JP2010232535A - Heat-resistant heat dissipation sheet - Google Patents

Heat-resistant heat dissipation sheet Download PDF

Info

Publication number
JP2010232535A
JP2010232535A JP2009080232A JP2009080232A JP2010232535A JP 2010232535 A JP2010232535 A JP 2010232535A JP 2009080232 A JP2009080232 A JP 2009080232A JP 2009080232 A JP2009080232 A JP 2009080232A JP 2010232535 A JP2010232535 A JP 2010232535A
Authority
JP
Japan
Prior art keywords
heat
sheet
resistant
conductive filler
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009080232A
Other languages
Japanese (ja)
Inventor
Naoyuki Shimoyama
直之 下山
Yuhiko Fukawa
雄彦 布川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2009080232A priority Critical patent/JP2010232535A/en
Publication of JP2010232535A publication Critical patent/JP2010232535A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant heat dissipation sheet hardly deteriorated, and capable of keeping sufficient flexibility even when used at high temperature of 250-300°C. <P>SOLUTION: This heat-resistant heat dissipation sheet contains a binder formed of a rubber-like elastic body having a fluorinated polyether skeleton as a main chain, and a thermally-conductive filler. The heat-resistant heat dissipation sheet is manufactured by mixing a liquid fluorinated polyether and the thermally-conductive filler with each other and thereafter reactively hardening them, and the 10% compressive load of the sheet is ≤100 N/cm<SP>2</SP>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子機器の発熱部品と放熱機器との間に介在させる耐熱性放熱シートに関する。   The present invention relates to a heat-resistant heat dissipation sheet interposed between a heat generating component of an electronic device and a heat dissipation device.

近年の電気機器や産業機器の小型化に伴う高性能化、高機能化により、機器の消費電力が増加するとともに機器内の発熱部品の発熱量も増大している。このような熱を放散させるために、例えばヒートシンク等の放熱機器を発熱部品に取り付ける方法が知られている。さらに、発熱部品と放熱機器との間の隙間を埋めるために、柔軟かつ高い熱伝導性を有するシートを介在させ、効率良く熱を伝える方法が用いられている。   With the recent increase in performance and functionality associated with the miniaturization of electrical and industrial equipment, the power consumption of the equipment has increased and the amount of heat generated by the heat generating components in the equipment has also increased. In order to dissipate such heat, for example, a method of attaching a heat radiating device such as a heat sink to a heat generating component is known. Furthermore, in order to fill a gap between the heat generating component and the heat radiating device, a method of efficiently transferring heat by interposing a sheet having flexible and high thermal conductivity is used.

ところが、電子部品の高密度化に伴い発熱部品の温度は更に上昇する傾向にあり、例えば、プロジェクターにおけるランプとその周辺部は250℃以上の高温に達する。しかし、従来の高分子ゴムやシリコーンゴムからなるシートは、そのような高温での使用に耐え得る十分な耐熱性を有していない。そのため、高い耐熱性を有するシート材料の開発が求められている。例えば特許文献1には、金属アルコキシド及び有機ケイ素化合物から有機無機ハイブリット材料を形成する技術が開示されている。この有機無機ハイブリット材料は弾性に優れ、200℃を超える耐熱性を有している。その一方で、300℃程度の高温で長時間使用すると硬く脆くなるという問題があった。   However, as the density of electronic components increases, the temperature of the heat generating components tends to rise further. However, conventional sheets made of polymer rubber or silicone rubber do not have sufficient heat resistance to withstand use at such high temperatures. Therefore, development of a sheet material having high heat resistance is demanded. For example, Patent Document 1 discloses a technique for forming an organic-inorganic hybrid material from a metal alkoxide and an organosilicon compound. This organic-inorganic hybrid material is excellent in elasticity and has heat resistance exceeding 200 ° C. On the other hand, there is a problem that it becomes hard and brittle when used at a high temperature of about 300 ° C. for a long time.

特許文献2には、高い耐熱性及び熱伝導性を有する耐熱性放熱シート材料として、フッ素化芳香族ポリマー及び熱伝導性の無機充填剤を含有する熱伝導性組成物が開示されている。しかし、骨格に芳香族を有するポリマーは一般に剛直で硬い性質を有するため、被接着体との密着性が低く、優れた放熱効果を発揮することが困難である。   Patent Document 2 discloses a heat conductive composition containing a fluorinated aromatic polymer and a heat conductive inorganic filler as a heat resistant heat radiation sheet material having high heat resistance and heat conductivity. However, an aromatic polymer in the skeleton generally has a rigid and hard property, and thus has low adhesion to an adherend and it is difficult to exhibit an excellent heat dissipation effect.

特開2005−81669JP-A-2005-81669 特開2005−272814JP-A-2005-272814

本発明は、上記のような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、250〜300℃の高温で使用しても劣化が殆どなく、かつ十分な柔軟性を維持できる耐熱性放熱シートを提供することにある。   The present invention has been made paying attention to the problems existing in the prior art as described above. The object is to provide a heat-resistant heat-dissipating sheet that hardly deteriorates even when used at a high temperature of 250 to 300 ° C. and that can maintain sufficient flexibility.

上記の目的を達成するために、請求項1に記載の発明は、フッ素化ポリエーテル骨格を主鎖とするゴム状弾性体からなるバインダー、及び熱伝導性充填剤を含む耐熱性放熱シートであって、液状フッ素化ポリエーテル及び熱伝導性充填剤を混合した後に反応硬化させることにより製造され、かつ、10%圧縮荷重値が100N/cm以下であることを要旨とする。 In order to achieve the above object, the invention described in claim 1 is a heat-resistant heat radiation sheet comprising a binder made of a rubber-like elastic body having a fluorinated polyether skeleton as a main chain, and a thermally conductive filler. The liquid fluorinated polyether and the heat conductive filler are mixed and then reacted and cured, and the gist is that the 10% compressive load value is 100 N / cm 2 or less.

