JPH0855521A - Conductive member and its manufacture - Google Patents

Conductive member and its manufacture

Info

Publication number
JPH0855521A
JPH0855521A JP6188496A JP18849694A JPH0855521A JP H0855521 A JPH0855521 A JP H0855521A JP 6188496 A JP6188496 A JP 6188496A JP 18849694 A JP18849694 A JP 18849694A JP H0855521 A JPH0855521 A JP H0855521A
Authority
JP
Japan
Prior art keywords
layer
plating
thickness
base material
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6188496A
Other languages
Japanese (ja)
Other versions
JP3998731B2 (en
Inventor
Takeshi Suzuki
竹四 鈴木
Tadao Sakakibara
直男 榊原
Michiyo Odajima
美智代 小田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP18849694A priority Critical patent/JP3998731B2/en
Publication of JPH0855521A publication Critical patent/JPH0855521A/en
Application granted granted Critical
Publication of JP3998731B2 publication Critical patent/JP3998731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating

Abstract

PURPOSE:To prevent blackening and contact resistance increase in a high- temperature environment by constructing an anti-diffusion layer from a plurality of plating layers, selecting a predetermined group of metals for each plating layer, and specifying the thickness of each plating layer. CONSTITUTION:This conductive member has base material made of copper or copper alloy and an Sn plating layer 0.1 to 0.3mum thick formed over the base material, with an air-diffusion layer formed over the Sn plating layer. The anti-diffusion layer has a plating layer 0.002 to 0.20mum thick made of a metal selected from among Au, Pt and Pd to inhibit diffusion of the Cu from the base material and to achieve chemical stability even in a high-temperature environment. The anti-diffusion layer has another plating layer 0.01 to 1.0mum thick made of a metal selected from among Ni, Cr and Ag. The anti-diffusion layer has a another plating layer 0.05 to 2.0mum thick made of a metal selected from Zn and Pb. The plating layers all inhibit diffusion of the Cu from the base material and, when used for a long time in a high-temperature environment, can reduce contact resistance to a low value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、過酷な環境下でも長期
間安定に使用することができる端子、コネクター、リレ
ー、スイッチ、ブスバー、ボリューム、ブレーカー、接
点ばね、ソケット、リードフレーム等の電気・電子回路
部品もしくはそれらの素材として使用される通電部材、
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electrical equipment such as terminals, connectors, relays, switches, busbars, volumes, breakers, contact springs, sockets, leadframes, etc. that can be used stably for a long period of time even under harsh environments. Electronic circuit parts or current-carrying members used as their materials,
And a manufacturing method thereof.

【0002】[0002]

【従来の技術】上述したような電気・電子回路部材とし
ては、Snめっきを施した銅板や銅合金板が従来から多
く用いられている。この種のSnめっき板を製造する場
合、まず基材の表面を洗浄化し、表面を活性化する等の
前処理を施し、さらに必要に応じてCu下地めっきを行
った後、電解または無電解めっき法で厚さ0.5〜1.
5μm程度のSnめっき層を形成する。このSnめっき
板を通電部材としてそのまま使用に供する場合もある
が、さらにリフロー(溶融)処理を行って、Snめっき
層の表面を平滑化してから使用することも行われてい
る。
2. Description of the Related Art As the electric / electronic circuit member described above, Sn-plated copper plates and copper alloy plates have been widely used. When manufacturing this type of Sn-plated plate, first, the surface of the base material is cleaned, pre-treatment such as activating the surface is performed, and further Cu undercoating is performed if necessary, followed by electrolytic or electroless plating. Method 0.5-1.
An Sn plating layer of about 5 μm is formed. This Sn-plated plate may be used as an energizing member as it is, but it is also used after being subjected to a reflow (melting) treatment to smooth the surface of the Sn-plated layer.

【0003】[0003]

【発明が解決しようとする課題】ところで近年、電気・
電子回路部品については小型化および高密度化の要求が
一層強くなり、通電に伴なう部品自体の発熱量が増大す
るばかりでなく、例えば自動車用の部品に関しては、ス
ペース確保等の観点からエンジン回りなどにも取り付け
られることが多くなってきた。
[Problems to be Solved by the Invention] By the way, in recent years,
For electronic circuit parts, there is a growing demand for smaller size and higher density, which not only increases the amount of heat generated by the parts themselves due to energization, but also, for example, for parts for automobiles, from the viewpoint of securing space, etc. It is becoming more and more common to be attached to the surroundings.

【0004】しかし、自動車のエンジン回りは、温度的
に過酷な環境にあるため、従来用いられている厚さ0.
5〜1.5μm程度のSn層を形成した通電部材では、
表面が黒変色するうえ、接触抵抗が大きくなって電気回
路の安定性を害するという問題が生じている。
However, since the surroundings of the engine of an automobile are in a harsh environment in terms of temperature, the thickness of 0.
In a current-carrying member having an Sn layer of about 5 to 1.5 μm,
There is a problem that the surface is discolored black and the contact resistance is increased to impair the stability of the electric circuit.

【0005】上記問題を防ぐには、Snめっきを厚くす
ることが1つの解決策であるが、Sn層を厚くするとプ
レス加工を行う際にめっき粉が多く発生し、プレス金型
の粉詰まりが起きやすい等の不都合が生じる。一方、S
nめっきしたのちリフロー処理する場合には、Snめっ
きを溶融して凝固させるという処理方法のため、形成可
能な厚さに限界がある。
In order to prevent the above problems, one solution is to make the Sn plating thicker. However, if the Sn layer is made thicker, a large amount of plating powder will be generated at the time of press working, and clogging of the press die will occur. Inconvenience such as easy occurrence occurs. On the other hand, S
When the n-plating is followed by the reflow treatment, there is a limit to the formable thickness because of the treatment method of melting and solidifying the Sn plating.

【0006】そこで本発明者らは、熱環境下でSnめっ
き表面の接触抵抗が高くなる原因を詳細に検討し、その
結果、基材または下地めっき層中のCuがSnめっき表
面まで拡散し、酸化銅あるいは亜酸化銅を形成すること
が原因の一つであることを見いだした。したがって、基
材あるいは下地めっき層中のCuが表面まで拡散するの
を抑制することが、通電部材表面の接触抵抗増加を防ぐ
手段として有効と考えられる。
Therefore, the present inventors have studied in detail the reason why the contact resistance of the Sn-plated surface becomes high in a thermal environment, and as a result, Cu in the base material or the underlying plating layer diffuses to the Sn-plated surface, It was found that formation of copper oxide or cuprous oxide was one of the causes. Therefore, suppressing the diffusion of Cu in the base material or the underlying plating layer to the surface is considered to be effective as a means for preventing an increase in contact resistance on the surface of the current-carrying member.

