JP2019112666A - Conductive material - Google Patents

Conductive material Download PDF

Info

Publication number
JP2019112666A
JP2019112666A JP2017246109A JP2017246109A JP2019112666A JP 2019112666 A JP2019112666 A JP 2019112666A JP 2017246109 A JP2017246109 A JP 2017246109A JP 2017246109 A JP2017246109 A JP 2017246109A JP 2019112666 A JP2019112666 A JP 2019112666A
Authority
JP
Japan
Prior art keywords
layer
oxide
conductive material
intermetallic compound
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017246109A
Other languages
Japanese (ja)
Other versions
JP7335679B2 (en
Inventor
秀一 北河
Shuichi Kitagawa
秀一 北河
昭頼 橘
Akira Tachibana
昭頼 橘
良和 奥野
Yoshikazu Okuno
良和 奥野
恵人 藤井
Shigeto Fujii
恵人 藤井
達也 中津川
Tatsuya Nakatsugawa
達也 中津川
紳悟 川田
Shingo Kawata
紳悟 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2017246109A priority Critical patent/JP7335679B2/en
Publication of JP2019112666A publication Critical patent/JP2019112666A/en
Application granted granted Critical
Publication of JP7335679B2 publication Critical patent/JP7335679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a conductive material capable of maintaining excellent surface property under high temperature use.SOLUTION: There is provided a conductive material having a base material consisting of a Cu-based material, a Cu-Sn intermetallic compound layer, and a Sn layer in this order, the Cu-Sn intermetallic compound layer has thickness of 0.2 to 3.0 μm, crystal particle diameter of Sn in the Sn layer is less than 2 μm, the Sn layer has thickness of 0.05 to 5.0 μm, arithmetic average roughness Ra of a surface of the Sn layer is 0.15 μm to 3.0 μm, a Cu-Sn intermetallic compound is exposed at 3 to 75% by area percentage on a surface of the Sn layer, the Sn layer has an oxide layer with thickness of 50 nm or less as an outermost layer, the oxide layer contains Cu oxide and Sn oxide, and M/(M+M)×100 is 75 at% or more, wherein amount of Cu atoms constituting the Cu oxide is Mand Sn atoms constituting the Sn oxide is M.SELECTED DRAWING: Figure 1

Description

本発明は導電材、特に、リードフレーム、リレー、スイッチ、ソケット等の車載部品や電気電子部品での使用に好適な電気接点材に関するものである。   The present invention relates to a conductive material, and more particularly, to an electrical contact material suitable for use in on-vehicle parts such as lead frames, relays, switches and sockets, and in electric and electronic parts.

従来から車載部品や電気電子部品の電気接続部品として、リードフレーム、リレー、スイッチ、ソケット等が使用されている。これらのリードフレーム、リレー、スイッチ、ソケットの電気接点に用いる電気接点材には、従来から電気伝導性に優れたCu又はCu合金が利用されてきた。しかし、近年は電気接点材に、より優れた特性が要求されるようになり、電気接点材としてCu又はCu合金をそのまま用いるケースは減少している。そして、Cu又はCu合金に代わる電気接点材として、Cu又はCu合金上に各種の表面処理をした材料が製造・利用されている。特に、近年は電気接点材として、基材と、基材上にSn又はSn合金をめっきすることで得られるめっき層と、を有する導電材が汎用されている。   Conventionally, lead frames, relays, switches, sockets and the like have been used as electrical connection parts for in-vehicle parts and electric and electronic parts. Conventionally, Cu or a Cu alloy excellent in electrical conductivity has been used as an electrical contact material used for electrical contacts of these lead frames, relays, switches, and sockets. However, in recent years, better characteristics have been required for the electrical contact material, and the number of cases where Cu or a Cu alloy is used as it is is decreasing. Then, as an electrical contact material to replace Cu or a Cu alloy, materials in which various surface treatments are performed on Cu or a Cu alloy are manufactured and used. In particular, in recent years, a conductive material having a base and a plating layer obtained by plating Sn or a Sn alloy on the base is widely used as an electrical contact material.

このような電気接点材は、Cu又はCu合金からなる基材が優れた導電性と強度を有すること、めっき層が優れた電気接続性、耐食性及びはんだ付け性を有することから、高性能材料として知られている。このため、このような電気接点材は、電気・電子機器に用いられる各種の端子やコネクタなどに広く用いられている。また、このような電気接点材では通常、銅(Cu)などの基材の合金成分がめっき層に拡散するのを防止するため、基材上にバリア(バリヤ)機能を有するニッケル(Ni)、コバルト(Co)などが下地めっきされる。   Such an electrical contact material is a high performance material because the substrate made of Cu or Cu alloy has excellent conductivity and strength, and the plated layer has excellent electrical connectivity, corrosion resistance and solderability. Are known. For this reason, such an electrical contact material is widely used for various terminals, connectors, etc. used for electric and electronic devices. In addition, in such an electrical contact material, nickel (Ni) having a barrier function on the substrate is generally used to prevent the diffusion of alloy components of the substrate such as copper (Cu) into the plating layer. Cobalt (Co) or the like is plated.

更に、近年、車両の組み立て性向上等のための挿入力を下げる試みとして、めっき層及び下地層に加えて、硬いCu−Sn金属間化合物層を有する電気接点材が用いられている。   Furthermore, in recent years, in addition to the plating layer and the foundation layer, an electrical contact material having a hard Cu-Sn intermetallic compound layer is used as an attempt to reduce the insertion force for improving the assemblability of the vehicle and the like.

特許文献1(特開2015−151570号公報)は、銅合金板条を母材とし、その表面に下地層としてNi層、Cu−Sn金属間化合物層、及びSn層からなる表面被覆層がこの順に形成された表面被覆層付き銅合金板条を開示する(特許請求の範囲)。また、大気中で160℃×1000時間加熱後に、表面被覆層の材料表面に形成されるCuOを分析している(段落[0038])。 Patent Document 1 (Japanese Patent Laid-Open No. 2015-151570) uses a copper alloy sheet as a base material, and a surface covering layer consisting of a Ni layer, a Cu-Sn intermetallic compound layer, and an Sn layer as an underlayer on the surface thereof. Disclosed is a copper alloy sheet with a surface coating layer formed in order (claims). In addition, Cu 2 O formed on the material surface of the surface coating layer is analyzed after being heated at 160 ° C. for 1000 hours in the atmosphere (paragraph [0038]).

特許文献2(特表2001−526734号公報)は、銅又は銅ベース合金の基質(12)、基質(12)の部分を覆う錫又は錫ベース合金からなる被覆層(14)、基質(12)と被覆層(14)の間に介在する電着バリヤ層(16)、及び被覆層(14)の中に分散された銅−錫金属間化合物(38)を有する複合材料(10)を開示する(請求項6)。   Patent Document 2 (JP 2001-526734A) discloses a copper or copper base alloy substrate (12), a coating layer (14) made of tin or tin base alloy covering a portion of the substrate (12), a substrate (12) Disclosed is a composite material (10) having an electrodeposited barrier layer (16) interposed between the coating layer (14) and a copper-tin intermetallic compound (38) dispersed in the coating layer (14). (Claim 6).