この構成によれば、バインダーとして耐熱性の高いフッ素化ポリエーテルを主鎖とするゴム状弾性体を用いるため、250〜300℃の高温で使用しても劣化が殆どなく、かつ柔軟な耐熱性放熱シートを得ることができる。また、液状のバインダーを熱伝導性充填剤と混合することで、熱伝導性充填剤を多量に配合することができるとともに、反応硬化させた後も10%圧縮荷重が100N/cm以下という、柔軟性の高いシートを形成することができる。そのため、発熱部品及び放熱機器等の被接着体に対し、前記シートを隙間なく密着させることができる。 According to this configuration, since a rubber-like elastic body having a main chain of fluorinated polyether having high heat resistance is used as a binder, there is almost no deterioration even when used at a high temperature of 250 to 300 ° C., and flexible heat resistance A heat dissipation sheet can be obtained. Moreover, by mixing a liquid binder with a heat conductive filler, a large amount of the heat conductive filler can be blended, and the 10% compression load is 100 N / cm 2 or less even after reaction curing. A highly flexible sheet can be formed. Therefore, the sheet can be closely attached to an adherend such as a heat generating component and a heat dissipation device without a gap.

請求項2に記載の発明は、請求項1に記載の発明において、空気中300℃で24時間熱処理したときの10%圧縮荷重値の変化率の絶対値が3.6%以下であることを要旨とする。   The invention according to claim 2 is that, in the invention according to claim 1, the absolute value of the rate of change of the 10% compressive load value when heat-treated in air at 300 ° C. for 24 hours is 3.6% or less. The gist.

この構成によれば、250〜300℃の高温で使用しても、被接着体に対する密着性が殆ど低下しない耐熱性放熱シートを得ることができる。
請求項3に記載の発明は、請求項1又は2に記載の発明において、空気中300℃で24時間熱処理したときの重量減少率が0.1%以下であることを要旨とする。
According to this structure, even if it uses at the high temperature of 250-300 degreeC, the heat-resistant heat-radiation sheet which hardly adheres to a to-be-adhered body can be obtained.
The gist of the invention described in claim 3 is that, in the invention described in claim 1 or 2, the weight reduction rate when heat-treated in air at 300 ° C. for 24 hours is 0.1% or less.

この構成によれば、250〜300℃の高温での使用による劣化が殆どない耐熱性放熱シートを得ることができる。
請求項4に記載の発明は、請求項1〜3の何れか1項に記載の発明において、空気中300℃で24時間熱処理したときの引張破断強度の低下率が5.8%以下であり、かつ引張破断伸度の低下率が3.7%以下であることを要旨とする。
According to this configuration, it is possible to obtain a heat-resistant heat radiating sheet that hardly deteriorates due to use at a high temperature of 250 to 300 ° C.
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the rate of decrease in tensile fracture strength when heat-treated in air at 300 ° C. for 24 hours is 5.8% or less. In addition, the gist is that the rate of decrease in the tensile elongation at break is 3.7% or less.

この構成によれば、250〜300℃の高温で使用しても、機械的物性が殆ど低下しない耐熱性放熱シートを得ることができる。
請求項5に記載の発明は、請求項1〜4の何れか1項に記載の発明において、10%圧縮荷重が38.7〜98.0N/cmであることを要旨とする。
According to this structure, even if it uses at high temperature of 250-300 degreeC, the heat-resistant heat-radiation sheet which a mechanical property hardly falls can be obtained.
The gist of the invention according to claim 5 is that, in the invention according to any one of claims 1 to 4, the 10% compressive load is 38.7 to 98.0 N / cm 2 .

この構成によれば、より高い柔軟性を維持する耐熱性放熱シートを得ることができる。
請求項6に記載の発明は、請求項1〜5の何れか1項に記載の発明において、液状フッ素化ポリエーテルの粘度が0.01〜100Pa・sであることを要旨とする。
According to this configuration, it is possible to obtain a heat-resistant heat dissipation sheet that maintains higher flexibility.
The gist of the invention described in claim 6 is that, in the invention described in any one of claims 1 to 5, the viscosity of the liquid fluorinated polyether is 0.01 to 100 Pa · s.

この構成によれば、バインダーの粘度が低いため多量の熱伝導性充填剤を混合しやすくなり、形成される耐熱性放熱シートの熱伝導性を更に高めることができる。
請求項7に記載の発明は、請求項1〜6の何れか1項に記載の発明において、熱伝導性充填剤が、金属酸化物、金属窒化物、金属炭化物から選ばれる1種またはこれらの混合物であることを要旨とする。
According to this structure, since the viscosity of a binder is low, it becomes easy to mix a lot of heat conductive fillers, and the heat conductivity of the heat-resistant heat-radiation sheet formed can be further improved.
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the thermally conductive filler is selected from metal oxides, metal nitrides, metal carbides, or these The gist is that it is a mixture.

この構成によれば、250〜300℃の高温で使用しても熱伝導性充填剤の変性が起こらないため、熱伝導性充填剤に起因する耐熱性放熱シートの特性の低下を防ぐことができる。   According to this configuration, since the heat conductive filler does not denature even when used at a high temperature of 250 to 300 ° C., it is possible to prevent deterioration of the characteristics of the heat-resistant heat radiation sheet due to the heat conductive filler. .

請求項8に記載の発明は、請求項1〜7の何れか1項に記載の発明において、熱伝導性充填剤が、液状フッ素化ポリエーテル100重量部に対し、350重量部以上840重量部以下の割合で混合されていることを要旨とする。   The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the thermally conductive filler is 350 parts by weight or more and 840 parts by weight with respect to 100 parts by weight of the liquid fluorinated polyether. The gist is that they are mixed in the following proportions.

この構成によれば、より良好な熱伝導性を有する耐熱性放熱シートを得ることができる。   According to this configuration, it is possible to obtain a heat-resistant heat radiation sheet having better thermal conductivity.

本発明によれば、250〜300℃の高温で使用しても劣化が殆どなく、かつ十分な柔軟性を維持できる耐熱性放熱シートを提供することができる。   According to the present invention, it is possible to provide a heat-resistant heat-radiating sheet that hardly deteriorates even when used at a high temperature of 250 to 300 ° C. and that can maintain sufficient flexibility.

