JP7470321B2 - Sn-graphene composite plating film metal terminal and its manufacturing method - Google Patents

Sn-graphene composite plating film metal terminal and its manufacturing method Download PDF

Info

Publication number
JP7470321B2
JP7470321B2 JP2020020764A JP2020020764A JP7470321B2 JP 7470321 B2 JP7470321 B2 JP 7470321B2 JP 2020020764 A JP2020020764 A JP 2020020764A JP 2020020764 A JP2020020764 A JP 2020020764A JP 7470321 B2 JP7470321 B2 JP 7470321B2
Authority
JP
Japan
Prior art keywords
graphene
plating film
composite plating
metal terminal
graphene composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020020764A
Other languages
Japanese (ja)
Other versions
JP2021127468A (en
Inventor
松竹 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2020020764A priority Critical patent/JP7470321B2/en
Publication of JP2021127468A publication Critical patent/JP2021127468A/en
Application granted granted Critical
Publication of JP7470321B2 publication Critical patent/JP7470321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

本発明は、Sn-グラフェン複合めっき膜金属製端子とその製造方法に関する。 The present invention relates to a metal terminal made of Sn-graphene composite plating film and a method for manufacturing the same.

従来から、車載電装部材であるワイヤーハーネスの端子材料には、約9割が銅合金表面に錫(Sn、スズ)膜を被覆したSnめっき材、約1割が金(Au),パラジウム(Pd)のような貴金属めっき材が用いられている。
また、EV/PHV用充電装置の端子電極材料として、すべでの金属の中に導電性が最も高い貴金属純銀(Ag)めっき材の使用が進めているが、全ての端子材を貴金属であるAgめっきにするのは、コスト上および資源上に現実的に不可能である。一方、グラフェンは銀よりも導電性が高く、優れた潤滑性と熱安定性を有することが知られている。しかし、グラフェンは単体での使用ができないため、ほかの材料に複合させるしかない。また、通常の市販のグラフェン粉末は、殆ど酸化グラフェンが主体となり、水溶液中に分散しにくいので、作業と製造コストなどで実用に困難である。
Conventionally, about 90% of terminal materials for wire harnesses, which are in-vehicle electrical components, are Sn-plated materials in which a tin (Sn) film is coated on the surface of a copper alloy, and about 10% are precious metal-plated materials such as gold (Au) and palladium (Pd).
In addition, the use of precious metal pure silver (Ag) plating materials, which have the highest electrical conductivity of all metals, is being promoted as the terminal electrode material for charging devices for EVs/PHVs. However, it is practically impossible to plate all terminal materials with Ag, which is a precious metal, in terms of cost and resources. On the other hand, graphene is known to have higher electrical conductivity than silver and excellent lubricity and thermal stability. However, graphene cannot be used alone, so it must be combined with other materials. In addition, most commercially available graphene powders are mainly graphene oxide, which is difficult to disperse in aqueous solutions, making it difficult to put into practical use due to the work and manufacturing costs.

現行の一般端子としたSnめっき材は、低コストではんだ濡れ性や加工性が優れるが、Sn金属が融点は低く極めて軟質(20-50Hv)であるため、耐熱性と耐摩耗性が低いといった課題がある。そして、耐摩耗性を向上させるため、固体潤滑剤である黒鉛粉末や二硫化モリブデン、テフロン(登録商標)粒子など非金属材料との複合化に関する研究が報告されたが、いずれ耐摩耗性の改善効果が低く、加えて導電性の低下を招いていた。 The Sn-plated materials currently used for general terminals are low cost and have excellent solder wettability and workability, but because Sn metal has a low melting point and is extremely soft (20-50 Hv), it has issues such as low heat resistance and wear resistance. To improve wear resistance, research has been reported on combining it with non-metallic materials such as solid lubricants such as graphite powder, molybdenum disulfide, and Teflon (registered trademark) particles, but all of these have only a small effect on improving wear resistance and also result in a decrease in conductivity.

特許文献1には、基体上に、カーボンナノチューブ、フラーレン及び/又はグラフェン含有コーティングを製造方法について記載されているが、スズを含有するグラフェン等の具体的構造については記載がない。 Patent Document 1 describes a method for producing a coating containing carbon nanotubes, fullerenes, and/or graphene on a substrate, but does not describe the specific structure of tin-containing graphene, etc.

特公表2012-506357号公報Patent Publication No. 2012-506357

しかしながら、上述のようなめっき材では自動車の電子制御が高度化に対応したワイヤーハーネスの高性能化・高耐久性化や、EV/PHVの更なる拡大に対応する充電装置の端子の高性能化、高耐久性化には不十分であるといった問題があった。そこで本発明は、低コスト且つ耐摩耗性、耐熱性の向上を実現する金属製端子を提供することを目的とする。 However, there is a problem in that the plating materials described above are insufficient for improving the performance and durability of wire harnesses to accommodate the increasingly sophisticated electronic controls in automobiles, or for improving the performance and durability of charging device terminals to accommodate the further expansion of EVs/PHVs. Therefore, the object of the present invention is to provide a metal terminal that is low cost and has improved abrasion resistance and heat resistance.