【0007】Cuの拡散防止のためには、Au,Pt等
の貴金属を拡散防止層として基材表面に直接めっきする
ことが考えられた。しかし、本発明者らが実験した結
果、母材表面にそのようなめっき層を形成した場合、十
分なCu拡散防止のためには一定以上の厚さを必要と
し、コスト的に高いものとなることが判明した。
In order to prevent Cu from diffusing, it has been considered that a noble metal such as Au or Pt is directly plated on the surface of the substrate as a diffusion preventing layer. However, as a result of experiments conducted by the present inventors, when such a plating layer is formed on the surface of the base material, a certain thickness or more is required to sufficiently prevent Cu diffusion, resulting in high cost. It has been found.

【0008】ところが、Sn層上にAu,Pt等の貴金
属をめっきして拡散防止層を形成した場合には、拡散防
止層が薄くても十分なCuの拡散防止効果が得られ、コ
スト的に許容できることが判明した。同様に、Ni,C
r等のめっき層をSn層上に拡散防止層として形成した
場合も、膜厚の薄さにも拘わらず十分な拡散防止効果が
得られるうえ、この場合特に拡散防止層が硬いため、通
電部材として必要な曲げ特性や端子、コネクタ等として
必要な挿抜特性を損なうことなく、耐熱性を付与するこ
とができることを見い出した。また、Sn層上にZn,
Pb等の異種金属をめっきした場合、さらには、Sn層
上に形成方法の異なる別のSn層を形成した場合にも、
拡散防止効果が得られることを見いだした。
However, when a diffusion preventing layer is formed by plating a noble metal such as Au or Pt on the Sn layer, a sufficient Cu diffusion preventing effect can be obtained even if the diffusion preventing layer is thin, and the cost is reduced. It turned out to be acceptable. Similarly, Ni, C
Even when a plating layer such as r is formed as a diffusion prevention layer on the Sn layer, a sufficient diffusion prevention effect can be obtained regardless of the thin film thickness, and in this case, the diffusion prevention layer is particularly hard, so It has been found that heat resistance can be imparted without impairing the bending characteristics required as above and the insertion / removal characteristics required as terminals and connectors. In addition, Zn on the Sn layer,
When a dissimilar metal such as Pb is plated, or when another Sn layer having a different forming method is formed on the Sn layer,
It was found that a diffusion prevention effect can be obtained.

【0009】本発明は上記知見に基づいてなされたもの
であり、高温環境での黒変色や接触抵抗増加が防止でき
る通電部材およびその製造方法を提供することを課題と
している。
The present invention has been made based on the above findings, and it is an object of the present invention to provide a current-carrying member capable of preventing black discoloration and increase in contact resistance in a high temperature environment and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明に係る第1の通電部材は、銅または銅合金か
らなる基材と、この基材上に形成された厚さ0.1〜
3.0μmのSnめっき層(以下、第1Snめっき層と
称する)と、この第1Snめっき層上に形成された拡散
防止層とを具備し、前記拡散防止層は、(a)Au,P
t,Pdから選択される1種または2種以上からなる厚
さ0.002〜0.2μmのめっき層、(b)Ni,C
r,Agから選択される1種または2種以上からなる厚
さ0.01〜1.0μmのめっき層、(c)Sn,Z
n,Pbから選択される1種または2種以上からなる厚
さ0.05〜2.0μmのめっき層、および(d)前記
Snめっき層とは異なる方法により形成された厚さ0.
05〜2.0μmの第2Snめっき層、から選択される
1または2以上のめっき層によって構成され、さらに、
前記拡散防止層の厚さは2.5μm以下であることを特
徴としたものである。
In order to solve the above-mentioned problems, a first current-carrying member according to the present invention comprises a base material made of copper or a copper alloy, and a thickness of 0.1 formed on the base material. ~
A Sn plating layer having a thickness of 3.0 μm (hereinafter, referred to as a first Sn plating layer) and a diffusion preventing layer formed on the first Sn plating layer are provided, and the diffusion preventing layer is (a) Au, P
A plating layer having a thickness of 0.002 to 0.2 μm, which is made of one or more selected from t and Pd, and (b) Ni and C.
a plating layer having a thickness of 0.01 to 1.0 μm, which is composed of one or more selected from r and Ag, and (c) Sn and Z.
a plating layer having a thickness of 0.05 to 2.0 μm and made of one or more selected from n and Pb, and (d) a thickness of 0.
A second Sn plating layer having a thickness of 05 to 2.0 μm, and one or more plating layers selected from the following.
The thickness of the diffusion preventing layer is 2.5 μm or less.

【0011】前記第1Snめっき層は、電解めっき法ま
たは無電解めっき法により形成されたもので、基材中の
Cuが通電部材の表面に拡散して酸化することを抑制す
るとともに、端子やコネクターなど電気・電子回路部品
として使用する際の嵌合性を良好にし、通電安定性を向
上する作用を果たす。しかし、第1Snめっき層の厚さ
が0.1μm未満では前記作用が十分に得られず、逆に
第1Snめっき層の厚さが3μmを越えると、通電部材
をプレス加工する際にSn粉の発生が多くなり、プレス
金型のカス詰まりが起こり易くなるという不都合を有す
る。このため、第1Snめっきの厚さを0.1〜3μm
と定めた。より好ましい厚さ範囲は0.3〜2.0μm
である。
The first Sn plating layer is formed by an electroplating method or an electroless plating method, and prevents Cu in the base material from diffusing and oxidizing on the surface of the current-carrying member, and at the same time, terminals and connectors. When used as an electric / electronic circuit component, the fitting property is improved and the energization stability is improved. However, if the thickness of the first Sn plating layer is less than 0.1 μm, the above-mentioned action cannot be sufficiently obtained, and conversely, if the thickness of the first Sn plating layer exceeds 3 μm, Sn powder is not produced when the current-carrying member is pressed. This has the disadvantage that the number of occurrences increases and clogging of the press die easily occurs. Therefore, the thickness of the first Sn plating is 0.1 to 3 μm.
I decided. More preferable thickness range is 0.3 to 2.0 μm
Is.