本願発明に用いるバインダーは、主鎖にフッ素化ポリエーテル構造を有している。フッ素化構造は主鎖の原子間の結合エネルギーを高めるため、高温環境下でも酸化されにくい。さらに、低粘度のポリエーテル骨格がバインダーに十分な柔軟性を付与するため、高温での使用において柔軟性低下の要因となり得る可塑剤を添加する必要がない。従って、フッ素化ポリエーテル構造を主鎖とするバインダーによれば、250〜300℃の高温での使用によって引き起こされるバインダーの酸化による劣化を軽減し、かつ柔軟性を維持できる耐熱性放熱シートを形成することができる。さらに後述するように、フッ素化ポリエーテルを含有する本発明の耐熱性放熱シートは、300℃、24時間の熱処理後における引張破断強度の低下率を5.8%以下に、かつ引張破断伸度の低下率を3.7%以下に抑えることができる。即ち、300℃の高温で使用しても機械的物性が殆ど低下しないことが判明した。   The binder used in the present invention has a fluorinated polyether structure in the main chain. The fluorinated structure increases the bond energy between the atoms in the main chain, and is not easily oxidized even in a high temperature environment. Furthermore, since the low-viscosity polyether skeleton imparts sufficient flexibility to the binder, it is not necessary to add a plasticizer that can cause a decrease in flexibility when used at high temperatures. Therefore, a binder having a fluorinated polyether structure as the main chain forms a heat-resistant heat-dissipating sheet that can reduce deterioration due to oxidation of the binder caused by use at a high temperature of 250 to 300 ° C. and maintain flexibility. can do. Further, as will be described later, the heat-resistant heat-dissipating sheet of the present invention containing a fluorinated polyether has a reduction rate of tensile fracture strength after heat treatment at 300 ° C. for 24 hours to 5.8% or less, and tensile elongation at break Can be reduced to 3.7% or less. That is, it was found that mechanical properties hardly deteriorate even when used at a high temperature of 300 ° C.

本発明による耐熱性放熱シートの10%圧縮荷重は100N/cm以下である。10%圧縮荷重とは、厚みを10%圧縮するのに要する荷重の大きさを意味する。一般に、硬質樹脂は殆ど圧縮することができず、1%程度の圧縮でも荷重が100N/cm以上と大きくなってしまう。即ち、シートの圧縮荷重が小さい程その柔軟性は高く、10%圧縮荷重が100N/cm以下であれば、放熱シートの柔軟性として十分である。 The 10% compressive load of the heat-resistant heat radiation sheet according to the present invention is 100 N / cm 2 or less. The 10% compression load means the magnitude of the load required to compress the thickness by 10%. Generally, hard resin can hardly be compressed, and even if it is compressed by about 1%, the load becomes as large as 100 N / cm 2 or more. That is, the smaller the compressive load of the sheet, the higher the flexibility, and a 10% compressive load of 100 N / cm 2 or less is sufficient as the flexibility of the heat dissipation sheet.

前記耐熱性放熱シートは、常温で液状のフッ素化ポリエーテル及び熱伝導性充填剤を混合した後、反応硬化させることにより製造される。常温で固体のバインダーと比較すると、常温で液状のバインダーは粘度が低く、熱伝導性充填剤を多量に配合できる。そのため、高い熱伝導性及び柔軟性を両立する耐熱性放熱シートを形成することができる。   The heat-resistant heat radiating sheet is produced by mixing a fluorinated polyether and a thermally conductive filler that are liquid at room temperature and then curing them. Compared to a binder that is solid at room temperature, a binder that is liquid at room temperature has a low viscosity, and a large amount of thermally conductive filler can be blended. Therefore, it is possible to form a heat-resistant heat radiating sheet that achieves both high thermal conductivity and flexibility.

前記液状フッ素化ポリエーテルの粘度は、0.01〜100Pa・sであることが好ましい。この範囲の粘度であれば、機械的物性及び熱伝導性に優れる耐熱性放熱シートを形成することができる。粘度が0.01Pa・sより低い液状フッ素化ポリエーテルでは分子量が小さすぎるため、形成されるシートの機械的物性が低下する。一方、粘度が100Pa・sより高いと、熱伝導性充填剤を多量に配合することが困難となり、十分な熱伝導性を有するシートを形成することができない。   The viscosity of the liquid fluorinated polyether is preferably 0.01 to 100 Pa · s. If it is the viscosity of this range, the heat-resistant heat-radiation sheet which is excellent in a mechanical physical property and heat conductivity can be formed. In the liquid fluorinated polyether having a viscosity lower than 0.01 Pa · s, the molecular weight is too small, so that the mechanical properties of the formed sheet are lowered. On the other hand, when the viscosity is higher than 100 Pa · s, it becomes difficult to blend a large amount of the heat conductive filler, and a sheet having sufficient heat conductivity cannot be formed.

液状フッ素化ポリエーテルは、その主鎖の末端に反応性官能基を有し、硬化剤あるいは重合開始剤により反応硬化するものであることが好ましい。例えば、末端の官能基がアルケニル基であれば、ヒドロシリル基および触媒によるヒドロシリル化反応で硬化させることができる。また、末端官能基がイソシアネート基であれば、アミノ基あるいはヒドロキシル基などと反応硬化させることができる。液状フッ素化ポリエーテルの具体例として、例えば信越化学工業株式会社製の商品名「SIFEL(登録商標)」シリーズが挙げられる。   The liquid fluorinated polyether preferably has a reactive functional group at the end of the main chain and is reactively cured by a curing agent or a polymerization initiator. For example, if the terminal functional group is an alkenyl group, it can be cured by a hydrosilylation reaction with a hydrosilyl group and a catalyst. If the terminal functional group is an isocyanate group, it can be cured by reaction with an amino group or a hydroxyl group. Specific examples of the liquid fluorinated polyether include a trade name “SIFEL (registered trademark)” series manufactured by Shin-Etsu Chemical Co., Ltd., for example.

熱伝導性充填剤は、一般的に使用されているものを用いることができ、特に限定されない。
熱伝導性充填剤として、例えば高い熱伝導性を有するとともに電気絶縁性である金属酸化物、金属窒化物、金属炭化物などの金属化合物粉末が挙げられる。具体的には、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、窒化アルミニウム、炭化ケイ素が挙げられるが、これらに限定されるものではない。
As the thermally conductive filler, a commonly used filler can be used, and it is not particularly limited.
Examples of the thermally conductive filler include metal compound powders such as metal oxides, metal nitrides, and metal carbides that have high thermal conductivity and are electrically insulating. Specific examples thereof include, but are not limited to, aluminum oxide, magnesium oxide, zinc oxide, boron nitride, aluminum nitride, and silicon carbide.

