WO2023188952A1 - Heat-dissipating rubber composition, thermally conductive rubber composition, heat-dissipating material, and cured product - Google Patents

Heat-dissipating rubber composition, thermally conductive rubber composition, heat-dissipating material, and cured product Download PDF

Info

Publication number
WO2023188952A1
WO2023188952A1 PCT/JP2023/005494 JP2023005494W WO2023188952A1 WO 2023188952 A1 WO2023188952 A1 WO 2023188952A1 JP 2023005494 W JP2023005494 W JP 2023005494W WO 2023188952 A1 WO2023188952 A1 WO 2023188952A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
heat
thermally conductive
heat dissipating
parts
Prior art date
Application number
PCT/JP2023/005494
Other languages
French (fr)
Japanese (ja)
Inventor
光彦 吉本
卓宏 下山
真実 飯塚
健介 熊木
颯人 橋本
Original Assignee
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社 filed Critical 日清紡ホールディングス株式会社
Publication of WO2023188952A1 publication Critical patent/WO2023188952A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a heat dissipating rubber composition, a heat conductive rubber composition, a heat dissipating material using the same, and a cured product.
  • Power devices are becoming increasingly wide bandgap and their junction temperatures tend to rise. For this reason, power devices are usually configured to efficiently conduct heat to a metal such as a heat sink via a heat dissipating member such as an insulating heat dissipating sheet to suppress a temperature rise.
  • a heat dissipating member such as an insulating heat dissipating sheet to suppress a temperature rise.
  • Semiconductor devices using silicon carbide or gallium nitride are expected to have temperatures exceeding 200°C.
  • the binder in conventional heat dissipation sheets is mainly silicone resin because siloxane bonds constitute a thermally stable and flexible main chain skeleton.
  • siloxane bonds constitute a thermally stable and flexible main chain skeleton.
  • deterioration over time such as partial thermal decomposition of siloxane bonds or cleavage of chemical bonds at crosslinking sites is likely to occur.
  • the cyclic siloxane contained as an impurity easily volatizes, which may impede current flow in surrounding relays and the like, leading to failures.
  • Patent Document 1 describes a fluororesin sheet containing a thermally conductive filler and having a heat-melting fluororesin as a matrix.
  • Patent Document 2 describes a highly thermally conductive sheet containing a non-crosslinked fluorine-containing elastomer and a thermally conductive filler.
  • Patent Document 3 describes a film using a thermally conductive composition containing a fluorinated aromatic polymer and an inorganic filler.
  • the polymer described in Patent Document 3 is very expensive and has a rigid molecular skeleton, so it has poor flexibility at room temperature.
  • a heat dissipation sheet using such a polymer is sandwiched between a power device and a heat sink, its tackiness is insufficient, and it is unable to follow minute irregularities, resulting in voids and insufficient contact thermal resistance. difficult to reduce.
  • heat dissipating members such as heat dissipating sheets are required not only to have excellent thermal conductivity, but also to have a low coefficient of thermal expansion, excellent heat resistance, good tackiness, and low contact thermal resistance. .
  • the present invention was made in order to solve the above-mentioned problems, and provides a heat dissipating material and a cured product having a low coefficient of thermal expansion, excellent heat resistance, and good tackiness.
  • the present invention aims to provide a rubber composition, a heat dissipating rubber composition used therein, and a heat dissipating material and cured product using the heat conductive rubber composition.
  • the present invention is based on the discovery that a heat dissipating sheet with good tackiness and reduced contact thermal resistance can be obtained by using a rubber composition in which a specified cyclic phosphazene compound is added to fluororubber. Based on.
  • a thermally conductive rubber composition comprising the heat dissipating rubber composition according to any one of [1] to [5] and a thermally conductive filler.
  • a heat dissipating material comprising the thermally conductive rubber composition according to [6].
  • the heat dissipation material according to [7] which is a heat dissipation sheet forming material, a potting material, or a sealing material.
  • the cured product according to [9] which is a heat dissipation sheet.
  • a thermally conductive rubber composition from which a heat dissipating material and a cured product having a low coefficient of thermal expansion, excellent heat resistance, and good tackiness can be obtained, and a heat dissipating rubber composition used therein is provided. Furthermore, a heat dissipating material and a cured product using the thermally conductive rubber composition are provided.
  • heat dissipating rubber composition refers to a material for heat dissipation before curing the thermally conductive rubber composition, and refers to, for example, a heat dissipation sheet forming material, a potting material, a sealing material, and the like.
  • a cured thermally conductive rubber composition is referred to as a "cured product”, and a heat dissipating sheet is a typical example.
  • these will also be collectively referred to as "heat dissipating materials, etc.”
  • the heat dissipating rubber composition of the present invention contains a fluororubber and a cyclic phosphazene compound, the cyclic phosphazene compound being 1 to 20 parts by mass based on 100 parts by mass of the fluororubber, and containing a fluorocarbon-modified cyclic phosphazene compound. .
  • the heat dissipating rubber composition of the present invention has excellent heat resistance, and by containing a cyclic phosphazene compound, a heat dissipating material and the like having good tackiness can be suitably obtained.
  • the fluororubber in the heat-dissipating rubber composition of the present invention has the role of improving the heat-resistant temperature of a heat-dissipating material etc. obtained using the fluororubber.
  • Conventional heat dissipation sheets using silicone resin as a binder have a maximum heat resistance of about 200°C, but by using fluororubber as a binder, the heat resistance can be raised to about 225°C. In addition, contact failure of devices due to siloxane bonding does not occur.
  • fluororubber examples include vinylidene fluoride (VdF)/hexafluoropropylene (HFP) copolymer (FKM), tetrafluoroethylene (TFE)/propylene copolymer (FEPM), and TFE/perfluoromethyl vinyl ether (PMVE). ) copolymer (FFKM), VdF/HFP/TFE copolymer, VdF/PMVE/TFE copolymer, and the like.
  • the fluororubbers may be used alone or in combination of two or more. Among these, FKM is preferred from the viewpoint of heat resistance, easy availability, and the like.
  • the phosphazene compound blended into the fluororesin composition of the present invention has the role of imparting tackiness to a heat dissipating material etc. obtained using the phosphazene compound.
  • tackiness refers to stickiness and is distinguished from adhesive strength, and in the present invention, it is specifically measured and evaluated by the method described in the Examples described later.
  • Fluororubber is difficult to adhere to metal parts such as heat sinks and has poor tackiness, but by incorporating a cyclic phosphazene compound, it shows good tackiness between metal parts and devices, and the device Sufficient thermal conductivity required for cooling can be ensured.
  • a cyclic phosphazene compound is a compound in which a phosphorus atom (P) and a nitrogen atom (N) form a ring structure with a double bond, and its heat resistance is equal to or higher than that of fluororubber, and it has excellent heat resistance. It is excellent and some are used as flame retardants.
  • the cyclic phosphazene compounds may be used alone or in combination of two or more.
  • the cyclic phosphazene compound in the heat dissipating rubber composition of the present invention includes a fluorocarbon-modified cyclic phosphazene compound. Since the cyclic phosphazene compound has a fluorocarbon moiety, it has good compatibility with the fluororubber in the heat dissipation rubber composition, resulting in excellent tackiness and heat resistance for heat dissipation materials, etc. becomes.
  • the cyclic phosphazene compound preferably further contains a cyclic phosphazene compound other than the fluorocarbon-modified cyclic phosphazene compound from the viewpoint of excellent tackiness and heat resistance of the heat dissipating material and the like.
  • cyclic phosphazene compound a compound represented by the following formula (1) or (2) is preferable.
  • R is each independently an alkoxy group, a phenoxy group, or -OCH 2 (CF 2 CF 2 ) n X (X is a hydrogen atom or a fluorine atom, n is 1 to 4 integer).
  • compounds forming a six-membered ring structure represented by formula (1) are preferable, for example, compounds represented by formula (1), in which both R are phenoxy groups. It is preferable to use the compound represented by formula (1) in combination with a compound represented by formula (1) in which each R is -OCH 2 (CF 2 CF 2 ) 2 H.
  • the content of the cyclic phosphazene compound in the rubber composition for heat dissipation is 1 to 20 parts by mass, preferably 1 to 15 parts by mass, and more preferably 2 to 10 parts by mass, based on 100 parts by mass of fluororubber. .
  • the content of the cyclic phosphazene compound is 1 part by mass or more, the heat dissipating material etc. obtained using the rubber composition have good tackiness.
  • a heat dissipating material etc. that has excellent heat resistance due to fluororubber while maintaining good compatibility with fluororubber can be obtained.
  • the content of the fluorocarbon-modified cyclic phosphazene compound in the cyclic phosphazene compound is preferably 1 to 20 parts by mass, and more, based on 100 parts by mass of fluororubber, from the viewpoint of compatibility with fluororubber and heat resistance of heat dissipating materials.
  • the amount is preferably 1 to 15 parts by weight, more preferably 1 to 10 parts by weight.
  • the content of the fluorocarbon-modified cyclic phosphazene compound is preferably 1 to 100 parts by mass, based on a total of 100 parts by mass of the cyclic phosphazene compound, from the viewpoint of compatibility with fluororubber and heat resistance of heat dissipating materials, etc.
  • the amount is preferably 5 to 80 parts by weight, more preferably 10 to 60 parts by weight.
  • the heat dissipating rubber composition preferably contains an epoxy compound.
  • an epoxy compound By blending the epoxy compound into the heat dissipation rubber composition, the crosslinked polymer obtained by curing the epoxy compound becomes entangled with the cured product of fluororubber, forming a mutually intermeshed structure (Semi-IPN structure), It is easy to obtain a heat dissipating material and the like that have suppressed thermal expansion and excellent heat resistance.
  • the epoxy compound is preferably a compound having two or more epoxy groups in order to carry out a crosslinking reaction.
  • the epoxy compound preferably contains a fluorine-containing epoxy compound from the viewpoint of compatibility with fluororubber and heat resistance of a heat dissipating material etc. obtained using the rubber composition.
  • the compound may be used alone, or one type may be used alone, or two or more types may be used in combination.
  • epoxy compounds include bisphenol A type epoxy resin, epoxidized polybutadiene (for example, "JP-100", manufactured by Nippon Soda Co., Ltd.), amine type epoxy resin (for example, “YH-434L”, manufactured by Nippon Steel Chemical & Materials Co., Ltd.), dicyclopentadiene type epoxy resin (for example, "EPICLON (registered trademark) HP-7200L", manufactured by DIC Corporation), ethylene glycol diglycidyl ether, 4,4'-methylenebis[N,N-bis (oxiranylmethyl)aniline], resorcinol diglycidyl ether, 1,6-hexanediol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, 2,2'-(2,2,3,3,4, Fluorine-containing epoxy compounds such as 4,5,5-octafluorohexane-1,6-diyl)bis(oxirane), 1,6-bis(2',3
  • the content of the epoxy compound is preferably set to 100 parts by mass of fluororubber, from the viewpoint of suppressing thermal expansion without reducing the tackiness of the heat dissipation material.
  • the amount is 1 to 10 parts by weight, more preferably 1 to 8 parts by weight, and even more preferably 1 to 5 parts by weight.
  • the epoxy compound contains a fluorine-containing epoxy compound
  • the content of the fluorine-containing epoxy compound is determined from the viewpoint of compatibility with the fluororubber and heat resistance of heat dissipating materials etc. obtained using the rubber composition. It is preferably 1 to 10 parts by weight, more preferably 1 to 8 parts by weight, and even more preferably 1 to 5 parts by weight, per 100 parts by weight.