【0012】Au,Pt,Pd等からなるめっき層
(a)は、基材からのCuの拡散を抑制するとともに、
高温環境下でも化学的に安定であるから、電気・電子回
路部品として通電時の接触抵抗を低く抑える作用を有す
る。ただし、めっき層(a)の厚さが0.002μm未
満ではその作用が十分でなく、一方、0.2μmを越え
ると製造コストの負担が大きくなるので、その厚さを
0.002〜0.2μmと定めた。より好ましい厚さ範
囲は0.01〜0.1μmである。
The plating layer (a) made of Au, Pt, Pd or the like suppresses the diffusion of Cu from the base material and
Since it is chemically stable even in a high temperature environment, it has the effect of suppressing the contact resistance when energized as an electric / electronic circuit component. However, if the thickness of the plating layer (a) is less than 0.002 μm, its action is not sufficient, while if it exceeds 0.2 μm, the burden of manufacturing cost increases, so the thickness is 0.002 to 0. It was set to 2 μm. A more preferable thickness range is 0.01 to 0.1 μm.

【0013】Ni,Cr,Ag等からなるめっき層
(b)は、基材からのCuの拡散を抑制するとともに、
電気・電子回路部品として高温環境下での長期的に使用
した場合に、接触抵抗を低く押さえる作用を有する。た
だし、その厚さが0.01μm未満では前記作用が十分
ではない。一方、NiまたはCrでめっき層を形成した
場合には、その厚さが1.0μmを越えると、プレス加
工等での厳しい曲げ加工でクラックが生じ易くなる。ま
た、Agでめっき層を形成した場合には、厚さが1.0
μmを越えると製造コストの負担が大きくなる。よっ
て、Ni,Cr,Agのいずれで形成した場合にも、め
っき層(b)の厚さは0.01〜1.0μmと定めた。
より好ましい厚さ範囲は0.03〜0.6μmである。
The plating layer (b) made of Ni, Cr, Ag or the like suppresses the diffusion of Cu from the base material and
When used as an electric / electronic circuit component in a high temperature environment for a long period of time, it has the effect of suppressing the contact resistance to a low level. However, if the thickness is less than 0.01 μm, the above effect is not sufficient. On the other hand, when the plating layer is formed of Ni or Cr and the thickness thereof exceeds 1.0 μm, cracks are likely to occur due to severe bending such as pressing. When the plating layer is formed of Ag, the thickness is 1.0
If it exceeds μm, the burden of manufacturing cost increases. Therefore, the thickness of the plating layer (b) is set to 0.01 to 1.0 μm regardless of which of Ni, Cr and Ag is used.
A more preferable thickness range is 0.03 to 0.6 μm.

【0014】Zn,Pb等からなるめっき層(c)は、
第1Snめっき層からのCu拡散を抑制し、熱環境下で
の接触抵抗の増加を抑制する作用を有する。Zn,Pb
のいずれからなる場合にも、その厚さが0.05μm未
満では前記作用が十分ではなく、一方、その厚さが2.
0μmを越えると、端子やコネクターとして利用する場
合の挿抜抵抗が大きくなり過ぎるとともに、プレス打抜
き時のめっき粉の発生が多く不具合が生じるようにな
る。したがって、その厚さを0.05〜2.0μmと定
めた。より好ましい厚さ範囲は0.3〜1.5μmであ
る。
The plating layer (c) made of Zn, Pb, etc.
It has an effect of suppressing Cu diffusion from the first Sn plating layer and suppressing an increase in contact resistance under a thermal environment. Zn, Pb
In both cases, if the thickness is less than 0.05 μm, the above-mentioned action is not sufficient, while the thickness is 2.
If it exceeds 0 μm, the insertion / extraction resistance when used as a terminal or a connector becomes too large, and a lot of plating powder is generated during press punching, which causes a problem. Therefore, the thickness is set to 0.05 to 2.0 μm. A more preferable thickness range is 0.3 to 1.5 μm.

【0015】拡散防止層として、第2Snめっき層
(d)を形成する場合には、第1Snめっきとは異なる
方法で形成することが必要である。すなわち、第1Sn
めっき層を電解めっき法または無電解めっき法で形成し
た場合には、第2Snめっき層を蒸着法で形成し、第1
Snめっき層をリフロー法で形成した場合には、第2S
nめっき層を電着法あるいは蒸着法で形成すればよい。
実施可能な組み合わせは、以下の通りである。 (第1Snめっき層形成方法/第2Snめっき層形成方
法) 湿式めっき法/蒸着法(乾式めっき法) 蒸着法/湿式めっき法 リフロー法/湿式めっき法または蒸着法 溶融Sn接触法/湿式めっき法または蒸着法
When the second Sn plating layer (d) is formed as the diffusion preventing layer, it is necessary to form it by a method different from that of the first Sn plating. That is, the first Sn
When the plating layer is formed by the electrolytic plating method or the electroless plating method, the second Sn plating layer is formed by the vapor deposition method, and the first Sn plating layer is formed.
When the Sn plating layer is formed by the reflow method, the second S
The n-plated layer may be formed by an electrodeposition method or a vapor deposition method.
Possible combinations are as follows. (First Sn plating layer forming method / second Sn plating layer forming method) Wet plating method / vapor deposition method (dry plating method) Vapor deposition method / wet plating method Reflow method / wet plating method or vapor deposition method Molten Sn contact method / wet plating method or Evaporation method

【0016】前記のように第1Snめっき層と異なる方
法で第2Snめっき層を形成すれば、両者の界面におい
て第1Snめっき層からのCu拡散が抑制され、熱環境
下での黒変色や接触抵抗の増加を抑制する作用が得られ
る。ただし、第2Snめっきの厚さが0.05μm未満
ではその作用が十分ではなく、逆に厚さが2.0μmを
越えると、プレス金型のカスづまりが起こり易くなる。
したがって、その厚さを0.05〜2.0μmと定め
た。より好ましい厚さ範囲は0.3〜1.5μmであ
る。なお、第1Snめっき層と第2Snめっき層との合
計厚さは3.0μm以下であることが好ましい。
If the second Sn plating layer is formed by a method different from that of the first Sn plating layer as described above, diffusion of Cu from the first Sn plating layer at the interface between the two is suppressed, resulting in black discoloration or contact resistance in a thermal environment. The effect of suppressing the increase of is obtained. However, if the thickness of the second Sn plating is less than 0.05 μm, its action is not sufficient, and conversely, if the thickness exceeds 2.0 μm, clogging of the press die is likely to occur.
Therefore, the thickness is set to 0.05 to 2.0 μm. A more preferable thickness range is 0.3 to 1.5 μm. The total thickness of the first Sn plated layer and the second Sn plated layer is preferably 3.0 μm or less.