上記課題を解決する本発明は以下の通りである。
(1)電気接続用(または通電用)の金属製端子材と、前記金属製端子材の表面をめっきしたSn-グラフェン複合めっき膜と、を備えることを特徴とするSn-グラフェン複合めっき膜金属製端子である。
「金属製端子材の表面をめっきしたSn-グラフェン複合めっき膜」とは、Sn-グラフェン複合めっき膜が、金属製端子材の表面の少なくても一部分をめっき(被覆)した状態を含む。
(2)前記Sn-グラフェン複合めっき膜は、Sn層と、前記Sn層中に分散した、前記Snが積層型グラフェンに分散したSn分散積層型グラフェンと、を含むことを特徴とする(1)に記載のSn-グラフェン複合めっき膜金属製端子である。
「Sn分散積層型グラフェン」について、その「グラフェン」がグラフェンシートである場合には、そのグラフェンシートがSn(片)ナノ結晶を分散して含んだり、Sn(片)ナノ結晶を含んだグラフェンがSn-グラフェン粒子となったりする場合を含むことを意味する。
(3)前記Sn-グラフェン複合めっき膜中の前記Sn分散積層型グラフェン濃度は、10~80体積%であることを特徴とする(2)に記載のSn-グラフェン複合めっき膜金属製端子である。
(4)前記Sn分散積層型グラフェン中のSn濃度は、5~95質量%であることを特徴とする(2)又は(3)の何れか1つに記載のSn-グラフェン複合めっき膜金属製端子である。
(5)前記金属製端子の材質は銅又は銅合金を含むことを特徴とする(1)~(4)の何れか1つに記載のSn-グラフェン複合めっき膜金属製端子である。
金属製端子基材の材質が銅又は銅合金を含むことが好ましいのは、銅又は銅合金は高導電性と高強度であり、自動車端子・電子部品の電気接続材料として広く使用されているためである。また、導電性の金属材料であれば、アルミ合金や鉄鋼材料などでもよい。
(6)前記グラフェンの粒子を製造するためにグラファイトから剥離した積層型グラフェンフレークを製造するグラフェン製造工程と、製造された前記積層型グラフェンフレークを含むSnめっき浴を用いたグラフェン粒子の泳動電着Snの電気めっきを同時に行うハイブリッドめっき工程と、を含み、前記電気めっきの条件は、電流密度が0.1~10A/dm、めっき浴の温度が5~30℃であることを特徴とするSn-グラフェン複合めっき膜金属製端子の製造方法である。
(7)前記めっき浴は工業用硫酸浴、スルホン酸浴又はアルカリ浴であることを特徴とする(6)に記載のSn-グラフェン複合めっき膜金属製端子の製造方法である。
The present invention that solves the above problems is as follows.
(1) A Sn-graphene composite plating film metal terminal comprising: a metal terminal material for electrical connection (or for current flow); and a Sn-graphene composite plating film formed by plating a surface of the metal terminal material.
The term "Sn-graphene composite plating film plated on the surface of a metal terminal material" includes a state in which at least a portion of the surface of a metal terminal material is plated (covered) with the Sn-graphene composite plating film.
(2) The Sn-graphene composite plating film metal terminal according to (1), wherein the Sn-graphene composite plating film includes an Sn layer, and Sn-dispersed laminated graphene in which the Sn is dispersed in the Sn layer.
Regarding "Sn-dispersed laminated graphene," when the "graphene" is a graphene sheet, it means that the graphene sheet contains dispersed Sn (flake) nanocrystals, and the graphene containing Sn (flake) nanocrystals becomes Sn-graphene particles.
(3) The Sn-graphene composite plating film metal terminal according to (2), wherein a concentration of the Sn-dispersed laminated graphene in the Sn-graphene composite plating film is 10 to 80 volume %.
(4) The Sn-graphene composite plating film metal terminal according to any one of (2) or (3), characterized in that a Sn concentration in the Sn-dispersed laminated graphene is 5 to 95 mass %.
(5) The Sn-graphene composite plating film metal terminal according to any one of (1) to (4), wherein the material of the metal terminal contains copper or a copper alloy.
The reason why the material of the metal terminal substrate preferably contains copper or a copper alloy is that copper or a copper alloy has high electrical conductivity and high strength and is widely used as an electrical connection material for automobile terminals and electronic components. Also, any conductive metal material such as aluminum alloy or steel material may be used.
(6) A method for producing a metal terminal having a Sn-graphene composite plating film, comprising: a graphene production step of producing stacked graphene flakes peeled from graphite in order to produce the graphene particles; and a hybrid plating step of simultaneously performing electroplating of Sn by electrophoretic electrodeposition of the graphene particles using a Sn plating bath containing the produced stacked graphene flakes, wherein the electroplating conditions are a current density of 0.1 to 10 A/ dm2 and a plating bath temperature of 5 to 30°C.
(7) The method for producing a Sn-graphene composite plating film metal terminal according to (6), wherein the plating bath is an industrial sulfuric acid bath, a sulfonic acid bath, or an alkaline bath.

本発明によれば、高性能化・高耐久性化したワイヤーハーネスやEV/PHVに対応する充電装置の端子の高性能化、高耐久性化に応じた低コスト且つ耐摩耗性、耐熱性の向上を実現する金属製端子を提供することができる。 The present invention can provide metal terminals that are low cost and have improved wear resistance and heat resistance in response to the high performance and durability of wire harnesses and terminals of charging devices compatible with EVs/PHVs.