  • the curing agent may be added separately, but it is preferably included in the rubber composition for heat dissipation from the viewpoint of ease of handling.
  • the curing agent compounds used as curing agents for general epoxy resins such as polyamine type, acid anhydride type, phenol type, etc. can be used. Among these, acid anhydride types are preferred from the viewpoint of reaction rate, heat resistance, and the like.
  • the curing agent may be used alone or in combination of two or more.
  • the curing agent preferably contains a fluorine-based curing agent from the viewpoint of compatibility, reactivity, etc., and may be only a fluorine-based curing agent.
  • the curing agent examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,6-tetrahydrophthalic anhydride, octenylsuccinic anhydride, tetrapropenylsuccinic anhydride (dodecenylsuccinic anhydride), (acid anhydride), 3,3',4,4'-biphenylcarboxylic anhydride, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, and the like.
  • 4,4'-(hexafluoroisopropylidene) diphthalic anhydride is particularly preferred.
  • the content of the curing agent is preferably 20 to 450 parts by mass, more preferably 25 to 300 parts by mass, even more preferably 30 to 200 parts by mass, based on 100 parts by mass of the epoxy compound. Part by mass.
  • the content of the fluorine-based curing agent is preferably 20 to 20 parts by mass based on 100 parts by mass of the epoxy compound, from the viewpoint of compatibility with the fluorine-containing epoxy compound and appropriate crosslinking reaction.
  • the amount is 450 parts by weight, more preferably 25 to 300 parts by weight, and even more preferably 30 to 200 parts by weight.
  • the heat dissipation rubber composition contains an epoxy compound
  • the heat dissipation rubber composition further contains a curing catalyst in order to promote the crosslinking reaction by the epoxy compound.
  • the curing catalyst may be separately added to the heat dissipating rubber composition.
  • quaternary ammonium salts are preferably used, and tetraalkylammonium salts are more preferably used. Specifically, tetramethylammonium 2-ethylhexanoate, tetraethylammonium 2-ethylhexanoate, ethyltrimethylammonium 2-ethylhexanoate, triethylmethylammonium 2-ethylhexanoate, tetramethylammonium formate, Examples include tetraethylammonium formate, ethyltrimethylammonium formate, triethylmethylammonium formate, tetramethylammonium phenol salt, tetraethylammonium phenol salt, ethyltrimethylammonium phenol salt, triethylmethylammonium phenol salt, and the like.
  • the curing catalyst may be used alone or in combination of two or more. Among these, tri
  • the content of the curing catalyst is preferably 1 to 80 parts by mass, more preferably 2 to 50 parts by mass, and still more preferably 3 to 30 parts by mass, based on 100 parts by mass of the epoxy compound, from the viewpoint of promoting appropriate curing of the epoxy compound. Part by mass.
  • the heat dissipating rubber composition may contain, from the viewpoint of the purpose of use of the heat dissipating material, required characteristics, ease of handling, etc., such as a plasticizer, Additives such as surfactants, flame retardants, and antioxidants, and other components such as solvents may be included as optional components.
  • the other components are preferably compatible with other components in the heat dissipating rubber composition. From the viewpoint of compatibility, fluorine-containing compounds are preferably used. Other components may be blended in amounts within a range that does not impede the effects of the present invention, and each may be used alone or in combination of two or more.
  • plasticizer examples include fluorine-containing ethers such as perfluoropolyoxetane.
  • examples of the surfactant include fluorine-based surfactants having a perfluoroalkyl group.
  • flame retardant examples include phosphazene compounds.
  • examples of the solvent include ketones such as methyl isobutyl ketone from the viewpoint of ease of adjusting the viscosity of the ingredients and volatility.
  • the total content of the fluororubber and the cyclic phosphazene compound is preferably 75 to 100 parts by mass, based on 100 parts by mass of the components excluding the solvent, from the viewpoint of fully exhibiting the effects of the present invention.
  • the amount is preferably 80 to 100% by weight, and even more preferably 85 to 100% by weight.
  • the rubber composition for heat dissipation can be manufactured as a solution from the viewpoint of ensuring filling and dispersibility of the thermally conductive filler and manufacturing efficiency when mixed with the thermally conductive filler to manufacture the thermally conductive rubber composition.
  • the concentration is preferably 15-60% by weight, more preferably 20-50% by weight, even more preferably 25-45% by weight.
  • the heat dissipating rubber composition can be produced by uniformly mixing the above-mentioned components contained therein.
  • a heat dissipating rubber composition can be obtained by a method of uniformly mixing a solution of fluororubber dissolved in a solvent and a solution containing a phosphazene compound, an epoxy compound, and other components.
  • the mixing method is not particularly limited, and can be performed using known mixing means.
  • each component may be placed in a closed container and mixed by shaking the container, or, The components contained in the container may be mixed by stirring with a stirring blade.
  • the thermally conductive rubber composition of the present invention includes the above-described heat dissipating rubber composition of the present invention and a thermally conductive filler. By blending a thermally conductive filler into the heat dissipating rubber composition of the present invention, a thermally conductive rubber composition suitable for heat dissipating materials and the like can be obtained.
  • the thermally conductive filler is preferably an inorganic filler from the viewpoint of good thermal conductivity and insulation, and examples thereof include magnesia, alumina, boron nitride, aluminum nitride, magnesium hydroxide, aluminum hydroxide, silica, and the like.
  • the thermally conductive filler may be used alone or in combination of two or more.
  • conductive powder such as carbon black or graphite powder may be blended within a range that does not impair the insulation properties.
  • the shape of the thermally conductive filler is not particularly limited, and examples include crushed shape, spherical shape, and plate shape.
  • thermally conductive fillers such as a mixture of crushed magnesia, spherical magnesia, and spherical alumina, or a mixture of spherical magnesia and two types of spherical alumina with different particle sizes.
  • a mixture of crushed magnesia and crushed aluminum nitride, etc. are preferred.
  • the mixing ratio in the mixture can be appropriately determined in consideration of the affinity with the heat dissipating rubber composition, the dispersion fluidity and viscosity during mixing, the thermal conductivity of the heat dissipating material, etc.
  • the particle size of the thermally conductive filler is preferably such that it does not impair the filling and dispersibility of the heat dissipating rubber composition, the handleability of the heat dissipating material, and the flexibility of the heat dissipating sheet.
  • the particle size is preferably 0.1 to 100 ⁇ m, more preferably 0.2 to 80 ⁇ m, and even more preferably 0.3 to 50 ⁇ m.
  • the average particle size is preferably 10 to 100 nm, more preferably 20 to 80 nm, and even more preferably 30 to A fine powder of 70 nm is blended.
  • the average particle size as used herein means the particle size at 50% cumulative volume in the particle size distribution determined by a laser diffraction particle size distribution analyzer.
  • a thermally conductive filler having an average particle size within the above range is used in combination with a nanoparticle thermally conductive filler having a primary particle size of preferably 10 to 100 nm, more preferably 10 to 80 nm, and even more preferably 20 to 70 nm. It is preferable to do so.
  • a nanoparticle thermally conductive filler having a primary particle size preferably 10 to 100 nm, more preferably 10 to 80 nm, and even more preferably 20 to 70 nm. It is preferable to do so.
  • the thermally conductive filler is preferably surface-treated with a filler dispersant from the viewpoint of increasing its affinity with the heat dissipating rubber composition.
  • a filler dispersant for filler it is preferable to use a fluorine-containing compound from the viewpoint of dispersibility in the heat dissipating rubber composition and affinity with fluororubber.
  • a fluorine-containing compound obtained by subjecting a fluorine-containing monoalcohol and a low-molecular-weight polyisocyanate compound to a urethane reaction with an NCO index of 100 is preferably used.
  • urethane reaction of 1H,1H,7H-dodecafluoro-1-heptanol and hexamethylene diisocyanate at a molar ratio of 2:1 can be suitably used as a filler dispersant.
  • the urethanization reaction can be carried out by a known method, if necessary, in the presence of a urethanization catalyst.
  • the amount of filler dispersant used in the surface treatment of the thermally conductive filler is as follows: from the viewpoint of improving the dispersibility of the thermally conductive filler without impeding the thermal conductivity of the heat dissipating material, etc., based on 100 parts by mass of the thermally conductive filler.
  • the amount is preferably 0.1 to 8 parts by weight, more preferably 0.2 to 5 parts by weight, and even more preferably 0.5 to 3 parts by weight.
  • the surface treatment of the thermally conductive filler with the dispersant for the filler is performed by stirring and mixing the thermally conductive filler and the dispersant for the filler in a solvent such as isopropanol, and then drying, from the viewpoint of uniformity of the surface treatment. is preferred.
  • the content of the thermally conductive filler in the thermally conductive rubber composition is determined based on 100 parts by mass of fluororubber in the heat dissipating rubber composition, from the viewpoint of obtaining a heat dissipating material having good thermal conductivity and tackiness.
  • the amount is preferably 100 to 5000 parts by weight, more preferably 300 to 3500 parts by weight, and even more preferably 500 to 3000 parts by weight.
  • the content of the surface-treated filler in the case of using a surface-treated filler in which the thermally conductive filler has been surface-treated is also the same.
  • the heat conductive rubber composition may include, from the viewpoint of the purpose of use of the heat dissipating material, required characteristics, ease of handling, etc.
  • Additives such as plasticizers, flame retardants, antioxidants, and colorants, and other components such as solvents may be included as optional components.
  • the other components may be the same as or different from the other components in the heat dissipation rubber composition described above.
  • Other components may be blended in amounts within a range that does not impede the effects of the present invention, and each may be used alone or in combination of two or more.
  • the thermally conductive rubber composition is obtained by uniformly mixing a heat dissipating rubber composition, a thermally conductive filler (and/or a surface treated filler), and the other components mentioned above as optional components.
  • the mixing method is not particularly limited, and can be carried out in the same manner as in the case of producing a heat dissipating rubber composition.
  • the heat dissipating rubber composition does not contain a solvent and has a high viscosity, it can also be mixed using a kneader such as a three-roll mill.
  • the heat dissipating material of the present invention is made of the above-mentioned thermally conductive rubber composition of the present invention.
  • examples of the heat dissipation material include a heat dissipation sheet forming material, a potting material, a sealing material, and the like.
  • the thermally conductive rubber composition is particularly suitable as a material for forming a heat dissipation sheet.
  • the thermally conductive rubber composition has a low coefficient of thermal expansion, excellent heat resistance, and can be suitably used as a heat dissipating material having good tackiness.
  • the cured product of the present invention is obtained by curing the thermally conductive rubber composition of the present invention described above.
  • a preferred embodiment of the cured product is, for example, a heat dissipation sheet.
  • a heat-radiating sheet can be obtained by applying the thermally conductive rubber composition of the present invention as a heat-radiating material, which is a material for forming a heat-radiating sheet, and curing it.
  • the method of curing the thermally conductive rubber composition for obtaining a heat dissipation sheet is not particularly limited, and any known method can be applied.
  • a thermally conductive rubber composition is kneaded using a roll mill or the like, and then rolled using a hot flat press or the like to obtain a flat cured product precursor.
  • a cured product is obtained by pressing the cured product precursor at 120 to 250° C. using a hot roll press or the like.