【0017】拡散防止層として、上記の厚さ条件を満た
した前記めっき層(a)〜(d)を2種以上積層して形
成した場合にも本発明の効果を得ることができる。その
場合には、それらの合計厚さが2.5μm以下であるこ
とが必要で、より好ましくは0.02〜1.8μmとさ
れる。合計厚さが2.5μmを越えると、プレス打抜時
のめっき粉発生が多くなり、プレス金型のかすつまりが
起こり易くなる。
The effect of the present invention can be obtained even when two or more kinds of the plating layers (a) to (d) satisfying the above thickness conditions are formed as a diffusion preventing layer. In that case, it is necessary that the total thickness thereof is 2.5 μm or less, and more preferably 0.02 to 1.8 μm. If the total thickness exceeds 2.5 μm, the amount of plating powder generated during press punching increases, and the press die is likely to be clogged.

【0018】前記のような通電部材を製造するには、銅
または銅合金からなる基材上に、電解めっき法または無
電解めっき法の少なくとも一方により第1Snめっき層
を形成する。次に、前記第1Snめっき層上に、Au,
Pt,Pd,Ni,Cr,Ag,Sn,Zn,Pbから
選択される1種または2種以上の金属めっき層を、電解
めっき法、無電解めっき法あるいは蒸着法から選択され
る1種または2種以上のめっき法により形成すればよ
い。
In order to manufacture the above current-carrying member, the first Sn plating layer is formed on at least one of the electrolytic plating method and the electroless plating method on the base material made of copper or copper alloy. Next, on the first Sn plating layer, Au,
One or two or more metal plating layers selected from Pt, Pd, Ni, Cr, Ag, Sn, Zn, and Pb are selected from electrolytic plating method, electroless plating method, or vapor deposition method, or two or more. It may be formed by a plating method of at least one kind.

【0019】次に、本発明に係る第2の通電部材につい
て説明する。第2の通電部材は、銅または銅合金からな
る基材と、この基材上に形成された厚さ0.1〜2.0
μmのCu−Sn合金層と、このCu−Sn合金層上に
形成された厚さ0.05〜2.0μmの溶融後凝固した
Sn層と、このSn層上に形成された拡散防止層とを具
備する。拡散防止層については、第1の通電部材と同様
であるから説明を省略する。
Next, the second conducting member according to the present invention will be described. The second current-carrying member includes a base material made of copper or a copper alloy and a thickness of 0.1 to 2.0 formed on the base material.
a Cu—Sn alloy layer having a thickness of μm, an Sn layer formed on the Cu—Sn alloy layer and having a thickness of 0.05 to 2.0 μm and solidified after melting, and a diffusion preventing layer formed on the Sn layer. It is equipped with. The diffusion prevention layer is the same as that of the first current-carrying member, so description thereof will be omitted.

【0020】前記Cu−Sn合金層の厚さが0.1μm
未満、あるいは溶融後凝固したSn層の厚さが0.05
μm未満であると、基材中のCuが通電部材の表面まで
拡散して酸化することを十分に抑制できないうえ、端子
やコネクターなど電気・電子回路部品として使用する場
合の嵌合性が悪化し、通電安定性が低下する。
The thickness of the Cu—Sn alloy layer is 0.1 μm.
Or the thickness of the Sn layer solidified after melting is 0.05
If the thickness is less than μm, it is not possible to sufficiently suppress the diffusion and oxidation of Cu in the base material to the surface of the current-carrying member, and the fitting property deteriorates when used as electric / electronic circuit parts such as terminals and connectors. , The energization stability decreases.

【0021】一方、Cu−Sn合金層の厚さが2.0μ
mを越えると、熱環境下でCu−Sn合金層からSn層
へ拡散するCu量が増加し、めっきの耐熱性に悪影響を
及ぼす。また、溶融後凝固したSn層の厚さが2.0μ
mを越えると、プレス時のSn粉の発生や金型へのカス
詰まりが起こり易くなる。したがって、Cu−Sn合金
層の厚さを0.1〜2.0μm、溶融後凝固したSn層
の厚さを0.05〜2.0μmと定めた。より好ましく
はそれぞれ0.3〜1.2μm、0.15〜1.2μm
である。
On the other hand, the thickness of the Cu—Sn alloy layer is 2.0 μm.
If it exceeds m, the amount of Cu that diffuses from the Cu—Sn alloy layer to the Sn layer in a thermal environment increases, which adversely affects the heat resistance of the plating. In addition, the thickness of the Sn layer solidified after melting is 2.0 μm.
When it exceeds m, generation of Sn powder during pressing and clogging of scraps in the mold are likely to occur. Therefore, the thickness of the Cu—Sn alloy layer was set to 0.1 to 2.0 μm, and the thickness of the Sn layer solidified after melting was set to 0.05 to 2.0 μm. More preferably 0.3 to 1.2 μm and 0.15 to 1.2 μm, respectively
Is.

【0022】上記のような構成からなる第2の通電部材
を製造するには、まず、銅または銅合金からなる基材上
に、電解めっき法または無電解めっき法の少なくとも一
方によりSnめっき層を形成する。リフロー前のSnめ
っき層の厚さは3μm未満が好ましい。3μmを越える
と、溶融時に液垂れが生じやすく、リフロー処理が難し
くなる。
In order to manufacture the second current-carrying member having the above structure, first, a Sn plating layer is formed on a base material made of copper or a copper alloy by at least one of electrolytic plating method and electroless plating method. Form. The thickness of the Sn plating layer before reflow is preferably less than 3 μm. If it exceeds 3 μm, dripping tends to occur at the time of melting, and reflow treatment becomes difficult.

【0023】次いで、前記基材をリフロー処理すること
により、基材表面にCu−Sn合金層を形成するととも
に、その上に溶融後凝固したSn層を形成する。リフロ
ー処理は一般的に行われている方法でよく、具体的に
は、不活性ガスを満たした加熱炉内で240〜400℃
に熱すればよい。
Then, the base material is subjected to a reflow treatment to form a Cu-Sn alloy layer on the surface of the base material, and a Sn layer which is solidified after melting is formed thereon. The reflow treatment may be a commonly used method, specifically, 240 to 400 ° C. in a heating furnace filled with an inert gas.
You can heat it up.

