metal plating layers and fine particle layers, respectively, and when the number of surface plating layers is 3, there are three layers. When the surface plating layer is a multilayer plating layer, the amount of fine particle eutectoid in Table 3 represents the ratio of the amount of fine particles to the entire multilayer plating layer, and the surface side content is exposed to the outside of the entire multilayer plating layer. It represents the ratio to the total amount of fine particles contained up to half of the thickness from the outermost surface.

前期脱脂処理は、クリーナー160S(メルテックス社製)を60g/l含む脱脂液中において、液温60℃で電流密度2.5A/dmの条件で、30秒間カソード電解して行った。また前記酸洗処理は、硫酸を100g/l含む酸洗液中に室温で30秒間浸漬して行った。 The first-stage degreasing treatment was performed by cathodic electrolysis for 30 seconds in a degreasing solution containing 60 g / l of cleaner 160S (manufactured by Meltex) at a liquid temperature of 60 ° C. and a current density of 2.5 A / dm 2 . The pickling treatment was performed by immersing in a pickling solution containing 100 g / l of sulfuric acid at room temperature for 30 seconds.

複合めっき層の形成においては、表面めっき層を図1に示したような単層構造とする場合、表2のSnめっき浴またはAgめっき浴に炭素微粒子を表3に示す共析量に対応させた量を添加しためっき液を用い、同様のめっき条件にてめっきを施した。表面めっき層を図2に示したような多層構造とする場合、表2のSnめっき浴またはAgめっき浴を用いて金属めっき層を形成させ、その上に表2のSnめっき浴またはAgめっき浴に炭素微粒子を共析量が50体積%となる量を添加しためっき液を用い、同様のめっき条件にてめっきを施した。この操作を繰り返し、金属めっき層と微粒子層を積層した多層構造とし、多層めっき層全体の共析量を、表3に示す共析量とした。   In the formation of the composite plating layer, when the surface plating layer has a single layer structure as shown in FIG. 1, carbon fine particles are made to correspond to the eutectoid amount shown in Table 3 in the Sn plating bath or Ag plating bath shown in Table 2. The plating solution was added under the same plating conditions using a plating solution to which the above amount was added. When the surface plating layer has a multilayer structure as shown in FIG. 2, a metal plating layer is formed using the Sn plating bath or Ag plating bath shown in Table 2, and the Sn plating bath or Ag plating bath shown in Table 2 is formed thereon. The plating was performed under the same plating conditions using a plating solution in which an amount of eutectoid of carbon fine particles was added to 50% by volume. This operation was repeated to obtain a multilayer structure in which a metal plating layer and a fine particle layer were laminated, and the amount of eutectoid of the entire multilayer plating layer was set to the amount of eutectoid shown in Table 3.

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

なお、複合めっき層の表面から微粒子が露出した場合には、めっき層表面から微粒子頂点までの高さは、表3における複合めっき層の厚さに含まれない。   When fine particles are exposed from the surface of the composite plating layer, the height from the plating layer surface to the fine particle apex is not included in the thickness of the composite plating layer in Table 3.

作製した各めっき材料について、摩擦係数、接触抵抗、密着性、耐久性、曲げ加工性の評価を実施した。これらの評価結果を表4に示す。   About each produced plating material, friction coefficient, contact resistance, adhesiveness, durability, and evaluation of bending workability were implemented. These evaluation results are shown in Table 4.