その他に、例えば高い熱伝導性かつ導電性を有する炭素繊維やダイヤモンド、黒鉛等の粉末を用いてもよい。
また、これらの熱伝導性充填剤は単独で用いてもよいし、複数の種類を混合して用いてもよい。さらに、絶縁性の付与や劣化の抑制のためのコーティングを充填剤に施してもよい。コーティングは、耐熱性の観点からシリカコートが好ましい。
In addition, for example, powders such as carbon fiber, diamond, and graphite having high thermal conductivity and conductivity may be used.
Moreover, these heat conductive fillers may be used independently and may be used in mixture of several types. Furthermore, a coating for imparting insulating properties and suppressing deterioration may be applied to the filler. The coating is preferably a silica coat from the viewpoint of heat resistance.

熱伝導性充填剤の配合量は、バインダー100重量部に対して350重量部以上840重量部以下が好ましい。熱伝導性充填剤の配合量が350重量部より少ないと充分な熱伝導性が得られず、840重量部より多いと、過剰な熱伝導性充填剤によりシートが硬く脆くなってしまうためである。   The blending amount of the heat conductive filler is preferably 350 parts by weight or more and 840 parts by weight or less with respect to 100 parts by weight of the binder. When the amount of the heat conductive filler is less than 350 parts by weight, sufficient heat conductivity cannot be obtained, and when it is more than 840 parts by weight, the sheet becomes hard and brittle due to excessive heat conductive filler. .

熱伝導性充填剤の形状も特に限定されるものではなく、例えば、片鱗状、針状、粒状等が挙げられるが、バインダー中に均一かつ高濃度で配合する観点から粒状が好ましい。
粒状の熱伝導性充填剤の粒径は0.1μm以上100μm以下であることが好ましく、3μm以上50μm以下であることがより好ましい。粒径が0.1μmよりも小さいと、バインダー及び熱伝導性充填剤の混合物の粘度が上昇してシートの成形が困難になり、粒径が100μmより大きいとシートが硬くなるためである。さらに、熱伝導性充填剤をより高密度で混合するために、2種類の異なる平均粒径を有する熱伝導性充填剤を混合することが好ましい。
The shape of the heat conductive filler is not particularly limited, and examples thereof include a scaly shape, a needle shape, and a granular shape, and a granular shape is preferable from the viewpoint of blending uniformly and at a high concentration in the binder.
The particle size of the granular thermally conductive filler is preferably 0.1 μm or more and 100 μm or less, and more preferably 3 μm or more and 50 μm or less. This is because when the particle size is smaller than 0.1 μm, the viscosity of the mixture of the binder and the heat conductive filler increases, making it difficult to form the sheet, and when the particle size is larger than 100 μm, the sheet becomes hard. Furthermore, in order to mix the thermally conductive filler at a higher density, it is preferable to mix two types of thermally conductive fillers having different average particle diameters.

(実施例1)
末端にシリコーン架橋反応基を有し、粘度が3Pa・sの液状フッ素化ポリエーテル(信越化学工業株式会社製SIFEL(登録商標)8370)100g、熱伝導性充填剤として第1の酸化アルミニウム粉末(電気化学工業株式会社製DAM45、平均粒径40μm)400g、第2の酸化アルミニウム粉末(電気化学工業株式会社製DAM03、平均粒径3μm)160gを均一に混合した。次に、得られた混合物をコンプレッション成形により厚み500μmのシート状に成形し、120℃で1時間加熱して硬化させ、耐熱性放熱シート(試料1)を作製した。
Example 1
100 g of a liquid fluorinated polyether (SIFEL (registered trademark) 8370 manufactured by Shin-Etsu Chemical Co., Ltd.) having a silicone crosslinking reactive group at the terminal and a viscosity of 3 Pa · s, and the first aluminum oxide powder ( 400 g of DAM45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 40 μm) and 160 g of second aluminum oxide powder (DAM03 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 3 μm) were uniformly mixed. Next, the obtained mixture was formed into a sheet having a thickness of 500 μm by compression molding, and was cured by heating at 120 ° C. for 1 hour to prepare a heat-resistant heat radiation sheet (Sample 1).

(実施例2)
熱伝導性充填剤の配合量を、第1の酸化アルミニウム粉末(電気化学工業株式会社製DAM45、平均粒径40μm)600g、第2の酸化アルミニウム粉末(電気化学工業株式会社製DAM03、平均粒径3μm)240gに変更したこと以外は実施例1と同様の方法で、耐熱性放熱シート(試料2)を作製した。
(Example 2)
The blending amount of the heat conductive filler is 600 g of the first aluminum oxide powder (DAM45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 40 μm), and the second aluminum oxide powder (DAM03 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size). 3 μm) A heat-resistant heat-dissipating sheet (sample 2) was produced in the same manner as in Example 1 except that the amount was changed to 240 g.

(実施例3)
末端にシリコーン架橋反応基を有し、粘度が50Pa・sの液状フッ素化ポリエーテル(信越化学工業株式会社製SIFEL(登録商標)3590)を使用し、熱伝導性充填剤として第1の酸化アルミニウム粉末(電気化学工業株式会社製DAM45、平均粒径40μm)300gと第2の酸化アルミニウム粉末(電気化学工業株式会社製DAM03、平均粒径3μm)120gとを混合したこと以外は、実施例1と同様の方法で耐熱性放熱シート(試料3)を作製した。
Example 3
Liquid fluorinated polyether (SIFEL (registered trademark) 3590, manufactured by Shin-Etsu Chemical Co., Ltd.) having a silicone cross-linking reactive group at the end and a viscosity of 50 Pa · s is used as the first conductive aluminum oxide. Example 1 except that 300 g of powder (DAM45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 40 μm) and 120 g of a second aluminum oxide powder (DAM03 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 3 μm) 120 g were mixed. A heat-resistant heat radiation sheet (Sample 3) was produced in the same manner.

(実施例4)
熱伝導性充填剤の配合量を、第1の酸化アルミニウム粉末(電気化学工業株式会社製DAM45、平均粒径40μm)250g、第2の酸化アルミニウム粉末(電気化学工業株式会社製DAM03、平均粒径3μm)100gに変更したこと以外は実施例1と同様の方法で、耐熱性放熱シート(試料4)を作製した。
Example 4
The blending amount of the heat conductive filler is 250 g of the first aluminum oxide powder (DAM45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 40 μm), and the second aluminum oxide powder (DAM03 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size). 3 μm) A heat-resistant heat-dissipating sheet (sample 4) was produced in the same manner as in Example 1 except that the amount was changed to 100 g.