特開2015−151570号公報JP, 2015-151570, A 特表2001−526734号公報Japanese Patent Publication No. 2001-526734

近年、電気接点材は高温環境下において使用されるケースが多くなっている。例えば、自動車のエンジンルーム内でのセンサー用電気接点材などは、100℃〜200℃等の高温環境下で使用される場合がある。このため、電気接点材には、従来の用途で想定された使用温度よりも高温であっても、安定的に表面特性を維持できる信頼性が求められるようになってきている。特に、高温使用下で電気接点材の表面特性に悪影響を与える原因としては、基材を構成する成分の表面層への拡散及び表面層の酸化が挙げられる。これにより電気接点材の最表面の接触抵抗が増大したり、摩擦係数が高くなったり、はんだ濡れ性が低下してしまうこと等が問題となっている。   In recent years, electrical contact materials are often used in high temperature environments. For example, a sensor electrical contact material or the like in an automobile engine room may be used in a high temperature environment such as 100 ° C. to 200 ° C. For this reason, the electrical contact material is required to have reliability capable of stably maintaining the surface characteristics even at a temperature higher than the use temperature assumed in the conventional application. In particular, the causes of adversely affecting the surface properties of the electrical contact material under high temperature use include the diffusion of the components constituting the substrate to the surface layer and the oxidation of the surface layer. As a result, the contact resistance on the outermost surface of the electrical contact material is increased, the coefficient of friction is increased, and the solder wettability is lowered.

特許文献1及び2では、高温環境下での使用における電気接点材の表面特性の低下に関して十分に検討がなされていなかった。   Patent Documents 1 and 2 have not sufficiently studied the deterioration of the surface characteristics of the electrical contact material in use in a high temperature environment.

本発明は上記課題に鑑みてなされたものである。すなわち、本発明は、導電材の表面に形成される酸化物層の特性を制御することにより、高温環境下での使用であっても導電材が優れた表面特性を維持できることを発見したことに基づくものである。   The present invention has been made in view of the above problems. That is, the present invention has found that by controlling the characteristics of the oxide layer formed on the surface of the conductive material, the conductive material can maintain excellent surface characteristics even when used in a high temperature environment. It is based.

本発明の要旨構成は以下のとおりである。
[1]Cu系材料からなる基材と、Cu−Sn金属間化合物層と、Sn層とをこの順に有する導電材であって、
前記Cu−Sn金属間化合物層は、0.2〜3.0μmの厚さを有し、
前記Sn層中のSnの結晶粒径は2μm未満であり、
前記Sn層は0.05〜5.0μmの厚さを有し、
前記Sn層の表面の算術平均粗さRaが0.15μm以上3.0μm以下であり、
前記Sn層の表面には面積比で3〜75%のCu−Sn金属間化合物が露出しており、
前記Sn層は最表層として50nm以下の厚さの酸化物層を有し、
前記酸化物層はCu酸化物及びSn酸化物を含有し、前記Cu酸化物を構成するCu原子の量をMCu、Sn酸化物を構成するSn原子の量をMSnとしたとき、MSn/(MCu+MSn)×100は75at%以上であることを特徴とする導電材。
[2]前記Cu酸化物はCuO及びCuOの少なくとも一方であり、前記Sn酸化物はSnO及びSnOの少なくとも一方であることを特徴とする上記[1]に記載の導電材。
[3]前記基材の導電率が30%IACS以上であり、
前記基材の、150℃で1000時間保持後の応力緩和率が25%以下であることを特徴とする上記[1]又は[2]に記載の導電材。
[4]前記基材と前記Cu−Sn金属間化合物層との間に更に、Cu層からなる下地層を有することを特徴とする上記[1]から[3]までのいずれか1項に記載の導電材。
[5]前記基材と前記Cu−Sn金属間化合物層との間に更に、Ni層、Co層及びFe層からなる群から選択される少なくとも1つの下地層を有し、
下地層全体の厚さが0.1〜3.0μmであることを特徴とする上記[1]から[3]までのいずれか1項に記載の導電材。
The essential features of the present invention are as follows.
[1] A conductive material having a base made of a Cu-based material, a Cu-Sn intermetallic compound layer, and an Sn layer in this order,
The Cu-Sn intermetallic compound layer has a thickness of 0.2 to 3.0 μm,
The crystal grain size of Sn in the Sn layer is less than 2 μm,
The Sn layer has a thickness of 0.05 to 5.0 μm,
Arithmetic mean roughness Ra of the surface of the Sn layer is 0.15 μm or more and 3.0 μm or less,
The Cu-Sn intermetallic compound of 3 to 75% in area ratio is exposed on the surface of the Sn layer,
The Sn layer has an oxide layer with a thickness of 50 nm or less as the outermost layer,
When the oxide layer contains Cu oxide and Sn oxide, the amount of Cu atoms constituting the Cu oxide M Cu, the amount of Sn atoms constituting the Sn oxide was M Sn, M Sn A conductive material characterized in that / (M Cu + M Sn ) × 100 is at least 75 at%.
[2] The conductive material according to [1], wherein the Cu oxide is at least one of CuO and Cu 2 O, and the Sn oxide is at least one of SnO and SnO 2 .
[3] The conductivity of the substrate is 30% IACS or more,
The conductive material according to the above [1] or [2], wherein a stress relaxation rate of the substrate after holding at 150 ° C. for 1000 hours is 25% or less.
[4] The underlayer according to any one of the above [1] to [3], further comprising an underlayer comprising a Cu layer between the substrate and the Cu-Sn intermetallic compound layer. Conductive material.
[5] Between the substrate and the Cu-Sn intermetallic compound layer, at least one underlayer selected from the group consisting of Ni layer, Co layer and Fe layer,
The conductive material according to any one of the above [1] to [3], wherein the thickness of the entire underlayer is 0.1 to 3.0 μm.

高温環境下での使用であっても優れた表面特性を維持できる導電材を提供できる。   It is possible to provide a conductive material capable of maintaining excellent surface characteristics even when used in a high temperature environment.

本発明の一実施形態に係る導電材を表す図である。It is a figure showing the electrically-conductive material which concerns on one Embodiment of this invention.

本発明の導電材は、Cu系材料からなる基材と、Cu−Sn金属間化合物層と、Sn層とをこの順に有する。   The conductive material of the present invention has a base made of a Cu-based material, a Cu-Sn intermetallic compound layer, and an Sn layer in this order.

図1は、本発明の一実施形態に係る導電材を表す概略図である。図1中、符号1は導電材、1AはSn層30の表面、10は基材、10Aは基材10の表面、20はCu−Sn金属間化合物層、40はSn層の最表層である酸化物層を表す。   FIG. 1 is a schematic view showing a conductive material according to an embodiment of the present invention. In FIG. 1, reference numeral 1 is a conductive material, 1A is a surface of an Sn layer 30, 10 is a base, 10A is a surface of a base 10, 20 is a Cu-Sn intermetallic compound layer, and 40 is the outermost layer of the Sn layer. Represents an oxide layer.

以下では、一実施形態の導電材を構成する各層について詳細に説明する。   Below, each layer which comprises the electrically-conductive material of one Embodiment is demonstrated in detail.