本発明に係る、金属合金基材の表面がSn-グラフェン複合めっき膜によりめっきされたn-グラフェン複合めっき膜金属製端子の断面の模式図を示した図である。FIG. 1 is a schematic diagram showing a cross section of an n-graphene composite plating film metal terminal in which the surface of a metal alloy substrate is plated with a Sn-graphene composite plating film according to the present invention. 電流密度0.1A/dm、液温5℃、めっき時間30minで作製したSn-グラフェン複合めっき膜(実施例1)の表面FE-SEM像を、(a)×1K、(b)×5K、(c)×10K、(d)×30K、(e)×50Kのそれぞれの倍率で示した図である。FIG. 1 shows surface FE-SEM images of a Sn-graphene composite plating film (Example 1) produced at a current density of 0.1 A/dm 2 , a solution temperature of 5° C., and a plating time of 30 min, at magnifications of (a) ×1K, (b) ×5K, (c) ×10K, (d) ×30K, and (e) ×50K. 電流密度0.5A/dm、液温10℃、めっき時間15minでより作製したSn-グラフェン複合めっき膜(実施例2)の表面のFE-SEMを、(a)×1K、(b)×5K、(c)×10K、(d)×30K、(e)×50Kのそれぞれの倍率で示した図である。These are FE-SEM images of the surface of a Sn-graphene composite plating film (Example 2) produced at a current density of 0.5 A/dm 2 , a solution temperature of 10° C., and a plating time of 15 min, at magnifications of (a) ×1K, (b) ×5K, (c) ×10K, (d) ×30K, and (e) ×50K. 電流密度0.1A/dm、液温10℃、めっき時間10minでにより作製したSn-グラフェン複合めっき膜(実施例3)の表面のFE-SEM像を、(a)×1K、(b)×5K、(c)×10K、(d)×30Kのそれぞれの倍率で示した図である。FIG. 1 shows FE-SEM images of the surface of a Sn-graphene composite plating film (Example 3) produced at a current density of 0.1 A/dm 2 , a solution temperature of 10° C., and a plating time of 10 min, at magnifications of (a) ×1K, (b) ×5K, (c) ×10K, and (d) ×30K. 電流密度1A/dm、液温10℃、めっき時間10minでにより作製したSn-グラフェン複合めっき膜(実施例8)の表面のFE-SEM像を、(a)×1K、(b)×5K、(c)×10K、(d)×30Kのそれぞれの倍率で示した図である。FIG. 1 shows FE-SEM images of the surface of a Sn-graphene composite plating film (Example 8) produced at a current density of 1 A/dm 2 , a solution temperature of 10° C., and a plating time of 10 min, at magnifications of (a) ×1K, (b) ×5K, (c) ×10K, and (d) ×30K. Sn-グラフェン複合めっき膜(実施例8)の表面のラマン分析測定について、(a)測定部分(Snが分散した積層型グラフェン)、(b)ラマンスペクトル結果、及び(c)めっき液中のグラフェンのラマンスペクトル結果を、それぞれ示した図である。FIG. 13 shows Raman analysis measurements of the surface of the Sn-graphene composite plating film (Example 8), with (a) the measured portion (stacked graphene with Sn dispersed therein), (b) the Raman spectrum results, and (c) the Raman spectrum results of graphene in the plating solution. (a)電流密度1.0A/dm、液温15℃、めっき時間10minで作製したSn-グラフェン複合めっき膜(実施例4)の表面の黒色の粒子(Snが分散した積層型グラフェン)のラマンスペクトル結果、(b)(a)の表面において黒色の粒子以外の部分のラマンスペクトル結果を、それぞれ示した図である。FIG. 1A shows the Raman spectrum of black particles (stacked graphene with Sn dispersed therein) on the surface of a Sn-graphene composite plating film (Example 4) produced at a current density of 1.0 A/dm 2 , a solution temperature of 15° C., and a plating time of 10 min. FIG. 1B shows the Raman spectrum of the part other than the black particles on the surface of (a). (a)電流密度1.0A/dmにより作製した純Snめっき膜(比較例1)のGD-OES測定の結果、(b)電流密度0.5A/dm、液温10℃により作製したSn-グラフェン複合めっき膜(実施例2)のGD-OES測定の結果を、それぞれ示した図である。FIG. 1A shows the results of GD-OES measurement of a pure Sn plating film (Comparative Example 1) prepared at a current density of 1.0 A/ dm2 , and FIG. 1B shows the results of GD-OES measurement of a Sn-graphene composite plating film (Example 2) prepared at a current density of 0.5 A/ dm2 and a solution temperature of 10°C. 電流密度0.1A/dm、液温10℃、めっき時間20minでにより作製したSn-グラフェン複合めっき膜(実施例5)の表面について、(a)団子状Sn-グラフェン集合体のある場所のSEM観察の結果、(b)めっき膜の平ら部分のSEM観察の結果、(c)(d)は、それぞれ、(a)(b)に示す写真に写る場所全体のEDS分析の結果である。Regarding the surface of a Sn-graphene composite plating film (Example 5) prepared at a current density of 0.1 A/ dm2 , a solution temperature of 10°C, and a plating time of 20 min, (a) is the result of SEM observation of a location where ball-like Sn-graphene aggregates are present, (b) is the result of SEM observation of a flat portion of the plating film, and (c) and (d) are the results of EDS analysis of the entire area shown in the photographs shown in (a) and (b), respectively. 電流密度0.5A/dm、液温5℃、めっき時間30minで作製したSn-グラフェン複合めっき膜(実施例6)の表面について、(a)団子状Sn-グラフェン集合体の中心部でのSEM観察の結果、(b)((b)めっき膜の平ら部分のSEM観察の結果、(c)(d)は、それぞれ、(a)(b)に示す領域のEDS分析の結果である。Regarding the surface of a Sn-graphene composite plating film (Example 6) produced at a current density of 0.5 A/dm 2 , a solution temperature of 5° C., and a plating time of 30 min, (a) shows the results of SEM observation of the center of the dumpling-like Sn-graphene aggregates, (b) shows the results of SEM observation of a flat portion of the plating film, and (c) and (d) show the results of EDS analysis of the areas shown in (a) and (b), respectively. 実施例6のSn-グラフェン複合めっき膜の別場所の表面について、さらに拡大した、団子状Sn-グラフェン集合体の中心部とめっき膜の平ら部分のSEM観察の結果、(c)(d)はその中心部分でのEDS分析の結果を、それぞれ示した図である。1(c) and (d) are further enlarged views showing the results of SEM observation of the center of the dumpling-like Sn-graphene aggregate and the flat portion of the plating film on the surface of another portion of the Sn-graphene composite plating film of Example 6, and the results of EDS analysis of the center portions, respectively. 電流密度1.0A/dm、液温5℃、めっき時間20minで作製したSn-グラフェン複合めっき膜(実施例7)の表面について、(a)SEM観察の結果、(b)(a)を拡大した、ドーム状Sn-グラフェン集合体のSEM観察の結果、(c)は写真に映る試料全体、(d)はドーム状部分のEDS分析結果を、それぞれ示した図である。FIG. 1 shows (a) the results of SEM observation of the surface of a Sn-graphene composite plating film (Example 7) produced at a current density of 1.0 A/dm 2 , a solution temperature of 5° C., and a plating time of 20 min. (b) the results of SEM observation of a dome-shaped Sn-graphene aggregate enlarged from (a). (c) is the entire sample shown in the photograph. (d) is the EDS analysis result of the dome-shaped portion. 電流密度0.5A/dm、液温5℃、めっき時間20minで作製したSn-グラフェン複合めっき膜(実施例7)により被覆された端子について、(a)断面SIM像(FIB加工)、(b)(a)を拡大した断面SIM像を、それぞれ示した図である。FIG. 13A shows a cross-sectional SIM image (FIB processed) of a terminal coated with a Sn-graphene composite plating film (Example 7) produced at a current density of 0.5 A/dm 2 , a solution temperature of 5° C., and a plating time of 20 min. FIG. 13B shows a cross-sectional SIM image of an enlarged image of (a) of a terminal coated with a Sn-graphene composite plating film (Example 7) produced at a current density of 0.5 A/dm 2 , a solution temperature of 5° C., and a plating time of 20 min. 図12(b)の拡大像である。This is an enlarged image of FIG. 表1の硬さの測定結果をグラフに示した図である。1 is a graph showing the hardness measurement results in Table 1. 各電流密度とめっき浴温度で作製したSn-グラフェン複合めっき膜および比較例1とした純Snめっき(電流密度1A/dm、液温10℃、10min)に対する抵抗率の測定結果をグラフに示した図である。FIG. 1 is a graph showing the results of measuring the resistivity of a Sn-graphene composite plating film produced at each current density and plating bath temperature, and a pure Sn plating (current density 1 A/dm 2 , solution temperature 10° C., 10 min) as Comparative Example 1. 電流密度1A/dm、液温10℃、10minで作製したSn-グラフェン複合めっき膜および比較例1とした純Snめっきに対する摩耗試験結果をグラフに示した図である。なお、めっき膜が5μmに揃えるように、めっき時間を微調整した。This is a graph showing the results of a wear test on a Sn-graphene composite plating film produced at a current density of 1 A/dm 2 , a solution temperature of 10° C., and for 10 min, and on a pure Sn plating film as Comparative Example 1. The plating time was finely adjusted so that the plating film was uniformly 5 μm thick.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 The following describes an embodiment of the present invention with reference to the drawings. The present invention is not limited to the following embodiment, and may be changed, modified, or improved without departing from the scope of the invention.

図1には、金属合金基材2の表面が、Sn-グラフェン複合めっき膜8によりめっきされた、Sn-グラフェン複合めっき膜金属製端子1の断面の模式図を示した。Sn-グラフェン複合めっき膜8は、Sn層6と、Sn層6中に分散した、Sn(錫、スズ)4が積層型グラフェン3に分散した団子状なSn分散積層型グラフェン5とシート状のグラフェンフレーク7、を含む。積層型グラフェン3に分散したSn4は、Snのいわば極小片(ナノ結晶)として分散している。団子状な積層型グラフェン3とシート状のグラフェンフレーク7は電解剥離工程により作製したグラフェンは例えば積層して形成されたものであり、めっき液中での分散状態による異なる集合体である。一方、Sn分散積層型グラフェン5の生成は、団子状な積層型グラフェン3は純Snより導電しやすく、また表面エネルギーが大きいので、めっきにおけるSn結晶の核形成過程は成長過程より速いためであると考えられる。 Figure 1 shows a schematic diagram of a cross section of a metal terminal 1 made of a Sn-graphene composite plating film, in which the surface of a metal alloy substrate 2 is plated with a Sn-graphene composite plating film 8. The Sn-graphene composite plating film 8 includes a Sn layer 6, a dumpling-shaped Sn-dispersed stacked graphene 5 in which Sn (tin) 4 is dispersed in the stacked graphene 3, and a sheet-shaped graphene flake 7. The Sn 4 dispersed in the stacked graphene 3 is dispersed as so-called very small pieces (nanocrystals) of Sn. The dumpling-shaped stacked graphene 3 and the sheet-shaped graphene flakes 7 are different aggregates depending on the dispersion state in the plating solution, and the dumpling-shaped stacked graphene 3 and the sheet-shaped graphene flakes 7 are formed by stacking graphene produced by an electrolytic peeling process, for example. On the other hand, the generation of the Sn-dispersed stacked graphene 5 is thought to be due to the fact that the dumpling-shaped stacked graphene 3 is more conductive than pure Sn and has a large surface energy, so the nucleation process of Sn crystals in plating is faster than the growth process.