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

Figure 2012057212
Figure 2012057212

表4に示されるように、本発明例のめっき材料はいずれも密着性、耐久性に優れ、しかも摺動性および接触信頼性が良好であった。下地層にNi層を形成した実施例1〜86及び173〜259では、熱処理後の接触抵抗が低かった。これに対し、下地めっき層の厚さが薄い比較例1、10、19及び28では、下地めっき層の種類に関らず加熱後の接触抵抗が高くなった。また下地めっき層の厚さが厚い比較例2、11、20及び29では、曲げ加工性が劣るものとなった。表面めっき層の厚さが薄い比較例3、12、21及び30では、摩擦係数、加熱後の接触抵抗、耐久性が劣るものとなった。微粒子の粒径が小さい比較例4、13、22及び31では、摩擦係数が劣るものとなった。微粒子の粒径が大きい比較例5、14、23及び32では、接触抵抗、密着性、耐久性が劣るものとなった。微粒子を共析していない比較例6、15、24及び33では、摩擦係数が劣るものとなった。微粒子の共析量が多い比較例7、16、25及び34では、接触抵抗、密着性、耐久性が劣るものとなった。微粒子の表面側含有量が小さい比較例8、17、26及び35では、摩擦係数が劣るものとなった。微粒子の表面側含有量が大きい比較例9、18、27及び36では、摩擦係数、接触抵抗、耐久性が劣るものとなった。   As shown in Table 4, all of the plating materials of the examples of the present invention were excellent in adhesion and durability, and good in slidability and contact reliability. In Examples 1 to 86 and 173 to 259 in which the Ni layer was formed as the underlayer, the contact resistance after the heat treatment was low. On the other hand, in Comparative Examples 1, 10, 19 and 28 where the thickness of the base plating layer was thin, the contact resistance after heating was high regardless of the type of the base plating layer. Further, in Comparative Examples 2, 11, 20, and 29 where the thickness of the base plating layer was thick, bending workability was inferior. In Comparative Examples 3, 12, 21, and 30, where the surface plating layer was thin, the friction coefficient, the contact resistance after heating, and the durability were inferior. In Comparative Examples 4, 13, 22 and 31, in which the particle size of the fine particles was small, the friction coefficient was inferior. In Comparative Examples 5, 14, 23, and 32 in which the particle diameter of the fine particles was large, the contact resistance, adhesion, and durability were inferior. In Comparative Examples 6, 15, 24 and 33 in which fine particles were not co-deposited, the friction coefficient was inferior. In Comparative Examples 7, 16, 25, and 34 in which the amount of fine particles co-deposited was large, the contact resistance, adhesion, and durability were inferior. In Comparative Examples 8, 17, 26, and 35 having a small content on the surface side of the fine particles, the friction coefficient was inferior. In Comparative Examples 9, 18, 27 and 36 having a large fine particle surface side content, the friction coefficient, contact resistance and durability were inferior.

1 導電性基材
2 下地めっき層
3 単層めっき層(表面めっき層)
4 微粒子
5 多層めっき層(表面めっき層)
c 中心線
DESCRIPTION OF SYMBOLS 1 Conductive base material 2 Base plating layer 3 Single layer plating layer (surface plating layer)
4 Fine particles 5 Multilayer plating layer (surface plating layer)
c Centerline

Claims (7)

導電性基材の上に、銅、ニッケル、コバルト、鉄またはこれらの元素の2つ以上を含む合金からなる下地めっき層が少なくとも1層形成され、その上に錫、銀またはこれらの元素を含む合金からなる表面めっき層が形成された複合めっき材料であって、
当該表面めっき層は炭素を主成分とする微粒子を5〜10体積%含有し、その微粒子は前記表面めっき層の外表面に近づくほどその分布が大きくなり、かつ、全表面めっき層中に含まれる微粒子の総体積に対して50体積%超80体積%以下のものが前記表面めっき層の外表面からの厚さの半分までに含まれることを特徴とする複合めっき材料。
At least one base plating layer made of copper, nickel, cobalt, iron, or an alloy containing two or more of these elements is formed on the conductive substrate, and tin, silver, or these elements are contained thereon. A composite plating material in which a surface plating layer made of an alloy is formed,
The surface plating layer contains 5 to 10% by volume of fine particles containing carbon as a main component, and the distribution of the fine particles increases toward the outer surface of the surface plating layer, and is included in the entire surface plating layer. What is more than 50 volume% and not more than 80 volume% with respect to the total volume of microparticles | fine-particles is contained to the half of the thickness from the outer surface of the said surface plating layer, The composite plating material characterized by the above-mentioned.
前記表面めっき層が、錫、銀またはこれらの元素を含む合金からなる金属めっき層中に炭素を主成分とする微粒子を含む単層構造であることを特徴とする請求項1に記載の複合めっき材料。   2. The composite plating according to claim 1, wherein the surface plating layer has a single layer structure including fine particles mainly composed of carbon in a metal plating layer made of tin, silver, or an alloy containing these elements. material. 前記表面めっき層が、錫、銀またはそれらの元素を含む合金からなる金属めっき層と炭素を主成分とする微粒子からなる微粒子層を交互に形成させ、金属めっき層が2〜3層含まれる多層構造であることを特徴とする請求項1に記載の複合めっき材料。   A multilayer in which the surface plating layer is formed by alternately forming metal plating layers made of tin, silver or an alloy containing these elements and fine particle layers made of fine particles mainly composed of carbon, and including two to three metal plating layers The composite plating material according to claim 1, which has a structure. 前記微粒子が、平均粒径が20〜400nmであり球形であることを特徴とする請求項1〜3のいずれか1項に記載の複合めっき材料。   4. The composite plating material according to claim 1, wherein the fine particles have an average particle diameter of 20 to 400 nm and are spherical. 前記下地めっき層の厚さが0.05〜2.0μmであり、また前記表面めっき層の厚さが0.5〜5μmであることを特徴とする請求項1〜4のいずれか1項に記載の複合めっき材料。   The thickness of the base plating layer is 0.05 to 2.0 µm, and the thickness of the surface plating layer is 0.5 to 5 µm. The composite plating material described. 請求項1〜5のいずれか1項に記載の複合めっき材料を用いて形成された電気・電子部品。   The electrical / electronic component formed using the composite plating material of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載の複合めっき材料を用いて形成された、嵌合型の端子・コネクタ、摺動型もしくは回転型の接点部材またはスイッチ。   A fitting-type terminal / connector, a sliding-type or rotary-type contact member or a switch formed using the composite plating material according to claim 1.
JP2010201302A 2010-09-08 2010-09-08 Composite plated material, and electric component and electronic component using the same Pending JP2012057212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201302A JP2012057212A (en) 2010-09-08 2010-09-08 Composite plated material, and electric component and electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201302A JP2012057212A (en) 2010-09-08 2010-09-08 Composite plated material, and electric component and electronic component using the same