(Cu系材料からなる基材)
基材は、Cu系材料からなる。Cu系材料としては、Cuの単体や、Cuを含む合金が挙げられる。Cuを含む合金は、特に限定されないが、Cu−Zn、Cu−Ni−Si、Cu−Sn−Ni、Cu−Ni−Si−Zn−Sn−Mg等が挙げられる。また、基材の形状は、用途に応じて適宜選択すればよいが、好ましくは板材であり、線材とすることもできる。
(Base material made of Cu-based material)
The substrate is made of a Cu-based material. Examples of the Cu-based material include a single substance of Cu and an alloy containing Cu. The alloy containing Cu is not particularly limited, and examples thereof include Cu-Zn, Cu-Ni-Si, Cu-Sn-Ni, and Cu-Ni-Si-Zn-Sn-Mg. Further, the shape of the base material may be appropriately selected according to the application, but is preferably a plate material and may be a wire.

基材の導電率は30%IACS以上であることが好ましく、35%IACS以上であることがより好ましい。これにより、導電材全体として優れた導電性を有することができる。ここで、導電率(IACS;International Annealed Copper Standard)は、四端子法を用いて、20℃(±1℃)に管理された恒温槽中で測定することにより得ることができる。   The conductivity of the substrate is preferably 30% IACS or more, and more preferably 35% IACS or more. Thereby, it is possible to have excellent conductivity as the entire conductive material. Here, the conductivity (IACS; International Annealed Copper Standard) can be obtained by measurement in a thermostat controlled at 20 ° C. (± 1 ° C.) using a four-terminal method.

基材の、150℃で1000時間保持後の応力緩和率は25%以下であることが好ましく、20%以下であることがより好ましい。これにより、高温使用下において機械的強度の低下を防止し、例えばコネクタの接圧低下による接触抵抗の増大を防止できる。   The stress relaxation rate of the substrate after holding at 150 ° C. for 1000 hours is preferably 25% or less, more preferably 20% or less. Thereby, it is possible to prevent a decrease in mechanical strength under high temperature use and, for example, to prevent an increase in contact resistance due to a decrease in contact pressure of the connector.

ここで、応力緩和率(SRR:Stress Relaxation Ratio)は、日本伸銅協会 JCBA T309:2004「銅及び銅合金薄板条の曲げによる応力緩和試験方法」に準じ、片持ちはり法(片持ちはりブロック式ジグ使用)により、材料表面への初期負荷応力を0.2%耐力の80%とし、150℃で1000時間保持の条件で測定することができる。試験片は幅10mmの短冊形とし、圧延平行方向と試験片の長さ方向を一致させた。応力緩和率の算出方法は、特許第5307305号公報に記載された算出方法による。すなわち、熱処理前、試験台に片持ちで保持した試験片に、耐力の80%の初期応力を付与した時の試験片の先端の位置は、基準位置から距離δ0の高さにある。これを150℃の恒温槽に1000時間保持(初期応力を付与した状態で上記試験片を熱処理)し、負荷を除いた後の試験片の先端の位置は、上記基準位置から距離Htの高さにある。また、応力を負荷しなかった場合の試験片に対して上記の熱処理を行った場合の試験片の先端の位置は、上記基準位置から距離H1の高さにある。これらの関係から、応力緩和率(%)は(Ht−H1)/(δ0−H1)×100と算出した。   Here, the stress relaxation ratio (SRR: Stress Relaxation Ratio) is a cantilever beam method (cantilever beam block according to JCBA T309: 2004 “Stress relaxation test method by bending of copper and copper alloy thin strip”). By using the equation jig), the initial load stress on the material surface can be made 80% of 0.2% proof stress, and measurement can be performed under the condition of holding at 150 ° C. for 1000 hours. The test piece was a strip of 10 mm in width, and the rolling parallel direction coincided with the length direction of the test piece. The calculation method of the stress relaxation rate is based on the calculation method described in Japanese Patent No. 5307305. That is, before heat treatment, when the initial stress of 80% of the proof stress is applied to the test piece held in a cantilever manner on the test stand, the position of the tip of the test piece is at the height of distance δ0 from the reference position. This is held in a thermostat at 150 ° C. for 1000 hours (heat treatment of the test piece in the state where initial stress is applied), and the position of the tip of the test piece after removing the load is the height Ht from the reference position. It is in. Further, the position of the tip of the test piece when the above heat treatment is performed on the test piece when no stress is applied is at the height of the distance H1 from the reference position. From these relationships, the stress relaxation rate (%) was calculated as (Ht−H1) / (δ0−H1) × 100.

(Cu−Sn金属間化合物層)
Cu−Sn金属間化合物層は、20〜70at%のCuを含有することが好ましい。Cu−Sn金属間化合物層中のCu含量は30〜65at%がより好ましく、35〜60at%がさらに好ましい。また、Cu−Sn金属間化合物層はCu以外にSnを含有し、Cu−Sn金属間化合物層中のSn含量は25〜55at%が好ましく、30〜50at%がより好ましい。Cu−Sn金属間化合物層は上記のようなCu及びSn含量を有することにより、導電材全体を硬くして挿入力を下げることができる。Cu−Sn金属間化合物層中のCu含量はXPS(X−ray Photoelectron Spectroscopy)法によって測定できる。Cu−Sn金属間化合物としては例えば、CuSn、CuSnなどを挙げることができる。
(Cu-Sn intermetallic compound layer)
The Cu-Sn intermetallic compound layer preferably contains 20 to 70 at% of Cu. The Cu content in the Cu-Sn intermetallic compound layer is more preferably 30 to 65 at%, further preferably 35 to 60 at%. In addition to Cu, the Cu-Sn intermetallic compound layer contains Sn, and the Sn content in the Cu-Sn intermetallic compound layer is preferably 25 to 55 at%, more preferably 30 to 50 at%. The Cu-Sn intermetallic compound layer having the above-described Cu and Sn contents can harden the entire conductive material to reduce the insertion force. The Cu content in the Cu-Sn intermetallic compound layer can be measured by XPS (X-ray Photoelectron Spectroscopy). The Cu-Sn intermetallic compounds, for example, and the like Cu 6 Sn 5, Cu 3 Sn .

Cu−Sn金属間化合物層は、0.2〜3.0μmの厚さを有する。この厚さは後述する実施例に記載のアノード溶解法により測定する。Cu−Sn金属間化合物層の厚さは0.3〜2.0μmが好ましく、0.4〜1.0μmがより好ましい。Cu−Sn金属間化合物層がこれらの厚さを有することにより、優れた導電性及び加工性を両立することができる。   The Cu-Sn intermetallic compound layer has a thickness of 0.2 to 3.0 μm. This thickness is measured by the anodic dissolution method described in the examples described later. 0.3-2.0 micrometers is preferable and, as for the thickness of a Cu-Sn intermetallic compound layer, 0.4-1.0 micrometers is more preferable. When the Cu-Sn intermetallic compound layer has these thicknesses, it is possible to achieve both excellent conductivity and processability.

(Sn層)
Sn層中のSnの結晶粒径は2μm未満である。Snの結晶粒径は後述する実施例に記載の方法に従って測定する。Snの結晶粒径がこれらの範囲にあることにより、優れた光沢と良好な接触抵抗を両立することができる。
(Sn layer)
The crystal grain size of Sn in the Sn layer is less than 2 μm. The crystal grain size of Sn is measured according to the method described in the examples described later. When the grain size of Sn is in these ranges, both excellent gloss and good contact resistance can be achieved.