Sn-グラフェン複合めっき膜8中のSn分散積層型グラフェン5の濃度は、端子として嵌合する際の凝着を抑制し、耐摩耗性を向上する同時に、めっき膜の導電性を保持する観点から、10~80体積%が好ましく、20~60体積%がさらに好ましい。
Sn-グラフェン複合めっき膜7は、さらに積層型でないグラフェンシート(Sn分散積層型グラフェン7)を含んでもよい。めっき層全体の耐摩耗性を向上するためである。Sn-グラフェン複合めっき膜7に含まれる積層型でないグラフェン濃度は、2~50質量%が好ましく、5~30質量%がさらに好ましい。
The concentration of Sn-dispersed laminated graphene 5 in the Sn-graphene composite plating film 8 is preferably 10 to 80% by volume, and more preferably 20 to 60% by volume, from the viewpoints of suppressing adhesion when fitting as a terminal and improving wear resistance, while at the same time maintaining the conductivity of the plating film.
The Sn-graphene composite plating film 7 may further include a non-laminated graphene sheet (Sn-dispersed laminated graphene 7) in order to improve the wear resistance of the entire plating layer. The concentration of the non-laminated graphene contained in the Sn-graphene composite plating film 7 is preferably 2 to 50 mass %, more preferably 5 to 30 mass %.

金属合金基材2としてはアルミ合金、鉄―ニッケル合金(例えば42アロイ)、SUS類材料等を使用することができるが、端子全体の導電性の観点からCu(銅)又はCu(銅)合金が好ましい。
Sn-グラフェン複合めっき膜の作製には、Snの電気めっきとグラフェン(Graphene)粒子の泳動電着とを組み合わせたハイブリッドめっき法を利用することができる。なお、グラフェン粒子とは、グラフェンシートを数枚~数十枚で積層して団子状またフレーク状として存在することである。
The metal alloy substrate 2 may be made of an aluminum alloy, an iron-nickel alloy (eg, 42 alloy), or a stainless steel material, but is preferably made of Cu (copper) or a Cu (copper) alloy in terms of electrical conductivity of the entire terminal.
The Sn-graphene composite plating film can be produced by a hybrid plating method that combines electroplating of Sn with electrophoretic deposition of graphene particles. Note that graphene particles are graphene sheets that are stacked in a ball or flake shape with several to several tens of sheets.

(Sn-グラフェン複合めっき膜の作製)
Cu合金板(20×50×0.2mm)を基材(金属製端子材)とし、前処理としてアルカリ電解脱脂および酸洗いを行った。ハイブリッドめっきは、硫酸系光沢Snめっき浴を基本液とし、電解剥離したグラフェン分散液を15ml/L添加しためっき液を用い、ハイブリッド電気めっき法によりSn-グラフェン複合めっき膜を作製した。
すなわちハイブリッドめっきは、グラフェン分散液に含まれる、電解剥離したグラフェンの粒子を泳動電着する過程と、Snによって金属製端子材の電気めっきを行う過程と、を含む。Snによる電気めっき条件の要素としては、電流密度、めっき浴の液温、(撹拌)、めっき時間等を考慮した。
(Preparation of Sn-graphene composite plating film)
A Cu alloy plate (20 × 50 × 0.2 mm) was used as a substrate (metal terminal material), and alkaline electrolytic degreasing and pickling were performed as pretreatment. For hybrid plating, a plating solution was used in which a sulfuric acid-based gloss Sn plating bath was used as a base solution and 15 ml/L of electrolytically peeled graphene dispersion was added, and a Sn-graphene composite plating film was produced by a hybrid electroplating method.
That is, the hybrid plating includes a process of electrophoretic deposition of the electrolytically peeled graphene particles contained in the graphene dispersion, and a process of electroplating the metal terminal material with Sn. As factors of the electroplating conditions with Sn, the current density, the liquid temperature of the plating bath, (stirring), plating time, etc. were considered.

Cu合金基材に対する前処理として、アルカリ電解脱脂と酸洗いを行ったが、処理条件は特に規定しない。一方、電解剥離は次のようにして行った。グラファイトを水溶液中に浸漬し、強力の電場作用および電気化学反応によりグラファイトを層状に分解し、積層型のグラフェンフレークを作製した。 As pretreatment for the Cu alloy substrate, alkaline electrolytic degreasing and pickling were performed, but the treatment conditions were not specified. On the other hand, electrolytic stripping was performed as follows. Graphite was immersed in an aqueous solution, and the graphite was decomposed into layers by the action of a strong electric field and an electrochemical reaction, producing stacked graphene flakes.

めっき条件の電流密度、液温、めっき時間を次のようにして、Cu合金板上にSn-グラフェン複合めっき膜(実施例1~6)を作製した。電流密度0.1A/dm、液温5℃、30min(実施例1)、電流密度0.5A/dm、液温10℃、15min(実施例2)、電流密度0.1A/dm、液温10℃、10min(実施例3)、電流密度1.0A/dm、液温15℃、10min(実施例4)、電流密度0.1A/dm、液温10℃、20min(実施例5)、電流密度0.5A/dm、液温5℃、30min(実施例6)、電流密度1.0A/dm、液温5℃、20min(実施例7)、電流密度1A/dm、液温10℃、めっき時間10min(実施例8)。
一方、Sn-グラフェン複合めっき膜の作製において、グラフェン分散液を添加ないめっき液を用い、電流密度1.0A/dm、液温10℃でSn(純Sn)めっき膜(比較例1)を作製した。
純Snめっきは光沢のある平滑な膜が得られた一方、Sn-グラフェン複合めっきは半光沢で凹凸のある膜が得られた。
The plating conditions of current density, solution temperature, and plating time were as follows, and Sn-graphene composite plating films (Examples 1 to 6) were produced on Cu alloy plates. Current density 0.1 A/ dm2 , liquid temperature 5°C, 30 min (Example 1), current density 0.5 A/ dm2 , liquid temperature 10°C, 15 min (Example 2), current density 0.1 A/ dm2 , liquid temperature 10°C, 10 min (Example 3), current density 1.0 A/ dm2 , liquid temperature 15°C, 10 min (Example 4), current density 0.1 A/ dm2 , liquid temperature 10°C, 20 min (Example 5), current density 0.5 A/ dm2 , liquid temperature 5°C, 30 min (Example 6), current density 1.0 A/ dm2 , liquid temperature 5°C, 20 min (Example 7), current density 1 A/ dm2 , liquid temperature 10°C, plating time 10 min (Example 8).
On the other hand, in the preparation of the Sn-graphene composite plating film, a plating solution containing no graphene dispersion was used, and a Sn (pure Sn) plating film (Comparative Example 1) was prepared at a current density of 1.0 A/dm 2 and a solution temperature of 10°C.
Pure Sn plating produced a glossy, smooth film, while Sn-graphene composite plating produced a semi-glossy, uneven film.

図2には、電流密度0.1A/dm、液温5℃、めっき時間30minにより作製したSn-グラフェン複合めっき膜(実施例1)の表面のFE-SEMを、(a)×1K、(b)×5K、(c)×10K、(d)×30K、(e)×50Kのそれぞれの倍率で示した。
図2(a)から、Sn(Sn膜)でめっき(被覆)されたCu合金板12の表面上に、Sn分散積層型グラフェン15が存在していたことが分かった。(d)から、Sn分散積層型グラフェン15には、グラフェン(グラフェンシート)13が含まれていたことが分かった。そして、(e)から、Sn(14、14´、14´´等)がグラフェン(グラフェンシート)13に分散していたことが分かった。
なお、FE-SEM観察と、後出するエネルギー分散型X線分析(EDS)の分析条件は次のようであった。装置名:電界放出型走査電子顕微鏡(FE-SEM、日本電子/JXA-8230)、加速電圧7.0kVであった。エネルギー分散型X線分析(EDS)では、面分析を行った。また、面分析の際に写真の全面または示された領域で分析した。
FIG. 2 shows FE-SEM images of the surface of the Sn-graphene composite plating film (Example 1) produced at a current density of 0.1 A/dm 2 , a solution temperature of 5° C., and a plating time of 30 min, at magnifications of (a) ×1K, (b) ×5K, (c) ×10K, (d) ×30K, and (e) ×50K.
2(a) shows that Sn-dispersed stacked graphene 15 was present on the surface of Cu alloy plate 12 plated (coated) with Sn (Sn film). (d) shows that graphene (graphene sheet) 13 was included in Sn-dispersed stacked graphene 15. (e) shows that Sn (14, 14', 14'', etc.) was dispersed in graphene (graphene sheet) 13.
The analysis conditions for FE-SEM observation and energy dispersive X-ray analysis (EDS) described later were as follows: Instrument name: Field emission scanning electron microscope (FE-SEM, JEOL/JXA-8230), acceleration voltage was 7.0 kV. In energy dispersive X-ray analysis (EDS), area analysis was performed. In addition, the area analysis was performed over the entire surface or the indicated area of the photograph.

