JP2020196910A - Material for electric contact and its manufacturing method, connector terminal, connector and electronic component - Google Patents

Material for electric contact and its manufacturing method, connector terminal, connector and electronic component Download PDF

Info

Publication number
JP2020196910A
JP2020196910A JP2019102171A JP2019102171A JP2020196910A JP 2020196910 A JP2020196910 A JP 2020196910A JP 2019102171 A JP2019102171 A JP 2019102171A JP 2019102171 A JP2019102171 A JP 2019102171A JP 2020196910 A JP2020196910 A JP 2020196910A
Authority
JP
Japan
Prior art keywords
layer
main component
heat treatment
electrical contacts
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019102171A
Other languages
Japanese (ja)
Other versions
JP7306879B2 (en
Inventor
秀一 北河
Shuichi Kitagawa
秀一 北河
伸 菊池
Shin Kikuchi
伸 菊池
達也 中津川
Tatsuya Nakatsugawa
達也 中津川
紳悟 川田
Shingo Kawata
紳悟 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019102171A priority Critical patent/JP7306879B2/en
Publication of JP2020196910A publication Critical patent/JP2020196910A/en
Application granted granted Critical
Publication of JP7306879B2 publication Critical patent/JP7306879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a material for electric contacts, which has a low contact resistance value having a sufficient resistance level, even when high voltage and large current are applied, has a low dynamic friction coefficient, furthermore, heat adhesion resistance after heating in a heat treatment applied after laminate formation of each layer on a copper alloy substrate, and its manufacturing method, a connector terminal, a connector and an electronic component.SOLUTION: A material for electric contacts of the present invention is characterized in that, at least on one surface side of a conductive substrate containing copper (Cu) as a main component, a superficial layer where many deposits made of an intermetallic compound having a content of Sn of 11.80 to 22.85 at% are present, in a host phase containing silver (Ag) and tin (Sn) as a main component is formed.SELECTED DRAWING: Figure 1

Description

本発明は、電気接点用材料およびその製造方法、コネクタ端子、コネクタならびに電子部品に関する。 The present invention relates to materials for electrical contacts and methods for manufacturing them, connector terminals, connectors, and electronic components.

民生用および車載用の電子部品、例えばコネクタの電気接点部を構成するコネクタ端子には、黄銅やリン青銅、コルソン合金などの銅(Cu)を主成分として含有する導電性基材の表面に、ニッケル(Ni)やCuの下地めっきを施し、さらにその上に錫(Sn)やSn合金のめっきを施した電気接点用材料が使用されている。 For consumer and automotive electronic components, such as connector terminals that make up the electrical contacts of connectors, on the surface of a conductive substrate containing copper (Cu) as the main component, such as brass, phosphorus bronze, and Corson alloy. Materials for electrical contacts are used, which are base-plated with nickel (Ni) or Cu, and further plated with tin (Sn) or Sn alloy.

近年、省燃費化の達成のため車両駆動方式の電動化が進行し、例えば、電池−インバータ−モータ間の接続部品には高電圧大電流への耐性が求められるようになり、SnやSn合金のめっきに代わって、銀(Ag)やAg合金のめっきを使用する例が増えている。 In recent years, in order to achieve fuel efficiency, the electrification of vehicle drive systems has progressed, and for example, connection parts between a battery, an inverter, and a motor are required to withstand high voltage and large current, and Sn and Sn alloys There are an increasing number of cases where silver (Ag) or Ag alloy plating is used instead of the plating of.

一方で、このような用途では車両の組み立て性の向上を目的として、従来、ボルト締めであった接続部が、篏合方式のコネクタに代わりつつある。そのため、コネクタ、特にコネクタ端子の表面に形成されるめっきは、接触抵抗値が低く、かつコネクタを嵌合(接続)した際の挿入力が低いことが求められている。しかしながら、Agめっきは、金属とのなじみがよく、凝集を起こしやすいため、動摩擦係数が高まり挿入力が増大する傾向がある。 On the other hand, in such an application, for the purpose of improving the assembleability of the vehicle, the connection portion, which has been conventionally bolted, is being replaced by the merging type connector. Therefore, the plating formed on the surface of the connector, particularly the connector terminal, is required to have a low contact resistance value and a low insertion force when the connector is fitted (connected). However, Ag plating has good compatibility with metal and easily causes agglomeration, so that the coefficient of dynamic friction tends to increase and the insertion force tends to increase.

例えば、特許文献1には、銅合金基材上に、Ni層(下層)、Ag層(中層)、ε−AgSn層(上層)およびSn層(最表層)を形成し、低ウィスカ性、低凝着磨耗性および高耐久性を有する電子部品用金属材料が開示されている。 For example, in Patent Document 1, a Ni layer (lower layer), an Ag layer (middle layer), an ε-AgSn layer (upper layer) and a Sn layer (outermost layer) are formed on a copper alloy base material, and have low whisker properties and low wear. Metallic materials for electronic components that have adhesive wear resistance and high durability are disclosed.

特開2014−29007号公報Japanese Unexamined Patent Publication No. 2014-29007

しかしながら、特許文献1に記載の電子部品用金属材料は、最表層にSn層を有し、接触抵抗値がAg層に比べて高いことから、高電圧大電流への耐性を必要とするコネクタには適用できない。また、特許文献1に記載の電子部品用金属材料は、銅合金基材とAg層(中層)との間に、バリア層(下層)としてのNi層を形成し、銅合金基材の構成金属(Cu)が上層に拡散するのを防止する対策が講じられているが、Ni層の構成金属であるNiと、Ni層上に形成されたAg層の構成金属であるAgとは、化合物を形成しないため、銅合金基材上への各層の積層形成後に施される熱処理における加熱後の密着強度が低いといった問題がある。 However, the metal material for electronic components described in Patent Document 1 has a Sn layer on the outermost layer and has a higher contact resistance value than the Ag layer, so that it is suitable for a connector that requires resistance to high voltage and large current. Is not applicable. Further, the metal material for electronic parts described in Patent Document 1 forms a Ni layer as a barrier layer (lower layer) between a copper alloy base material and an Ag layer (middle layer), and is a constituent metal of the copper alloy base material. Although measures have been taken to prevent (Cu) from diffusing into the upper layer, Ni, which is a constituent metal of the Ni layer, and Ag, which is a constituent metal of the Ag layer formed on the Ni layer, are composed of a compound. Since it is not formed, there is a problem that the adhesion strength after heating in the heat treatment applied after laminating and forming each layer on the copper alloy base material is low.

本発明は、以上の実情に鑑みてなされたものであり、導電性基材上に積層形成される各層の組成、および表層(特に表面)に存在する金属間化合物の適正化を図ることにより、高電圧大電流を印加した場合であっても、十分な耐性レベルをもつ低い接触抵抗値を有するとともに、動摩擦係数も低く、さらに、銅合金基材上への各層の積層形成後に施される熱処理における加熱後の耐熱密着性にも優れた電気接点用材料、およびその製造方法、コネクタ端子、コネクタならびに電子部品を提供することを目的とする。 The present invention has been made in view of the above circumstances, and by optimizing the composition of each layer laminated on the conductive base material and the intermetallic compound existing on the surface layer (particularly the surface). Even when a high voltage and a large current are applied, it has a low contact resistance value with a sufficient resistance level, a low dynamic friction coefficient, and a heat treatment performed after laminating each layer on a copper alloy base material. It is an object of the present invention to provide a material for an electric contact having excellent heat resistance and adhesion after heating, a manufacturing method thereof, a connector terminal, a connector, and an electronic component.

本発明者らは、上述した目的を達成するため、鋭意検討を重ねた結果、銅(Cu)を主成分として含有する導電性基材の少なくとも片面側に、銀(Ag)および錫(Sn)を主成分として含有する母相に、Snを含有する特定の金属間化合物からなる析出物が多数存在する表層を形成することによって、高電圧大電流を印加した場合であっても、十分な耐性レベルをもつ低い接触抵抗値を有するとともに、動摩擦係数も低く、さらに、銅合金基材上への各層の積層形成後に施される熱処理における加熱後の耐熱密着性にも優れた電気接点用材料を提供でき、そして、そのような電気接点材料は、例えば、Cuを主成分として含有する導電性基材の少なくとも片面側に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成し、次いで、450〜900℃の加熱温度で加熱する第1熱処理を施した後、前記第1熱処理の加熱温度よりも低い温度でかつ表層が231℃以上となるように加熱する第2熱処理を施すことによって製造できることを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above-mentioned object, the present inventors have made silver (Ag) and tin (Sn) on at least one side of a conductive base material containing copper (Cu) as a main component. By forming a surface layer in which a large number of precipitates composed of a specific intermetallic compound containing Sn are present in the matrix containing the main component, sufficient resistance is sufficient even when a high voltage and a large current are applied. A material for electrical contacts that has a low contact resistance value with a level, a low dynamic friction coefficient, and also has excellent heat-resistant adhesion after heating in the heat treatment performed after laminating each layer on a copper alloy base material. Such electrical contact materials can be provided, for example, on at least one side of a conductive substrate containing Cu as a main component, a layer containing Ag as a main component and a layer containing Sn as a main component. The layers are laminated in no particular order, and then the first heat treatment is performed by heating at a heating temperature of 450 to 900 ° C., and then the surface layer is heated to be 231 ° C. or higher at a temperature lower than the heating temperature of the first heat treatment. We have found that it can be produced by subjecting it to a second heat treatment, and have completed the present invention.