Sn層は0.05〜5.0μmの厚さを有する。この厚さは後述する実施例に記載のアノード溶解法により測定する。Sn層の厚さは0.1〜3μmが好ましい。Sn層がこれらの厚さを有することにより、良好な接触抵抗と耐食性を両立することができる。   The Sn layer has a thickness of 0.05 to 5.0 μm. This thickness is measured by the anodic dissolution method described in the examples described later. The thickness of the Sn layer is preferably 0.1 to 3 μm. When the Sn layer has these thicknesses, both good contact resistance and corrosion resistance can be achieved.

Sn層の表面の算術平均粗さRaは0.15μm以上3.0μm以下である。「算術平均粗さRa」とは、JIS B0601−2001で規定される粗さの1種である。算術平均粗さRaは後述する実施例に記載の条件により測定する。算術平均粗さRaは0.20〜2.0μmが好ましく、0.30〜1.0μmがより好ましい。   Arithmetic mean roughness Ra of the surface of Sn layer is 0.15 micrometer or more and 3.0 micrometers or less. The "arithmetic mean roughness Ra" is one of the roughnesses defined in JIS B0601-2001. Arithmetic mean roughness Ra is measured under the conditions described in the examples described later. The arithmetic average roughness Ra is preferably 0.20 to 2.0 μm, and more preferably 0.30 to 1.0 μm.

Sn層の表面には面積比で3〜75%のCu−Sn金属間化合物が露出している。Sn層の表面に露出するCu−Sn金属間化合物の面積比は10〜60%が好ましく、20〜50%がより好ましい。Sn層の表面に露出したCu−Sn金属間化合物の面積比は、後述する実施例に記載の方法により測定する。   On the surface of the Sn layer, a Cu-Sn intermetallic compound of 3 to 75% in area ratio is exposed. 10 to 60% of the area ratio of the Cu-Sn intermetallic compound exposed to the surface of Sn layer is preferable, and 20 to 50% is more preferable. The area ratio of the Cu-Sn intermetallic compound exposed to the surface of Sn layer is measured by the method as described in the Example mentioned later.

算術平均粗さRa及びSn層の表面のCu−Sn金属間化合物の面積比を上記範囲にすることによって導電材表面の摩擦係数を低減することができる。なお、上記の「Sn層の表面」とは、図1で1Aとして示されるように、Sn層の互いに対向する2つの面のうち、Cu−Sn金属間化合物層側と反対側に位置する面を意味する。   The coefficient of friction on the surface of the conductive material can be reduced by setting the area ratio of the arithmetic average roughness Ra and the Cu—Sn intermetallic compound on the surface of the Sn layer to the above range. In addition, the above-mentioned "surface of Sn layer" is a surface located on the opposite side to the Cu-Sn intermetallic compound layer side among two mutually opposing surfaces of Sn layer as shown as 1A in FIG. Means

(酸化物層)
Sn層は最表層として50nm以下の厚さの酸化物層を有する。「Sn層の最表層」とは、図1で40として示されるように、Sn層の互いに対向する2つの面のうちCu−Sn金属間化合物層側と反対側に位置する面を含む層を表す。酸化物層の厚さは後述する実施例に記載のカソード還元法により測定する。酸化物層の厚さが50nm以下であることにより導電材の接触抵抗を低くすることができる。酸化物層の厚さは5〜40nmが好ましく、10〜30nmがより好ましい。
(Oxide layer)
The Sn layer has an oxide layer with a thickness of 50 nm or less as the outermost layer. “The outermost layer of the Sn layer” refers to a layer including a surface located on the opposite side to the Cu—Sn intermetallic compound layer side of two mutually opposing surfaces of the Sn layer as shown as 40 in FIG. Represent. The thickness of the oxide layer is measured by the cathode reduction method described in the examples to be described later. When the thickness of the oxide layer is 50 nm or less, the contact resistance of the conductive material can be reduced. 5-40 nm is preferable and, as for the thickness of an oxide layer, 10-30 nm is more preferable.

酸化物層はCu酸化物及びSn酸化物を含有する。Cu酸化物としてはCuO、CuO、Sn酸化物としてはSnO2、SnO等を挙げることができる。酸化物層は、Cu酸化物としてCuO及びCuOの少なくとも一方を含有し、Sn酸化物としてSnO及びSnOの少なくとも一方を含有することができる。 The oxide layer contains Cu oxide and Sn oxide. Examples of the Cu oxide include Cu 2 O and CuO, and examples of the Sn oxide include SnO 2 and SnO. The oxide layer can contain at least one of CuO and Cu 2 O as a Cu oxide, and can contain at least one of SnO and SnO 2 as a Sn oxide.

酸化物層において、Cu酸化物を構成するCu原子の量をMCu、Sn酸化物を構成するSn原子の量をMSnとしたとき、MSn/(MCu+MSn)×100は75at%以上である。MSn/(MCu+MSn)×100は後述する実施例に記載の方法に従って測定する。MSn/(MCu+MSn)×100が75at%以上であることにより、導電材は低い接触抵抗を有することができる。また、Sn層の表面にはSnが多く存在するため、はんだとの親和性が高くなりSn表面のはんだ濡れ性を向上させることができる。MSn/(MCu+MSn)×100は、75〜95at%が好ましく、85〜95at%がより好ましい。 In the oxide layer, the amount of M Cu of Cu atoms constituting the Cu oxide, when the amount of Sn atoms constituting the Sn oxide was M Sn, M Sn / (M Cu + M Sn) × 100 is 75 at% It is above. M Sn / (M Cu + M Sn ) × 100 is measured according to the method described in the examples described later. The conductive material can have a low contact resistance because M 3 Sn / (M Cu + M 3 Sn ) × 100 is at least 75 at%. Further, since a large amount of Sn is present on the surface of the Sn layer, the affinity with the solder is enhanced, and the solder wettability of the Sn surface can be improved. 75 to 95 at% is preferable and 85 to 95 at% is more preferable for M Sn / (M Cu + M Sn ) × 100.

また、Sn層の表面のCu−Sn金属間化合物の面積比が3〜10%のとき、MSn/(MCu+MSn)×100は、90〜99at%が好ましく、95〜99at%がより好ましい。更に、Sn層の表面のCu−Sn金属間化合物の面積比が3〜5%のとき、MSn/(MCu+MSn)×100は、95〜98at%が好ましく、98〜99at%がより好ましい。 Moreover, when the area ratio of the Cu-Sn intermetallic compound on the surface of the Sn layer is 3 to 10%, 90 to 99 at% is preferable, and 95 to 99 at% is more preferable for M Sn / (M Cu + M Sn ) × 100. preferable. Furthermore, when the area ratio of the Cu—Sn intermetallic compound on the surface of the Sn layer is 3 to 5%, 95 to 98 at% is preferable, and 98 to 99 at% is more preferable for M Sn / (M Cu + M Sn ) × 100. preferable.