図3には、電流密度0.5A/dm、液温10℃、めっき時間15minにより作製したSn-グラフェン複合めっき膜(実施例2)の表面のFE-SEMを、(a)×1K、(b)×5K、(c)×10K、(d)×30K、(e)×50Kのそれぞれの倍率で示した。
図3(c)、(d)から、Sn(24、24´、24´´等)がグラフェン(グラフェンシート)23に分散していたことが分かった。なお、(d)から(c)に向けて引かれた直線は、(d)の拡大箇所を示したものである。
FIG. 3 shows FE-SEM images of the surface of the Sn-graphene composite plating film (Example 2) produced at a current density of 0.5 A/dm 2 , a solution temperature of 10° C., and a plating time of 15 min, at magnifications of (a) ×1K, (b) ×5K, (c) ×10K, (d) ×30K, and (e) ×50K.
3(c) and (d), it was found that Sn (24, 24', 24" etc.) was dispersed in the graphene (graphene sheet) 23. The straight line drawn from (d) to (c) indicates an enlarged portion of (d).

図4には、電流密度0.1A/dm、液温10℃、めっき時間10minにより作製したSn-グラフェン複合めっき膜(実施例3)の表面のFE-SEMを、(a)×1K、(b)×5K、(c)×10K、(d)×30Kのそれぞれの倍率で示した。
図4(a)から、Sn(Sn膜)にめっき(被覆)されたCu合金板32の表面上に、Sn分散積層型グラフェン35が存在していたことが分かった。(d)から、Sn分散積層型グラフェン35には、グラフェン(グラフェンシート)33が含まれていたことが分かった。そして、同(d)から、Sn(34、34´、34´´等)がグラフェン(グラフェンシート)33に分散していたことが分かった。
FIG. 4 shows FE-SEM images of the surface of the Sn-graphene composite plating film (Example 3) produced at a current density of 0.1 A/dm 2 , a solution temperature of 10° C., and a plating time of 10 min, at magnifications of (a) ×1K, (b) ×5K, (c) ×10K, and (d) ×30K.
4(a) shows that Sn-dispersed laminated graphene 35 was present on the surface of Cu alloy plate 32 plated (coated) with Sn (Sn film). 4(d) shows that graphene (graphene sheet) 33 was included in Sn-dispersed laminated graphene 35. 4(d) shows that Sn (34, 34', 34'', etc.) was dispersed in graphene (graphene sheet) 33.

図5には、電流密度1A/dm、液温10℃、めっき時間10minでにより作製したSn-グラフェン複合めっき膜(実施例8)の表面のFE-SEMを、(a)×1K、(b)×5K、(c)×10K、(d)×30Kのそれぞれの倍率で示した。
表面がSnでおおわれているが、粒径が少し小さくなっていることが分かった。ドーム部分の下にはグラフェンがあると推定された。後述の断面SIMS像にはSn殻の下に積層型のグラフェンが確認される。
FIG. 5 shows FE-SEM images of the surface of a Sn-graphene composite plating film (Example 8) produced at a current density of 1 A/dm 2 , a solution temperature of 10° C., and a plating time of 10 min, at magnifications of (a) ×1K, (b) ×5K, (c) ×10K, and (d) ×30K.
It was found that the surface was covered with Sn, but the particle size was slightly smaller. It was assumed that graphene was present under the dome part. The cross-sectional SIMS image shown below confirms stacked graphene under the Sn shell.

図6には、Sn-グラフェン複合めっき膜(実施例8)の表面のラマン分析測定について、(a)測定部分(Sn分散積層型グラフェン)、(b)ラマンスペクトル結果、及び(c)めっき液中のグラフェンのラマンスペクトル結果を、それぞれ示した。
同(c)のラマンスペクトルのピークと同(b)のラマンスペクトルのピークは一致した。グラフェンのラマンスペクトルは、D、G(C六環の欠陥構造に由来するD-band、C原子のsp結合の存在を示唆するG-band)及び2Dとして特徴的なピークが検出された。グラファイトに特有なDバンドとGバンド(D/G<1)が検出され、特にグラフェンの証とした2Dバンドのピークも示されたため、測定部分にはグラフェンが存在していたことが分かった。なお、Dバンドは欠陥構造に由来し、GバンドはC原子のsp結合の存在を示唆していた。
なお、、その測定条件は次のようであった。機種名:レーザーラマン分光光度計(NRS-3300)、測定範囲:254.896cm-1~3899.87cm-1、中心波数:2301.01cm-1、励起波長:532.08nm、レーザ゛強度:7.9mWであった。
FIG. 6 shows the Raman analysis measurement of the surface of the Sn-graphene composite plating film (Example 8), including (a) the measured portion (Sn-dispersed laminated graphene), (b) the Raman spectrum result, and (c) the Raman spectrum result of graphene in the plating solution.
The peaks of the Raman spectrum of (c) and (b) were consistent. In the Raman spectrum of graphene, characteristic peaks were detected as D, G (D-band derived from the defect structure of the C hexacyclic ring, G-band suggesting the presence of sp 2 bonds of C atoms) and 2D. The D band and G band (D/G<1) specific to graphite were detected, and in particular, the peak of the 2D band, which is evidence of graphene, was also shown, indicating that graphene was present in the measured portion. The D band was derived from the defect structure, and the G band suggested the presence of sp 2 bonds of C atoms.
The measurement conditions were as follows: Model name: Laser Raman spectrophotometer (NRS-3300), measurement range: 254.896 cm -1 to 3899.87 cm -1 , central wave number: 2301.01 cm -1 , excitation wavelength: 532.08 nm, laser intensity: 7.9 mW.

図7には、(a)電流密度1.0A/dm、液温15℃、めっき時間10minにより作製したSn-グラフェン複合めっき膜(実施例4)の表面の黒色の粒子(Sn分散積層型グラフェン15に類似すると推定したもの)のラマンスペクトル結果、(b)(a)の表面において黒色の粒子以外の部分のラマンスペクトル結果を、それぞれ示した。
(a)から、C六環の欠陥構造に由来するD-band、C原子のsp結合の存在を示唆するG-band及びグラフェンの証とした2D-bandとして特徴的なピークが検出され、グラフェンとの複合化をできたことがわかる。なお、ここでは、強度比D/G>1なので、めっき膜表面に顔を出したグラフェンは一部酸化グラフェンになったと推察される。一方、(b)から、めっき膜の平ら部分には、グラフェンに帰属するピークが検出されていないため、その場所は単なるSn膜であることが分かった。
FIG. 7 shows (a) a Raman spectrum result of black particles (estimated to be similar to Sn-dispersed laminated graphene 15) on the surface of a Sn-graphene composite plating film (Example 4) produced at a current density of 1.0 A /dm 2 , a solution temperature of 15° C., and a plating time of 10 min, and (b) a Raman spectrum result of the part other than the black particles on the surface of (a).
From (a), characteristic peaks were detected as the D-band derived from the defect structure of the C hexagon, the G-band suggesting the presence of sp2 bonds of C atoms, and the 2D-band proving graphene, and it can be seen that a composite with graphene was successfully formed. Here, since the intensity ratio D/G>1, it is presumed that some of the graphene exposed on the plating film surface became graphene oxide. On the other hand, from (b), no peaks belonging to graphene were detected in the flat part of the plating film, and therefore it was found that the area was simply a Sn film.