すなわち、本発明の要旨構成は以下のとおりである。
(1)銅(Cu)を主成分として含有する導電性基材の少なくとも片面側に、銀(Ag)および錫(Sn)を主成分として含有する母相に、Snの含有量が11.80〜22.85at%である金属間化合物からなる析出物が多数存在する表層が形成されていることを特徴とする電気接点用材料。
(2)前記表層における前記金属化合物の存在割合が50%以上であることを特徴とする上記(1)に記載の電気接点用材料。
(3)前記基材と前記表層との間に、ニッケル(Ni)を主成分として含有する下地層が形成されていることを特徴とする上記(1)または(2)に記載の電気接点用材料。
(4)前記下地層と前記表層との間に、銅(Cu)を主成分として含有する中間層が形成されていることを特徴とする上記(3)に記載の電気接点用材料。
(5)前記表層の厚さが0.1〜10.0μmであることを特徴とする上記(1)〜(4)のいずれかに記載の電気接点用材料。
(6)上記(1)〜(5)のいずれかに記載の電気接点用材料を用いたコネクタ端子。
(7)上記(6)に記載のコネクタ端子を有するコネクタ。
(8)上記(7)に記載のコネクタを有する電子部品。
(9)上記(1)または(2)に記載の電気接点用材料を製造する方法であって、Cuを主成分として含有する導電性基材の少なくとも片面側に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成し、次いで、450〜900℃の加熱温度で加熱する第1熱処理を施した後、前記第1熱処理の加熱温度よりも低い温度でかつ表層が231℃以上となるように加熱する第2熱処理を施すことを特徴とする電気接点用材料の製造方法。
(10)上記(3)に記載の電気接点用材料を製造する方法であって、Cuを主成分として含有する導電性基材の少なくとも片面側に、Niを主成分として含有する下地層を積層形成し、その後、前記下地層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成し、次いで、450〜900℃の加熱温度で加熱する第1熱処理を施した後、前記第1熱処理の加熱温度よりも低い温度でかつ表層が231℃以上となるように加熱する第2熱処理を施すことを特徴とする電気接点用材料の製造方法。
(11)上記(4)に記載の電気接点用材料を製造する方法であって、Cuを主成分として含有する導電性基材の少なくとも片面側に、Niを主成分として含有する下地層およびCuを主成分として含有する中間層をこの順で積層形成し、その後、前記中間層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成し、次いで、450〜900℃の加熱温度で加熱する第1熱処理を施した後、前記第1熱処理の加熱温度よりも低い温度でかつ表層が231℃以上となるように加熱する第2熱処理を施すことを特徴とする電気接点用材料の製造方法。
That is, the gist structure of the present invention is as follows.
(1) The Sn content is 11.80 in the parent phase containing silver (Ag) and tin (Sn) as main components on at least one side of the conductive base material containing copper (Cu) as the main component. A material for electrical contacts, characterized in that a surface layer is formed in which a large number of precipitates composed of an intermetallic compound of ~ 22.85 at% are present.
(2) The material for electrical contacts according to (1) above, wherein the abundance ratio of the metal compound in the surface layer is 50% or more.
(3) The electric contact according to (1) or (2) above, wherein a base layer containing nickel (Ni) as a main component is formed between the base material and the surface layer. material.
(4) The material for electrical contacts according to (3) above, wherein an intermediate layer containing copper (Cu) as a main component is formed between the base layer and the surface layer.
(5) The material for electrical contacts according to any one of (1) to (4) above, wherein the surface layer has a thickness of 0.1 to 10.0 μm.
(6) A connector terminal using the material for electrical contacts according to any one of (1) to (5) above.
(7) A connector having the connector terminal according to (6) above.
(8) An electronic component having the connector according to (7) above.
(9) The method for producing an electrical contact material according to (1) or (2) above, wherein Ag is contained as a main component on at least one side of a conductive base material containing Cu as a main component. The layers and the layers containing Sn as a main component are laminated in no particular order, and then the first heat treatment is performed by heating at a heating temperature of 450 to 900 ° C., and then the temperature is lower than the heating temperature of the first heat treatment. A method for producing a material for electrical contacts, which comprises performing a second heat treatment in which the surface layer is heated to 231 ° C. or higher.
(10) The method for producing an electrical contact material according to (3) above, wherein a base layer containing Ni as a main component is laminated on at least one side of a conductive base material containing Cu as a main component. After that, a layer containing Ag as a main component and a layer containing Sn as a main component are laminated and formed on the base layer in no particular order, and then the first heat treatment is performed by heating at a heating temperature of 450 to 900 ° C. A method for producing a material for electrical contacts, which comprises performing a second heat treatment in which the surface layer is heated to 231 ° C. or higher at a temperature lower than the heating temperature of the first heat treatment.
(11) The method for producing an electrical contact material according to (4) above, wherein a base layer containing Ni as a main component and Cu are placed on at least one side of a conductive base material containing Cu as a main component. The intermediate layer containing the main component is laminated in this order, and then the layer containing Ag as the main component and the layer containing Sn as the main component are laminated and formed on the intermediate layer in this order, and then the layers containing Sn as the main component are laminated in no particular order. After the first heat treatment of heating at a heating temperature of 450 to 900 ° C., the second heat treatment of heating the surface layer at a temperature lower than the heating temperature of the first heat treatment and at 231 ° C. or higher is performed. A method for manufacturing materials for electrical contacts.

本発明によれば、高電圧大電流を印加した場合であっても、十分な耐性レベルをもつ低い接触抵抗値を有するとともに、動摩擦係数も低く、さらに、銅合金基材上への各層の積層形成後に施される熱処理における加熱後の耐熱密着性にも優れた電気接点用材料およびその製造方法、コネクタ端子、コネクタならびに電子部品を提供することができる。 According to the present invention, even when a high voltage and a large current are applied, it has a low contact resistance value having a sufficient resistance level, a low dynamic friction coefficient, and further, lamination of each layer on a copper alloy base material. It is possible to provide an electric contact material having excellent heat-resistant adhesion after heating in a heat treatment performed after formation, a method for manufacturing the same, a connector terminal, a connector, and an electronic component.

本発明の電気接点用材料の断面模式図である。It is sectional drawing of the material for electric contact of this invention. 本発明の電気接点用材料の表層(の表面)のSEM写真の一例である。This is an example of an SEM photograph of the surface layer (surface) of the material for electrical contacts of the present invention.

以下、本発明の好ましい実施形態について詳細に説明するが、本発明は以下の実施形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments.

なお、本発明において「Mを主成分として含有する」(Mは一種類の金属元素の場合)とは、基材または各層に含まれる全金属元素に占める金属元素Mの含有量が50at%以上であることをいう。 In the present invention, "containing M as a main component" (when M is one kind of metal element) means that the content of the metal element M in the total metal elements contained in the base material or each layer is 50 at% or more. It means that.

1.電気接点用材料
本発明の電気接点用材料は、銅(Cu)を主成分として含有する導電性基材の少なくとも片面側に、銀(Ag)および錫(Sn)を主成分として含有する母相に、Snの含有量が11.80〜22.85at%である金属間化合物からなる析出物が多数存在する表層が形成されていることを特徴とする。
1. 1. Material for electrical contacts The material for electrical contacts of the present invention is a matrix containing silver (Ag) and tin (Sn) as main components on at least one side of a conductive base material containing copper (Cu) as a main component. In addition, a surface layer having a large number of precipitates composed of intermetallic compounds having a Sn content of 11.80 to 22.85 at% is formed.

図1は、本発明に従う一の実施形態の電気接点用材料の断面を模式的に示したものである。図1に示す電気接点用材料1は、銅(Cu)を主成分として含有する導電性基材11の片面に、ニッケル(Ni)を主成分として含有する下地層12と、銅(Cu)を主成分として含有する中間層13と、銀(Ag)および錫(Sn)を主成分として含有する母相に、Snの含有量が11.80〜22.85at%である金属間化合物からなる析出物が多数存在する表層14とを順次積層形成したときの断面構造を有している。 FIG. 1 schematically shows a cross section of an electrical contact material according to an embodiment of the present invention. In the material 1 for electrical contacts shown in FIG. 1, a base layer 12 containing nickel (Ni) as a main component and copper (Cu) are provided on one side of a conductive base material 11 containing copper (Cu) as a main component. Precipitation consisting of an intermetallic compound having a Sn content of 11.80 to 22.85 at% in an intermediate layer 13 containing as a main component and a matrix containing silver (Ag) and tin (Sn) as main components. It has a cross-sectional structure when the surface layer 14 on which a large number of objects are present is sequentially laminated and formed.