(下地層)
導電材は、基材と、Cu−Sn金属間化合物層との間に下地層として他の層を有することができる。下地層としては、Cu層、Ni層、Co層及びFe層等が挙げられる。下地層としては、Ni層、Co層及びFe層からなる群から選択される少なくとも1つの層が好ましく、Cu層がより好ましい。基材と、Cu−Sn金属間化合物層との間に上記のような層を設けることにより、基材中のCuが他の層に過度に拡散して導電材の特性が劣化することを防止できる。下地層全体の厚さは0.1〜3.0μmが好ましく、0.3〜1.5μmがより好ましい。下地層の厚さは後述する実施例に記載の方法により測定する。
(Underlayer)
The conductive material can have another layer as a base layer between the substrate and the Cu-Sn intermetallic compound layer. Examples of the underlayer include a Cu layer, a Ni layer, a Co layer, and an Fe layer. The underlayer is preferably at least one layer selected from the group consisting of a Ni layer, a Co layer and an Fe layer, more preferably a Cu layer. By providing the above layer between the substrate and the Cu-Sn intermetallic compound layer, it is prevented that the Cu in the substrate is excessively diffused to other layers to deteriorate the characteristics of the conductive material. it can. 0.1-3.0 micrometers is preferable and, as for the thickness of the whole foundation layer, 0.3-1.5 micrometers is more preferable. The thickness of the underlayer is measured by the method described in the examples described later.

(導電材の製造方法)
一実施形態の導電材は例えば、基材上に、めっきによりSn層を形成した後、熱処理工程を行うことによって得ることができる。また、基材とSn層との間に下地層を設ける場合には、下地層もめっきにより形成することができる。この熱処理時に、めっきにより形成されたSn層中に、基材を構成するCu原子が拡散してCu−Sn金属間化合物層が形成されると共に、Sn層の最表面が酸化されて酸化物層が形成される。
(Method of manufacturing conductive material)
The conductive material of one embodiment can be obtained, for example, by performing a heat treatment step after forming a Sn layer by plating on a substrate. Moreover, when providing a base layer between a base material and Sn layer, a base layer can also be formed by plating. During this heat treatment, Cu atoms constituting the base material diffuse into the Sn layer formed by plating to form a Cu-Sn intermetallic compound layer, and the outermost surface of the Sn layer is oxidized to form an oxide layer. Is formed.

めっきにより下地層及びSn層を形成する方法は、特に限定されないが、例えば電解めっきや無電解めっきのような湿式めっき、蒸着やスパッタのような乾式めっき等が挙げられる。中でも、湿式めっきが好ましく、特に電解めっきがより好ましい。この際、めっき条件は、めっき方法や、めっき層の種類やその厚さ、その後の熱処理の温度や保持時間等に応じて適宜調整すればよい。   The method for forming the underlayer and the Sn layer by plating is not particularly limited, and examples thereof include wet plating such as electrolytic plating and electroless plating, and dry plating such as vapor deposition and sputtering. Among them, wet plating is preferable, and in particular, electrolytic plating is more preferable. At this time, the plating conditions may be appropriately adjusted in accordance with the plating method, the type and thickness of the plating layer, the temperature and holding time of the heat treatment thereafter, and the like.

熱処理工程は、本発明の導電材が得られる条件に設定する。熱処理時の処理温度は232〜900℃が好ましく、300〜600℃がより好ましい。熱処理時の処理時間は1〜180秒が好ましく、3〜30秒がより好ましい。   The heat treatment step is set to the conditions under which the conductive material of the present invention can be obtained. 232-900 degreeC is preferable and, as for the processing temperature at the time of heat processing, 300-600 degreeC is more preferable. 1 to 180 seconds are preferable and, as for the processing time at the time of heat processing, 3 to 30 seconds are more preferable.

上記のような熱処理を行う装置としては、バーナー、バッチ炉、通電アニール等を用いることができる。また、熱処理後の導電材を冷却する冷却工程を含むことが好ましい。冷却工程の条件は、必要に応じて適宜設定すればよい。   A burner, a batch furnace, electric conduction annealing, etc. can be used as an apparatus which performs the above heat processing. Moreover, it is preferable to include the cooling process which cools the electrically-conductive material after heat processing. The conditions of the cooling step may be appropriately set as needed.

(導電材の用途)
一実施形態の導電材は、導電性が要求される様々な物の製造に利用できる。導電材は好ましくは、リードフレーム、リレー、スイッチ、ソケット等の車載部品や電気電子部品のための電気接点材として使用できる。一実施形態の導電材は例えば、自動車ハーネス用のコネクタ端子、携帯電話搭載のコンタクトスイッチ、メモリーカードやPCカードの端子など、繰返しの挿抜や摺動を伴う電気接点材として好適に用いることができる。
(Use of conductive material)
The conductive material of one embodiment can be used to manufacture various materials that require conductivity. The conductive material can preferably be used as an electrical contact material for automotive parts such as lead frames, relays, switches, sockets, etc. and electrical and electronic parts. The conductive material according to one embodiment can be suitably used as, for example, a connector terminal for a car harness, a contact switch mounted on a mobile phone, a terminal of a memory card or a PC card, etc. .

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept and claims of the present invention, and various modifications are possible within the scope of the present invention Can be modified.

以下では、本発明の効果をさらに明確にするために、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。   In the following, examples and comparative examples will be described to further clarify the effects of the present invention, but the present invention is not limited to these examples.

(実施例1〜24及び比較例1〜8)
基材として、圧延により製造された厚さ0.64mmのCu合金板(Cu−Ni−Si系合金板)を用い、これに、以下のめっき条件で、Ni、CuおよびSnの各めっき処理を順次行い、熱処理後の各層の膜厚が所望の厚さとなるように各めっき層を形成し、その後、以下の熱処理工程で熱処理を施した。
(Examples 1 to 24 and Comparative Examples 1 to 8)
As a substrate, using a 0.64 mm thick Cu alloy plate (Cu-Ni-Si alloy plate) manufactured by rolling, Ni, Cu, and Sn are plated on the following plating conditions. Each plating layer was formed sequentially so that the film thickness of each layer after the heat treatment became a desired thickness, and then heat treatment was performed in the following heat treatment process.

[Niめっき条件]
Niめっきは、Ni(NHSO・4HO 500g/リットル、NiCl・6HO 30g/リットル、HBO 30g/リットルで調整されためっき液を用い、浴温55℃、陰極電流密度10A/dmにて行った。ここで、Niめっき層は、上記基材の全面に形成した。
[Ni plating conditions]
Ni plating uses a plating solution prepared with Ni (NH 2 SO 3 ) 2 · 4 H 2 O 500 g / liter, NiCl 2 · 6 H 2 O 30 g / liter, and H 3 BO 3 30 g / liter, and the bath temperature is 55 ° C. , Cathode current density 10 A / dm 2 . Here, the Ni plating layer was formed on the entire surface of the substrate.

[Cuめっき条件]
Cuめっきは、CuSO・5HO 250g/リットル、HSO 50g/リットルで調整されためっき液を用い、浴温40℃、陰極電流密度10A/dmにて行った。ここで、Cuめっき層は、上記Niめっきを施した基材の全面に形成した。
[Cu plating conditions]
Cu plating was performed at a bath temperature of 40 ° C. and a cathode current density of 10 A / dm 2 using a plating solution adjusted with CuSO 4 .5H 2 O 250 g / L and H 2 SO 4 50 g / L. Here, the Cu plating layer was formed on the entire surface of the Ni-plated substrate.

[Snめっき条件]
Snめっきは、SnSO 80g/リットル、HSO 80g/リットルで調整されためっき液を用い、浴温25℃、陰極電流密度2A/dmにて行った。ここで、Snめっき層は、上記NiめっきおよびCuめっきを施した基材の全面に形成した。
[Sn plating conditions]
Sn plating was performed at a bath temperature of 25 ° C. and a cathode current density of 2 A / dm 2 using a plating solution adjusted with SnSO 4 80 g / liter and H 2 SO 4 80 g / liter. Here, the Sn plating layer was formed on the entire surface of the above-described Ni-plated and Cu-plated substrate.