  • the pressure and time of pressurization during curing are appropriately set depending on the form, such as the thickness and size, of the cured product precursor and cured product. Usually, it is cured at a pressure of about 0.1 to 5 MPa for about 5 to 60 minutes.
  • the cured product of the present invention has a high heat resistance temperature of 200°C or higher, and has excellent heat resistance (heat aging resistance, moist heat resistance, and heat cycle resistance), so that electrical and electronic devices are easily exposed to high temperatures of 200°C or higher. It can be suitably applied to heating elements.
  • the manner in which the heat dissipation sheet is used is not particularly limited, and it can be used in the same manner as conventional heat dissipation sheets.
  • it is suitably used in an embodiment where it is sandwiched between a heat generating element such as an electric/electronic device, especially a power device that generates heat of up to about 220°C, and a heat radiating body such as a heat sink, metal frame, or heat sink. .
  • the heat dissipation sheet which is a cured product of the present invention, has good tackiness between a heat generating body such as a power device and a heat dissipation body such as a heat sink, metal frame, or heat sink, and has a thin thickness of 500 ⁇ m or less, It can be brought into close contact with the heating element and the heat radiating element without any gaps.
  • the thickness of the heat dissipation sheet is preferably 50 to 1000 ⁇ m, more preferably 70 to 500 ⁇ m, and even more preferably 100 to 300 ⁇ m, from the viewpoint of obtaining good tackiness while reducing thermal resistance.
  • MIBK 4 -Methyl-2-pentanone (methyl isobutyl ketone)
  • EP 2,2'-(2,2,3,3,4,4,5,5-octafluorohexane-1,6-diyl)bis(oxirane), manufactured by Tokyo Chemical Industry Co., Ltd.
  • Epoxy compound. 6FDA 4,4'-(hexafluoroisopropylidene) diphthalic anhydride, manufactured by Tokyo Chemical Industry Co., Ltd.
  • Curing agent/plasticizer Perfluoropolyoxetane, "Demnum (registered trademark) S-65", Daikin Industries, Ltd.
  • Company-made surfactant Fluorine surfactant, "Surflon (registered trademark) S-658", manufactured by AGC Seimi Chemical Co., Ltd., FP-110: Phosphazene flame retardant, "Rabitor (registered trademark) FP-110” , manufactured by Fushimi Pharmaceutical Co., Ltd.
  • Curing catalyst triethylmethylammonium 2-ethylhexanoate, "U-CAT (registered trademark) 18X", manufactured by San-Apro Co., Ltd.
  • Fluorine-containing alcohol 1H,1H,7H-dodecafluoro- 1-Heptanol, manufactured by Tokyo Chemical Industry Co., Ltd.
  • ⁇ Toluene Dehydrated with molecular sieve 4A ⁇ HDI: Hexamethylene diisocyanate, "Desmodur (registered trademark) H", manufactured by Sumika Covestro Urethane Co., Ltd. ⁇ DBU: 1 , 8-diazabixilo [5.4.0] Undensen-7, “DBU (registered trademark)", manufactured by Sun-Apro Co., Ltd.
  • Magnesia particles spherical magnesia, average particle size 20 ⁇ m ⁇ Alumina particles (1): Spherical alumina, average particle size 2.7 ⁇ m ⁇ Alumina particles (2): Spherical alumina, average particle size 0.5 ⁇ m ⁇ Acetylene black: carbon black, average particle size 48 nm ⁇ IPA: Isopropanol ⁇ Phosphalol: Fluorocarbon-modified cyclic phosphazene compound, "Phospharoll (registered trademark)", manufactured by MORESCO Co., Ltd. ⁇ Magnesia fine particles: Magnesia nanoparticles, primary particle size 30 nm (catalog value), manufactured by Kanto Denka Kogyo Co., Ltd. ⁇ MEK : Methyl ethyl ketone
  • Example 1 (Preparation of fluororubber composition solution (A))
  • fluororubber (1) cut into 1 cm squares and 140 g of MIBK were placed, and after stirring at 50 rpm for 5 minutes, the rotation speed was increased to 150 rpm, and the fluororubber ( 1) 200 g of solution (concentration 30.0% by mass) was prepared.
  • the thermally conductive rubber composition obtained above was finely loosened and kneaded in a three-roll mill (120° C., roll clearance: 50 ⁇ m before, 30 ⁇ m after, 5 times). 20g of the kneaded material was sandwiched between fluororesin processed sheets (thickness 0.3mm), folded after each pressurization in a hot flat press at 90°C, and pressurized 5 times at 5MPa and once at 3MPa. Pressure was applied to obtain a cured product precursor.
  • the fluororesin processed sheet was peeled off from the cured product precursor and rolled with sheeting rolls at 40°C, then sandwiched again between the fluororesin processed sheets and rolled with a 120°C hot roll press. Next, in a hot flat press at 175°C, heat pressing was carried out for 15 minutes at 3.5 MPa and 15 minutes at 0.5 MPa for a total of 30 minutes, and then heated for 30 minutes in a dryer at 225°C to form a heat dissipating sheet. (thickness: 250 ⁇ m, diameter: approximately 110 mm) was obtained.
  • Example 1 each heat dissipation sheet was obtained in the same manner as in Example 1 except that the raw material composition was changed to the one shown in Table 1 below.
  • Thermomechanical analyzer (“TMA/SS6100", manufactured by Hitachi High-Tech Science Co., Ltd.; frequency 0.1 Hz, amplitude 1.0 mN, tensile load 2 mN (constant), temperature -40 to 225 °C, heating rate 10 °C/min , sample size 4 mm x 20 mm), the coefficient of thermal expansion was measured. If the linear thermal expansion coefficient is 40 ⁇ 10 ⁇ 6 /K or less, it can be said that the thermal expansion coefficient is sufficiently low.
  • Thermal conductivity was determined by measuring the density, specific heat, and thermal diffusivity, and calculating the product of these values. The density was measured using an electronic scale type hydrometer (“DME-220”, manufactured by Shinko Denshi Co., Ltd.) on a sample cut into 3 cm square pieces. The specific heat was measured with a differential scanning calorimeter (“DSC7020”, manufactured by Hitachi High-Tech Science Co., Ltd.; standard material: ⁇ -alumina). The thermal diffusivity was measured with a thermal diffusivity measuring device (“ai-Phase mobile M3 type 1”, manufactured by i-Phase Co., Ltd.).
  • DME-220 electronic scale type hydrometer
  • DSC7020 differential scanning calorimeter
  • the thermal diffusivity was measured with a thermal diffusivity measuring device (“ai-Phase mobile M3 type 1”, manufactured by i-Phase Co., Ltd.).
  • the thermal conductivity (three layers) based on the thermal diffusivity measured by stacking three samples was also determined as the thermal conductivity considering the contact thermal resistance.
  • a value measured by a laser flash method (measuring device: "LFA447NanoFlash (registered trademark)", manufactured by Netch Corporation; measurement temperature: 25.0 ⁇ 1.0° C., atmospheric atmosphere) was used.
  • Heat aging resistance Sample A was cut into 12.7 mm square pieces, stacked in three sheets, sandwiched between two duralumin plates (12.7 mm square, 1.5 mm thick), fixed with screws, and heated at 225°C for 30 minutes. A heat aging test was performed on the plated sample in a constant temperature dryer (OFW-300V, manufactured by As One Corporation; 225°C, 1000 hours), and the heat aging resistance was evaluated based on the thermal conductivity retention rate after the test. did. The thermal conductivity retention rate was defined as the ratio of the thermal conductivity after the test to the thermal conductivity (three layers) measured above.
  • the thermal conductivity after the test was calculated as the product of the density and specific heat measured in the same manner as above for the sample after the test, and the measured value of the thermal diffusivity measured by the laser flash method.
  • a case where the thermal conductivity retention rate was 90% or more was evaluated as A, and a case where it was less than 90% was evaluated as B.
  • B was evaluated as B.
  • the thermal conductivity retention rate is sometimes 100% or more is not clear, it is thought that it is because the heat dissipation sheet and the duralumin board became more compatible with each other through the test.
  • Heat cycle resistance The heat cycle resistance test was performed using a heat cycle tester ( ⁇ TSA-71S'', manufactured by ESPEC Co., Ltd.; 1 cycle: -40 to 125°C, 1 hour, 1000 cycles) for the same sample with a duralumin plate as in the heat aging resistance test. A test was conducted, and the heat and humidity resistance was evaluated based on the thermal conductivity retention rate after the test. Thermal conductivity retention was determined in the same manner as in the evaluation of heat aging resistance, and the evaluation was also performed in the same manner.
  • the heat dissipation sheets (Examples 1 to 4) obtained using the heat dissipation rubber composition of the present invention have a low coefficient of thermal expansion, good tackiness, and contact thermal resistance. was found to have been reduced, and was found to be excellent in heat resistance (heat aging resistance, heat and humidity resistance, and heat cycle resistance).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides: a thermally conductive rubber composition that makes it possible to obtain a cured product that has a low coefficient of thermal expansion, excellent heat resistance, and favorable tackiness; a heat-dissipating rubber composition that is used in the thermally conductive rubber composition; and a heat-dissipating material and a cured product that use the thermally conductive rubber composition. The heat-dissipating rubber composition includes a fluorine rubber and a cyclic phosphazene compound, there being 1–20 parts by mass of the cyclic phosphazene compound per 100 parts by mass of the fluorine rubber, and the cyclic phosphazene compound including a fluorocarbon-modified cyclic phosphazene compound. The thermally conductive rubber composition includes the heat-dissipating rubber composition and a thermally conductive filler.

Description

放熱用ゴム組成物、熱伝導性ゴム組成物、放熱材及び硬化物Heat dissipating rubber compositions, thermally conductive rubber compositions, heat dissipating materials and cured products
 本発明は、放熱用ゴム組成物、熱伝導性ゴム組成物及びこれを用いた放熱材、並びに硬化物に関する。 The present invention relates to a heat dissipating rubber composition, a heat conductive rubber composition, a heat dissipating material using the same, and a cured product.
 パワーデバイスは、ワイドバンドギャップ化が進み、ジャンクション温度が上昇する傾向にある。このため、パワーデバイスは、通常、絶縁性を有する放熱シート等の放熱部材を介して、ヒートシンク等の金属に効率的に熱を伝導して、温度上昇を抑制するように構成されている。炭化ケイ素や窒化ガリウムを用いた半導体デバイスでは、200℃を超えることも想定されている。 Power devices are becoming increasingly wide bandgap and their junction temperatures tend to rise. For this reason, power devices are usually configured to efficiently conduct heat to a metal such as a heat sink via a heat dissipating member such as an insulating heat dissipating sheet to suppress a temperature rise. Semiconductor devices using silicon carbide or gallium nitride are expected to have temperatures exceeding 200°C.
 従来の放熱シートにおけるバインダーは、シロキサン結合が熱的に安定かつ柔軟な主鎖骨格を構成することから、シリコーン樹脂が主流である。しかしながら、連続使用温度が200℃を超える高温環境下では、シロキサン結合が部分的に熱分解したり、架橋部位における化学結合が切断したりする等の経時的劣化を生じやすい。また、不純物として含まれる環状シロキサンが揮発しやすく、周囲のリレー等において通電を妨げて故障に至る場合もあった。 The binder in conventional heat dissipation sheets is mainly silicone resin because siloxane bonds constitute a thermally stable and flexible main chain skeleton. However, in a high-temperature environment where the continuous use temperature exceeds 200° C., deterioration over time such as partial thermal decomposition of siloxane bonds or cleavage of chemical bonds at crosslinking sites is likely to occur. Furthermore, the cyclic siloxane contained as an impurity easily volatizes, which may impede current flow in surrounding relays and the like, leading to failures.