Publications (1)

Publication Number Publication Date
JP2012057212A true JP2012057212A (en) 2012-03-22

Family

ID=46054657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201302A Pending JP2012057212A (en) 2010-09-08 2010-09-08 Composite plated material, and electric component and electronic component using the same

Country Status (1)

Country Link
JP (1) JP2012057212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091702A (en) * 2014-10-31 2016-05-23 北川工業株式会社 Contact member
JP2019525421A (en) * 2016-08-08 2019-09-05 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Electrical contact element for an electrical connector having a microstructured cavity under the contact surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091702A (en) * 2014-10-31 2016-05-23 北川工業株式会社 Contact member
JP2019525421A (en) * 2016-08-08 2019-09-05 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Electrical contact element for an electrical connector having a microstructured cavity under the contact surface
US11239593B2 (en) 2016-08-08 2022-02-01 Te Connectivity Germany Gmbh Electrical contact element for an electrical connector having microstructured caverns under the contact surface

Similar Documents

Publication Publication Date Title
JP4934456B2 (en) Plating material and electric / electronic component using the plating material
JP5355935B2 (en) Metal materials for electrical and electronic parts
JP4653133B2 (en) Plating material and electric / electronic component using the plating material
EP2811051B1 (en) Press-fit terminal and electronic component utilizing same
US9966163B2 (en) Electric contact material for connector and method for producing same
JP5255225B2 (en) Plating material having lubricating particles, method for producing the same, and electric / electronic component using the same
JP2007063624A (en) Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
EP2896724B1 (en) Tin-plated copper-alloy terminal material
JP2007280945A (en) Electric contact material and its manufacturing method
JP2008223143A (en) Plated material and method for preparation thereof, and electric and electronic parts using the same
WO2015108004A1 (en) Electrical contact material for connectors and method for producing same
JP2012062564A (en) Plating material and method for manufacturing the same
JP2010037629A (en) Conducting material for terminal and connector, and fitting-type connecting terminal
JP2009135097A (en) Metal material for electric and electronic equipment, method of manufacturing metal material for electric and electronic equipment
JP5654015B2 (en) Composite plating materials and electrical / electronic parts using them
US10998108B2 (en) Electrical contact material, method of producing an electrical contact material, and terminal
JP2008248295A (en) Plated material having lubricative particle, method of manufacturing the same and electric or electronic component using the same
JP2005344188A (en) Method for producing plating material and electrical/electronic component using the plating material
JP2012057212A (en) Composite plated material, and electric component and electronic component using the same
JP7060514B2 (en) Conductive strip
JP7470321B2 (en) Sn-graphene composite plating film metal terminal and its manufacturing method
JP2020056056A (en) Copper terminal material, copper terminal, and manufacturing method of copper terminal material
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP2019112666A (en) Conductive material