(比較例1)
液状フッ素化ポリエーテルの代わりに付加型液状シリコーン(モメンティブ・パフォーマンス・マテリアルズ社製XE14−B5778、粘度14Pa・s)を用いた以外は実施例2と同様の方法で放熱シート(試料5)作製した。
(Comparative Example 1)
A heat-dissipating sheet (sample 5) was prepared in the same manner as in Example 2 except that addition-type liquid silicone (XE14-B5778 manufactured by Momentive Performance Materials, Inc., viscosity 14 Pa · s) was used instead of liquid fluorinated polyether. did.

(比較例2)
メチルトリエトキシシラン5重量部及び0.4%リン酸水溶液4重量部を混合し、10℃で3時間攪拌した。次に、この混合液にエタノール4重量部を加え、さらに水酸化ナトリウム水溶液で中和した。その後、50重量部のトルエンを加え、混合液中からエタノールと水を留去した。トルエン及び反応物の混合溶液に、ピリジン10重量部、トリメチルクロロシラン1.5重量部を添加して、室温で30分攪拌した。次に、末端水酸基で部分的にフェニル基が導入されたポリジメチルオルガノシロキンサン(重量平均分子量=50,000)を100重量部添加して、室温で4時間反応させた。得られた混合物をイオン交換水で洗浄し、ピリジン塩酸塩を除いた。この状態における樹脂組成物の粘度は15Pa・sであった。さらに、熱伝導性充填剤として第1の酸化アルミニウム粉末(電気化学工業株式会社製DAM45、平均粒径40μm)400g、及び第2の酸化アルミニウム粉末(電気化学工業株式会社製DAM03、平均粒径3μm)を加え、振動攪拌器で均一に分散させてから、80℃で45分、120℃で45分、160℃で45分、200℃で45分、250℃で30分加熱して反応硬化させ、放熱シート(試料6)を作製した。
(Comparative Example 2)
5 parts by weight of methyltriethoxysilane and 4 parts by weight of 0.4% phosphoric acid aqueous solution were mixed and stirred at 10 ° C. for 3 hours. Next, 4 parts by weight of ethanol was added to the mixed solution, and further neutralized with an aqueous sodium hydroxide solution. Thereafter, 50 parts by weight of toluene was added, and ethanol and water were distilled off from the mixture. 10 parts by weight of pyridine and 1.5 parts by weight of trimethylchlorosilane were added to a mixed solution of toluene and the reactants, and the mixture was stirred at room temperature for 30 minutes. Next, 100 parts by weight of polydimethylorganosiloxane having a phenyl group partially introduced at the terminal hydroxyl group (weight average molecular weight = 50,000) was added and reacted at room temperature for 4 hours. The resulting mixture was washed with ion exchange water to remove pyridine hydrochloride. The viscosity of the resin composition in this state was 15 Pa · s. Further, 400 g of a first aluminum oxide powder (DAM45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 40 μm) and a second aluminum oxide powder (DAM03 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 3 μm) as heat conductive fillers. ) And uniformly disperse with a vibration stirrer, then heat and cure at 80 ° C for 45 minutes, 120 ° C for 45 minutes, 160 ° C for 45 minutes, 200 ° C for 45 minutes, and 250 ° C for 30 minutes. A heat radiating sheet (Sample 6) was prepared.

(比較例3)
熱伝導性充填剤の配合量を第1の酸化アルミニウム粉末(電気化学工業株式会社製DAM45、平均粒径40μm)650g及び第2の酸化アルミニウム粉末(電気化学工業株式会社製DAM03、平均粒径3μm)400gに変更したこと以外は実施例1と同様の方法で放熱シート(試料7)を作製した。
(Comparative Example 3)
The amount of heat conductive filler blended was 650 g of the first aluminum oxide powder (DAM45 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 40 μm) and the second aluminum oxide powder (DAM03 manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 3 μm). ) A heat radiating sheet (Sample 7) was produced in the same manner as in Example 1 except that the amount was changed to 400 g.

(比較例4)
粘度が600Pa・sの液状フッ素化ポリエーテル(信越化学工業株式会社製SIFEL3790)を用いて実施例1と同様に耐熱性放熱シートの作製を試みたが、粘度が過剰に高く、熱伝導性充填剤を均一に混合することができなかった。
(評価方法)
上記実施例及び比較例で得られた試料1〜7について以下の項目の測定を行った。次に各試料を空気中300℃で24時間熱処理した後、再び同項目の測定を行い、熱処理前の測定値と比較することにより試料1〜7の耐熱性を評価した。
<引張破断強度及び引張破断伸度>
日本工業規格であるJIS K 6251:2004に従い、試料1〜6について熱処理前後の引張破断強度及び引張破断伸度を測定した。具体的には、試料1〜6をダンベル状(縦6mm×横35mm、厚み1mm)に成形し、ダンベル状試料の棒状部に、10mmの間隔を空けて2本の標線を付した。次に、試料の両端部に一定条件下で引張力を加え、試料が破断した時の引張力、及び標線間の伸びを測定し、それぞれ下記式(1)及び(2)に適用して引張破断強度及び引張破断伸度を算出した。
(Comparative Example 4)
An attempt was made to produce a heat-resistant heat-dissipating sheet in the same manner as in Example 1 using a liquid fluorinated polyether having a viscosity of 600 Pa · s (SIFEL 3790, manufactured by Shin-Etsu Chemical Co., Ltd.). The agent could not be mixed uniformly.
(Evaluation methods)
The following items were measured for Samples 1 to 7 obtained in the above Examples and Comparative Examples. Next, after heat-treating each sample at 300 ° C. in air for 24 hours, the same item was measured again, and the heat resistance of Samples 1 to 7 was evaluated by comparing with the measured value before the heat treatment.
<Tensile breaking strength and tensile breaking elongation>
In accordance with JIS K 6251: 2004, which is a Japanese industrial standard, the tensile strength and tensile elongation before and after heat treatment of samples 1 to 6 were measured. Specifically, the samples 1 to 6 were formed into a dumbbell shape (length 6 mm × width 35 mm, thickness 1 mm), and two marked lines were attached to the rod-shaped portion of the dumbbell-shaped sample with an interval of 10 mm. Next, a tensile force was applied to both ends of the sample under certain conditions, and the tensile force when the sample broke and the elongation between the marked lines were measured, and applied to the following formulas (1) and (2), respectively. The tensile breaking strength and the tensile breaking elongation were calculated.