 このため、放熱シートには耐熱性も求められており、耐熱性に優れたバインダーとしてフッ素樹脂を用いることが提案されている。
 例えば、特許文献1に、熱伝導フィラーを含み、加熱溶融性フッ素樹脂をマトリクスとするフッ素樹脂シートが記載されている。
 また、特許文献2に、無架橋の含フッ素エラストマー及び熱伝導フィラーを含む高熱伝導性シートが記載されている。
 また、特許文献3に、フッ素化芳香族ポリマー及び無機充填剤を含む熱伝導性組成物を用いてなるフィルムが記載されている。
For this reason, heat resistance is also required for heat dissipation sheets, and it has been proposed to use fluororesin as a binder with excellent heat resistance.
For example, Patent Document 1 describes a fluororesin sheet containing a thermally conductive filler and having a heat-melting fluororesin as a matrix.
Further, Patent Document 2 describes a highly thermally conductive sheet containing a non-crosslinked fluorine-containing elastomer and a thermally conductive filler.
Further, Patent Document 3 describes a film using a thermally conductive composition containing a fluorinated aromatic polymer and an inorganic filler.
国際公開第2014-104292号International Publication No. 2014-104292 特開2007-158171号公報Japanese Patent Application Publication No. 2007-158171 特許第4390720号公報Patent No. 4390720
 放熱シートは、熱伝導率を向上させるためには、熱伝導フィラーの含有量を増大させる必要があるが、熱伝導フィラーの増量に伴い、相対的にバインダーの含有量が減少する。
 特許文献1のフッ素樹脂シートにおいては、300μm以下の薄厚のシートを製造する場合、十分なシート強度の確保が困難であり、補強材の添加が必要となるが、これは、熱伝導率を低下させることになる。
In order to improve the thermal conductivity of the heat dissipation sheet, it is necessary to increase the content of the heat conductive filler, but as the amount of the heat conductive filler increases, the binder content relatively decreases.
In the fluororesin sheet of Patent Document 1, when producing a thin sheet of 300 μm or less, it is difficult to ensure sufficient sheet strength and it is necessary to add a reinforcing material, but this reduces thermal conductivity. I will let you do it.
 また、特許文献2に記載されているような無架橋の含フッ素エラストマーによるバインダーでは、シートの熱膨張係数が高くなる傾向がある。このような放熱シートは、パワーデバイスとヒートシンクとの間に挟装した場合、経時的に亀裂が入り、熱抵抗が上昇する結果、装置が故障するおそれがある。 Furthermore, in a binder made of a non-crosslinked fluorine-containing elastomer as described in Patent Document 2, the coefficient of thermal expansion of the sheet tends to be high. When such a heat dissipation sheet is sandwiched between a power device and a heat sink, there is a risk that cracks will appear over time and the thermal resistance will increase, resulting in a failure of the device.
 また、特許文献3に記載されているようなポリマーは、非常に高価であることに加えて、分子骨格が剛直であるため、室温下での柔軟性に乏しい。このようなポリマーを用いた放熱シートは、パワーデバイスとヒートシンクとの間に挟装した場合、タック性も不十分であり、微小な凹凸に追従できず、空隙が生じ、接触熱抵抗を十分に低減させることが困難である。 In addition, the polymer described in Patent Document 3 is very expensive and has a rigid molecular skeleton, so it has poor flexibility at room temperature. When a heat dissipation sheet using such a polymer is sandwiched between a power device and a heat sink, its tackiness is insufficient, and it is unable to follow minute irregularities, resulting in voids and insufficient contact thermal resistance. difficult to reduce.
 したがって、放熱シート等の放熱部材においては、熱伝導性に優れていることのみならず、熱膨張係数が低く、耐熱性に優れ、タック性が良好であり、接触熱抵抗が低いことが求められる。 Therefore, heat dissipating members such as heat dissipating sheets are required not only to have excellent thermal conductivity, but also to have a low coefficient of thermal expansion, excellent heat resistance, good tackiness, and low contact thermal resistance. .
 本発明は、上記のような課題を解決するためになされたものであり、熱膨張係数が低く、耐熱性に優れ、かつ、良好なタック性を有する放熱材及び硬化物が得られる熱伝導性ゴム組成物、並びにこれに用いられる放熱用ゴム組成物、さらに、前記熱伝導性ゴム組成物を用いた放熱材及び硬化物を提供することを目的とする。 The present invention was made in order to solve the above-mentioned problems, and provides a heat dissipating material and a cured product having a low coefficient of thermal expansion, excellent heat resistance, and good tackiness. The present invention aims to provide a rubber composition, a heat dissipating rubber composition used therein, and a heat dissipating material and cured product using the heat conductive rubber composition.
 本発明は、フッ素ゴムに、所定の環状ホスファゼン化合物を添加したゴム組成物を用いることにより、良好なタック性を有し、接触熱抵抗が低減された放熱シートが得られることを見出したことに基づく。 The present invention is based on the discovery that a heat dissipating sheet with good tackiness and reduced contact thermal resistance can be obtained by using a rubber composition in which a specified cyclic phosphazene compound is added to fluororubber. Based on.
 本発明は、以下の手段を提供する。
 [1]フッ素ゴム及び環状ホスファゼン化合物を含み、前記環状ホスファゼン化合物は、前記フッ素ゴム100質量部に対して1~20質量部であり、フルオロカーボン変性環状ホスファゼン化合物を含む、放熱用ゴム組成物。
 [2]前記環状ホスファゼン化合物は、前記フルオロカーボン変性環状ホスファゼン化合物以外の環状ホスファゼン化合物をさらに含む、[1]に記載の放熱用ゴム組成物。
 [3]エポキシ化合物をさらに含む、[1]又は[2]に記載の放熱用ゴム組成物。
 [4]前記エポキシ化合物は、含フッ素エポキシ化合物を含む、[3]に記載の放熱用ゴム組成物。
 [5]前記エポキシ化合物は、前記フッ素ゴム100質量部に対して1~10質量部である、[3]又は[4]に記載の放熱用ゴム組成物。
The present invention provides the following means.
[1] A heat dissipating rubber composition containing a fluororubber and a cyclic phosphazene compound, the cyclic phosphazene compound being 1 to 20 parts by mass based on 100 parts by mass of the fluororubber, and containing a fluorocarbon-modified cyclic phosphazene compound.
[2] The heat dissipating rubber composition according to [1], wherein the cyclic phosphazene compound further contains a cyclic phosphazene compound other than the fluorocarbon-modified cyclic phosphazene compound.
[3] The heat dissipating rubber composition according to [1] or [2], further comprising an epoxy compound.
[4] The heat dissipating rubber composition according to [3], wherein the epoxy compound includes a fluorine-containing epoxy compound.
[5] The heat dissipating rubber composition according to [3] or [4], wherein the epoxy compound is present in an amount of 1 to 10 parts by mass based on 100 parts by mass of the fluororubber.
 [6][1]~[5]のいずれか1項に記載の放熱用ゴム組成物、及び熱伝導フィラーを含む、熱伝導性ゴム組成物。
 [7][6]に記載の熱伝導性ゴム組成物からなる放熱材。
 [8]放熱シート形成材料、ポッティング材又は封止材である、[7]に記載の放熱材。
 [9][6]に記載の熱伝導性ゴム組成物を硬化させてなる硬化物。
 [10]放熱シートである、[9]に記載の硬化物。
[6] A thermally conductive rubber composition comprising the heat dissipating rubber composition according to any one of [1] to [5] and a thermally conductive filler.
[7] A heat dissipating material comprising the thermally conductive rubber composition according to [6].
[8] The heat dissipation material according to [7], which is a heat dissipation sheet forming material, a potting material, or a sealing material.
[9] A cured product obtained by curing the thermally conductive rubber composition according to [6].
[10] The cured product according to [9], which is a heat dissipation sheet.
 本発明によれば、熱膨張係数が低く、耐熱性に優れ、かつ、良好なタック性を有する放熱材及び硬化物が得られる熱伝導性ゴム組成物、並びにこれに用いられる放熱用ゴム組成物が提供される。さらに、前記熱伝導性ゴム組成物を用いた放熱材及び硬化物が提供される。 According to the present invention, a thermally conductive rubber composition from which a heat dissipating material and a cured product having a low coefficient of thermal expansion, excellent heat resistance, and good tackiness can be obtained, and a heat dissipating rubber composition used therein is provided. Furthermore, a heat dissipating material and a cured product using the thermally conductive rubber composition are provided.
 以下、本発明の放熱用ゴム組成物、熱伝導性ゴム組成物、放熱材及び硬化物について詳細に説明する。
 なお、本明細書において、「放熱材」とは、熱伝導性ゴム組成物を硬化させる前の放熱用の材料を意味し、例えば、放熱シート形成材料、ポッティング材、封止材等を指す。一方、熱伝導ゴム組成物を硬化させたものを「硬化物」と称し、放熱シートが代表例として挙げられる。以下、これらを併せて、「放熱材等」とも言う。
Hereinafter, the heat dissipating rubber composition, thermally conductive rubber composition, heat dissipating material, and cured product of the present invention will be explained in detail.
In this specification, the term "heat dissipation material" refers to a material for heat dissipation before curing the thermally conductive rubber composition, and refers to, for example, a heat dissipation sheet forming material, a potting material, a sealing material, and the like. On the other hand, a cured thermally conductive rubber composition is referred to as a "cured product", and a heat dissipating sheet is a typical example. Hereinafter, these will also be collectively referred to as "heat dissipating materials, etc.".
[放熱用ゴム組成物]
 本発明の放熱用ゴム組成物は、フッ素ゴム及び環状ホスファゼン化合物を含み、前記環状ホスファゼン化合物は、前記フッ素ゴム100質量部に対して1~20質量部であり、フルオロカーボン変性環状ホスファゼン化合物を含むものである。
 本発明の放熱用ゴム組成物は、耐熱性に優れ、環状ホスファゼン化合物を含むことにより、良好なタック性を有する放熱材等を好適に得られる。
[Rubber composition for heat dissipation]
The heat dissipating rubber composition of the present invention contains a fluororubber and a cyclic phosphazene compound, the cyclic phosphazene compound being 1 to 20 parts by mass based on 100 parts by mass of the fluororubber, and containing a fluorocarbon-modified cyclic phosphazene compound. .
The heat dissipating rubber composition of the present invention has excellent heat resistance, and by containing a cyclic phosphazene compound, a heat dissipating material and the like having good tackiness can be suitably obtained.
(フッ素ゴム)
 本発明の放熱用ゴム組成物におけるフッ素ゴムは、これを用いて得られる放熱材等の耐熱温度を向上させる役割を有する。シリコーン樹脂をバインダーとした従来の放熱シートでは、耐熱温度が最高200℃程度であるのに対して、フッ素ゴムをバインダーに用いることにより、耐熱温度を約225℃にまで引き上げることができる。また、シロキサン結合に起因するデバイスの接点不良等を生じることもない。
(Fluororubber)
The fluororubber in the heat-dissipating rubber composition of the present invention has the role of improving the heat-resistant temperature of a heat-dissipating material etc. obtained using the fluororubber. Conventional heat dissipation sheets using silicone resin as a binder have a maximum heat resistance of about 200°C, but by using fluororubber as a binder, the heat resistance can be raised to about 225°C. In addition, contact failure of devices due to siloxane bonding does not occur.