図8には、(a)電流密度1.0A/dmにより作製した純Snめっき膜(比較例1)のGD-OES測定の結果、(b)電流密度0.5A/dm、液温10℃により作製したSn-グラフェン複合めっき膜(実施例2)および実施例8のGD-OES測定の結果を、それぞれ示した。(b)から、炭素は最表面が一番多かったが、破線領域で囲まれた内部およびめっき界面からも検出され、炭素はグラフェン由来であるから、グラフェンすなわちSn分散積層型グラフェンが内部にも存在していたことが分かった。(c)には破線は示していないが、(b)と同様であった。
なお、GD-OESの測定条件は次のようであった。機種名:グロー放電発光表面分析装置(GD-OES、堀場GD-profiler 2-MN),測定面積:直径8mm.ガスフロー:窒素ガスであった。
8 shows (a) the result of GD-OES measurement of a pure Sn plating film (Comparative Example 1) produced at a current density of 1.0 A/ dm2 , and (b) the result of GD-OES measurement of a Sn-graphene composite plating film (Example 2) produced at a current density of 0.5 A/ dm2 and a solution temperature of 10°C (Example 8). From (b), carbon was most abundant on the outermost surface, but it was also detected inside the area surrounded by the dashed line and at the plating interface, and since carbon is derived from graphene, it was found that graphene, i.e., Sn-dispersed stacked graphene, was also present inside. (c) does not show the dashed line, but is similar to (b).
The measurement conditions for the GD-OES were as follows: Model name: glow discharge optical emission surface analyzer (GD-OES, Horiba GD-profiler 2-MN), Measurement area: diameter 8 mm, Gas flow: nitrogen gas.

図9には、電流密度0.1A/dm、液温10℃、めっき時間10minにより作製したSn-グラフェン複合めっき膜(実施例5)の表面について、(a)SEM観察の結果、(b)(a)を拡大したSEM観察の結果、(c)(a)のXRD測定の結果、(d)(b)のXRD測定の結果を、それぞれ示した。
(c)、(d)から、Sn以外に多くの炭素を検出し、純Snめっきと比べてCの濃度が顕著に高いため、Sn-グラフェン複合めっき膜が形成されたことが分かった。また、(c)から、Cの濃度は2.49質量%で19.1原子%、Snの濃度は97.51質量%で80.9原子%、(d)から、Cの濃度は0.71質量%で6.21原子%、Snの濃度は99.29質量%で93.8原子%であることが分かった。
FIG. 9 shows ( a) the results of SEM observation, (b) the results of SEM observation with an enlargement of (a), (c) the results of XRD measurement of (a), and (d) the results of XRD measurement of (b), for the surface of a Sn-graphene composite plating film (Example 5) produced at a current density of 0.1 A/dm 2 , a solution temperature of 10° C., and a plating time of 10 min.
From (c) and (d), a lot of carbon was detected in addition to Sn, and the C concentration was significantly higher than that of pure Sn plating, indicating that a Sn-graphene composite plating film was formed. Also, from (c), it was found that the C concentration was 2.49 mass% and 19.1 atomic %, and the Sn concentration was 97.51 mass% and 80.9 atomic %, and from (d), it was found that the C concentration was 0.71 mass% and 6.21 atomic %, and the Sn concentration was 99.29 mass% and 93.8 atomic %.

図10には、電流密度0.5A/dm、液温5℃、めっき時間30minにより作製したSn-グラフェン複合めっき膜(実施例6)の表面について、(a)SEM観察の結果、(b)(a)を拡大したSEM観察の結果、(c)(a)のXRD測定の結果、(d)(b)のXRD測定の結果を、それぞれ示した。
(c)から、Cの濃度は6.23質量%で38.0原子%、Snの濃度は93.77質量%で62.0原子%、(d)から、Cの濃度は、0.44質量%で3.9原子%、Snの濃度は99.56質量%で96.1原子%であることが分かった。
FIG. 10 shows ( a) the results of SEM observation, (b) the results of SEM observation with an enlargement of (a), (c) the results of XRD measurement of (a), and (d) the results of XRD measurement of (b), for the surface of a Sn-graphene composite plating film (Example 6) produced at a current density of 0.5 A/dm 2 , a solution temperature of 5° C., and a plating time of 30 min.
From (c), it was found that the C concentration was 6.23 mass% or 38.0 atomic %, the Sn concentration was 93.77 mass% or 62.0 atomic %, and from (d), the C concentration was 0.44 mass% or 3.9 atomic %, and the Sn concentration was 99.56 mass% or 96.1 atomic %.

図11には、電流密度0.5A/dm、液温5℃、めっき時間30minにより作製したSn-グラフェン複合めっき膜(実施例6)の別の表面について(a)SEM観察の結果、(b)(a)を拡大したSEM観察の結果、(c)(a)のXRD測定の結果、(d)(b)のXRD測定の結果を、それぞれ示した。
(c)から、Cの濃度は22.84質量%で68原子%、Oの濃度は3.72質量%で38.0原子%、Snの濃度は73.43質量%で23.74原子%、(d)から、Cの濃度は1.52質量%で12.5原子%、Snの濃度は98.48質量%で87.4原子%であることが分かった。
FIG. 11 shows (a) the results of SEM observation, (b) the results of SEM observation with an enlargement of (a), (c) the results of XRD measurement of (a), and (d) the results of XRD measurement of (b), for another surface of a Sn-graphene composite plating film (Example 6) produced at a current density of 0.5 A/dm 2 , a solution temperature of 5° C., and a plating time of 30 min.
From (c), it was found that the C concentration was 22.84 mass% or 68 atomic %, the O concentration was 3.72 mass% or 38.0 atomic %, and the Sn concentration was 73.43 mass% or 23.74 atomic %, and from (d), the C concentration was 1.52 mass% or 12.5 atomic %, and the Sn concentration was 98.48 mass% or 87.4 atomic %.

図12には、電流密度1.0A/dm、液温5℃、めっき時間20minにより作製したSn-グラフェン複合めっき膜(実施例7)の表面について、(a)SEM観察の結果、(b)(a)を拡大したSEM観察の結果、(c)(a)のXRD測定の結果、(d)(b)のXRD測定の結果を示した。
(c)から、Cの濃度は0.42質量%で3.7原子%、Snの濃度は99.58質量%で96.3原子%、(d)から、Cの濃度は0.67質量%で5.9原子%、Snの濃度は99.33質量%で94.1原子%であることが分かった。
FIG. 12 shows ( a) the results of SEM observation, (b) the results of SEM observation with an enlargement of (a), (c) the results of XRD measurement of (a), and (d) the results of XRD measurement of (b), for the surface of a Sn-graphene composite plating film (Example 7) produced at a current density of 1.0 A/dm 2 , a solution temperature of 5° C., and a plating time of 20 min.
From (c), it was found that the C concentration was 0.42 mass% or 3.7 atomic %, the Sn concentration was 99.58 mass% or 96.3 atomic %, and from (d), the C concentration was 0.67 mass% or 5.9 atomic %, and the Sn concentration was 99.33 mass% or 94.1 atomic %.