以下、本発明の電気接点用材料の各部について詳細に説明する。 Hereinafter, each part of the material for electrical contacts of the present invention will be described in detail.

(導電性基材)
導電性基材11は、銅を主成分として含有するものである。
(Conductive base material)
The conductive base material 11 contains copper as a main component.

具体的に、導電性基材11は、(純)銅または銅合金の銅系材料で構成されている。銅合金としては、特に限定されないが、例えばCu−Zn系、Cu−Ni−Si系、Cu−Sn−Ni系、Cu−Cr−Mg系、Cu−Ni−Si−Zn−Sn−Mg系などが挙げられる。 Specifically, the conductive base material 11 is made of a copper-based material of (pure) copper or a copper alloy. The copper alloy is not particularly limited, but for example, Cu-Zn-based, Cu-Ni-Si-based, Cu-Sn-Ni-based, Cu-Cr-Mg-based, Cu-Ni-Si-Zn-Sn-Mg-based, etc. Can be mentioned.

導電性基材11の形状としては、特に限定されず、用途に応じて適宜選択すればよいが、好ましくは条材もしくは板材であり、棒材や線材とすることもできる。 The shape of the conductive base material 11 is not particularly limited and may be appropriately selected depending on the intended use, but is preferably a strip material or a plate material, and may be a bar material or a wire material.

導電性基材11の導電率としては、特に限定されないが、20%IACS以上であることが好ましく、40%IACS以上であることがより好ましい。これにより、導電材全体として優れた導電性を有することができる。ここで、導電率(IACS;International Annealed Copper Standard)は、四端子法を用いて、20℃(±1℃)に管理された恒温槽中で測定することにより求めることができる。 The conductivity of the conductive base material 11 is not particularly limited, but is preferably 20% IACS or more, and more preferably 40% IACS or more. As a result, the conductive material as a whole can have excellent conductivity. Here, the conductivity (ICAS; International Annealed Copper Standard) can be determined by measuring in a constant temperature bath controlled at 20 ° C. (± 1 ° C.) using the four-terminal method.

(下地層)
下地層12は、ニッケル(Ni)を主成分として含有するものであり、電気接点用材料1においては任意の構成要素である。この下地層は、導電性基材11中のCuが、後述する中間層13や表層14に拡散することによって生じる電気接点用材料1の導電性の劣化を防止することができる。
(Underground layer)
The base layer 12 contains nickel (Ni) as a main component, and is an arbitrary component in the material 1 for electrical contacts. This base layer can prevent deterioration of the conductivity of the electrical contact material 1 caused by the diffusion of Cu in the conductive base material 11 into the intermediate layer 13 and the surface layer 14, which will be described later.

具体的に、下地層12は、金属ニッケルまたはニッケル合金のニッケル系材料で構成されている。ニッケル合金としては、特に限定されないが、例えばNi−P系、Ni−Fe系などが挙げられる。 Specifically, the base layer 12 is made of a nickel-based material such as metallic nickel or a nickel alloy. The nickel alloy is not particularly limited, and examples thereof include Ni-P type and Ni-Fe type.

下地層12の厚さとしては、特に限定されないが、例えば0.1〜3.0μmであることが好ましく、0.3〜2.0μmであることがより好ましい。なお、下地層の厚さの算出方法は後述する。 The thickness of the base layer 12 is not particularly limited, but is preferably 0.1 to 3.0 μm, more preferably 0.3 to 2.0 μm, for example. The method of calculating the thickness of the base layer will be described later.

なお、下地層12には、ニッケル系材料で構成されたNi含有層の代わりに、コバルト(Co)含有層または鉄(Fe)含有層を用いても、Ni含有層と同様の効果が得られる。 Even if a cobalt (Co) -containing layer or an iron (Fe) -containing layer is used as the base layer 12 instead of the Ni-containing layer made of a nickel-based material, the same effect as that of the Ni-containing layer can be obtained. ..

(中間層)
中間層13は、Cuを主成分として含有するものであり、電気接点用材料1においては任意の構成要素である。この中間層13は、下地層12と表層14の間の密着性をより向上させるものである。
(Middle layer)
The intermediate layer 13 contains Cu as a main component, and is an arbitrary component in the material 1 for electrical contacts. The intermediate layer 13 further improves the adhesion between the base layer 12 and the surface layer 14.

具体的に、中間層13は、金属銅または銅合金の銅系材料で構成されている。銅合金としては、特に限定されないが、例えばCu−Zn系などが挙げられる。 Specifically, the intermediate layer 13 is made of a copper-based material such as metallic copper or a copper alloy. The copper alloy is not particularly limited, and examples thereof include Cu—Zn type.

中間層13の厚さとしては、特に限定されないが、例えば0.01〜1.0μmであることが好ましく、0.03〜0.5μmであることがより好ましい。なお、中間層13の厚さの算出方法は後述する。 The thickness of the intermediate layer 13 is not particularly limited, but is preferably 0.01 to 1.0 μm, more preferably 0.03 to 0.5 μm, for example. The method of calculating the thickness of the intermediate layer 13 will be described later.

(表層)
表層14は、銀(Ag)および錫(Sn)を主成分として含有する母相に、Snの含有量が11.80〜22.85at%である金属間化合物からなる析出物が多数存在するものである。なお、「銀(Ag)および錫(Sn)を主成分として含有する」とは、表層14に含まれる全金属元素に占める、銀の含有量が40at%以上、かつ錫の含有量が10at%以上であって、さらに銀および錫の各含有量が銀および錫の合計割合が50at%以上であることをいう。なお、X線光電子分光により測定した金属元素の含有量は、X線光電子分光により検出された全元素に対する割合である。
(surface)
The surface layer 14 has a large number of precipitates composed of intermetallic compounds having a Sn content of 11.80 to 22.85 at% in a matrix containing silver (Ag) and tin (Sn) as main components. Is. In addition, "containing silver (Ag) and tin (Sn) as main components" means that the content of silver in the total metal elements contained in the surface layer 14 is 40 at% or more and the content of tin is 10 at%. It means that the total content of silver and tin is 50 at% or more. The content of the metal element measured by X-ray photoelectron spectroscopy is a ratio to all the elements detected by X-ray photoelectron spectroscopy.

また、「多数の析出物」は、走査型電子顕微鏡(SEM)で観察したときに、例えば図2に示すような像が得られる。図2は、本発明の電気接点用材料を、表層(の表面)のSEM写真の一例を示したものである。 Further, when the "large number of precipitates" are observed with a scanning electron microscope (SEM), an image as shown in FIG. 2, for example, can be obtained. FIG. 2 shows an example of an SEM photograph of (the surface of) the surface layer of the material for electrical contacts of the present invention.

Snの含有量が11.80〜22.85at%である金属間化合物は、AgSn(ζ−AgSn)を主成分とする相であることを意味する。ζ−AgSnは、硬度が高いため、ζ−AgSnを主成分とする金属間化合物からなる析出物が多数存在する表層(特に表面)を形成することにより、動摩擦係数を低下させることができる。また、ζ−AgSnは、導電性に優れるため、接触抵抗を低くすることもできる。さらに、ζ−AgSnは、加熱しても中間層13や導電性基材11に存在するCuがその内部に拡散しにくいため、Cuが表層14の表面まで拡散し、外気と接触して酸化することにより生じる導電性の低下を抑制することができる。 An intermetallic compound having a Sn content of 11.80 to 22.85 at% means that it is a phase containing Ag 4 Sn (ζ-AgSn) as a main component. Since ζ-AgSn has a high hardness, the coefficient of kinetic friction can be reduced by forming a surface layer (particularly the surface) in which a large number of precipitates composed of intermetallic compounds containing ζ-AgSn as a main component are present. Further, since ζ-AgSn is excellent in conductivity, the contact resistance can be lowered. Further, in ζ-AgSn, since Cu existing in the intermediate layer 13 and the conductive base material 11 is difficult to diffuse inside even when heated, Cu diffuses to the surface of the surface layer 14 and oxidizes in contact with the outside air. It is possible to suppress the decrease in conductivity caused by this.

このような観点から、金属間化合物からなる析出物において、Agの含有量は、特に限定されないが、77.15〜88.20at%であることが好ましい。 From this point of view, the content of Ag in the precipitate composed of the intermetallic compound is not particularly limited, but is preferably 77.15 to 88.20 at%.