【0024】続いて、溶融後凝固したSn層上に、電解
めっき法、無電解めっき法あるいは蒸着法から選択され
る1種または2種以上のめっき法により、Au,Pt,
Pd,Ni,Cr,Ag,Sn,Zn,Pbから選択さ
れる1種または2種以上の金属めっき層を前述した厚さ
で形成すればよい。
Subsequently, Au, Pt, and the like are deposited on the Sn layer solidified after melting by one or more plating methods selected from an electrolytic plating method, an electroless plating method or a vapor deposition method.
One or more metal plating layers selected from Pd, Ni, Cr, Ag, Sn, Zn, and Pb may be formed with the above-described thickness.

【0025】第2の通電部材の他の製造方法としては、
銅または銅合金からなる基材を、溶融Snと接触させる
ことにより、前記基材表面にCu−Sn合金層を形成す
るとともにその上に溶融後凝固したSn層を形成しても
よい。具体的には、250〜400℃で溶融状態にある
Snに、基材を浸漬する等の方法が可能である。
As another method of manufacturing the second current-carrying member,
By contacting a base material made of copper or a copper alloy with molten Sn, a Cu—Sn alloy layer may be formed on the surface of the base material and a Sn layer solidified after melting may be formed thereon. Specifically, a method such as immersing the base material in Sn in a molten state at 250 to 400 ° C. is possible.

【0026】後は前記方法と同様に、溶融後凝固したS
n層上に、電解めっき法、無電解めっき法あるいは蒸着
法から選択される1種または2種以上のめっき法によ
り、Au,Pt,Pd,Ni,Cr,Ag,Sn,Z
n,Pbから選択される1種または2種以上の金属めっ
き層を形成すればよい。
After that, in the same manner as the above method, the S solidified after melting was solidified.
Au, Pt, Pd, Ni, Cr, Ag, Sn, Z are formed on the n layer by one or more plating methods selected from an electrolytic plating method, an electroless plating method, or a vapor deposition method.
It suffices to form one or more metal plating layers selected from n and Pb.

【0027】第1または第2の通電部材において、基材
の表面に厚さ0.1〜1.0μmのCu下地めっき層が
形成されていてもよい。このようなCu下地めっき層を
形成するには、銅または銅合金母材上にCu下地めっき
を施した基材を使用し、前述した製造方法を行えばよ
い。母材が純銅、黄銅(Cu−Zn合金)その他の銅合
金の場合には、Cu下地めっき層を形成することによ
り、その上に形成したSnめっき層の光沢性、平滑性、
密着性等を向上することができる。Cu下地めっき層の
厚さが0.1μm未満であると前記作用は不十分とな
り、一方、Cu下地めっきの厚さが1.0μmを越えて
も前記効果はそれ以上向上せず、めっきの生産性が悪化
するのみである。したがって、Cu下地めっきの厚さは
0.1〜1.0μmであることが好ましい。
In the first or second current-carrying member, a Cu undercoat layer having a thickness of 0.1 to 1.0 μm may be formed on the surface of the base material. In order to form such a Cu undercoat layer, a base material obtained by plating Cu or a copper alloy base material with Cu undercoat may be used and the above-described manufacturing method may be performed. When the base material is pure copper, brass (Cu-Zn alloy) or other copper alloy, by forming a Cu undercoat layer, the glossiness, smoothness, and smoothness of the Sn plating layer formed thereon can be improved.
Adhesion and the like can be improved. If the thickness of the Cu undercoat layer is less than 0.1 μm, the above-mentioned action becomes insufficient. On the other hand, even if the thickness of the Cu undercoat layer exceeds 1.0 μm, the above effect is not further improved, and plating production It only deteriorates the sex. Therefore, the thickness of the Cu undercoat is preferably 0.1 to 1.0 μm.

【0028】ただし、例えばりん青銅(4〜8%のSn
を添加したCu合金)等の特殊な銅合金を基材とする場
合には、Cu下地めっき層を形成すると逆にSnめっき
層の耐熱密着性に悪い影響を与えるので、Cu下地めっ
き層は基材の種類に応じて使い分ける必要がある。
However, for example, phosphor bronze (4-8% Sn)
When a special copper alloy such as Cu alloy) is used as the base material, the formation of the Cu undercoat layer adversely affects the heat resistant adhesion of the Sn plating layer. It is necessary to use them properly according to the type of material.

【0029】[0029]

【作用】本発明に係る通電部材では、基材を形成する銅
合金の種類にかかわらず、厳しい熱環境下においても基
材から通電部材表面への銅の拡散が抑止でき、銅拡散に
起因する変色や接触抵抗の増加等の問題が防止できる。
したがって、例えば電気・電子回路部品として自動車の
エンジン回りなどの過酷な環境下に置かれた場合にも、
長期に亘って高い信頼性が得られる。
In the current-carrying member according to the present invention, regardless of the type of copper alloy forming the base material, copper can be prevented from diffusing from the base material to the surface of the current-carrying member even under a severe thermal environment, which results from copper diffusion. Problems such as discoloration and increase in contact resistance can be prevented.
Therefore, even when placed in a harsh environment such as around an automobile engine as an electric / electronic circuit component,
High reliability can be obtained over a long period of time.

【0030】また、本発明に係る通電部材の製造方法に
よれば、上記のように優れた通電部材が容易に製造でき
る。
Further, according to the method of manufacturing the current-carrying member of the present invention, the excellent current-carrying member can be easily manufactured.

【0031】[0031]

【実施例】次に、本発明の効果を実施例を挙げて具体的
に説明する。通常の銅板または銅合金板製造設備によ
り、表1に示す組成からなる基材a〜nを製造した。な
お、基材j,k,lとしては予め溶融Snめっきが施さ
れている市販のりん青銅板を用いた。
EXAMPLES Next, the effects of the present invention will be specifically described with reference to examples. Substrates a to n having the composition shown in Table 1 were produced by an ordinary copper plate or copper alloy plate production facility. As the base materials j, k and l, commercially available phosphor bronze plates preliminarily subjected to hot-dip Sn plating were used.

【0032】[0032]

【表1】 [Table 1]

【0033】基材a〜nの表面に、電解めっき法または
無電解めっき法により、必要に応じてCu下地めっき層
を形成した後、Snめっき層を形成した。さらに、一部
の基材については、不活性ガスで満たされた炉内におい
て種々の条件でリフロー処理を施し、Sn皮膜を一旦溶
融して表面を滑らかにした。
A Cu undercoat layer was formed on the surfaces of the base materials a to n by electrolytic plating or electroless plating, if necessary, and then an Sn plating layer was formed. Further, some substrates were subjected to reflow treatment under various conditions in a furnace filled with an inert gas, and the Sn coating was once melted to smooth the surface.