以上の図9~12に基づき、また、耐摩耗性向上と導電性保持の観点から、Cの濃度やSnの濃度を定めることができる。 Based on Figures 9 to 12 above, and from the standpoint of improving wear resistance and maintaining electrical conductivity, the C concentration and Sn concentration can be determined.

図13には、電流密度0.5A/dm、液温5℃、めっき時間20minにより作製したSn-グラフェン複合めっき膜(実施例7)によりめっき(被覆)された端子について、(a)断面SIM像(FIB加工)、(b)(a)を拡大した断面SIM像を、それぞれ示した。(a)から、粒子状の大きなSn分散積層型グラフェン粒子45が、Cu合金基板12を被覆したSn-グラフェン複合めっき膜に嵌っていることが分かった。(b)から、Sn分散積層型グラフェン粒子45にSn46が入っている。 13 shows (a) a cross-sectional SIM image (processed by FIB ) and (b) a cross-sectional SIM image enlarged from (a) of a terminal plated (coated) with a Sn-graphene composite plating film (Example 7) produced at a current density of 0.5 A/dm 2 , a solution temperature of 5° C., and a plating time of 20 min. (a) shows that a large Sn-dispersed laminated graphene particle 45 is embedded in the Sn-graphene composite plating film coating the Cu alloy substrate 12. (b) shows that Sn 46 is embedded in the Sn-dispersed laminated graphene particle 45.

図14には、図12(b)の拡大図を示した。Cu合金基板の上にCu-Sn合金層が積層し、Sn-グラフェン複合めっき層(膜)中にGraphene flakeが多い場所を確認することができた。 Figure 14 shows an enlarged view of Figure 12(b). A Cu-Sn alloy layer was laminated on top of the Cu alloy substrate, and it was possible to confirm areas with many graphene flakes in the Sn-graphene composite plating layer (film).

比較例1、実施例8、実施例2、実施例3に対して次のようにして硬度(ビッカース硬度)を測定した。なお、めっき膜厚は、5imになるように、めっき時間を調整した。測定条件は、島津製製作所製、型式:HMV-1ADWJを使用し、測定荷重は1Nでそれぞれ5つの試験片に対する硬度、それらの平均値を表1に示した。表1から、実施例8/比較例1=74.9/44.7=1.68、実施例2/比較例1=53.8/44.7=1.20、実施例3/比較例1=76.71.72/44.7=1.72となった。これらから次のことが分かった。いずれも、グラフェンとの複合化によりSnめっき膜は硬くなった。 The hardness (Vickers hardness) of Comparative Example 1, Example 8, Example 2, and Example 3 was measured as follows. The plating time was adjusted so that the plating film thickness was 5 im. The measurement conditions were as follows: Shimadzu Corporation, Model: HMV-1ADWJ, and the measurement load was 1 N. The hardness and average value of five test pieces are shown in Table 1. From Table 1, Example 8/Comparative Example 1 = 74.9/44.7 = 1.68, Example 2/Comparative Example 1 = 53.8/44.7 = 1.20, and Example 3/Comparative Example 1 = 76.71.72/44.7 = 1.72. From these, the following was found. In all cases, the Sn plating film became harder when composited with graphene.

図15には、表1の硬さの測定結果をグラフに示した。 Figure 15 shows a graph of the hardness measurement results in Table 1.

図16は実施例1~5、比較例1の導電率の測定結果を示した。なお、表1は実施例1~5及び比較例1のそれぞれの導電率を5回測定で平均した数値データを示した。測定方法を簡潔に説明すると次のようである。機種名:抵抗計/シート抵抗測定器(ナプソンRT-70V/RG-7G)、4端子法によりバルク抵抗式で5点測定し、その平均値を図15に示した。その結果により、Sn-複合めっきは純Snと同じレベルの導電性を保持できたことがわかる。 Figure 16 shows the measurement results of the conductivity of Examples 1 to 5 and Comparative Example 1. Table 1 shows the numerical data obtained by averaging the conductivity of each of Examples 1 to 5 and Comparative Example 1, measured five times. The measurement method is briefly explained as follows: Model name: Resistance meter/sheet resistance meter (Napson RT-70V/RG-7G), 5 points were measured using the bulk resistance type with the four-terminal method, and the average value is shown in Figure 15. The results show that the Sn-composite plating was able to maintain the same level of conductivity as pure Sn.

図17には、純Snめっき膜とSn―グラフェン複合めっき膜の摩耗試験結果の一例を示す。Sn-C複合めっき(すなわちSn-グラフェン複合めっき膜)と純Snめっきは、それぞれ1A/dmで作製しためっき膜を使用した。グラフより、純Snめっきは初期に大きな摩擦係数の上昇が現れ、相手材のAgめっき膜とは凝着現象が発生したことに対し、Sn-C複合めっき膜は初期に摩擦係数の上昇が見られなく、摩耗における凝着現象に抑制できたことがわかる。また、摩耗の全体領域においてもSn-C複合めっきの摩擦係数は純Snめっきより低く、耐摩耗性が向上されたことがわかる。また、摩耗試験の条件は次のようであった。評価装置:直線往復式摩擦摩耗試験機(Optimal Instruments-SRV-4)、荷重5N、摺動距離200μm、周波数1Hz、25℃、乾式(潤滑油なし)。相手材(Emboss)は市販の一般Agめっき(110Hv)材、凸部分は半径5mmのものを基準試料として用いた。 FIG. 17 shows an example of the wear test results of the pure Sn plating film and the Sn-graphene composite plating film. The Sn-C composite plating (i.e., the Sn-graphene composite plating film) and the pure Sn plating were prepared at 1 A/ dm2 . From the graph, it can be seen that the pure Sn plating showed a large increase in the friction coefficient at the beginning and adhesion occurred with the Ag plating film of the mating material, whereas the Sn-C composite plating did not show an increase in the friction coefficient at the beginning, and adhesion during wear was suppressed. In addition, it can be seen that the friction coefficient of the Sn-C composite plating was lower than that of the pure Sn plating in the entire wear region, and wear resistance was improved. In addition, the wear test conditions were as follows. Evaluation device: linear reciprocating friction wear tester (Optimal Instruments-SRV-4), load 5N, sliding distance 200 μm, frequency 1 Hz, 25 °C, dry (without lubricant). The mating material (Emboss) was a commercially available general Ag-plated material (110 Hv), and the convex portion had a radius of 5 mm, which was used as a reference sample.

自動車特に更なる拡大が予想されるEV/PHVの電子制御の高度化に伴うワイヤーハーネスの高性能化、高耐久性化を実現することができる。 This will enable wire harnesses to achieve higher performance and durability in line with the increasing sophistication of electronic control in automobiles, particularly EVs and PHVs, which are expected to continue to expand.