(評価)
上記実施例および比較例で作製した導電材について、下記に示す測定を行った。各測定の方法及び条件は下記の通りである。
(Evaluation)
The measurement shown below was performed about the electrically-conductive material produced by the said Example and comparative example. The method and conditions of each measurement are as follows.

[算術平均粗さRa]
算術平均粗さRaの測定条件は、カットオフ値0.8mm、基準長さ0.8mm、評価長さ4.0mm、測定速度0.1mm/sとした。
[Arithmetic mean roughness Ra]
The measurement conditions of the arithmetic average roughness Ra were a cutoff value of 0.8 mm, a reference length of 0.8 mm, an evaluation length of 4.0 mm, and a measurement speed of 0.1 mm / s.

[Sn層の表面に露出したCu−Sn金属間化合物の面積比]
試料の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察し、得られた画像の解析によりSn層の表面に露出しているCu−Sn金属間化合物層の領域を判定した。そして、この画像の全体に面積に対するCu−Sn金属間化合物層の領域の面積を算出することにより、「Sn層の表面に露出したCu−Sn金属間化合物の面積比」を得た。
[Area ratio of Cu-Sn intermetallic compound exposed on the surface of Sn layer]
The surface of the sample is observed at a magnification of 200 times using an SEM (scanning electron microscope) equipped with an EDX (energy dispersive X-ray spectrometer), and the resulting image is exposed on the surface of the Sn layer The area of the Cu--Sn intermetallic compound layer was determined. And "the area ratio of the Cu-Sn intermetallic compound exposed on the surface of Sn layer" was obtained by calculating the area of the area | region of the Cu-Sn intermetallic compound layer with respect to the area over the whole image.

[Ni層、Cu層、Cu−Sn金属間化合物層、Sn層、酸化物層の厚さ]
Ni層、Cu層、Cu−Sn金属間化合物層、Sn層の厚さは、アノード溶解法により測定した。酸化物層の厚さは、カソード還元法により測定した。また、各層の厚さの確認のため、画像解析法によっても厚さの測定を行った。アノード溶解法、画像解析法、及びカソード還元法による厚さの測定手順及び条件を以下に示す。
(1)アノード溶解法
処理サイズに切り出したサンプルを、測定面積を残してマスキングした後にコクール社の電解液に浸漬し、電流密度2A/dmで各層が溶解するまで電解した。電解に要した時間から電気量を求め、めっき厚に換算した。
(2)画像解析法
日本電子社のクロスセクションポリッシャを用いて、めっき断面試料を作成し、走査型電子顕微鏡にて断面を撮影した。撮影した画像よりめっきに相当する部分の厚みを割り出した。
(3)カソード還元法
所定サイズに切り出したサンプルを、測定面積を残してマスキングした後、塩化カリウムの水溶液に浸漬し、電流密度1A/dmで電解した。電解に要した時間から還元電気量を求め、電気量から酸化膜厚を導出した。
[Thickness of Ni layer, Cu layer, Cu-Sn intermetallic compound layer, Sn layer, oxide layer]
The thicknesses of the Ni layer, the Cu layer, the Cu-Sn intermetallic compound layer, and the Sn layer were measured by the anodic dissolution method. The thickness of the oxide layer was measured by the cathode reduction method. In addition, in order to confirm the thickness of each layer, the thickness was also measured by an image analysis method. The measurement procedure and conditions of thickness by the anodic dissolution method, the image analysis method, and the cathode reduction method are shown below.
(1) Anode Dissolution Method A sample cut out to a treatment size was masked leaving a measurement area, and then immersed in an electrolyte of Cocool Co., Ltd. and electrolyzed at a current density of 2 A / dm 2 until each layer was dissolved. The amount of electricity was determined from the time required for the electrolysis and converted to the plating thickness.
(2) Image Analysis Method A plated cross-section sample was prepared using a cross section polisher of Nippon Denshi Co., and the cross section was photographed with a scanning electron microscope. The thickness of the portion corresponding to plating was determined from the photographed image.
(3) Cathode Reduction Method A sample cut into a predetermined size was masked leaving a measurement area, and then immersed in an aqueous solution of potassium chloride to electrolyze at a current density of 1 A / dm 2 . The amount of reduction electricity was determined from the time required for the electrolysis, and the oxide film thickness was derived from the amount of electricity.

[Sn層中のSnの結晶粒径]
サンプルをFIB(Focused Ion Beam)によって切断し、断面SIM(Secondary Ion Micrography)像(20000倍)を撮影する。この画像に矩形を描き、その矩形の面積を矩形中に含まれるSnの結晶粒の数で除し、Snの1粒子当たりの平均面積をもとにSnの結晶粒径を算出した。
[Grain size of Sn in the Sn layer]
The sample is cut by FIB (Focused Ion Beam), and a cross-sectional SIM (Secondary Ion Micrography) image (20,000 ×) is taken. A rectangle is drawn on this image, the area of the rectangle is divided by the number of Sn crystal grains contained in the rectangle, and the grain size of Sn is calculated based on the average area per one particle of Sn.

[酸化物層中のMSn/(MCu+MSn)×100]
(1)電気接点材の表面を、XPS測定装置ESCA5400MC(アルバック・ファイ株式会社)を使用し、XPSスペクトルを測定した。測定は、X線種単色化Al−kα線源、出力10W、検出面積1mmφ、検出角度(試料と検出器のなす角)135°にて行った。
(2)次に、上記(1)で得られた測定スペクトルデータから、結合エネルギー485〜487eVの範囲に現れるSn(3d5/2)軌道を解析し、ピークを構成するSn、SnOおよびSnOの各成分の比率を求め、これらの合計比率に対する各成分比率の割合から、MSnを算出した。解析は、解析ソフトMultiPak(アルバック・ファイ株式会社)を用い、ピークフィッティング解析により行った。解析において、C(炭素)1sのピークトップは、284.80eVと規定した。バックグラウンドの除去は、Shirley(ピーク強度に比例した曲線を除去するMethod)を選択した。また、ピークの同定は、ピークトップの値(結合エネルギー)を、Snは485.1eV、SnOは486.1eV、SnOは486.8eVに、それぞれ固定して行った。フィッティング関数は、Gaussian関数とLorentzian関数の混合関数を用い、関数全体に占めるGaussian関数の混合比を80%で固定した。
(3)上記(1)および(2)の分析と解析を、Sn被覆材の表面の中央近傍の任意の5か所で同様に行い、各成分の割合をそれぞれ平均し(N=5)、各成分の割合(%)とした。
(4)同様にして、上記(1)で得られた測定スペクトルデータから、結合エネルギー932〜934eVの範囲に現れるCu軌道を解析し、ピークを構成するCu、CuOおよびCuOの各成分の比率を求め、これらの合計比率に対する各成分比率の割合から、MCuを算出した。
(5)上記のようにして得られたMSnおよびMCuの値から、MSn/(MCu+MSn)×100を算出した。
[M Sn / (M Cu + M Sn ) × 100 in the oxide layer]
(1) The XPS spectrum of the surface of the electrical contact material was measured using an XPS measurement apparatus ESCA5400MC (ULVAC-PHI, Inc.). The measurement was performed at an X-ray type monochromatized Al-k alpha ray source, an output of 10 W, a detection area of 1 mmφ, and a detection angle of 135 ° (an angle formed by the sample and the detector).
(2) Next, from the measured spectrum data obtained in (1) above, the Sn (3d5 / 2) orbital appearing in the range of binding energy 485 to 487 eV is analyzed, and the peaks Sn, SnO and SnO 2 The ratio of each component was calculated | required and MSn was computed from the ratio of each component ratio with respect to these total ratios. The analysis was performed by peak fitting analysis using analysis software MultiPak (ULVAC-PHI, Inc.). In the analysis, the peak top of C (carbon) 1 s was defined as 284.80 eV. For background removal, Shirley (a method that removes the curve proportional to the peak intensity) was selected. The peaks were identified by fixing the peak top value (binding energy) at 485.1 eV for Sn, 486.1 eV for SnO, and 486.8 eV for SnO 2 . The fitting function is a mixture of Gaussian and Lorentzian functions, and the mixing ratio of Gaussian functions in the entire function is fixed at 80%.
(3) The analysis and analysis of the above (1) and (2) are similarly performed at any five places near the center of the surface of the Sn coating material, and the ratios of the respective components are averaged (N = 5), It was taken as the ratio (%) of each component.
(4) Similarly, Cu orbitals appearing in the range of binding energy 932 to 934 eV are analyzed from the measured spectrum data obtained in the above (1), and Cu, CuO and Cu 2 O constituting the peaks The ratio was determined, and M Cu was calculated from the ratio of each component ratio to the total ratio.
(5) M Sn / (M Cu + M Sn ) × 100 was calculated from the values of M Sn and M Cu obtained as described above.