 フッ素ゴムとしては、例えば、フッ化ビニリデン(VdF)/ヘキサフルオロプロピレン(HFP)共重合体(FKM)、テトラフルオロエチレン(TFE)/プロピレン共重合体(FEPM)、TFE/パーフルオロメチルビニルエーテル(PMVE)共重合体(FFKM)、VdF/HFP/TFE共重合体、VdF/PMVE/TFE共重合体等が挙げられる。フッ素ゴムは、1種単独でも、2種以上を併用してもよい。これらのうち、耐熱性や入手容易性等の観点から、FKMが好ましい。 Examples of the fluororubber include vinylidene fluoride (VdF)/hexafluoropropylene (HFP) copolymer (FKM), tetrafluoroethylene (TFE)/propylene copolymer (FEPM), and TFE/perfluoromethyl vinyl ether (PMVE). ) copolymer (FFKM), VdF/HFP/TFE copolymer, VdF/PMVE/TFE copolymer, and the like. The fluororubbers may be used alone or in combination of two or more. Among these, FKM is preferred from the viewpoint of heat resistance, easy availability, and the like.
(環状ホスファゼン化合物)
 本発明のフッ素樹脂組成物に配合されるホスファゼン化合物は、これを用いて得られる放熱材等にタック性を付与する役割を有する。
 なお、タック性とは、ベタツキを表し、粘着力とは区別され、本発明では、具体的には、後述する実施例に記載の方法で測定評価される。
 フッ素ゴムは、ヒートシンク等の金属部材に対して粘着しにくく、タック性に劣るが、環状ホスファゼン化合物が配合されることにより、金属部材とデバイスとの間で、良好なタック性を示し、デバイスの冷却のために求められる十分な熱伝導性を確保できる。
(Cyclic phosphazene compound)
The phosphazene compound blended into the fluororesin composition of the present invention has the role of imparting tackiness to a heat dissipating material etc. obtained using the phosphazene compound.
Note that tackiness refers to stickiness and is distinguished from adhesive strength, and in the present invention, it is specifically measured and evaluated by the method described in the Examples described later.
Fluororubber is difficult to adhere to metal parts such as heat sinks and has poor tackiness, but by incorporating a cyclic phosphazene compound, it shows good tackiness between metal parts and devices, and the device Sufficient thermal conductivity required for cooling can be ensured.
 環状ホスファゼン化合物は、リン原子(P)-窒素原子(N)が、二重結合を有する環構造を形成している化合物であり、耐熱温度がフッ素ゴムと同等又はそれ以上であり、耐熱性に優れており、難燃剤として用いられるものもある。
 環状ホスファゼン化合物としては、例えば、-P=N-が六員環又は八員環構造を形成しているものが好ましい。
A cyclic phosphazene compound is a compound in which a phosphorus atom (P) and a nitrogen atom (N) form a ring structure with a double bond, and its heat resistance is equal to or higher than that of fluororubber, and it has excellent heat resistance. It is excellent and some are used as flame retardants.
As the cyclic phosphazene compound, for example, one in which -P=N- forms a six-membered ring or an eight-membered ring structure is preferable.
 環状ホスファゼン化合物は、1種単独でも、2種以上を併用してもよい。ただし、本発明の放熱用ゴム組成物中の環状ホスファゼン化合物は、フルオロカーボン変性環状ホスファゼン化合物を含む。環状ホスファゼン化合物が、フルオロカーボン部位を有していることにより、放熱用ゴム組成物中のフッ素ゴムとの相溶性(馴染みやすさ)が良好となり、放熱材等のタック性及び耐熱性が優れたものとなる。
 環状ホスファゼン化合物は、放熱材等の優れたタック性及び耐熱性の観点から、フルオロカーボン変性環状ホスファゼン化合物以外の環状ホスファゼン化合物をさらに含むことが好ましい。
The cyclic phosphazene compounds may be used alone or in combination of two or more. However, the cyclic phosphazene compound in the heat dissipating rubber composition of the present invention includes a fluorocarbon-modified cyclic phosphazene compound. Since the cyclic phosphazene compound has a fluorocarbon moiety, it has good compatibility with the fluororubber in the heat dissipation rubber composition, resulting in excellent tackiness and heat resistance for heat dissipation materials, etc. becomes.
The cyclic phosphazene compound preferably further contains a cyclic phosphazene compound other than the fluorocarbon-modified cyclic phosphazene compound from the viewpoint of excellent tackiness and heat resistance of the heat dissipating material and the like.
 環状ホスファゼン化合物としては、具体的には、下記式(1)又は(2)で表される化合物が好ましい。 Specifically, as the cyclic phosphazene compound, a compound represented by the following formula (1) or (2) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)及び(2)中、Rは、それぞれ独立に、アルコキシ基、フェノキシ基、又は-OCH(CFCFX(Xは水素原子又はフッ素原子、nは1~4の整数)である。 In formulas (1) and (2), R is each independently an alkoxy group, a phenoxy group, or -OCH 2 (CF 2 CF 2 ) n X (X is a hydrogen atom or a fluorine atom, n is 1 to 4 integer).
 これらのうち、環状構造の安定性の観点から、式(1)で表される六員環構造を形成している化合物が好ましく、例えば、式(1)で表され、Rがいずれもフェノキシ基で表される化合物と、式(1)で表され、Rがいずれも-OCH(CFCFHである化合物とを併用することが好ましい。 Among these, from the viewpoint of stability of the cyclic structure, compounds forming a six-membered ring structure represented by formula (1) are preferable, for example, compounds represented by formula (1), in which both R are phenoxy groups. It is preferable to use the compound represented by formula (1) in combination with a compound represented by formula (1) in which each R is -OCH 2 (CF 2 CF 2 ) 2 H.
 放熱用ゴム組成物中の環状ホスファゼン化合物の含有量は、フッ素ゴム100質量部に対して、1~20質量部であり、好ましくは1~15質量部、より好ましくは2~10質量部である。
 環状ホスファゼン化合物の含有量が1質量部以上であることにより、該ゴム組成物を用いて得られる放熱材等が良好なタック性を有するものとなる。また、15質量部以下であれば、フッ素ゴムとの良好な相溶性を保持しつつ、フッ素ゴムによる優れた耐熱性を有する放熱材等が得られる。
The content of the cyclic phosphazene compound in the rubber composition for heat dissipation is 1 to 20 parts by mass, preferably 1 to 15 parts by mass, and more preferably 2 to 10 parts by mass, based on 100 parts by mass of fluororubber. .
When the content of the cyclic phosphazene compound is 1 part by mass or more, the heat dissipating material etc. obtained using the rubber composition have good tackiness. Moreover, if it is 15 parts by mass or less, a heat dissipating material etc. that has excellent heat resistance due to fluororubber while maintaining good compatibility with fluororubber can be obtained.
 環状ホスファゼン化合物中のフルオロカーボン変性環状ホスファゼン化合物の含有量は、フッ素ゴムとの相溶性及び放熱材等の耐熱性の観点から、フッ素ゴム100質量部に対して、好ましくは1~20質量部、より好ましくは1~15質量部、さらに好ましくは1~10質量部である。 The content of the fluorocarbon-modified cyclic phosphazene compound in the cyclic phosphazene compound is preferably 1 to 20 parts by mass, and more, based on 100 parts by mass of fluororubber, from the viewpoint of compatibility with fluororubber and heat resistance of heat dissipating materials. The amount is preferably 1 to 15 parts by weight, more preferably 1 to 10 parts by weight.
 また、フルオロカーボン変性環状ホスファゼン化合物の含有量は、フッ素ゴムとの相溶性及び放熱材等の耐熱性の観点から、環状ホスファゼン化合物の合計100質量部に対して、好ましくは1~100質量部、より好ましくは5~80質量部、さらに好ましくは10~60質量部である。 In addition, the content of the fluorocarbon-modified cyclic phosphazene compound is preferably 1 to 100 parts by mass, based on a total of 100 parts by mass of the cyclic phosphazene compound, from the viewpoint of compatibility with fluororubber and heat resistance of heat dissipating materials, etc. The amount is preferably 5 to 80 parts by weight, more preferably 10 to 60 parts by weight.
(エポキシ化合物)
 放熱用ゴム組成物は、エポキシ化合物を含んでいることが好ましい。
 放熱用ゴム組成物中にエポキシ化合物が配合されていることにより、エポキシ化合物が硬化した架橋ポリマーが、フッ素ゴムの硬化物と相互に絡み合い、相互網目侵入構造(Semi-IPN構造)が形成され、熱膨張が抑制され、かつ、優れた耐熱性を有する放熱材等が得られやすい。
(epoxy compound)
The heat dissipating rubber composition preferably contains an epoxy compound.
By blending the epoxy compound into the heat dissipation rubber composition, the crosslinked polymer obtained by curing the epoxy compound becomes entangled with the cured product of fluororubber, forming a mutually intermeshed structure (Semi-IPN structure), It is easy to obtain a heat dissipating material and the like that have suppressed thermal expansion and excellent heat resistance.
 エポキシ化合物としては、架橋反応を行うため、エポキシ基を2個以上有する化合物が好ましい。エポキシ化合物は、フッ素ゴムとの相溶性、及び、該ゴム組成物を用いて得られる放熱材等の耐熱性等の観点から、含フッ素エポキシ化合物を含んでいることが好ましく、また、含フッ素エポキシ化合物のみであってもよく、1種単独であっても、2種以上を併用してもよい。
 エポキシ化合物の具体例としては、ビスフェノールA型エポキシ樹脂、エポキシ化ポリブタジエン(例えば、「JP-100」、日本曹達株式会社製)、アミン型エポキシ樹脂(例えば、「YH-434L」、日鉄ケミカル&マテリアル株式会社製)、ジシクロペンタジエン型エポキシ樹脂(例えば、「EPICLON(登録商標) HP-7200L」、DIC株式会社製)、エチレングリコールジグリシジルエーテル、4,4’-メチレンビス[N,N-ビス(オキシラニルメチル)アニリン]、レゾルシノールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、また、2,2’-(2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジイル)ビス(オキシラン)、1,6-ビス(2’、3’-エポキシプロピル)-パーフルオロ-n-ヘキサン等の含フッ素エポキシ化合物が挙げられる。
 これらのうち、2,2’-(2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジイル)ビス(オキシラン)が特に好ましい。
The epoxy compound is preferably a compound having two or more epoxy groups in order to carry out a crosslinking reaction. The epoxy compound preferably contains a fluorine-containing epoxy compound from the viewpoint of compatibility with fluororubber and heat resistance of a heat dissipating material etc. obtained using the rubber composition. The compound may be used alone, or one type may be used alone, or two or more types may be used in combination.
Specific examples of epoxy compounds include bisphenol A type epoxy resin, epoxidized polybutadiene (for example, "JP-100", manufactured by Nippon Soda Co., Ltd.), amine type epoxy resin (for example, "YH-434L", manufactured by Nippon Steel Chemical & Materials Co., Ltd.), dicyclopentadiene type epoxy resin (for example, "EPICLON (registered trademark) HP-7200L", manufactured by DIC Corporation), ethylene glycol diglycidyl ether, 4,4'-methylenebis[N,N-bis (oxiranylmethyl)aniline], resorcinol diglycidyl ether, 1,6-hexanediol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, 2,2'-(2,2,3,3,4, Fluorine-containing epoxy compounds such as 4,5,5-octafluorohexane-1,6-diyl)bis(oxirane), 1,6-bis(2',3'-epoxypropyl)-perfluoro-n-hexane, etc. Can be mentioned.