【0034】こうして形成されたSnめっき層あるいは
凝固Sn層上に、真空蒸着法、電解めっき法または無電
解めっき法により、Au,Pt,Pd,Ni,Cr,A
g,Zn,Sn,Pbから選択された1種または2種以
上の金属膜を形成し、試料1〜32とした。これらの膜
構成を表2および表3に示す。各表中で(電)は電解め
っき法、(無)は無電解めっき法、(蒸)は蒸着法で膜
を形成したことを示している。また、各めっき層の膜厚
を、電解式膜厚計(コクール膜厚計)、蛍光X線膜厚計
あるいは断面SEM観察等の手段を用いて測定した。そ
れらの測定値を表2および表3に併せて示す。各測定値
は5回計測の平均値である。
Au, Pt, Pd, Ni, Cr, A is formed on the Sn plating layer or the solidified Sn layer thus formed by a vacuum deposition method, an electrolytic plating method or an electroless plating method.
Samples 1 to 32 were formed by forming one or more metal films selected from g, Zn, Sn, and Pb. Tables 2 and 3 show these film configurations. In each table, (Electric) indicates that the film was formed by the electrolytic plating method, (None) indicates the electroless plating method, and (Steam) indicates that the film was formed by the vapor deposition method. Further, the film thickness of each plating layer was measured using a means such as an electrolytic film thickness meter (Kokur film thickness meter), a fluorescent X-ray film thickness meter, or a cross-section SEM observation. The measured values are also shown in Tables 2 and 3. Each measured value is an average value of 5 measurements.

【0035】(接触抵抗試験)各試料から、幅:40m
m×長さ:40mmの試験片をそれぞれ切り出し、先端
を金めっきした直径:3mm、先端の曲率半径が1.5
mmのプローブを接触荷重:50gで試験片表面に当接
させ、接触抵抗を10回測定した。さらに、各試験片を
大気中で温度160℃において500時間加熱したう
え、加熱後の試験片の接触抵抗を同条件で10回測定
し、加熱前後の接触抵抗の平均値の差を接触抵抗の増加
量として求めた。結果を表2および表3に示す。
(Contact resistance test) From each sample, width: 40 m
m × length: 40 mm of each test piece was cut out, and the tip was gold-plated, diameter: 3 mm, radius of curvature of the tip was 1.5
A mm probe was brought into contact with the surface of the test piece with a contact load of 50 g, and the contact resistance was measured 10 times. Furthermore, after heating each test piece in the air at a temperature of 160 ° C. for 500 hours, the contact resistance of the test piece after heating was measured 10 times under the same conditions, and the difference in the average value of the contact resistance before and after heating was calculated as the contact resistance. It was calculated as the increase amount. The results are shown in Tables 2 and 3.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】表2および表3から明らかなように、基材
の種類、Cu下地層の有無に拘わらず、比較品では接触
抵抗の増加が200mΩ以上だったのに対し、本発明品
では35mΩ以下だった。特に、本発明品は、比較品に
比べてSn層の厚さを小さくした場合にも、160℃と
いう厳しい熱環境下において接触抵抗の増加が効果的に
防止できることが判明した。
As is clear from Tables 2 and 3, the comparison product showed an increase in contact resistance of 200 mΩ or more, regardless of the type of the substrate and the presence or absence of the Cu underlayer, whereas the product of the present invention had an increase of 35 mΩ or less. was. In particular, it was found that the product of the present invention can effectively prevent an increase in contact resistance under a severe thermal environment of 160 ° C. even when the thickness of the Sn layer is smaller than that of the comparative product.

【0039】[0039]

【発明の効果】以上説明したように、本発明に係る通電
部材では、基材を形成する銅合金の種類にかかわらず、
厳しい熱環境下においても基材から通電部材表面への銅
の拡散が抑止でき、銅拡散に起因する変色や接触抵抗の
増加等の問題が防止できる。したがって、例えば電気・
電子回路部品として自動車のエンジン回りなどの過酷な
環境下に置かれた場合にも、長期に亘って高い信頼性が
得られる。
As described above, in the current-carrying member according to the present invention, regardless of the kind of copper alloy forming the base material,
Copper can be prevented from diffusing from the base material to the surface of the current-carrying member even under a severe thermal environment, and problems such as discoloration and increase in contact resistance due to copper diffusion can be prevented. So, for example, electricity
Even when placed in a harsh environment such as around an engine of an automobile as an electronic circuit component, high reliability can be obtained for a long time.