1:Sn-グラフェン複合めっき膜金属製端子
2:金属合金基材
3、13、23、33:積層型グラフェン
5、15、35、45:Sn分散積層型グラフェン
6、26:Sn層
7:シート状のグラフェンフレーク
8:Sn-グラフェン複合めっき膜
12、32:Snによりめっき(被覆)されたCu合金基板
13、23:グラフェン(グラフェンシート)
14、14´、14´´、24、24´、24´´、34、34´、34´´、46:Sn
42:Cu合金基板

1: Sn-graphene composite plating film metal terminal 2: Metal alloy substrate 3, 13, 23, 33: Laminated graphene 5, 15, 35, 45: Sn-dispersed laminated graphene 6, 26: Sn layer 7: Sheet-shaped graphene flakes 8: Sn-graphene composite plating film 12, 32: Cu alloy substrate plated (coated) with Sn 13, 23: Graphene (graphene sheet)
14, 14', 14'', 24, 24', 24'', 34, 34', 34'', 46: Sn
42: Cu alloy substrate

Claims (5)

電気接続用(または通電用)の金属製端子材と、前記金属製端子材の表面をめっきしたSn-グラフェン複合めっき膜と、を備え、前記Sn-グラフェン複合めっき膜は、Sn層と、前記Sn層中に分散した、Snが積層型グラフェンに分散したSn分散積層型グラフェンと、を含み、前記Sn分散積層型グラフェン中のSn濃度は、5~95質量%であることを特徴とするSn-グラフェン複合めっき膜金属製端子。 A Sn-graphene composite plating film metal terminal comprising: a metal terminal material for electrical connection (or for current flow); and a Sn-graphene composite plating film formed by plating a surface of the metal terminal material, wherein the Sn-graphene composite plating film includes a Sn layer and Sn-dispersed laminated graphene in which Sn is dispersed in the Sn layer, and the Sn concentration in the Sn-dispersed laminated graphene is 5 to 95 mass % . 前記Sn-グラフェン複合めっき膜中の前記Sn分散積層型グラフェン濃度は、10~80体積%であることを特徴とする請求項に記載のSn-グラフェン複合めっき膜金属製端子。 The Sn-graphene composite plating film metal terminal according to claim 1 , characterized in that a concentration of the Sn-dispersed laminated graphene in the Sn-graphene composite plating film is 10 to 80 volume %. 前記金属製端子の材質は銅又は銅合金を含むことを特徴とする請求項1又は2に記載のSn-グラフェン複合めっき膜金属製端子。 The Sn-graphene composite plating film metal terminal according to claim 1 or 2, characterized in that the material of the metal terminal material contains copper or a copper alloy. グラファイトから剥離した積層型グラフェンを製造するグラフェン製造工程と、めっき浴中に分散した前記積層型グラフェンを含むSnめっき浴を用いた、Sn含有グラフェン粒子の泳動電着Snの電気めっきを同時に行うハイブリッドめっき工程と、を含み、前記電気めっきの条件は、電流密度が0.1~10A/dm、めっき浴の温度が5~30℃で作製された、Sn層と、前記Sn層中に分散した、Snが前記積層型グラフェンに分散したSn分散積層型グラフェンと、により表面がめっきされたことを特徴とするSn-グラフェン複合めっき膜金属製端子の製造方法。 A method for producing a metal terminal having a Sn-graphene composite plating film, comprising: a graphene production step of producing stacked graphene peeled from graphite; and a hybrid plating step of simultaneously performing electrophoretic electrodeposition of Sn-containing graphene particles and electroplating of Sn using a Sn plating bath containing the stacked graphene dispersed in the plating bath, wherein the electroplating conditions are a current density of 0.1 to 10 A/ dm2 and a plating bath temperature of 5 to 30°C , and the surface of the metal terminal is plated with a Sn layer produced under these conditions; and Sn-dispersed stacked graphene in which Sn is dispersed in the stacked graphene. 前記めっき浴は工業用硫酸浴、スルホン酸浴又はアルカリ浴であることを特徴とする請求項に記載のSn-グラフェン複合めっき膜金属製端子の製造方法。 The method for producing a Sn-graphene composite plating film metal terminal according to claim 4 , wherein the plating bath is an industrial sulfuric acid bath, a sulfonic acid bath, or an alkaline bath.
JP2020020764A 2020-02-10 2020-02-10 Sn-graphene composite plating film metal terminal and its manufacturing method Active JP7470321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020020764A JP7470321B2 (en) 2020-02-10 2020-02-10 Sn-graphene composite plating film metal terminal and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020020764A JP7470321B2 (en) 2020-02-10 2020-02-10 Sn-graphene composite plating film metal terminal and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021127468A JP2021127468A (en) 2021-09-02
JP7470321B2 true JP7470321B2 (en) 2024-04-18

Family

ID=77487985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020020764A Active JP7470321B2 (en) 2020-02-10 2020-02-10 Sn-graphene composite plating film metal terminal and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7470321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277422B (en) * 2022-01-27 2023-11-03 中国人民解放军陆军装甲兵学院 Preparation method of tin-graphene composite brush plating solution and aluminum substrate surface plating layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026086A1 (en) 2007-07-27 2009-01-29 Aruna Zhamu Electrochemical method of producing nano-scaled graphene platelets
JP2014001126A (en) 2012-05-25 2014-01-09 National Institute For Materials Science Method for manufacturing separated graphene film
JP2014164965A (en) 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Method of manufacturing terminal, terminal material for use in manufacturing method, terminal manufactured by manufacturing method, terminal connection structure of wire and manufacturing method therefor, and copper or copper alloy plate material for terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026086A1 (en) 2007-07-27 2009-01-29 Aruna Zhamu Electrochemical method of producing nano-scaled graphene platelets
JP2014001126A (en) 2012-05-25 2014-01-09 National Institute For Materials Science Method for manufacturing separated graphene film
JP2014164965A (en) 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Method of manufacturing terminal, terminal material for use in manufacturing method, terminal manufactured by manufacturing method, terminal connection structure of wire and manufacturing method therefor, and copper or copper alloy plate material for terminal

Also Published As

Publication number Publication date
JP2021127468A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP5667543B2 (en) Silver plating material and method for producing the same
JP4749746B2 (en) Tin plating material and method for producing the same
JP5848169B2 (en) Silver plating material
KR102194260B1 (en) Porous metal body and method for producing porous metal body
JP5848168B2 (en) Silver plating material
US20210254231A1 (en) Silver electrolyte for depositing dispersion silver layers and contact surfaces with dispersion silver layers
JP5077479B1 (en) Contacts and electronic parts using the same
WO2015133499A1 (en) Sn-PLATED ARTICLE AND METHOD FOR MANUFACTURING SAME
JP2021072185A (en) Ag-GRAPHENE COMPOSITE PLATING FILM METAL TERMINAL AND MANUFACTURING METHOD THEREOF
JP4859189B2 (en) Titanium or titanium alloy material with precious metal plating
JP2009135097A (en) Metal material for electric and electronic equipment, method of manufacturing metal material for electric and electronic equipment
KR101201015B1 (en) Separator for fuel cell and manufacturing method therefor
JP2020117747A (en) Composite plated material, and method of producing the same
CN115702262A (en) Composite material, method for producing composite material, and terminal
JP7470321B2 (en) Sn-graphene composite plating film metal terminal and its manufacturing method
JP2012057212A (en) Composite plated material, and electric component and electronic component using the same
JP2014080672A (en) Silver plated material and method for producing the same
JP2019112666A (en) Conductive material
JP6193687B2 (en) Silver plating material and method for producing the same
JP2010090400A (en) Electroconductive material and method for manufacturing the same
JP2020056056A (en) Copper terminal material, copper terminal, and manufacturing method of copper terminal material
JP7172583B2 (en) Terminal materials for connectors
JP2022092093A (en) Ag COATING MATERIAL, PRODUCTION METHOD OF Ag COATING MATERIAL, AND TERMINAL COMPONENT
JP2016130362A (en) Silver plated material and manufacturing method of the same
JP2020196910A (en) Material for electric contact and its manufacturing method, connector terminal, connector and electronic component

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20231214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240328

R150 Certificate of patent or registration of utility model

Ref document number: 7470321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150