引張破断強度TS(MPa)=破断時引張力F(N)/試験片の初期断面積S(mm) …(1)
引張破断伸度E(%)={破断時の標線間距離L(mm)−標線間距離L(mm)}/L×100 …(2)
また、熱処理前後の引張破断強度及び引張破断伸度から、これらの変化率を計算した。
<重量減少率>
熱処理前後の試料1〜7の重量を測定し、その変化率を計算した。
<熱抵抗値>
発熱基板(発熱量:25W)上に試料1〜6(縦10mm×横10mm、厚み500μm)を配置した。各試料の上にヒートシンク(株式会社アルファ製のFH60−30)を設置し、一定の荷重(98kPa(1kgf/cm))で圧接した。ヒートシンクの上部にファン(風量:0.01kg/sec、風圧:49Pa)を取り付け、ヒートシンクおよび発熱基板に温度センサを接続した。この状態で発熱基板に通電した。通電から5分が経過した後、発熱基板の温度(θj1)およびヒートシンクの温度(θj0)を測定し、それらの測定値を下記式(3)に適用して熱抵抗を算出した。さらに、熱処理前後の熱抵抗から変化率を計算した。
Tensile strength at break TS b (MPa) = Tensile force at break F b (N) / Initial cross-sectional area S (mm 2 ) of the test piece (1)
Tensile elongation at break E b (%) = {Distance between marked lines L 1 (mm) -Distance between marked lines L 0 (mm)} / L 0 × 100 (2)
Moreover, these change rates were calculated from the tensile breaking strength and tensile breaking elongation before and after heat treatment.
<Weight reduction rate>
The weights of Samples 1 to 7 before and after the heat treatment were measured, and the rate of change was calculated.
<Thermal resistance value>
Samples 1 to 6 (length 10 mm × width 10 mm, thickness 500 μm) were placed on a heat generating substrate (heat generation amount: 25 W). A heat sink (FH60-30 manufactured by Alpha Co., Ltd.) was placed on each sample, and pressed with a constant load (98 kPa (1 kgf / cm 2 )). A fan (air volume: 0.01 kg / sec, wind pressure: 49 Pa) was attached to the top of the heat sink, and a temperature sensor was connected to the heat sink and the heat generating substrate. In this state, the heating substrate was energized. After 5 minutes from the energization, the temperature of the heat generating substrate (θj1) and the temperature of the heat sink (θj0) were measured, and the measured values were applied to the following formula (3) to calculate the thermal resistance. Furthermore, the rate of change was calculated from the thermal resistance before and after the heat treatment.

熱抵抗(℃/W)=(θj1−θj0)/発熱量Q …(3)
<10%圧縮荷重>
試料1〜6を縦10mm×横10mmの大きさに切り出し、荷重をかけ、厚みを10%圧縮したときの荷重値を測定した。熱処理前後の測定値から変化率を計算した。
(結果)
Thermal resistance (° C./W)=(θj1-θj0)/heat generation amount Q (3)
<10% compression load>
Samples 1 to 6 were cut into a size of 10 mm length × 10 mm width, a load was applied, and the load value when the thickness was compressed by 10% was measured. The rate of change was calculated from the measured values before and after the heat treatment.
(result)

Figure 2010232535
Figure 2010232535

Figure 2010232535
表1を参照すると、実施例1〜4の試料では熱処理後の重量減少率は0.1%以下、10%圧縮荷重の変化率の絶対値は3.6%以内に維持された。また、引張破断強度及び引張破断伸度の低下率も、それぞれ5.8%以内及び3.7%以内であった。なお、実施例1及び2の試料の引張破断強度及び引張破断伸度が熱処理後に上昇した理由は、熱処理によりバインダー中の未反応部位が架橋し、強度が向上したためであると考えられる。実施例1〜4の試料の熱抵抗値の増加率は7.0%以下であった。
Figure 2010232535
Referring to Table 1, in the samples of Examples 1 to 4, the weight reduction rate after the heat treatment was 0.1% or less, and the absolute value of the rate of change of the 10% compression load was maintained within 3.6%. Moreover, the decreasing rates of the tensile breaking strength and the tensile breaking elongation were also within 5.8% and 3.7%, respectively. In addition, it is thought that the reason why the tensile rupture strength and the tensile rupture elongation of the samples of Examples 1 and 2 were increased after the heat treatment was that the unreacted sites in the binder were cross-linked by the heat treatment and the strength was improved. The increase rate of the thermal resistance value of the samples of Examples 1 to 4 was 7.0% or less.

それらに対し、表2を参照すると、フッ素化ポリエーテル以外の樹脂をバインダーに用いた比較例1及び2の試料では、熱処理により重量は0.9%以上減少し、10%圧縮荷重は78%以上増加した。また、引張破断強度の低下率は60%以上、引張破断伸度の低下率は28%であり、熱抵抗値は55%以上増加した。フッ素化ポリエーテルをバインダーに用いた比較例3の試料では、過剰量の熱伝導性充填剤を混合したため、形成されたシートは非常に硬く、100Nの力で厚みを10%圧縮させることができなかった。   On the other hand, referring to Table 2, in the samples of Comparative Examples 1 and 2 in which a resin other than the fluorinated polyether was used as the binder, the weight was reduced by 0.9% or more by the heat treatment, and the 10% compression load was 78%. More than that. Moreover, the rate of decrease in tensile strength at break was 60% or more, the rate of decrease in tensile elongation at break was 28%, and the thermal resistance value increased by 55% or more. In the sample of Comparative Example 3 in which fluorinated polyether was used as a binder, an excessive amount of thermally conductive filler was mixed, so the formed sheet was very hard and could be compressed by 10% with a force of 100 N. There wasn't.