Among these, 2,2'-(2,2,3,3,4,4,5,5-octafluorohexane-1,6-diyl)bis(oxirane) is particularly preferred.
 放熱用ゴム組成物がエポキシ化合物を含む場合、エポキシ化合物の含有量は、放熱材等のタック性を低下させることなく、熱膨張を抑制する観点から、フッ素ゴム100質量部に対して、好ましくは1~10質量部、より好ましくは1~8質量部、さらに好ましくは1~5質量部である。
 エポキシ化合物が含フッ素エポキシ化合物を含む場合、含フッ素エポキシ化合物の含有量は、フッ素ゴムとの相溶性、及び、該ゴム組成物を用いて得られる放熱材等の耐熱性の観点から、フッ素ゴム100質量部に対して、好ましくは1~10質量部、より好ましくは1~8質量部、さらに好ましくは1~5質量部である。
When the rubber composition for heat dissipation contains an epoxy compound, the content of the epoxy compound is preferably set to 100 parts by mass of fluororubber, from the viewpoint of suppressing thermal expansion without reducing the tackiness of the heat dissipation material. The amount is 1 to 10 parts by weight, more preferably 1 to 8 parts by weight, and even more preferably 1 to 5 parts by weight.
When the epoxy compound contains a fluorine-containing epoxy compound, the content of the fluorine-containing epoxy compound is determined from the viewpoint of compatibility with the fluororubber and heat resistance of heat dissipating materials etc. obtained using the rubber composition. It is preferably 1 to 10 parts by weight, more preferably 1 to 8 parts by weight, and even more preferably 1 to 5 parts by weight, per 100 parts by weight.
 放熱用ゴム組成物がエポキシ化合物を含む場合、硬化剤は、別途添加してもよいが、取り扱い容易性等の観点から、放熱用ゴム組成物中に含まれていることが好ましい。
 硬化剤としては、ポリアミン系、酸無水物系、フェノール系等の一般的なエポキシ樹脂の硬化剤として用いられる化合物を用いることができる。これらのうち、反応速度や耐熱性等の観点から、酸無水物系が好ましい。硬化剤は、1種単独であっても、2種以上を併用してもよい。
 エポキシ化合物が含フッ素エポキシ化合物を含む場合、相溶性や反応性等の観点から、硬化剤はフッ素系硬化剤を含むことが好ましく、また、フッ素系硬化剤のみであってもよい。
 硬化剤の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,6-テトラヒドロ無水フタル酸、オクテニルコハク酸無水物、テトラプロペニルコハク酸無水物(ドデセニルコハク酸無水物)、3,3’,4,4’-ビフェニルカルボン酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等が挙げられる。これらのうち、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物が特に好ましい。
When the rubber composition for heat dissipation contains an epoxy compound, the curing agent may be added separately, but it is preferably included in the rubber composition for heat dissipation from the viewpoint of ease of handling.
As the curing agent, compounds used as curing agents for general epoxy resins such as polyamine type, acid anhydride type, phenol type, etc. can be used. Among these, acid anhydride types are preferred from the viewpoint of reaction rate, heat resistance, and the like. The curing agent may be used alone or in combination of two or more.
When the epoxy compound contains a fluorine-containing epoxy compound, the curing agent preferably contains a fluorine-based curing agent from the viewpoint of compatibility, reactivity, etc., and may be only a fluorine-based curing agent.
Specific examples of the curing agent include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,6-tetrahydrophthalic anhydride, octenylsuccinic anhydride, tetrapropenylsuccinic anhydride (dodecenylsuccinic anhydride), (acid anhydride), 3,3',4,4'-biphenylcarboxylic anhydride, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, and the like. Among these, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride is particularly preferred.
 硬化剤の含有量は、エポキシ化合物の適度な架橋反応の観点から、エポキシ化合物100質量部に対して、好ましくは20~450質量部、より好ましくは25~300質量部、さらに好ましくは30~200質量部である。
 硬化剤がフッ素系硬化剤を含む場合、フッ素系硬化剤の含有量は、含フッ素エポキシ化合物との相溶性及び適度な架橋反応の観点から、エポキシ化合物100質量部に対して、好ましくは20~450質量部、より好ましくは25~300質量部、さらに好ましくは30~200質量部である。
From the viewpoint of appropriate crosslinking reaction of the epoxy compound, the content of the curing agent is preferably 20 to 450 parts by mass, more preferably 25 to 300 parts by mass, even more preferably 30 to 200 parts by mass, based on 100 parts by mass of the epoxy compound. Part by mass.
When the curing agent contains a fluorine-based curing agent, the content of the fluorine-based curing agent is preferably 20 to 20 parts by mass based on 100 parts by mass of the epoxy compound, from the viewpoint of compatibility with the fluorine-containing epoxy compound and appropriate crosslinking reaction. The amount is 450 parts by weight, more preferably 25 to 300 parts by weight, and even more preferably 30 to 200 parts by weight.
 放熱用ゴム組成物がエポキシ化合物を含む場合、エポキシ化合物による架橋反応の促進のため、放熱用ゴム組成物中には、さらに、硬化触媒が含まれていることが好ましい。あるいはまた、硬化触媒は、放熱用ゴム組成物に、別途添加されてもよい。 When the heat dissipation rubber composition contains an epoxy compound, it is preferable that the heat dissipation rubber composition further contains a curing catalyst in order to promote the crosslinking reaction by the epoxy compound. Alternatively, the curing catalyst may be separately added to the heat dissipating rubber composition.
 硬化触媒としては、第四級アンモニウム塩が好適に用いられ、より好ましくはテトラアルキルアンモニウム塩が用いられる。具体的には、テトラメチルアンモニウム2-エチルヘキサン酸塩、テトラエチルアンモニウム2-エチルヘキサン酸塩、エチルトリメチルアンモニウム2-エチルヘキサン酸塩、トリエチルメチルアンモニウム2-エチルヘキサン酸塩、テトラメチルアンモニウムギ酸塩、テトラエチルアンモニウムギ酸塩、エチルトリメチルアンモニウムギ酸塩、トリエチルメチルアンモニウムギ酸塩、テトラメチルアンモニウムフェノール塩、テトラエチルアンモニウムフェノール塩、エチルトリメチルアンモニウムフェノール塩、トリエチルメチルアンモニウムフェノール塩等が挙げられる。硬化触媒は、1種単独でも、2種以上を併用してもよい。これらのうち、トリエチルメチルアンモニウム2-エチルヘキサン酸塩が特に好ましい。 As the curing catalyst, quaternary ammonium salts are preferably used, and tetraalkylammonium salts are more preferably used. Specifically, tetramethylammonium 2-ethylhexanoate, tetraethylammonium 2-ethylhexanoate, ethyltrimethylammonium 2-ethylhexanoate, triethylmethylammonium 2-ethylhexanoate, tetramethylammonium formate, Examples include tetraethylammonium formate, ethyltrimethylammonium formate, triethylmethylammonium formate, tetramethylammonium phenol salt, tetraethylammonium phenol salt, ethyltrimethylammonium phenol salt, triethylmethylammonium phenol salt, and the like. The curing catalyst may be used alone or in combination of two or more. Among these, triethylmethylammonium 2-ethylhexanoate is particularly preferred.
 硬化触媒の含有量は、エポキシ化合物の適度な硬化促進の観点から、エポキシ化合物100質量部に対して、好ましくは1~80質量部、より好ましくは2~50質量部、さらに好ましくは3~30質量部である。 The content of the curing catalyst is preferably 1 to 80 parts by mass, more preferably 2 to 50 parts by mass, and still more preferably 3 to 30 parts by mass, based on 100 parts by mass of the epoxy compound, from the viewpoint of promoting appropriate curing of the epoxy compound. Part by mass.
(その他の成分)
 放熱用ゴム組成物には、フッ素ゴム、環状ホスファゼン化合物、エポキシ化合物、硬化剤及び硬化触媒以外に、放熱材等の使用目的や求められる特性、取り扱い容易性等の観点から、例えば、可塑剤、界面活性剤、難燃剤、酸化防止剤等の添加剤や、溶媒等のその他の成分が任意成分として含まれていてもよい。
 その他の成分は、放熱用ゴム組成物中の他の成分との相溶性を有しているものが好ましい。相溶性の観点からは、含フッ素化合物が好適に用いられる。
 その他の成分は、本発明の効果を妨げない範囲内の量で配合され、それぞれ、1種単独でも、2種以上が併用されてもよい。
(Other ingredients)
In addition to fluororubber, a cyclic phosphazene compound, an epoxy compound, a curing agent, and a curing catalyst, the heat dissipating rubber composition may contain, from the viewpoint of the purpose of use of the heat dissipating material, required characteristics, ease of handling, etc., such as a plasticizer, Additives such as surfactants, flame retardants, and antioxidants, and other components such as solvents may be included as optional components.
The other components are preferably compatible with other components in the heat dissipating rubber composition. From the viewpoint of compatibility, fluorine-containing compounds are preferably used.
Other components may be blended in amounts within a range that does not impede the effects of the present invention, and each may be used alone or in combination of two or more.
 可塑剤としては、例えば、パーフルオロポリオキセタン等の含フッ素エーテル類等が挙げられる。界面活性剤としては、例えば、パーフルオロアルキル基を有するフッ素系界面活性剤が挙げられる。難燃剤としては、例えば、ホスファゼン化合物等が挙げられる。
 溶媒としては、配合成分の粘度調整のしやすさや揮発性等の観点から、例えば、メチルイソブチルケトン等のケトン類が挙げられる。
Examples of the plasticizer include fluorine-containing ethers such as perfluoropolyoxetane. Examples of the surfactant include fluorine-based surfactants having a perfluoroalkyl group. Examples of the flame retardant include phosphazene compounds.
Examples of the solvent include ketones such as methyl isobutyl ketone from the viewpoint of ease of adjusting the viscosity of the ingredients and volatility.
 放熱用ゴム組成物中、フッ素ゴム及び環状ホスファゼン化合物の合計含有量は、本発明の効果を十分に発揮させる観点から、溶媒を除く含有成分の合計100質量部に対して、好ましくは75~100質量%、より好ましくは80~100質量%、さらに好ましくは85~100質量%である。 In the rubber composition for heat dissipation, the total content of the fluororubber and the cyclic phosphazene compound is preferably 75 to 100 parts by mass, based on 100 parts by mass of the components excluding the solvent, from the viewpoint of fully exhibiting the effects of the present invention. The amount is preferably 80 to 100% by weight, and even more preferably 85 to 100% by weight.
 放熱用ゴム組成物は、熱伝導フィラーと混合して熱伝導性ゴム組成物を製造する際の熱伝導フィラーの充填性及び分散性の確保や製造効率等の観点から、溶液として製造することが好ましく、濃度は、好ましくは15~60質量%、より好ましくは20~50質量%、さらに好ましくは25~45質量%である。 The rubber composition for heat dissipation can be manufactured as a solution from the viewpoint of ensuring filling and dispersibility of the thermally conductive filler and manufacturing efficiency when mixed with the thermally conductive filler to manufacture the thermally conductive rubber composition. Preferably, the concentration is preferably 15-60% by weight, more preferably 20-50% by weight, even more preferably 25-45% by weight.