また、表層14においては、上述したSnの含有量が11.80〜22.85at%である金属間化合物の存在割合が50%以上であることが好ましい。このような金属間化合物は、上述したとおり、動摩擦係数を低下させ、接触抵抗を低くし、加熱による導電性の低下を抑制するものであるから、この金属間化合物の存在割合が増加するにつれて、これらの性質もより増加する傾向がある。 Further, in the surface layer 14, it is preferable that the abundance ratio of the intermetallic compound having the above-mentioned Sn content of 11.80 to 22.85 at% is 50% or more. As described above, such an intermetallic compound lowers the coefficient of kinetic friction, lowers the contact resistance, and suppresses the decrease in conductivity due to heating. Therefore, as the abundance ratio of the intermetallic compound increases, These properties also tend to increase.

表層14は、表面に存在する析出物が粒状であることが好ましく、その平均粒径としては、0.01〜10μmの範囲であることが好ましい。これにより、電気接点用材料1は、より動摩擦係数が低く、またより優れた曲げ加工性を示すものとなる。具体的に、矩形の視野範囲に、縦横一辺あたりにそれぞれ20個以上(合計で400個以上)の粒状析出物が入るように設定し、この状態で対角線を引き、引いた対角線が通過する粒状析出物の数を測定し、測定した粒状析出物の数で、対角線長さを割ることにより、粒状析出物の平均粒径を算出する。 The surface layer 14 preferably has granular precipitates present on the surface, and the average particle size thereof is preferably in the range of 0.01 to 10 μm. As a result, the material 1 for electrical contacts has a lower coefficient of dynamic friction and exhibits better bending workability. Specifically, it is set so that 20 or more (400 or more in total) granular precipitates are contained in each of the vertical and horizontal sides in the rectangular viewing range, and in this state, a diagonal line is drawn and the drawn diagonal line passes through. The average particle size of the granular precipitates is calculated by measuring the number of precipitates and dividing the diagonal length by the number of the measured granular precipitates.

表層14の厚さとしては、特に限定されないが、例えば0.1〜10.0μmであることが好ましく、0.5〜7.0μmであることがより好ましく、1.0〜5.0μmであることがさらに好ましい。表層14がこのような厚さを有することにより、より優れた導電性を有し、また、優れた曲げ加工性を示すものとなる。 The thickness of the surface layer 14 is not particularly limited, but is preferably 0.1 to 10.0 μm, more preferably 0.5 to 7.0 μm, and 1.0 to 5.0 μm, for example. Is even more preferable. When the surface layer 14 has such a thickness, it has more excellent conductivity and exhibits excellent bending workability.

以上のように構成した電気接点用材料1は、高電圧大電流を印加した場合であっても、十分な耐性レベルをもつ低い接触抵抗値を有するとともに、動摩擦係数も低い。そして、このような電気接点用材料は、コネクタ端子に用いることができる。このようなコネクタ端子は表面の動摩擦係数が低く、挿入力が低いものであるから、車両などの組み立て性を向上させるコネクタに用いることができる。さらにこのようなコネクタは、各種電子部品に用いることができる。なお、本発明では、導電性基材上に積層形成される各層の形成は、導電性基材の少なくとも片面に形成されていればよい。例えば、導電性基材上に積層形成される各層の形成は、コネクタの接続(嵌合)時に、相手側コネクタの端子に対して摺動接触して電気接続される電気接点部に設ければよく、導電性基材の片面または両面に形成することができる。 The material 1 for electrical contacts configured as described above has a low contact resistance value having a sufficient resistance level and a low coefficient of kinetic friction even when a high voltage and a large current are applied. Then, such an electric contact material can be used for the connector terminal. Since such a connector terminal has a low coefficient of dynamic friction on the surface and a low insertion force, it can be used for a connector that improves assembleability of a vehicle or the like. Further, such a connector can be used for various electronic components. In the present invention, each layer laminated on the conductive base material may be formed on at least one surface of the conductive base material. For example, the formation of each layer laminated on the conductive base material may be provided at the electrical contact portion that is electrically connected by sliding contact with the terminal of the mating connector when the connector is connected (fitted). Often, it can be formed on one or both sides of a conductive substrate.

2.電気接点用材料の製造方法
本発明の電気接点用材料の製造方法は、上述した電気接点用材料を製造する方法であって、Cuを主成分として含有する導電性基材の少なくとも片面側に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成し、次いで、450〜900℃の加熱温度で加熱する第1熱処理を施した後、前記第1熱処理の加熱温度よりも低い温度でかつ表層が231℃以上となるように加熱する第2熱処理を施すことを特徴とするものである。
2. 2. Method for Manufacturing Material for Electrical Contact The method for manufacturing the material for electrical contact of the present invention is the method for manufacturing the material for electrical contact described above, wherein the conductive base material containing Cu as a main component is formed on at least one side. A layer containing Ag as a main component and a layer containing Sn as a main component are laminated in no particular order, and then a first heat treatment of heating at a heating temperature of 450 to 900 ° C. is performed, and then the heating of the first heat treatment is performed. It is characterized in that a second heat treatment is performed in which the surface layer is heated to be 231 ° C. or higher at a temperature lower than the temperature.

導電性基材は、その少なくとも片面側に、Niを主成分として含有する下地層を積層形成したものを用いてもよく、Niを主成分として含有する下地層およびCuを主成分として含有する中間層をこの順で積層形成したものを用いてもよい。それぞれの場合において、下地層または中間層の上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成すればよい。 As the conductive base material, a base layer containing Ni as a main component may be laminated on at least one side thereof, and an intermediate layer containing Ni as a main component and an intermediate layer containing Cu as a main component may be used. Layers formed by laminating in this order may be used. In each case, a layer containing Ag as a main component and a layer containing Sn as a main component may be laminated in no particular order on the base layer or the intermediate layer.

より具体的に電気接点用材料の製造方法について説明する。まず、導電性基材の少なくとも片面側に、任意で、めっきにより、Niを主成分として含有する下地層を積層形成するか、またはNiを主成分として含有する下地層およびCuを主成分として含有する中間層をこの順で積層形成する。その後、導電性基板上に直接、または、導電性基板上に形成した下地層または中間層を介して間接的に、めっきによりAgを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成する(すなわち、Agを主成分として含有する層を形成した後、Snを主成分として含有する層を積層形成する場合と、Snを主成分として含有する層を形成した後、Agを主成分として含有する層を積層形成する場合のいずれであってもよい)。次いで、450〜900℃の加熱温度で加熱する第1熱処理を施した後、前記第1熱処理の加熱温度よりも低い温度でかつ表層が231℃(Snの融点)以上となるように加熱する第2熱処理を施す。その後、冷却して、電気接点用材料を得る。熱処理の際に、めっきにより形成されたSnを主成分として含有する層におけるSnおよびAgを主成分として含有する層におけるAgが、相互の層にそれぞれ拡散することで、銀(Ag)および錫(Sn)を主成分として含有する母相に、Snの含有量が11.80〜22.85at%である金属間化合物からなる析出物が多数存在する表層が得られる。 More specifically, a method for manufacturing a material for electrical contacts will be described. First, a base layer containing Ni as a main component is laminated or formed on at least one side of the conductive base material by plating, or a base layer containing Ni as a main component and Cu as a main component are contained. The intermediate layers to be formed are laminated in this order. After that, a layer containing Ag as a main component and a layer containing Sn as a main component are formed by plating directly on the conductive substrate or indirectly via an underlayer or an intermediate layer formed on the conductive substrate. Laminated in no particular order (that is, after forming a layer containing Ag as a main component and then laminating a layer containing Sn as a main component, and after forming a layer containing Sn as a main component, Ag. It may be any case of laminating and forming a layer containing as a main component). Next, after performing the first heat treatment of heating at a heating temperature of 450 to 900 ° C., the first heat treatment is performed so that the temperature is lower than the heating temperature of the first heat treatment and the surface layer is 231 ° C. (the melting point of Sn) or higher. 2 Apply heat treatment. After that, it is cooled to obtain a material for electrical contacts. During the heat treatment, Sn in the layer containing Sn as the main component and Ag in the layer containing Ag as the main component formed by plating diffuse into each other's layers, whereby silver (Ag) and tin (Ag) and tin ( A surface layer is obtained in which a large number of precipitates composed of intermetallic compounds having a Sn content of 11.80 to 22.85 at% are present in the parent phase containing Sn) as a main component.

各層を形成するためのめっき法としては、特に限定されないが、例えば電解めっきや無電解めっきのような湿式めっき、蒸着やスパッタのような乾式めっき等を用いることができる。これらの中でも、湿式めっきを用いることが好ましく、電解めっきを用いることがより好ましい。この際、めっき条件としては、めっき方法や、めっき層の種類やその厚さ、その後の熱処理の温度や保持時間などに応じて適宜調整すればよい。 The plating method for forming each layer is not particularly limited, and for example, wet plating such as electrolytic plating and electroless plating, and dry plating such as vapor deposition and sputtering can be used. Among these, wet plating is preferably used, and electrolytic plating is more preferable. At this time, the plating conditions may be appropriately adjusted according to the plating method, the type and thickness of the plating layer, the temperature and holding time of the subsequent heat treatment, and the like.