以上より、実施例1〜4の試料は、比較例1及び2の試料に比べ、熱処理による引張破断強度及び引張破断伸度の低下率が著しく小さく、その他の測定項目においても変化率が極めて小さいことが判明した。その理由として、実施例1〜4の試料では、バインダーであるフッ素化ポリエーテルの耐熱性が高いことから高温で処理しても殆ど劣化せず、かつ柔軟性が維持されたため、非接着体への密着性低下による熱抵抗値の上昇が抑制されたことが考えられる。一方、比較例1及び2の試料ではバインダーの耐熱性が不十分であり、熱処理によりバインダーが劣化するとともに柔軟性が大きく低下したことにより、非接着体への密着性が低下し、熱抵抗値が上昇したものと考えられる。   From the above, the samples of Examples 1 to 4 are significantly smaller in the rate of decrease in tensile rupture strength and tensile rupture elongation due to heat treatment than the samples of Comparative Examples 1 and 2, and the rate of change in other measurement items is also extremely small. It has been found. The reason is that in the samples of Examples 1 to 4, since the heat resistance of the fluorinated polyether as a binder is high, it hardly deteriorates even when treated at a high temperature and the flexibility is maintained. It is conceivable that the increase in the thermal resistance value due to the lowering of the adhesion was suppressed. On the other hand, in the samples of Comparative Examples 1 and 2, the heat resistance of the binder is insufficient, the binder is deteriorated by heat treatment and the flexibility is greatly reduced. Is considered to have risen.

Claims (8)

フッ素化ポリエーテル骨格を主鎖とするゴム状弾性体からなるバインダー、及び熱伝導性充填剤を含む耐熱性放熱シートであって、
液状フッ素化ポリエーテル及び熱伝導性充填剤を混合した後に反応硬化させることにより製造され、かつ、
10%圧縮荷重が100N/cm以下であることを特徴とする耐熱性放熱シート。
A heat-resistant heat-dissipating sheet comprising a binder made of a rubber-like elastic body having a fluorinated polyether skeleton as a main chain, and a thermally conductive filler,
Produced by reaction curing after mixing the liquid fluorinated polyether and the thermally conductive filler; and
Heat-resistant heat dissipation sheet 10% compressive load is equal to or is 100 N / cm 2 or less.
空気中300℃で24時間熱処理したときの10%圧縮荷重値の変化率の絶対値が3.6%以下であることを特徴とする請求項1に記載の耐熱性放熱シート。 2. The heat-resistant heat-radiating sheet according to claim 1, wherein an absolute value of a change rate of a 10% compressive load value when heat-treated in the air at 300 ° C. for 24 hours is 3.6% or less. 空気中300℃で24時間熱処理したときの重量減少率が0.1%以下であることを特徴とする請求項1又は2に記載の耐熱性放熱シート。 The heat-resistant heat-radiating sheet according to claim 1 or 2, wherein a weight reduction rate when heat-treated in air at 300 ° C for 24 hours is 0.1% or less. 空気中300℃で24時間熱処理したときの引張破断強度の低下率が5.8%以下であり、かつ引張破断伸度の低下率が3.7%以下であることを特徴とする請求項1〜3の何れか1項に記載の耐熱性放熱シート。 2. The rate of decrease in tensile fracture strength when heat-treated in air at 300 ° C. for 24 hours is 5.8% or less, and the rate of decrease in tensile elongation at break is 3.7% or less. The heat-resistant heat-radiating sheet according to any one of? 10%圧縮荷重が38.7〜98.0N/cmであることを特徴とする請求項1〜4の何れか1項に記載の耐熱性放熱シート。 10% compressive load is 38.7-98.0N / cm < 2 >, The heat-resistant heat-radiation sheet of any one of Claims 1-4 characterized by the above-mentioned. 前記液状フッ素化ポリエーテルの粘度が0.01〜100Pa・sであることを特徴とする請求項1〜5の何れか1項に記載の耐熱性放熱シート。 The heat-resistant heat-radiating sheet according to any one of claims 1 to 5, wherein the liquid fluorinated polyether has a viscosity of 0.01 to 100 Pa · s. 前記熱伝導性充填剤が、金属酸化物、金属窒化物、金属炭化物から選ばれる1種またはこれらの混合物であることを特徴とする請求項1〜6の何れか1項に記載の耐熱性放熱シート。 The heat-resistant heat dissipation according to any one of claims 1 to 6, wherein the thermally conductive filler is one selected from metal oxide, metal nitride, and metal carbide, or a mixture thereof. Sheet. 熱伝導性充填剤が、液状フッ素化ポリエーテル100重量部に対し、350重量部以上840重量部以下の割合で混合されていることを特徴とする請求項1〜7の何れか1項に記載の耐熱性放熱シート。 The heat conductive filler is mixed at a ratio of 350 parts by weight or more and 840 parts by weight or less with respect to 100 parts by weight of the liquid fluorinated polyether, according to any one of claims 1 to 7. Heat resistant heat dissipation sheet.
JP2009080232A 2009-03-27 2009-03-27 Heat-resistant heat dissipation sheet Pending JP2010232535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080232A JP2010232535A (en) 2009-03-27 2009-03-27 Heat-resistant heat dissipation sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080232A JP2010232535A (en) 2009-03-27 2009-03-27 Heat-resistant heat dissipation sheet

Publications (1)

Publication Number Publication Date
JP2010232535A true JP2010232535A (en) 2010-10-14

Family

ID=43048059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080232A Pending JP2010232535A (en) 2009-03-27 2009-03-27 Heat-resistant heat dissipation sheet

Country Status (1)

Country Link
JP (1) JP2010232535A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282936A (en) * 2009-06-08 2010-12-16 Tozai Co Ltd Collected mica plate
US20130240778A1 (en) * 2012-03-19 2013-09-19 Nippon Valqua Industries, Ltd. Thermally conductive resin composition and thermally conductive sheet including the same
WO2013172429A1 (en) * 2012-05-16 2013-11-21 荒川化学工業株式会社 Stretchable heat-radiation sheet, and article having same attached thereto
WO2014034508A1 (en) * 2012-08-27 2014-03-06 日本バルカー工業株式会社 Molded body suppressed in bleeding and method for producing same
JP2014061617A (en) * 2012-09-20 2014-04-10 Nippon Valqua Ind Ltd Heat conductive sheet
WO2014104292A1 (en) * 2012-12-31 2014-07-03 株式会社Pat Fluororesin sheet and method for producing same
JP2015067736A (en) * 2013-09-30 2015-04-13 日本バルカー工業株式会社 Method for thermoconductive rubber sheet and thermoconductive rubber sheet
WO2017159689A1 (en) * 2016-03-15 2017-09-21 株式会社カネカ Thermally-conductive resin composition
JP2017190389A (en) * 2016-04-13 2017-10-19 信越化学工業株式会社 Thermal conductive fluorine adhesive composition and electric and electronic component
US10017677B2 (en) 2015-10-28 2018-07-10 Shin-Etsu Chemical Co., Ltd. Heat-conductive fluorinated curable composition, cured product thereof, and electric/electronic part
WO2019088100A1 (en) 2017-11-02 2019-05-09 ダイキン工業株式会社 Fluorine-containing elastomer composition for heat dissipation material and sheet thereof
JP2019102654A (en) * 2017-12-04 2019-06-24 三菱電線工業株式会社 Coating composition for manufacturing heat dissipation sheet, method for manufacturing heat dissipation sheet using the same, and the heat dissipation sheet
WO2023188952A1 (en) * 2022-03-31 2023-10-05 日清紡ホールディングス株式会社 Heat-dissipating rubber composition, thermally conductive rubber composition, heat-dissipating material, and cured product