(製造方法)
 放熱用ゴム組成物は、これに含まれる上述した各成分を均一に混合することにより製造できる。例えば、フッ素ゴムを溶媒に溶解した溶液と、ホスファゼン化合物、エポキシ化合物及びその他の成分を含む溶液を均一に混合する方法等により、放熱用ゴム組成物が得られる。
 混合方法は、特に限定されるものではなく、公知の混合手段を用いて行うことができ、例えば、各成分を密閉容器内に収容して容器ごと振とうして混合してもよく、また、容器内に収容した各成分を撹拌羽根により撹拌して混合してもよい。
(Production method)
The heat dissipating rubber composition can be produced by uniformly mixing the above-mentioned components contained therein. For example, a heat dissipating rubber composition can be obtained by a method of uniformly mixing a solution of fluororubber dissolved in a solvent and a solution containing a phosphazene compound, an epoxy compound, and other components.
The mixing method is not particularly limited, and can be performed using known mixing means. For example, each component may be placed in a closed container and mixed by shaking the container, or, The components contained in the container may be mixed by stirring with a stirring blade.
[熱伝導性ゴム組成物]
 本発明の熱伝導性ゴム組成物は、上述した本発明の放熱用ゴム組成物、及び熱伝導フィラーを含む。本発明の放熱用ゴム組成物に熱伝導フィラーを配合することにより、放熱材等に好適な熱伝導性ゴム組成物が得られる。
[Thermal conductive rubber composition]
The thermally conductive rubber composition of the present invention includes the above-described heat dissipating rubber composition of the present invention and a thermally conductive filler. By blending a thermally conductive filler into the heat dissipating rubber composition of the present invention, a thermally conductive rubber composition suitable for heat dissipating materials and the like can be obtained.
 熱伝導フィラーとしては、良好な熱伝導性及び絶縁性の観点から、無機フィラーが好ましく、例えば、マグネシア、アルミナ、窒化ホウ素、窒化アルミニウム、水酸化マグネシウム、水酸化アルミニウム、シリカ等が挙げられる。熱伝導フィラーは、1種単独でも、2種以上を併用してもよい。また、絶縁性を損なわない範囲において、カーボンブラック、黒鉛粉等の導電性を有する粉末を配合してもよい。熱伝導フィラーの形状は、特に限定されるものではなく、例えば、破砕状、球状、板状等が挙げられる。
 熱伝導フィラーは、性能及びコストのバランスを勘案すると、2種以上を併用することが好ましく、例えば、破砕マグネシアと球形マグネシアと球形アルミナとの混合物、球形マグネシアと粒径の異なる2種の球形アルミナとの混合物、破砕マグネシアと破砕窒化アルミニウムの混合物等が好ましい。混合物における混合比は、放熱用ゴム組成物との親和性、混合時の分散流動性や粘度、また、放熱材等の熱伝導性等を考慮して、適宜定めることができる。
 熱伝導フィラーの粒径は、放熱用ゴム組成物への充填性及び分散性、また、放熱材の取り扱い性、及び、放熱シートの柔軟性が損なわれない程度であることが好ましく、通常、平均粒径が、好ましくは0.1~100μm、より好ましくは0.2~80μm、さらに好ましくは0.3~50μmである。ただし、導電性を有する粉末を用いる場合は、放熱材等の絶縁性を損なわないようにする観点から、平均粒径が、好ましくは10~100nm、より好ましくは20~80nm、さらに好ましくは30~70nmの微粉末が配合される。
 なお、本明細書で言う平均粒径は、レーザー回折式粒度分布測定装置で求めた粒度分布における累積体積50%における粒径を意味する。
The thermally conductive filler is preferably an inorganic filler from the viewpoint of good thermal conductivity and insulation, and examples thereof include magnesia, alumina, boron nitride, aluminum nitride, magnesium hydroxide, aluminum hydroxide, silica, and the like. The thermally conductive filler may be used alone or in combination of two or more. Furthermore, conductive powder such as carbon black or graphite powder may be blended within a range that does not impair the insulation properties. The shape of the thermally conductive filler is not particularly limited, and examples include crushed shape, spherical shape, and plate shape.
Considering the balance between performance and cost, it is preferable to use two or more types of thermally conductive fillers in combination, such as a mixture of crushed magnesia, spherical magnesia, and spherical alumina, or a mixture of spherical magnesia and two types of spherical alumina with different particle sizes. A mixture of crushed magnesia and crushed aluminum nitride, etc. are preferred. The mixing ratio in the mixture can be appropriately determined in consideration of the affinity with the heat dissipating rubber composition, the dispersion fluidity and viscosity during mixing, the thermal conductivity of the heat dissipating material, etc.
The particle size of the thermally conductive filler is preferably such that it does not impair the filling and dispersibility of the heat dissipating rubber composition, the handleability of the heat dissipating material, and the flexibility of the heat dissipating sheet. The particle size is preferably 0.1 to 100 μm, more preferably 0.2 to 80 μm, and even more preferably 0.3 to 50 μm. However, when using conductive powder, the average particle size is preferably 10 to 100 nm, more preferably 20 to 80 nm, and even more preferably 30 to A fine powder of 70 nm is blended.
Note that the average particle size as used herein means the particle size at 50% cumulative volume in the particle size distribution determined by a laser diffraction particle size distribution analyzer.
 また、上記範囲内の平均粒径を有する熱伝導フィラーと、一次粒子径が、好ましくは10~100nm、より好ましくは10~80nm、さらに好ましくは20~70nmのナノ粒子の熱伝導フィラーとを併用することが好ましい。ナノ粒子を併用することにより、放熱材等における熱伝導フィラーの充填性が向上し、熱伝導率がより高くなりやすい。 Further, a thermally conductive filler having an average particle size within the above range is used in combination with a nanoparticle thermally conductive filler having a primary particle size of preferably 10 to 100 nm, more preferably 10 to 80 nm, and even more preferably 20 to 70 nm. It is preferable to do so. By using nanoparticles in combination, the filling properties of the thermally conductive filler in the heat dissipating material etc. are improved, and the thermal conductivity tends to be higher.
 熱伝導フィラーは、放熱用ゴム組成物との親和性を高める観点から、フィラー用分散剤で表面処理を施しておくことが好ましい。フィラー用分散剤としては、放熱用ゴム組成物中で分散性及びフッ素ゴムとの親和性の観点から、含フッ素化合物を用いることが好ましい。例えば、含フッ素モノアルコールと低分子ポリイソシアネート化合物とをNCOインデックス100でウレタン化反応させて得られた含フッ素化合物等が好適に用いられる。具体的には、1H,1H,7H-ドデカフルオロ-1-ヘプタノールとヘキサメチレンジイソシアネートとをモル比2:1でウレタン化反応させたもの等をフィラー用分散剤として好適に用いることができる。ウレタン化反応は、公知の方法により、必要に応じて、ウレタン化触媒の存在下等で行うことができる。 The thermally conductive filler is preferably surface-treated with a filler dispersant from the viewpoint of increasing its affinity with the heat dissipating rubber composition. As the dispersant for filler, it is preferable to use a fluorine-containing compound from the viewpoint of dispersibility in the heat dissipating rubber composition and affinity with fluororubber. For example, a fluorine-containing compound obtained by subjecting a fluorine-containing monoalcohol and a low-molecular-weight polyisocyanate compound to a urethane reaction with an NCO index of 100 is preferably used. Specifically, a urethane reaction of 1H,1H,7H-dodecafluoro-1-heptanol and hexamethylene diisocyanate at a molar ratio of 2:1 can be suitably used as a filler dispersant. The urethanization reaction can be carried out by a known method, if necessary, in the presence of a urethanization catalyst.
 熱伝導フィラーの表面処理におけるフィラー用分散剤の使用量は、放熱材等の熱伝導性を妨げることなく、熱伝導フィラーの分散性を向上させる観点から、熱伝導フィラー100質量部に対して、好ましくは0.1~8質量部、より好ましくは0.2~5質量部、さらに好ましくは0.5~3質量部である。 The amount of filler dispersant used in the surface treatment of the thermally conductive filler is as follows: from the viewpoint of improving the dispersibility of the thermally conductive filler without impeding the thermal conductivity of the heat dissipating material, etc., based on 100 parts by mass of the thermally conductive filler. The amount is preferably 0.1 to 8 parts by weight, more preferably 0.2 to 5 parts by weight, and even more preferably 0.5 to 3 parts by weight.
 フィラー用分散剤による熱伝導フィラーの表面処理は、表面処理の均一性の観点から、イソプロパノール等の溶媒中で、熱伝導フィラーとフィラー用分散剤とを撹拌混合した後、乾燥させることにより行うことが好ましい。 The surface treatment of the thermally conductive filler with the dispersant for the filler is performed by stirring and mixing the thermally conductive filler and the dispersant for the filler in a solvent such as isopropanol, and then drying, from the viewpoint of uniformity of the surface treatment. is preferred.
 熱伝導性ゴム組成物中の熱伝導フィラーの含有量は、良好な熱伝導性及びタック性を有する放熱材等を得る観点から、放熱用ゴム組成物中のフッ素ゴム100質量部に対して、好ましくは100~5000質量部であり、より好ましくは300~3500質量部、より好ましくは500~3000質量部である。
 熱伝導フィラーが表面処理を施された表面処理フィラーを用いる場合の表面処理フィラーの含有量も、同様である。
The content of the thermally conductive filler in the thermally conductive rubber composition is determined based on 100 parts by mass of fluororubber in the heat dissipating rubber composition, from the viewpoint of obtaining a heat dissipating material having good thermal conductivity and tackiness. The amount is preferably 100 to 5000 parts by weight, more preferably 300 to 3500 parts by weight, and even more preferably 500 to 3000 parts by weight.
The content of the surface-treated filler in the case of using a surface-treated filler in which the thermally conductive filler has been surface-treated is also the same.
 熱伝導性ゴム組成物には、放熱用ゴム組成物及び熱伝導フィラー(及び/又は表面処理フィラー)以外に、放熱材等の使用目的や求められる特性、取り扱い容易性等の観点から、例えば、可塑剤、難燃剤、酸化防止剤、着色剤等の添加剤や、溶媒等のその他の成分が任意成分として含まれていてもよい。その他の成分は、上述した放熱用ゴム組成物におけるその他の成分と同様のものであっても、異なるものであってもよい。その他の成分は、本発明の効果を妨げない範囲内の量で配合され、それぞれ、1種単独でも、2種以上が併用されてもよい。 In addition to the heat dissipating rubber composition and the heat conductive filler (and/or surface treatment filler), the heat conductive rubber composition may include, from the viewpoint of the purpose of use of the heat dissipating material, required characteristics, ease of handling, etc. Additives such as plasticizers, flame retardants, antioxidants, and colorants, and other components such as solvents may be included as optional components. The other components may be the same as or different from the other components in the heat dissipation rubber composition described above. Other components may be blended in amounts within a range that does not impede the effects of the present invention, and each may be used alone or in combination of two or more.
 熱伝導性ゴム組成物は、放熱用ゴム組成物、熱伝導フィラー(及び/又は表面処理フィラー)、及び任意成分として上述したその他の成分を均一に混合することにより得られる。
 混合方法は、特に限定されるものではなく、放熱用ゴム組成物の製造の場合と同様の方法で行うことができる。放熱用ゴム組成物が、溶媒を含まず、粘度が高い場合等は、3本ロールミル等の混練機を用いて、混合することもできる。
The thermally conductive rubber composition is obtained by uniformly mixing a heat dissipating rubber composition, a thermally conductive filler (and/or a surface treated filler), and the other components mentioned above as optional components.