【0040】また、本発明に係る通電部材の製造方法に
よれば、上記のように優れた通電部材が容易に製造でき
る。
Further, according to the method of manufacturing the current-carrying member of the present invention, the excellent current-carrying member can be easily manufactured.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01R 13/03 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01R 13/03 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 銅または銅合金からなる基材と、この基
材上に形成された厚さ0.1〜3.0μmのSnめっき
層と、このSnめっき層上に形成された拡散防止層とを
具備し、 前記拡散防止層は、Au,Pt,Pdから選択される1
種または2種以上からなる厚さ0.002〜0.2.0
μmのめっき層、Ni,Cr,Agから選択される1種
または2種以上からなる厚さ0.01〜1.0μmのめ
っき層、Zn,Pbから選択される1種または2種以上
からなる厚さ0.05〜2.0μmのめっき層、および
前記Snめっき層とは異なる方法により形成された厚さ
0.05〜2.0μmのSnめっき層、から選択される
1または2以上のめっき層によって構成され、 さらに、前記拡散防止層の厚さは2.5μm以下である
ことを特徴とする通電部材。
1. A base material made of copper or a copper alloy, an Sn plating layer having a thickness of 0.1 to 3.0 μm formed on the base material, and a diffusion prevention layer formed on the Sn plating layer. And the diffusion prevention layer is selected from Au, Pt, and Pd.
Or a thickness of 0.002 to 0.2.
μm plated layer, one or two or more selected from Ni, Cr and Ag, and a plating layer having a thickness of 0.01 to 1.0 μm, and one or two or more selected from Zn and Pb. One or more platings selected from a plating layer having a thickness of 0.05 to 2.0 μm and a Sn plating layer having a thickness of 0.05 to 2.0 μm formed by a method different from that of the Sn plating layer. A current-carrying member comprising a layer, wherein the diffusion prevention layer has a thickness of 2.5 μm or less.
【請求項2】 銅または銅合金からなる基材と、この基
材上に形成された厚さ0.1〜2.0μmのCu−Sn
合金層と、このCu−Sn合金層上に形成された厚さ
0.05〜2.0μmの溶融後凝固したSn層と、この
Sn層上に形成された拡散防止層とを具備し、 前記拡散防止層は、Au,Pt,Pdから選択される1
種または2種以上からなる厚さ0.002〜0.2.0
μmのめっき層、Ni,Cr,Agから選択される1種
または2種以上からなる厚さ0.01〜1.0μmのめ
っき層、またはZn,Pbから選択される1種または2
種以上からなる厚さ0.05〜2.0μmのめっき層、
および前記Snめっき層とは異なる方法により形成され
た厚さ0.05〜2.0μmのSnめっき層、から選択
される1または2以上のめっき層によって構成され、 さらに、前記拡散防止層の厚さは2.5μm以下である
ことを特徴とする通電部材。
2. A base material made of copper or a copper alloy, and Cu—Sn having a thickness of 0.1 to 2.0 μm formed on the base material.
An alloy layer, an Sn layer formed on the Cu—Sn alloy layer and having a thickness of 0.05 to 2.0 μm and solidified after melting, and a diffusion prevention layer formed on the Sn layer. The diffusion prevention layer is selected from Au, Pt and Pd 1
Or a thickness of 0.002 to 0.2.
μm plated layer, one or two or more selected from Ni, Cr, and Ag and a thickness of 0.01 to 1.0 μm, or one or two selected from Zn and Pb.
A plating layer having a thickness of 0.05 to 2.0 μm, which is made of one or more seeds,
And one or two or more plating layers selected from a Sn plating layer having a thickness of 0.05 to 2.0 μm formed by a method different from that of the Sn plating layer, and a thickness of the diffusion preventing layer. The current-carrying member is characterized by having a length of 2.5 μm or less.
【請求項3】 請求項1または2記載の通電部材であっ
て、前記基材の表面には、厚さ0.1〜1.0μmのC
u下地めっき層が形成されていることを特徴とする通電
部材。
3. The current-carrying member according to claim 1 or 2, wherein the surface of the base material has a thickness of 0.1 to 1.0 μm of C.
u A current-carrying member having an undercoat plating layer formed thereon.
【請求項4】 銅または銅合金からなる基材上に、電解
めっき法または無電解めっき法の少なくとも一方により
Snめっき層を形成する工程と、 前記Snめっき層上に、Au,Pt,Pd,Ni,C
r,Ag,Sn,Zn,Pbから選択される1種または
2種以上の金属めっき層を、電解めっき法、無電解めっ
き法あるいは蒸着法から選択される1種または2種以上
のめっき法により形成する工程とを具備することを特徴
とする通電部材の製造方法。
4. A step of forming a Sn plating layer on at least one of an electrolytic plating method and an electroless plating method on a base material made of copper or a copper alloy, and Au, Pt, Pd, Ni, C
1 or 2 or more kinds of metal plating layers selected from r, Ag, Sn, Zn, Pb are formed by 1 or 2 or more kinds of plating methods selected from electrolytic plating method, electroless plating method or vapor deposition method. And a step of forming the conductive member.
【請求項5】 銅または銅合金からなる基材上に、電解
めっき法または無電解めっき法の少なくとも一方により
Snめっき層を形成する工程と、 前記基材をリフロー処理することにより、前記基材表面
にCu−Sn合金層を形成するとともにその上に溶融後
凝固したSn層を形成する工程と、 前記Sn層上に、電解めっき法、無電解めっき法あるい
は蒸着法から選択される1種または2種以上のめっき法
により、Au,Pt,Pd,Ni,Cr,Ag,Sn,
Zn,Pbから選択される1種または2種以上の金属め
っき層を形成する工程とを具備することを特徴とする通
電部材の製造方法。
5. A step of forming an Sn plating layer on a base material made of copper or a copper alloy by at least one of an electrolytic plating method and an electroless plating method, and a reflow treatment of the base material to thereby form the base material. A step of forming a Cu-Sn alloy layer on the surface and forming a Sn layer that is solidified after melting on the Cu layer; and one type selected from an electrolytic plating method, an electroless plating method or a vapor deposition method on the Sn layer, or Au, Pt, Pd, Ni, Cr, Ag, Sn,
And a step of forming one or more metal plating layers selected from Zn and Pb.
【請求項6】 銅または銅合金からなる基材を、溶融S
nと接触させることにより、前記基材表面にCu−Sn
合金層を形成するとともにその上に溶融後凝固したSn
層を形成する工程と、 前記Sn層上に、電解めっき法、無電解めっき法あるい
は蒸着法から選択される1種または2種以上のめっき法
により、Au,Pt,Pd,Ni,Cr,Ag,Sn,
Zn,Pbから選択される1種または2種以上の金属め
っき層を形成する工程とを具備することを特徴とする通
電部材の製造方法。
6. A base material made of copper or a copper alloy is melted with S.
Cu-Sn on the surface of the base material by bringing it into contact with n.
Sn that forms an alloy layer and is solidified after melting on it
A step of forming a layer, and Au, Pt, Pd, Ni, Cr, Ag on the Sn layer by one or more plating methods selected from an electrolytic plating method, an electroless plating method or a vapor deposition method. , Sn,
And a step of forming one or more metal plating layers selected from Zn and Pb.
【請求項7】 請求項4,5または6記載の通電部材の
製造方法であって、前記基材として、銅または銅合金母
材上にCu下地めっき層を形成したものを使用すること
を特徴とする通電部材の製造方法。
7. The method for producing a current-carrying member according to claim 4, 5 or 6, wherein the base material is a copper or copper alloy base material on which a Cu undercoat layer is formed. And a method for manufacturing a current-carrying member.
JP18849694A 1994-08-10 1994-08-10 Manufacturing method of current-carrying member Expired - Lifetime JP3998731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18849694A JP3998731B2 (en) 1994-08-10 1994-08-10 Manufacturing method of current-carrying member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18849694A JP3998731B2 (en) 1994-08-10 1994-08-10 Manufacturing method of current-carrying member

Publications (2)

Publication Number Publication Date
JPH0855521A true JPH0855521A (en) 1996-02-27
JP3998731B2 JP3998731B2 (en) 2007-10-31

Family

ID=16224752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18849694A Expired - Lifetime JP3998731B2 (en) 1994-08-10 1994-08-10 Manufacturing method of current-carrying member

Country Status (1)