Snを主成分として含有する層の厚さに対する、Agを主成分として含有する層の厚さの比(Ag層/Sn層の厚さ比)としては、2.1〜7.0であることが好ましく、2.8〜5.0であることがより好ましい。このような比が2.1〜7.0であることにより、銀(Ag)および錫(Sn)を主成分として含有する母相に、Snの含有量が11.80〜22.85at%である金属間化合物からなる析出物が多数存在する表層が得られやすくなり、このような電気接点用材料は、接触抵抗および動摩擦係数が低く、優れたものとなる。 The ratio of the thickness of the layer containing Ag as the main component (the thickness ratio of the Ag layer / Sn layer) to the thickness of the layer containing Sn as the main component shall be 2.1 to 7.0. Is preferable, and 2.8 to 5.0 is more preferable. When such a ratio is 2.1 to 7.0, the Sn content is 11.80 to 22.85 at% in the matrix containing silver (Ag) and tin (Sn) as main components. It becomes easy to obtain a surface layer in which a large number of precipitates composed of a certain intermetallic compound are present, and such a material for electrical contacts has a low contact resistance and a dynamic friction coefficient, and is excellent.

なお、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で別に積層形成するのではなく、AgおよびSnを主成分として含有する層(例えば、Ag−Sn共析層)を積層形成してもよいが、この場合、第1熱処理は必ずしも必須の構成要素ではなく、第2熱処理から開始してもよい。 In addition, instead of separately laminating a layer containing Ag as a main component and a layer containing Sn as a main component in no particular order, a layer containing Ag and Sn as main components (for example, an Ag—Sn eutectoid layer). In this case, the first heat treatment is not necessarily an indispensable component, and the second heat treatment may be started.

第1熱処理は、加熱温度が、450〜900℃であればよく、特に470〜700℃であることが好ましい。このような温度で加熱して第1熱処理を施すことにより、Snを主成分として含有する層中のSnが溶融し、溶融したSnが、Agを主成分として含有する層中を熱拡散してAg−Sn合金が生成され、その結果、Snを主成分として含有する層と、Agを主成分として含有する層から、Ag−Sn合金層を形成することができる。 In the first heat treatment, the heating temperature may be 450 to 900 ° C., particularly preferably 470 to 700 ° C. By heating at such a temperature and performing the first heat treatment, Sn in the layer containing Sn as a main component is melted, and the melted Sn is thermally diffused in the layer containing Ag as a main component. An Ag—Sn alloy is produced, and as a result, an Ag—Sn alloy layer can be formed from a layer containing Sn as a main component and a layer containing Ag as a main component.

第1熱処理は、加熱時間が5秒以上300秒以下であることが好ましく、特に5秒以上200秒以下であることが好ましい。このように短時間で加熱することにより、SnおよびAg以外の金属が相互に拡散して導電性などを低下させる成分が生成することを防止することができる。 In the first heat treatment, the heating time is preferably 5 seconds or more and 300 seconds or less, and particularly preferably 5 seconds or more and 200 seconds or less. By heating in such a short time, it is possible to prevent metals other than Sn and Ag from diffusing each other to generate a component that lowers conductivity and the like.

第1熱処理は、以上のように、高温、短時間で、上述のようにして得られた積層された基板全体に対して加熱を行うものである。このように高温、短時間で加熱を行う装置としては、誘導加熱装置などが挙げられる。 As described above, the first heat treatment heats the entire laminated substrate obtained as described above at a high temperature and in a short time. Examples of the device that heats at a high temperature in a short time include an induction heating device.

第1熱処理は、不活性ガス雰囲気下または還元ガス雰囲気下で行うことが好ましい。具体的に、不活性ガスとしては、N、Ar、Heなどを用いることができる。また、還元ガスとしては、H、CO、CH、H+COなどを用いることができる。不活性ガス雰囲気下または還元ガス雰囲気下で熱処理を施すことにより、各層の金属の酸化を防止することができる。 The first heat treatment is preferably performed in an inert gas atmosphere or a reducing gas atmosphere. Specifically, as the inert gas, N 2 , Ar, He, or the like can be used. Further, as the reducing gas, H 2 , CO, CH 4 , H 2 + CO and the like can be used. Oxidation of the metal in each layer can be prevented by performing the heat treatment in an inert gas atmosphere or a reducing gas atmosphere.

第2熱処理は、加熱温度が、上述した第1熱処理の加熱温度よりも低い温度であって、かつ231℃(錫の融点)以上であれば特に限定されないが、例えば231℃〜700℃であることが好ましく、特に250℃〜480℃であることが好ましい。 The second heat treatment is not particularly limited as long as the heating temperature is lower than the heating temperature of the first heat treatment described above and is 231 ° C. (the melting point of tin) or higher, but is, for example, 231 ° C. to 700 ° C. The temperature is preferably 250 ° C to 480 ° C.

第2熱処理は、加熱時間が5秒以上300秒以下であることが好ましく、特に5秒以上200秒以下であることが好ましい。 In the second heat treatment, the heating time is preferably 5 seconds or more and 300 seconds or less, and particularly preferably 5 seconds or more and 200 seconds or less.

第2熱処理は、不活性ガス雰囲気下または還元ガス雰囲気下で行うことが好ましい。具体的に、不活性ガスとしては、N、Ar、Heなどを用いることができる。また、還元ガスとしては、H、CO、CH、H+COなどを用いることができる。不活性ガス雰囲気下または還元ガス雰囲気下で熱処理を施すことにより、各層の金属の酸化を防止することができる。 The second heat treatment is preferably performed in an inert gas atmosphere or a reducing gas atmosphere. Specifically, as the inert gas, N 2 , Ar, He, or the like can be used. Further, as the reducing gas, H 2 , CO, CH 4 , H 2 + CO and the like can be used. Oxidation of the metal in each layer can be prevented by performing the heat treatment in an inert gas atmosphere or a reducing gas atmosphere.

第2熱処理では、以上のように加熱を行うことにより、その表層に、Snの含有量が11.80〜22.85at%である金属間化合物からなる析出物を析出させる。したがって、その第2熱処理による加熱は、少なくとも表層を加熱すればよく、例えばバーナーなどを用いて表層を加熱することができる。このように表層のみを加熱することにより、表層においてはSnの含有量が11.80〜22.85at%である金属間化合物の析出を促進する一方、各層の金属が相互に拡散して、性能を低下させる成分が生成することをより防止することができる。 In the second heat treatment, by heating as described above, a precipitate composed of an intermetallic compound having a Sn content of 11.80 to 22.85 at% is precipitated on the surface layer thereof. Therefore, the heating by the second heat treatment may be performed by heating at least the surface layer, and the surface layer can be heated by using, for example, a burner or the like. By heating only the surface layer in this way, the precipitation of intermetallic compounds having a Sn content of 11.80 to 22.85 at% is promoted in the surface layer, while the metals of each layer diffuse with each other to perform performance. It is possible to further prevent the formation of components that reduce the amount of water.

表層のみを加熱する場合、表面(表層の表面)の到達温度は、例えば231℃〜700℃であることが好ましく、特に250℃〜480℃であることが好ましい。また、表層のみを加熱する場合、表面の到達温度と、裏面(導電性基材)の到達温度との差は、50℃以上であることが好ましく、100℃以上であることがより好ましい。 When only the surface layer is heated, the ultimate temperature of the surface (surface of the surface layer) is preferably, for example, 231 ° C to 700 ° C, and particularly preferably 250 ° C to 480 ° C. When only the surface layer is heated, the difference between the ultimate temperature of the front surface and the ultimate temperature of the back surface (conductive base material) is preferably 50 ° C. or higher, more preferably 100 ° C. or higher.

次に、本発明の効果をさらに明確にするために、実施例および比較例について説明するが、本発明はこれらの実施例に限定されるものではない。 Next, in order to further clarify the effect of the present invention, Examples and Comparative Examples will be described, but the present invention is not limited to these Examples.

以下に示す製造方法A〜Cのいずれかにより、実施例1〜24の試料を作製した。また、以下に示す製造方法D〜Hのいずれかにより、比較例1〜6の試料を作製した。作製した試料について、その構造および特性について評価し、その製造条件とともに表1に示した。 Samples of Examples 1 to 24 were prepared by any of the production methods A to C shown below. Further, the samples of Comparative Examples 1 to 6 were prepared by any of the production methods D to H shown below. The structure and characteristics of the prepared sample were evaluated, and are shown in Table 1 together with the production conditions.