[はんだ濡れ性]
はんだ濡れ性は、メニスコグラフ法によって測定を行った。装置はレスカ社のソルダーチェッカーSAT−5100を用いた。角線表面に、25%のロジンと残部イソプロピルアルコールから構成されるフラックスを塗布した後、260℃に保持したSn−3.0Ag−0.5Cuの鉛フリーはんだ浴に浸漬して3秒保持後、引き上げた。
[Solder wettability]
The solder wettability was measured by the Meniscograph method. The apparatus used a solder checker SAT-5100 manufactured by Lesca. After applying a flux consisting of 25% rosin and the balance isopropyl alcohol on the surface of the square wire, it is immersed in a lead-free solder bath of Sn-3.0Ag-0.5Cu maintained at 260 ° C and maintained for 3 seconds , Pulled up.

[摩擦係数]
表面性測定機(新東科学株式会社、TYPE:14)を用い、張り出し材(表層に膜厚1μmのSn層を有するFAS680、張り出し部の曲率半径が0.5mm)に対し、移動速度100mm/min、接触荷重を3Nで、導電材を5回摺動させ、5回目の摺動時の数値を摩耗係数として測定した。
[Coefficient of friction]
Using a surface property measuring machine (Shinto Kagaku Co., Ltd., TYPE: 14), the moving speed is 100 mm for an overhanging material (FAS 680 with a 1 μm thick Sn layer on the surface, radius of curvature of overhanging portion 0.5 mm) The conductive material was slid five times at a contact load of 3 N and the value at the fifth sliding was measured as the wear coefficient.

[接触抵抗値]
導電材と張り出し材(表層に膜厚1μmのSn層を有するFAS680、張り出し部の曲率半径が0.5mm)とが接触した界面に生じる電気抵抗を、四端子法により測定して求めた。DC電流源としてTFFケースレーインスツルメンツ社の6220型DC電流ソースを用い、電気抵抗の測定には電流測定器(同社 2182A型ナノボルトメータ)を用いた。任意の5箇所における接触抵抗値を測定し、各々平均値(N=5)を算出した。
[Contact resistance]
The electrical resistance generated at the interface where the conductive material and the overhanging material (FAS 680 having a Sn layer with a film thickness of 1 μm in the surface layer, the radius of curvature of the overhanging portion is 0.5 mm) was measured by four-terminal method. A TFF Caseley Instruments 6220 type DC current source was used as a DC current source, and a current measuring instrument (the company 2182A nanovoltmeter) was used to measure the electrical resistance. The contact resistance values at arbitrary five points were measured, and the average value (N = 5) was calculated for each.

実施例1〜24及び比較例1〜8の熱処理条件を下記表1及び2に示す。   The heat treatment conditions of Examples 1 to 24 and Comparative Examples 1 to 8 are shown in Tables 1 and 2 below.

Figure 2019112666
Figure 2019112666

Figure 2019112666
Figure 2019112666

実施例1〜24及び比較例1〜8で得られた導電材について、アノード溶解法によるNi層、Cu層、Cu−Sn金属間化合物層及びSn層の厚さ、並びにカソード還元法による酸化物層の厚さの測定結果を下記表3及び4に示し、画像解析法による各層の厚さの測定結果を下記表5及び6に示す。   Regarding the conductive materials obtained in Examples 1 to 24 and Comparative Examples 1 to 8, the thicknesses of Ni layer, Cu layer, Cu-Sn intermetallic compound layer and Sn layer by anodic dissolution method, and oxide by cathode reduction method The measurement results of the layer thickness are shown in Tables 3 and 4 below, and the measurement results of the thickness of each layer by image analysis are shown in Tables 5 and 6 below.

Figure 2019112666
Figure 2019112666

Figure 2019112666
Figure 2019112666

Figure 2019112666
Figure 2019112666

Figure 2019112666
Figure 2019112666

実施例1〜24及び比較例1〜8で得られた導電材の各特性値の測定結果を下記表7及び8に示す。   The measurement results of the respective characteristic values of the conductive materials obtained in Examples 1 to 24 and Comparative Examples 1 to 8 are shown in Tables 7 and 8 below.

Figure 2019112666
Figure 2019112666

Figure 2019112666
Figure 2019112666

実施例1〜24及び比較例1〜8で得られた導電材の評価結果を下記表9及び10に示す。   The evaluation results of the conductive materials obtained in Examples 1 to 24 and Comparative Examples 1 to 8 are shown in Tables 9 and 10 below.

Figure 2019112666
Figure 2019112666

Figure 2019112666
Figure 2019112666

上記表9及び10の結果より、比較例1〜8と比較して実施例1〜24では、優れたはんだ濡れ性、摩耗係数、及び接触抵抗値を有する導電材が得られたことが分かる。   From the results of Tables 9 and 10, it can be seen that in Examples 1 to 24 compared with Comparative Examples 1 to 8, a conductive material having excellent solder wettability, wear coefficient, and contact resistance value was obtained.