Country Link
JP (1) JP3998731B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207035B1 (en) * 1997-11-26 2001-03-27 Stolberger Metallwerke Gmbh & Co. Kg Method for manufacturing a metallic composite strip
US7391116B2 (en) 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
JP2008210584A (en) * 2007-02-23 2008-09-11 Fujikura Ltd Flexible flat cable terminal
JP2008269999A (en) * 2007-04-20 2008-11-06 Kobe Steel Ltd Terminal for coupling connector and its manufacturing method
WO2009020180A1 (en) * 2007-08-07 2009-02-12 Mitsubishi Shindoh Co., Ltd. Sn-plated conductive material, method for manufacturing sn-plated conductive material, and electricity carrying component
WO2012154374A1 (en) * 2011-05-09 2012-11-15 Tyco Electronics Corporation Corrosion resistant electrical conductor
JP2014084480A (en) * 2012-10-19 2014-05-12 Jx Nippon Mining & Metals Corp Metallic material for electronic component and production method of the same
WO2014199547A1 (en) * 2013-06-10 2014-12-18 オリエンタル鍍金株式会社 Method for producing plated laminate, and plated laminate
JP2015004114A (en) * 2013-06-24 2015-01-08 オリエンタル鍍金株式会社 Production method of plating material and plating material
JP2015086446A (en) * 2013-10-31 2015-05-07 三菱伸銅株式会社 Conductive member for connector
EP2874239A1 (en) * 2013-10-30 2015-05-20 Mitsubishi Materials Corporation Tin-plated copper-alloy terminal material
US9224550B2 (en) 2012-12-26 2015-12-29 Tyco Electronics Corporation Corrosion resistant barrier formed by vapor phase tin reflow
CN110573649A (en) * 2017-01-06 2019-12-13 德扬科技股份有限公司 Antifouling film

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207035B1 (en) * 1997-11-26 2001-03-27 Stolberger Metallwerke Gmbh & Co. Kg Method for manufacturing a metallic composite strip
US6495001B2 (en) 1997-11-26 2002-12-17 Stolberger Metallwerke Gmbh And Co. Kg Method for manufacturing a metallic composite strip
US7391116B2 (en) 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
US7808109B2 (en) 2003-10-14 2010-10-05 Gbc Metals, L.L.C. Fretting and whisker resistant coating system and method
JP2008210584A (en) * 2007-02-23 2008-09-11 Fujikura Ltd Flexible flat cable terminal
JP2008269999A (en) * 2007-04-20 2008-11-06 Kobe Steel Ltd Terminal for coupling connector and its manufacturing method
WO2009020180A1 (en) * 2007-08-07 2009-02-12 Mitsubishi Shindoh Co., Ltd. Sn-plated conductive material, method for manufacturing sn-plated conductive material, and electricity carrying component
JP2014519548A (en) * 2011-05-09 2014-08-14 タイコ・エレクトロニクス・コーポレイション Corrosion-resistant conductor
US9064613B2 (en) * 2011-05-09 2015-06-23 Tyco Electronics Corporation Corrosion resistant electrical conductor
CN103518006A (en) * 2011-05-09 2014-01-15 泰科电子公司 Corrosion resistant electrical conductor
KR20140034210A (en) * 2011-05-09 2014-03-19 타이코 일렉트로닉스 코포레이션 Corrosion resistant electrical conductor
WO2012154374A1 (en) * 2011-05-09 2012-11-15 Tyco Electronics Corporation Corrosion resistant electrical conductor
US8574722B2 (en) 2011-05-09 2013-11-05 Tyco Electronics Corporation Corrosion resistant electrical conductor
JP2014084480A (en) * 2012-10-19 2014-05-12 Jx Nippon Mining & Metals Corp Metallic material for electronic component and production method of the same
US9224550B2 (en) 2012-12-26 2015-12-29 Tyco Electronics Corporation Corrosion resistant barrier formed by vapor phase tin reflow
JP5876622B2 (en) * 2013-06-10 2016-03-02 オリエンタル鍍金株式会社 Plating laminate manufacturing method and plating laminate
CN105358741A (en) * 2013-06-10 2016-02-24 东方镀金株式会社 Method for producing plated laminate, and plated laminate
WO2014199547A1 (en) * 2013-06-10 2014-12-18 オリエンタル鍍金株式会社 Method for producing plated laminate, and plated laminate
JP2016065316A (en) * 2013-06-10 2016-04-28 オリエンタル鍍金株式会社 Plated laminate
US9680246B2 (en) 2013-06-10 2017-06-13 Oriental Electro Plating Corporation Method for manufacturing plated laminate, and plated laminate
JP2015004114A (en) * 2013-06-24 2015-01-08 オリエンタル鍍金株式会社 Production method of plating material and plating material
EP2874239A1 (en) * 2013-10-30 2015-05-20 Mitsubishi Materials Corporation Tin-plated copper-alloy terminal material
JP2015086446A (en) * 2013-10-31 2015-05-07 三菱伸銅株式会社 Conductive member for connector
CN110573649A (en) * 2017-01-06 2019-12-13 德扬科技股份有限公司 Antifouling film

Also Published As

Publication number Publication date
JP3998731B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
CN1318647C (en) Metal-plated material and method for preparation, and electric and electronic parts using same
JP3880877B2 (en) Plated copper or copper alloy and method for producing the same
US5780172A (en) Tin coated electrical connector
JP3108302B2 (en) Method for producing Sn alloy plated material having excellent electrical contact characteristics and solderability
JP4514012B2 (en) Plating material, manufacturing method thereof, and electric / electronic parts using the same
JP2726434B2 (en) Sn or Sn alloy coating material
JPH0855521A (en) Conductive member and its manufacture
JP2009084616A (en) REFLOW Sn PLATED MATERIAL AND ELECTRONIC COMPONENT USING THE SAME
JPH04329891A (en) Tin plated copper alloy material and its production
JP2670348B2 (en) Sn or Sn alloy coating material
JP2005048201A (en) Terminal, and component and product having the same
JP2005344188A (en) Method for producing plating material and electrical/electronic component using the plating material
JP5101235B2 (en) Sn plating material for electronic parts and electronic parts
JPH01283780A (en) Covering material of sn or sn alloy
JP2004225070A (en) Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP4043834B2 (en) Plating material, manufacturing method thereof, and electric / electronic parts using the same
JP4514061B2 (en) Plating material, manufacturing method thereof, and electric / electronic parts using the same
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP2000030558A (en) Electric contact material and its manufacture
JP2007204854A (en) Plated material, method of producing the same, and electrical/electronic part using the same
JP2851245B2 (en) Sn alloy plating material
JP2020196910A (en) Material for electric contact and its manufacturing method, connector terminal, connector and electronic component
JPS61151914A (en) Contactor
JP7230570B2 (en) Conductive member for connector terminal and connector terminal
JP7353928B2 (en) Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term