(加熱前のAg層、加熱前のSn層、下地層および中間層の厚さの測定)
JIS H8501:1999の蛍光X線式試験方法にしたがい、作製した各試料の表面から蛍光X線分析を行い測定した。また、各層の厚さの確認のため、断面について画像解析法によっても厚さの測定を行った。画像解析法はJIS H8501:1999の走査型電子顕微鏡試験方法にしたがい行った。
(Measurement of thickness of Ag layer before heating, Sn layer before heating, base layer and intermediate layer)
According to the fluorescent X-ray test method of JIS H8501: 1999, fluorescent X-ray analysis was performed from the surface of each prepared sample for measurement. In addition, in order to confirm the thickness of each layer, the thickness of the cross section was also measured by an image analysis method. The image analysis method was performed according to the scanning electron microscope test method of JIS H8501: 1999.

(X線光電子分光)
X線光電子分光分析は、アルバック・ファイ製XPS測定装置5600MCを用い、以下の条件で行った。指定元素を銀、錫、銅、ニッケル、炭素、酸素とし、測定開始後5.2秒後(深さ0.2nm)における指定元素の合計を100%として各元素の濃度を測定することで各元素の濃度分析を行った。また、表層におけるSnの含有量が11.80〜22.85at%である金属間化合物の存在割合は、10mm×10mmの矩形内の任意の19点を測定したとき、Sn量の平均値をSn含有量とし、そのSn量が11.80〜22.85at%である測定点の全測定点に対する割合を存在割合とした。
真空到達度1×10−10Torr(Arガス導入時1×10−8Torr)
X線:単色化Al−Kα
検出面積:50μmφ
出力:200W
イオン線:イオン種Ar+加速電圧3kV
試料入射(試料と検出器とのなす角):各45°
スパッタリングレート:2.3nm/分(SiO換算)
(X-ray photoelectron spectroscopy)
The X-ray photoelectron spectroscopic analysis was performed using the XPS measuring device 5600MC manufactured by ULVAC-PHI under the following conditions. The designated elements are silver, tin, copper, nickel, carbon, and oxygen, and the concentration of each element is measured by measuring the concentration of each element with the total of the designated elements 5.2 seconds after the start of measurement (depth 0.2 nm) as 100%. Elemental concentration analysis was performed. Further, the abundance ratio of the intermetallic compound having a Sn content of 11.80 to 22.85 at% in the surface layer is the average value of the Sn amount when any 19 points in a 10 mm × 10 mm rectangle are measured. The content was defined as the ratio of the measurement points whose Sn content was 11.80 to 22.85 at% to all the measurement points as the abundance ratio.
Vacuum reach 1 × 10 -10 Torr (1 × 10 -8 Torr when Ar gas is introduced)
X-ray: Monochromatic Al-Kα
Detection area: 50 μmφ
Output: 200W
Ion beam: Ion species Ar + accelerating voltage 3 kV
Sample incident (angle between sample and detector): 45 ° each
Sputtering rate: 2.3 nm / min (SiO 2 conversion)

(接触抵抗値の測定)
導電材(各試料)と、Ag表面被覆張り出し加工材(表層に膜厚3μmのAg層を有する無酸素銅C1020、張り出し加工部の曲率半径が5mm)との間の接触抵抗を、四端子法により測定して求めた。DC電流源として株式会社TFF ケースレーインスツルメンツ社製 6220型DC電流ソースを用い、電気抵抗の測定には電流測定器(同社製 2182A型ナノボルトメータ)を用いた。任意の5箇所における接触抵抗値を測定し、各々平均値(n=5)を算出し、以下の基準で評価した。
◎:10mΩ未満
〇:10mΩ以上20mΩ未満
×:20mΩ以上
(Measurement of contact resistance value)
The contact resistance between the conductive material (each sample) and the Ag surface coating overhanging material (oxygen-free copper C1020 having an Ag layer with a film thickness of 3 μm on the surface layer, the radius of curvature of the overhanging portion is 5 mm) is controlled by the four-terminal method. It was obtained by measuring with. A 6220 type DC current source manufactured by TFF Caseray Instruments Co., Ltd. was used as the DC current source, and a current measuring device (2182A type nanovolt meter manufactured by the same company) was used to measure the electrical resistance. The contact resistance values at any five points were measured, the average value (n = 5) was calculated for each, and the evaluation was performed according to the following criteria.
⊚: less than 10 mΩ 〇: 10 mΩ or more and less than 20 mΩ ×: 20 mΩ or more

(動摩擦係数の測定)
表面性測定機(新東科学株式会社製、TYPE:14)を用い、各試料の表層を形成した表面を、Ag表面被覆張り出し加工材(表層に膜厚3μmのAg層を有する無酸素銅C1020、張り出し加工部の曲率半径が5mm)に対し、移動速度100mm/min、摺動距離5mm、接触荷重を5Nで、導電材を15回往復摺動させ、15回目の摺動時の数値を動摩擦係数として測定し、以下の基準で評価した。
◎:0.5未満
〇:0.5以上0.8未満
×:0.8以上
(Measurement of dynamic friction coefficient)
Using a surface measuring machine (manufactured by Shinto Kagaku Co., Ltd., TYPE: 14), the surface on which the surface layer of each sample was formed was subjected to an Ag surface coating overhanging material (an oxygen-free copper C1020 having an Ag layer having a film thickness of 3 μm on the surface layer). , The radius of curvature of the overhanging part is 5 mm), the moving speed is 100 mm / min, the sliding distance is 5 mm, the contact load is 5 N, the conductive material is slid back and forth 15 times, and the numerical value at the 15th sliding is dynamic friction. It was measured as a coefficient and evaluated according to the following criteria.
⊚: less than 0.5 〇: 0.5 or more and less than 0.8 ×: 0.8 or more

(耐熱試験)
各試料を大気雰囲気下において150℃で1000時間加熱した。加熱後、上記接触抵抗値の測定の方法にしたがい、加熱後の接触抵抗値を求めた。評価基準も同様とした。また、加熱後に測定した耐熱密着性は、JIS H 8504:1999にしたがってテープ試験方法を行い、以下の基準で評価した。
◎:150℃で1000時間加熱後の各試料についてテープ剥離試験を行い、表層等のめっきが剥がれなかった場合
×:150℃で1000時間加熱後の各試料についてテープ剥離試験を行い、表層等のめっきが剥がれた場合
(Heat resistance test)
Each sample was heated at 150 ° C. for 1000 hours in an air atmosphere. After heating, the contact resistance value after heating was determined according to the method for measuring the contact resistance value. The evaluation criteria were the same. The heat-resistant adhesion measured after heating was evaluated according to the following criteria by performing a tape test method according to JIS H 8504: 1999.
⊚: When the tape peeling test was performed on each sample after heating at 150 ° C. for 1000 hours and the plating on the surface layer etc. did not peel off ×: When the tape peeling test was performed on each sample after heating at 150 ° C. for 1000 hours and the surface layer etc. When the plating is peeled off

[実施例1〜8:製造方法A]
無酸素銅C1020を電解脱脂、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、不活性ガスまたは還元ガス雰囲気下、設定温度450〜700℃の熱処理炉中で、5〜180秒間第1熱処理を施した。その後、設定温度250〜480℃の熱処理炉中で5〜200秒間熱処理して、第2熱処理を施して、前記銀めっきと前記錫めっきを合金化し、その後、冷却することで、表層としてのAg−Sn合金層を形成した。
[Examples 1 to 8: Manufacturing method A]
Oxygen-free copper C1020 was electrolytically degreased, silver-plated in an alkaline cyanide silver bath, and tin-plated in a tin sulfate bath in this order to a predetermined thickness. Next, the first heat treatment was performed for 5 to 180 seconds in a heat treatment furnace at a set temperature of 450 to 700 ° C. under an atmosphere of an inert gas or a reducing gas. Then, it is heat-treated in a heat treatment furnace at a set temperature of 250 to 480 ° C. for 5 to 200 seconds, a second heat treatment is performed to alloy the silver plating and the tin plating, and then cooled to obtain Ag as a surface layer. A −Sn alloy layer was formed.

[実施例9〜16:製造方法B]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸錫浴にて錫めっき、アルカリシアン銀浴にて銀めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、不活性ガスまたは還元ガス雰囲気下、設定温度450〜700℃の熱処理炉中で、5〜180秒間加熱した。その後、設定温度250〜480℃の熱処理炉中で5〜200秒間熱処理して、第2熱処理を施して、前記銀めっきと前記錫めっきを合金化し、その後、冷却することで、表層としてのAg−Sn合金層を形成した。
[Examples 9 to 16: Manufacturing method B]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating was performed in a sulfamic acid bath, tin plating in a tin sulfate bath, and silver plating in an alkaline cyanide silver bath in this order so as to have a predetermined thickness. Then, it was heated for 5 to 180 seconds in a heat treatment furnace at a set temperature of 450 to 700 ° C. under an atmosphere of an inert gas or a reducing gas. Then, heat treatment is performed for 5 to 200 seconds in a heat treatment furnace at a set temperature of 250 to 480 ° C., a second heat treatment is performed to alloy the silver plating and the tin plating, and then cooling is performed to obtain Ag as a surface layer. A −Sn alloy layer was formed.