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282936A (en) * 2009-06-08 2010-12-16 Tozai Co Ltd Collected mica plate
US20130240778A1 (en) * 2012-03-19 2013-09-19 Nippon Valqua Industries, Ltd. Thermally conductive resin composition and thermally conductive sheet including the same
JP2013194117A (en) * 2012-03-19 2013-09-30 Nippon Valqua Ind Ltd Thermally conductive resin composition and thermally conductive sheet using the same
US9688896B2 (en) 2012-03-19 2017-06-27 Nippon Valqua Industries, Ltd. Thermally conductive resin composition and thermally conductive sheet including the same
US8912278B2 (en) * 2012-03-19 2014-12-16 Nippon Valqua Industries, Ltd. Thermally conductive resin composition and thermally conductive sheet including the same
US20150014578A1 (en) * 2012-03-19 2015-01-15 Nippon Valqua Industries, Ltd. Thermally conductive resin composition and thermally conductive sheet including the same
WO2013172429A1 (en) * 2012-05-16 2013-11-21 荒川化学工業株式会社 Stretchable heat-radiation sheet, and article having same attached thereto
KR20150048766A (en) 2012-08-27 2015-05-07 닛폰 바루카 고교 가부시키가이샤 Molded body suppressed in bleeding and method for producing same
WO2014034508A1 (en) * 2012-08-27 2014-03-06 日本バルカー工業株式会社 Molded body suppressed in bleeding and method for producing same
US9441107B2 (en) 2012-08-27 2016-09-13 Nippon Valqua Industries, Ltd. Shaped product suppressed in bleeding and production process therefor
JP2014061617A (en) * 2012-09-20 2014-04-10 Nippon Valqua Ind Ltd Heat conductive sheet
WO2014104292A1 (en) * 2012-12-31 2014-07-03 株式会社Pat Fluororesin sheet and method for producing same
JP2015067736A (en) * 2013-09-30 2015-04-13 日本バルカー工業株式会社 Method for thermoconductive rubber sheet and thermoconductive rubber sheet
US10017677B2 (en) 2015-10-28 2018-07-10 Shin-Etsu Chemical Co., Ltd. Heat-conductive fluorinated curable composition, cured product thereof, and electric/electronic part
WO2017159689A1 (en) * 2016-03-15 2017-09-21 株式会社カネカ Thermally-conductive resin composition
JP2017190389A (en) * 2016-04-13 2017-10-19 信越化学工業株式会社 Thermal conductive fluorine adhesive composition and electric and electronic component
KR20170117323A (en) 2016-04-13 2017-10-23 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-conductive fluorinated adhesive composition and electric/electronic part
WO2019088100A1 (en) 2017-11-02 2019-05-09 ダイキン工業株式会社 Fluorine-containing elastomer composition for heat dissipation material and sheet thereof
KR20200060479A (en) 2017-11-02 2020-05-29 다이킨 고교 가부시키가이샤 Fluorine-containing elastomer composition and sheet for heat dissipation material
US11781002B2 (en) 2017-11-02 2023-10-10 Daikin Industries, Ltd. Fluorine-containing elastomer composition for heat dissipation material and sheet thereof
JP2019102654A (en) * 2017-12-04 2019-06-24 三菱電線工業株式会社 Coating composition for manufacturing heat dissipation sheet, method for manufacturing heat dissipation sheet using the same, and the heat dissipation sheet
WO2023188952A1 (en) * 2022-03-31 2023-10-05 日清紡ホールディングス株式会社 Heat-dissipating rubber composition, thermally conductive rubber composition, heat-dissipating material, and cured product

Similar Documents

Publication Publication Date Title
JP2010232535A (en) Heat-resistant heat dissipation sheet
EP1983568B1 (en) Heat dissipating member and semiconductor device using same
JP5511872B2 (en) Thermally conductive resin composition and thermal conductive sheet using the same
JP5154010B2 (en) Thermally conductive silicone rubber composition
KR102132243B1 (en) Thermal conductive silicone composition and cured product, and composite sheet
TWI568791B (en) Molded body with suppressed bleed-out and manufacturing method thereof
JP2002129019A (en) Electromagnetic wave-absorbing silicone rubber composition
CN102337033A (en) Additive high-thermal-conductivity organic silicon electronic pouring sealant and preparation method thereof
KR20170044041A (en) Insulating heat dissipation sheet
EP3741810B1 (en) Silicone composition
WO2021124998A1 (en) Thermally conductive composition and method for producing same
JP2009149736A (en) Heat-conductive silicone gel composition
KR100570249B1 (en) Silicone Rubber Sheet for Heat-Resistant, Thermal-Conductive Thermocompression
JP6987210B2 (en) Thermal conductivity sheet
JP2009013213A (en) Epoxy resin molding material for sealing motor and molded article
JP2020128463A (en) Thermally conductive silicone rubber sheet having thermally conductive adhesive layer
JP4993555B2 (en) Addition reaction curable silicone composition
JP5015450B2 (en) Thermally conductive molded body
JP5064189B2 (en) Silicone rubber composition for ACF pressure bonding sheet
JP2021095569A (en) Thermally conductive composition, thermally conductive sheet and method for producing the same
WO2019181713A1 (en) Silicone composition
CN112074572A (en) Thermally conductive silicone rubber composition, sheet thereof, and method for producing same
JP2017048286A (en) Heat conductive sheet
TW202334320A (en) Thermally conductive composition, thermally conductive sheet, and method for manufacturing same
TW202340375A (en) Thermally conductive silicone composition, thermally conductive silicone sheet, and method for manufacturing said sheet