1 導電材
1A Sn層の表面
10 基材
10A 基材の表面
20 Cu−Sn金属間化合物層
40 酸化物層
DESCRIPTION OF SYMBOLS 1 Surface of conductive material 1A Sn layer 10 Base material 10A Surface 20 of base material Cu-Sn intermetallic compound layer 40 Oxide layer

Claims (5)

Cu系材料からなる基材と、Cu−Sn金属間化合物層と、Sn層とをこの順に有する導電材であって、
前記Cu−Sn金属間化合物層は、0.2〜3.0μmの厚さを有し、
前記Sn層中のSnの結晶粒径は2μm未満であり、
前記Sn層は0.05〜5.0μmの厚さを有し、
前記Sn層の表面の算術平均粗さRaが0.15μm以上3.0μm以下であり、
前記Sn層の表面には面積比で3〜75%のCu−Sn金属間化合物が露出しており、
前記Sn層は最表層として50nm以下の厚さの酸化物層を有し、
前記酸化物層はCu酸化物及びSn酸化物を含有し、前記Cu酸化物を構成するCu原子の量をMCu、Sn酸化物を構成するSn原子の量をMSnとしたとき、MSn/(MCu+MSn)×100は75at%以上であることを特徴とする導電材。
A conductive material having a base made of a Cu-based material, a Cu-Sn intermetallic compound layer, and an Sn layer in this order,
The Cu-Sn intermetallic compound layer has a thickness of 0.2 to 3.0 μm,
The crystal grain size of Sn in the Sn layer is less than 2 μm,
The Sn layer has a thickness of 0.05 to 5.0 μm,
Arithmetic mean roughness Ra of the surface of the Sn layer is 0.15 μm or more and 3.0 μm or less,
The Cu-Sn intermetallic compound of 3 to 75% in area ratio is exposed on the surface of the Sn layer,
The Sn layer has an oxide layer with a thickness of 50 nm or less as the outermost layer,
When the oxide layer contains Cu oxide and Sn oxide, the amount of Cu atoms constituting the Cu oxide M Cu, the amount of Sn atoms constituting the Sn oxide was M Sn, M Sn A conductive material characterized in that / (M Cu + M Sn ) × 100 is at least 75 at%.
前記Cu酸化物はCuO及びCuOの少なくとも一方であり、前記Sn酸化物はSnO及びSnOの少なくとも一方であることを特徴とする請求項1に記載の導電材。 The conductive material according to claim 1, wherein the Cu oxide is at least one of CuO and Cu 2 O, and the Sn oxide is at least one of SnO and SnO 2 . 前記基材の導電率が30%IACS以上であり、
前記基材の、150℃で1000時間保持後の応力緩和率が25%以下であることを特徴とする請求項1又は2に記載の導電材。
The conductivity of the substrate is at least 30% IACS,
The conductive material according to claim 1 or 2, wherein a stress relaxation rate of the substrate after holding at 150 ° C for 1000 hours is 25% or less.
前記基材と前記Cu−Sn金属間化合物層との間に更に、Cu層からなる下地層を有することを特徴とする請求項1から3までのいずれか1項に記載の導電材。   The conductive material according to any one of claims 1 to 3, further comprising an underlayer formed of a Cu layer between the base and the Cu-Sn intermetallic compound layer. 前記基材と前記Cu−Sn金属間化合物層との間に更に、Ni層、Co層及びFe層からなる群から選択される少なくとも1つの下地層を有し、
下地層全体の厚さが0.1〜3.0μmであることを特徴とする請求項1から3までのいずれか1項に記載の導電材。
Between the substrate and the Cu-Sn intermetallic compound layer, at least one underlayer selected from the group consisting of Ni layer, Co layer and Fe layer,
The thickness of the whole base layer is 0.1-3.0 micrometers, The electrically-conductive material of any one of Claim 1 to 3 characterized by the above-mentioned.
JP2017246109A 2017-12-22 2017-12-22 conductive material Active JP7335679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246109A JP7335679B2 (en) 2017-12-22 2017-12-22 conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246109A JP7335679B2 (en) 2017-12-22 2017-12-22 conductive material

Publications (2)

Publication Number Publication Date
JP2019112666A true JP2019112666A (en) 2019-07-11
JP7335679B2 JP7335679B2 (en) 2023-08-30

Family

ID=67222293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246109A Active JP7335679B2 (en) 2017-12-22 2017-12-22 conductive material

Country Status (1)

Country Link
JP (1) JP7335679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176952A1 (en) * 2021-02-17 2022-08-25 株式会社オートネットワーク技術研究所 Material for electrical connection member, electrical connection member, and method for manufacturing material for electrical connection member
WO2022176951A1 (en) * 2021-02-17 2022-08-25 株式会社オートネットワーク技術研究所 Material for electrical connection members, electrical connection member, and production method for material for electrical connection members

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270266A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Sn-PLATED COPPER ALLOY MATERIAL AND ITS MANUFACTURING METHOD
JP2015151570A (en) * 2014-02-13 2015-08-24 株式会社神戸製鋼所 Copper alloy sheet strip with surface coating layer excellent in heat resistance
JP2015180770A (en) * 2014-03-04 2015-10-15 Dowaメタルテック株式会社 Sn PLATED MATERIAL AND PRODUCTION METHOD THEREOF
JP2016044358A (en) * 2014-08-27 2016-04-04 株式会社神戸製鋼所 Conductive material for connection part excellent in minute slide abrasion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270266A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Sn-PLATED COPPER ALLOY MATERIAL AND ITS MANUFACTURING METHOD
JP2015151570A (en) * 2014-02-13 2015-08-24 株式会社神戸製鋼所 Copper alloy sheet strip with surface coating layer excellent in heat resistance
JP2015180770A (en) * 2014-03-04 2015-10-15 Dowaメタルテック株式会社 Sn PLATED MATERIAL AND PRODUCTION METHOD THEREOF
JP2016044358A (en) * 2014-08-27 2016-04-04 株式会社神戸製鋼所 Conductive material for connection part excellent in minute slide abrasion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176952A1 (en) * 2021-02-17 2022-08-25 株式会社オートネットワーク技術研究所 Material for electrical connection member, electrical connection member, and method for manufacturing material for electrical connection member
WO2022176951A1 (en) * 2021-02-17 2022-08-25 株式会社オートネットワーク技術研究所 Material for electrical connection members, electrical connection member, and production method for material for electrical connection members

Also Published As

Publication number Publication date
JP7335679B2 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
CA2240239C (en) Tin coated electrical connector
EP2620275B1 (en) Tin-plated copper-alloy material for terminal and method for producing the same
EP2743381B1 (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
JP2007063624A (en) Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
US7972709B2 (en) Cu-Zn alloy strip superior in thermal peel resistance of Sn plating and Sn plating strip thereof
CN107614759B (en) Sn-plated material and method for producing same
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP5692799B2 (en) Sn plating material and method for producing the same
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP5419275B2 (en) Reflow Sn plating material
US20170076834A1 (en) Electrical contact material, method of producing an electrical contact material, and terminal
JP7335679B2 (en) conductive material
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP2020056056A (en) Copper terminal material, copper terminal, and manufacturing method of copper terminal material
JP4538424B2 (en) Cu-Zn-Sn alloy tin-plated strip
CN107849721B (en) Plating material having excellent heat resistance and method for producing same
WO2022123818A1 (en) Ag-coated material, ag-coated material manufacturing method, and terminal component
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP5714465B2 (en) Sn plating material and method for producing the same
JP2020056055A (en) Terminal material for connector, terminal for connector, and manufacturing method of terminal material for connector
WO2022054953A1 (en) Plated material and electronic component
JP2020128575A (en) Terminal material for connector, terminal for connector, and method of producing terminal material for connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220407

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220425

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220509

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220617

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220628

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220803

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221005

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230818

R151 Written notification of patent or utility model registration

Ref document number: 7335679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151