[実施例17〜24:製造方法C]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、不活性ガスまたは還元ガス雰囲気下、設定温度300〜700℃の熱処理炉中で、5〜180秒間加熱した。その後、設定温度250〜480℃の熱処理炉中で5〜200秒間熱処理して、第2熱処理を施して、前記銀めっきと前記錫めっきを合金化し、その後、冷却することで、表層としてのAg−Sn合金層を形成した。
[Examples 17 to 24: Manufacturing method C]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating is performed in a sulfamic acid bath, copper plating is performed in a copper sulfate bath, silver plating is performed in an alkaline cyanide silver bath, and tin plating is performed in a tin sulfate bath in this order. It was applied so that it would be. Then, it was heated for 5 to 180 seconds in a heat treatment furnace having a set temperature of 300 to 700 ° C. under an atmosphere of an inert gas or a reducing gas. Then, heat treatment is performed for 5 to 200 seconds in a heat treatment furnace at a set temperature of 250 to 480 ° C., a second heat treatment is performed to alloy the silver plating and the tin plating, and then cooling is performed to obtain Ag as a surface layer. A −Sn alloy layer was formed.

[比較例1:製造方法D]
無酸素銅C1020を電解脱脂、酸洗浄した後に、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、還元ガス雰囲気下、設定温度700℃の熱処理炉中で、5秒間加熱した後、冷却した。第2熱処理を行っていない。
[Comparative Example 1: Manufacturing Method D]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, silver plating was performed in an alkaline cyanide silver bath and tin plating was performed in a tin sulfate bath in this order so as to have a predetermined thickness. Then, in a heat treatment furnace having a set temperature of 700 ° C. under a reducing gas atmosphere, the mixture was heated for 5 seconds and then cooled. No second heat treatment is performed.

[比較例2:製造方法E]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、還元ガス雰囲気下、設定温度600℃の熱処理炉中で、20秒間加熱した後、冷却した。第2熱処理を行っていない。
[Comparative Example 2: Manufacturing Method E]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating was performed in a sulfamic acid bath, silver plating in an alkaline cyanide silver bath, and tin plating in a tin sulfate bath in this order so as to have a predetermined thickness. Then, in a heat treatment furnace having a set temperature of 600 ° C. under a reducing gas atmosphere, the mixture was heated for 20 seconds and then cooled. No second heat treatment is performed.

[比較例3:製造方法F]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した後、還元ガス雰囲気下、設定温度500℃の熱処理炉中で、10秒間加熱した後、冷却したAgめっきは形成せず、また、第2熱処理を行っていない。
[Comparative Example 3: Manufacturing Method F]
Oxygen-free copper C1020 is electrolytically degreased and acid-cleaned, then nickel-plated in a sulfamic acid bath and tin-plated in a tin sulfate bath in this order to a predetermined thickness, and then the set temperature is 500 under a reducing gas atmosphere. After heating for 10 seconds in a heat treatment furnace at ° C., no cooled Ag plating was formed, and no second heat treatment was performed.

[比較例4:製造方法G]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、アルカリシアン銀浴にて銀めっきをこの順にそれぞれ所定の厚さとなるように施した。Snめっきは形成せず、また、第1熱処理および第2熱処理も行っていない。
[Comparative Example 4: Manufacturing Method G]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating was performed in a sulfamic acid bath, copper plating in a copper sulfate bath, and silver plating in an alkali cyan silver bath in this order so as to have a predetermined thickness. Sn plating was not formed, and neither the first heat treatment nor the second heat treatment was performed.

[比較例5〜6:製造方法H]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した後、不活性ガス雰囲気下、設定温度600℃の低温にした熱処理炉中で、20秒間または100秒間加熱した後、冷却した。
[Comparative Examples 5 to 6: Manufacturing Method H]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating is performed in a sulfamic acid bath, copper plating is performed in a copper sulfate bath, silver plating is performed in an alkali cyan silver bath, and tin plating is performed in a tin sulfate bath in this order. After that, the plating was performed in an inert gas atmosphere in a heat treatment furnace at a set temperature of 600 ° C. for 20 seconds or 100 seconds, and then cooled.

上記表1から分かるように、実施例1〜24の試料は、接触抵抗値および動摩擦係数が低く、しかも、熱処理における加熱後の耐熱密着性も優れていた。加えて、実施例1〜24の試料は、加熱後の接触抵抗も、加熱前の接触抵抗と変わらず、低いままであった。 As can be seen from Table 1 above, the samples of Examples 1 to 24 had a low contact resistance value and a dynamic friction coefficient, and also had excellent heat-resistant adhesion after heating in the heat treatment. In addition, the samples of Examples 1 to 24 also had the same contact resistance after heating as the contact resistance before heating, and remained low.

これに対し、その製造工程において第2熱処理を施さず、かつX線光電子分光により測定した、表層に存在する析出物のSn含有量が適正範囲よりも多い比較例1および2の試料は、加熱後の接触抵抗が高く、耐熱密着性も劣っていた。 On the other hand, the samples of Comparative Examples 1 and 2 in which the Sn content of the precipitate present on the surface layer was larger than the appropriate range, which was measured by X-ray photoelectron spectroscopy without performing the second heat treatment in the manufacturing process, were heated. The subsequent contact resistance was high, and the heat-resistant adhesion was also inferior.

その製造工程において第2熱処理を施さず、かつCu層(中間層)を備えず、錫(Sn)のみにより表層を形成した比較例3の試料は、加熱処理前後のいずれの接触抵抗も高く、耐熱密着性も劣っていた。 The sample of Comparative Example 3 in which the surface layer was formed only of tin (Sn) without the second heat treatment and without the Cu layer (intermediate layer) in the manufacturing process had high contact resistance before and after the heat treatment. The heat-resistant adhesion was also inferior.

その製造工程において第1熱処理および第2熱処理を施さず、かつ銀(Ag)のみにより表層を形成した比較例4の試料は、動摩擦係数が高く、耐熱密着性も劣っていた。 The sample of Comparative Example 4 in which the surface layer was formed only of silver (Ag) without performing the first heat treatment and the second heat treatment in the manufacturing process had a high dynamic friction coefficient and was inferior in heat adhesion.

その製造工程において第2熱処理を施さず、かつX線光電子分光により測定した、表層に存在する析出物のSn含有量が適正範囲よりも多い比較例5の試料は、加熱処理前後のいずれの接触抵抗も高く、耐熱密着性も劣っていた。 The sample of Comparative Example 5 in which the Sn content of the precipitate present on the surface layer was higher than the appropriate range, which was measured by X-ray photoelectron spectroscopy without performing the second heat treatment in the manufacturing process, was contacted before or after the heat treatment. The resistance was high and the heat-resistant adhesion was also inferior.

その製造工程において第2熱処理を施さず、かつX線光電子分光により測定した、表層に存在する析出物のSn含有量が適正範囲よりも少ない比較例6の試料は、動摩擦係数が高く、耐熱密着性も劣っていた。 The sample of Comparative Example 6 in which the Sn content of the precipitate present on the surface layer was smaller than the appropriate range, which was measured by X-ray photoelectron spectroscopy without performing the second heat treatment in the manufacturing process, had a high dynamic friction coefficient and was heat-resistant and adhered. The sex was also inferior.

1 電気接点用材料
11 導電性基材
12 下地層
13 中間層
14 表層
1 Material for electrical contacts 11 Conductive base material 12 Base layer 13 Intermediate layer 14 Surface layer

Claims (11)

銅(Cu)を主成分として含有する導電性基材の少なくとも片面側に、銀(Ag)および錫(Sn)を主成分として含有する母相に、Snの含有量が11.80〜22.85at%である金属間化合物からなる析出物が多数存在する表層が形成されていることを特徴とする電気接点用材料。 The content of Sn in the parent phase containing silver (Ag) and tin (Sn) as the main components on at least one side of the conductive base material containing copper (Cu) as the main component is 11.80 to 22. A material for electrical contacts, characterized in that a surface layer having a large number of precipitates composed of an intermetallic compound of 85 at% is formed. 前記表層における前記金属間化合物の存在割合が50%以上であることを特徴とする請求項1に記載の電気接点用材料。 The material for electrical contacts according to claim 1, wherein the abundance ratio of the intermetallic compound in the surface layer is 50% or more. 前記導電性基材と前記表層との間に、ニッケル(Ni)を主成分として含有する下地層が形成されていることを特徴とする請求項1または2に記載の電気接点用材料。 The material for electrical contacts according to claim 1 or 2, wherein a base layer containing nickel (Ni) as a main component is formed between the conductive base material and the surface layer. 前記下地層と前記表層との間に、銅(Cu)を主成分として含有する中間層が形成されていることを特徴とする請求項3に記載の電気接点用材料。 The material for electrical contacts according to claim 3, wherein an intermediate layer containing copper (Cu) as a main component is formed between the base layer and the surface layer. 前記表層の厚さが0.1〜10.0μmであることを特徴とする請求項1〜4のいずれか1項に記載の電気接点用材料。 The material for electrical contacts according to any one of claims 1 to 4, wherein the surface layer has a thickness of 0.1 to 10.0 μm. 請求項1〜5のいずれか1項に記載の電気接点用材料を用いたコネクタ端子。 A connector terminal using the material for electrical contacts according to any one of claims 1 to 5. 請求項6に記載のコネクタ端子を有するコネクタ。 A connector having the connector terminal according to claim 6. 請求項7に記載のコネクタを有する電子部品。 An electronic component having the connector according to claim 7. 請求項1または2に記載の電気接点用材料を製造する方法であって、
Cuを主成分として含有する導電性基材の少なくとも片面側に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成し、次いで、450〜900℃の加熱温度で加熱する第1熱処理を施した後、前記第1熱処理の加熱温度よりも低い温度でかつ表層が231℃以上となるように加熱する第2熱処理を施すことを特徴とする電気接点用材料の製造方法。
The method for producing the material for electrical contacts according to claim 1 or 2.
A layer containing Ag as a main component and a layer containing Sn as a main component are laminated in random order on at least one side of a conductive substrate containing Cu as a main component, and then a heating temperature of 450 to 900 ° C. After the first heat treatment of heating with the above, the second heat treatment of heating the material so that the surface layer is 231 ° C. or higher at a temperature lower than the heating temperature of the first heat treatment is performed. Production method.
請求項3に記載の電気接点用材料を製造する方法であって、
Cuを主成分として含有する導電性基材の少なくとも片面側に、Niを主成分として含有する下地層を積層形成し、その後、前記下地層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成し、次いで、450〜900℃の加熱温度で加熱する第1熱処理を施した後、前記第1熱処理の加熱温度よりも低い温度でかつ表層が231℃以上となるように加熱する第2熱処理を施すことを特徴とする電気接点用材料の製造方法。
The method for manufacturing the material for electrical contacts according to claim 3.
A base layer containing Ni as a main component is laminated and formed on at least one side of a conductive base material containing Cu as a main component, and then a layer containing Ag as a main component and Sn are formed on the base layer. The layers contained as the main components are laminated in no particular order, and then the first heat treatment is performed by heating at a heating temperature of 450 to 900 ° C., and then the surface layer is 231 ° C. at a temperature lower than the heating temperature of the first heat treatment. A method for producing a material for electrical contacts, which comprises performing a second heat treatment that heats the material as described above.
請求項4に記載の電気接点用材料を製造する方法であって、
Cuを主成分として含有する導電性基材の少なくとも片面側に、Niを主成分として含有する下地層およびCuを主成分として含有する中間層をこの順で積層形成し、その後、前記中間層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成し、次いで、450〜900℃の加熱温度で加熱する第1熱処理を施した後、前記第1熱処理の加熱温度よりも低い温度でかつ表層が231℃以上となるように加熱する第2熱処理を施すことを特徴とする電気接点用材料の製造方法。
The method for manufacturing the material for electrical contacts according to claim 4.
A base layer containing Ni as a main component and an intermediate layer containing Cu as a main component are laminated and formed in this order on at least one side of a conductive base material containing Cu as a main component, and then on the intermediate layer. A layer containing Ag as a main component and a layer containing Sn as a main component are laminated and formed in no particular order, and then a first heat treatment of heating at a heating temperature of 450 to 900 ° C. is performed, and then the first heat treatment is performed. A method for producing a material for electrical contacts, which comprises performing a second heat treatment in which the surface layer is heated to a temperature lower than the heating temperature of 231 ° C. or higher.
JP2019102171A 2019-05-31 2019-05-31 Electrical contact material and its manufacturing method, connector terminal, connector and electronic component Active JP7306879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102171A JP7306879B2 (en) 2019-05-31 2019-05-31 Electrical contact material and its manufacturing method, connector terminal, connector and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102171A JP7306879B2 (en) 2019-05-31 2019-05-31 Electrical contact material and its manufacturing method, connector terminal, connector and electronic component

Publications (2)

Publication Number Publication Date
JP2020196910A true JP2020196910A (en) 2020-12-10
JP7306879B2 JP7306879B2 (en) 2023-07-11

Family

ID=73648858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102171A Active JP7306879B2 (en) 2019-05-31 2019-05-31 Electrical contact material and its manufacturing method, connector terminal, connector and electronic component

Country Status (1)

Country Link
JP (1) JP7306879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353928B2 (en) 2019-11-13 2023-10-02 古河電気工業株式会社 Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221208A (en) * 2012-04-19 2013-10-28 Autonetworks Technologies Ltd Plated terminal for connector
JP2014139345A (en) * 2012-09-19 2014-07-31 Jx Nippon Mining & Metals Corp Surface treatment plated material and production method of the same, and electronic component
JP2015045058A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015206094A (en) * 2014-04-22 2015-11-19 Jx日鉱日石金属株式会社 Metallic material for electronic component, connector terminal using the same, connector, and electronic component
JP2015229791A (en) * 2014-06-05 2015-12-21 Jx日鉱日石金属株式会社 Metal material for electronic part and connector terminal, connector and electronic part using the same
JP2018123422A (en) * 2017-12-20 2018-08-09 Jx金属株式会社 Surface treatment plating material, connector terminal, connector, ffc terminal, ffc, fpc and electronic part
WO2018150641A1 (en) * 2017-02-15 2018-08-23 Jx金属株式会社 Metallic material for electronic component, method for manufacturing said metallic material, and connector terminal, connector, and electronic component in which said metallic material is used

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221208A (en) * 2012-04-19 2013-10-28 Autonetworks Technologies Ltd Plated terminal for connector
JP2014139345A (en) * 2012-09-19 2014-07-31 Jx Nippon Mining & Metals Corp Surface treatment plated material and production method of the same, and electronic component
JP2015045058A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015206094A (en) * 2014-04-22 2015-11-19 Jx日鉱日石金属株式会社 Metallic material for electronic component, connector terminal using the same, connector, and electronic component
JP2015229791A (en) * 2014-06-05 2015-12-21 Jx日鉱日石金属株式会社 Metal material for electronic part and connector terminal, connector and electronic part using the same
WO2018150641A1 (en) * 2017-02-15 2018-08-23 Jx金属株式会社 Metallic material for electronic component, method for manufacturing said metallic material, and connector terminal, connector, and electronic component in which said metallic material is used
JP2018123422A (en) * 2017-12-20 2018-08-09 Jx金属株式会社 Surface treatment plating material, connector terminal, connector, ffc terminal, ffc, fpc and electronic part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353928B2 (en) 2019-11-13 2023-10-02 古河電気工業株式会社 Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components

Also Published As

Publication number Publication date
JP7306879B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
CN1318647C (en) Metal-plated material and method for preparation, and electric and electronic parts using same
JP5355935B2 (en) Metal materials for electrical and electronic parts
JP4814552B2 (en) Surface treatment method
JP4653133B2 (en) Plating material and electric / electronic component using the plating material
EP2267187A1 (en) Connecting component metal material and manufacturing method thereof
TWI449809B (en) Electrical and electronic components for the use of composite materials and electrical and electronic components
JP2003171790A (en) Plating material, production method therefor, and electrical and electronic part obtained by using the same
EP3421643A1 (en) Electronic component metal material and method for manufacturing the same
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP4090483B2 (en) Conductive connection parts
JPH0855521A (en) Conductive member and its manufacture
JP5185759B2 (en) Conductive material and manufacturing method thereof
JP2020196910A (en) Material for electric contact and its manufacturing method, connector terminal, connector and electronic component
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7121232B2 (en) Copper terminal material, copper terminal, and method for producing copper terminal material
JP7060514B2 (en) Conductive strip
JP7335679B2 (en) conductive material
JP2011012350A (en) Coating film and electric and electronic component
JP7040544B2 (en) Terminal material for connectors
JP7313600B2 (en) Connector terminal materials and connector terminals
WO2021084853A1 (en) Metal material for sliding contact, method for manufacturing said material, brush member for motor, and vibration motor
JP7353928B2 (en) Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components
JP6743556B2 (en) Method for manufacturing tin-plated copper terminal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230629

R151 Written notification of patent or utility model registration

Ref document number: 7306879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151