The mixing method is not particularly limited, and can be carried out in the same manner as in the case of producing a heat dissipating rubber composition. When the heat dissipating rubber composition does not contain a solvent and has a high viscosity, it can also be mixed using a kneader such as a three-roll mill.
[放熱材]
 本発明の放熱材は、上述した本発明の熱伝導性ゴム組成物からなる。放熱材としては、上述したように、例えば、放熱シート形成材料、ポッティング材、封止材等が挙げられる。前記熱伝導性ゴム組成物は、特に、放熱シート形成材料として好適である。
 前記熱伝導性ゴム組成物は、熱膨張係数が低く、耐熱性に優れ、かつ、良好なタック性を有する放熱材として好適に用いることができる。
[Heat dissipation material]
The heat dissipating material of the present invention is made of the above-mentioned thermally conductive rubber composition of the present invention. As described above, examples of the heat dissipation material include a heat dissipation sheet forming material, a potting material, a sealing material, and the like. The thermally conductive rubber composition is particularly suitable as a material for forming a heat dissipation sheet.
The thermally conductive rubber composition has a low coefficient of thermal expansion, excellent heat resistance, and can be suitably used as a heat dissipating material having good tackiness.
[硬化物]
 本発明の硬化物は、上述した本発明の熱伝導性ゴム組成物を硬化させてなるものである。硬化物の好ましい態様として、例えば、放熱シートが挙げられる。本発明の熱伝導性ゴム組成物を、放熱シート形成材料である放熱材として適用し、硬化させることにより、放熱シートが得られる。
 放熱シートを得るための熱伝導性ゴム組成物の硬化方法は、特に限定されるものではなく、公知の方法を適用することができる。例えば、熱伝導性ゴム組成物をロールミル等にて混練した後、熱平プレス機等にて圧延して、平板状の硬化物前駆体を得る。次いで、硬化物前駆体を、熱ロールプレス機等にて、120~250℃で加圧することにより、硬化物が得られる。硬化の際の加圧の圧力及び時間は、硬化物前駆体及び硬化物の厚さや大きさ等の形態に応じて、適宜設定される。通常、圧力0.1~5MPa程度で、5~60分程度で硬化させる。
[Cured product]
The cured product of the present invention is obtained by curing the thermally conductive rubber composition of the present invention described above. A preferred embodiment of the cured product is, for example, a heat dissipation sheet. A heat-radiating sheet can be obtained by applying the thermally conductive rubber composition of the present invention as a heat-radiating material, which is a material for forming a heat-radiating sheet, and curing it.
The method of curing the thermally conductive rubber composition for obtaining a heat dissipation sheet is not particularly limited, and any known method can be applied. For example, a thermally conductive rubber composition is kneaded using a roll mill or the like, and then rolled using a hot flat press or the like to obtain a flat cured product precursor. Next, a cured product is obtained by pressing the cured product precursor at 120 to 250° C. using a hot roll press or the like. The pressure and time of pressurization during curing are appropriately set depending on the form, such as the thickness and size, of the cured product precursor and cured product. Usually, it is cured at a pressure of about 0.1 to 5 MPa for about 5 to 60 minutes.
 本発明の硬化物は、耐熱温度が200℃以上と高く、耐熱性(耐熱老化性、耐湿熱性及び耐ヒートサイクル性)に優れていることにより、200℃以上の高温になりやすい電気・電子デバイスの発熱体に対して好適に適用することができる。
 放熱シートの使用態様は、特に限定されるものではなく、従来の放熱シートと同様の態様で使用することができる。例えば、電気・電子デバイス、特に、最高220℃程度の発熱を伴うパワーデバイス等の発熱体と、ヒートシンクや金属フレーム、放熱板等の放熱体との間に挟装される態様で好適に用いられる。
The cured product of the present invention has a high heat resistance temperature of 200°C or higher, and has excellent heat resistance (heat aging resistance, moist heat resistance, and heat cycle resistance), so that electrical and electronic devices are easily exposed to high temperatures of 200°C or higher. It can be suitably applied to heating elements.
The manner in which the heat dissipation sheet is used is not particularly limited, and it can be used in the same manner as conventional heat dissipation sheets. For example, it is suitably used in an embodiment where it is sandwiched between a heat generating element such as an electric/electronic device, especially a power device that generates heat of up to about 220°C, and a heat radiating body such as a heat sink, metal frame, or heat sink. .
 本発明の硬化物である放熱シートは、パワーデバイス等の発熱体と、ヒートシンクや金属フレーム、放熱板等の放熱体との間で良好なタック性を有するものであり、500μm以下の薄厚で、発熱体及び放熱体と隙間なく密着させることができる。このため、発熱体と放熱シートとの界面、及び放熱シートと放熱体との界面における界面熱抵抗が低減され、かつ、放熱シートの優れた熱伝導性が十分に発揮されることにより、発熱体と放熱体との間での接触熱抵抗が十分に低減され、良好な放熱効果が得られる。
 放熱シートの厚さは、熱抵抗を低減させつつ、良好なタック性を得る観点から、好ましくは50~1000μm、より好ましくは70~500μm、さらに好ましくは100~300μmである。
The heat dissipation sheet, which is a cured product of the present invention, has good tackiness between a heat generating body such as a power device and a heat dissipation body such as a heat sink, metal frame, or heat sink, and has a thin thickness of 500 μm or less, It can be brought into close contact with the heating element and the heat radiating element without any gaps. Therefore, the interfacial thermal resistance at the interface between the heating element and the heat dissipation sheet and the interface between the heat dissipation sheet and the heat dissipation body is reduced, and the excellent thermal conductivity of the heat dissipation sheet is fully demonstrated, so that the heat dissipation sheet The contact thermal resistance between the heat sink and the heat sink is sufficiently reduced, and a good heat dissipation effect can be obtained.
The thickness of the heat dissipation sheet is preferably 50 to 1000 μm, more preferably 70 to 500 μm, and even more preferably 100 to 300 μm, from the viewpoint of obtaining good tackiness while reducing thermal resistance.
 以下、実施例に基づいて、本発明を具体的に説明するが、本発明は下記実施例により限定されるものではなく、本発明の要旨を逸脱しない範囲で、種々の変形が可能である。 Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to the following Examples, and various modifications can be made without departing from the gist of the present invention.
[使用原料]
 実施例及び比較例の放熱シートの製造に使用した原料を以下に示す。
・フッ素ゴム(1):「ダイエル(登録商標) G-755LBP」、ダイキン工業株式会社製
・フッ素ゴム(2):「ダイエル(登録商標) G-101」、ダイキン工業株式会社製
・MIBK:4-メチル-2-ペンタノン(メチルイソブチルケトン)
・EP:2,2’-(2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジイル)ビス(オキシラン)、東京化成工業株式会社製;エポキシ化合物
・6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、東京化成工業株式会社製;硬化剤
・可塑剤:パーフルオロポリオキセタン、「デムナム(登録商標) S-65」、ダイキン工業株式会社製
・界面活性剤:フッ素系界面活性剤、「サーフロン(登録商標) S-658」、AGCセイミケミカル株式会社製
・FP-110:ホスファゼン系難燃剤、「ラビトル(登録商標) FP-110」、株式会社伏見製薬所製
・硬化触媒:トリエチルメチルアンモニウム2-エチルヘキサン酸塩、「U-CAT(登録商標) 18X」、サンアプロ株式会社製
・含フッ素アルコール:1H,1H,7H-ドデカフルオロ-1-ヘプタノール、東京化成工業株式会社製
・トルエン:モレキュラーシーブ4Aで脱水処理したもの
・HDI:ヘキサメチレンジイソシアネート、「デスモジュール(登録商標) H」、住化コベストロウレタン株式会社製
・DBU:1,8-ジアザビクシロ[5.4.0]ウンデンセン-7、「DBU(登録商標)」、サンアプロ株式会社製
・マグネシア粒子:球形マグネシア、平均粒径20μm
・アルミナ粒子(1):球形アルミナ、平均粒径2.7μm
・アルミナ粒子(2):球形アルミナ、平均粒径0.5μm
・アセチレンブラック:カーボンブラック、平均粒径48nm
・IPA:イソプロパノール
・ホスファロール:フルオロカーボン変性環状ホスファゼン化合物、「ホスファロール(登録商標)」、株式会社MORESCO製
・マグネシア微粒子:マグネシアナノ粒子、一次粒子径30nm(カタログ値)、関東電化工業株式会社製
・MEK:メチルエチルケトン
[Raw materials used]
The raw materials used for manufacturing the heat dissipation sheets of Examples and Comparative Examples are shown below.
・Fluororubber (1): “Daiel (registered trademark) G-755LBP”, manufactured by Daikin Industries, Ltd. ・Fluororubber (2): “Daiel (registered trademark) G-101”, manufactured by Daikin Industries, Ltd. ・MIBK: 4 -Methyl-2-pentanone (methyl isobutyl ketone)
・EP: 2,2'-(2,2,3,3,4,4,5,5-octafluorohexane-1,6-diyl)bis(oxirane), manufactured by Tokyo Chemical Industry Co., Ltd.; Epoxy compound. 6FDA: 4,4'-(hexafluoroisopropylidene) diphthalic anhydride, manufactured by Tokyo Chemical Industry Co., Ltd.; Curing agent/plasticizer: Perfluoropolyoxetane, "Demnum (registered trademark) S-65", Daikin Industries, Ltd. Company-made surfactant: Fluorine surfactant, "Surflon (registered trademark) S-658", manufactured by AGC Seimi Chemical Co., Ltd., FP-110: Phosphazene flame retardant, "Rabitor (registered trademark) FP-110" , manufactured by Fushimi Pharmaceutical Co., Ltd. Curing catalyst: triethylmethylammonium 2-ethylhexanoate, "U-CAT (registered trademark) 18X", manufactured by San-Apro Co., Ltd. Fluorine-containing alcohol: 1H,1H,7H-dodecafluoro- 1-Heptanol, manufactured by Tokyo Chemical Industry Co., Ltd. ・Toluene: Dehydrated with molecular sieve 4A ・HDI: Hexamethylene diisocyanate, "Desmodur (registered trademark) H", manufactured by Sumika Covestro Urethane Co., Ltd. ・DBU: 1 , 8-diazabixilo [5.4.0] Undensen-7, "DBU (registered trademark)", manufactured by Sun-Apro Co., Ltd. Magnesia particles: spherical magnesia, average particle size 20 μm
・Alumina particles (1): Spherical alumina, average particle size 2.7 μm
・Alumina particles (2): Spherical alumina, average particle size 0.5 μm
・Acetylene black: carbon black, average particle size 48 nm
・IPA: Isopropanol ・Phosphalol: Fluorocarbon-modified cyclic phosphazene compound, "Phospharoll (registered trademark)", manufactured by MORESCO Co., Ltd. ・Magnesia fine particles: Magnesia nanoparticles, primary particle size 30 nm (catalog value), manufactured by Kanto Denka Kogyo Co., Ltd. ・MEK : Methyl ethyl ketone
[実施例1]
(フッ素ゴム組成物溶液(A)の調製)
 撹拌羽根を備えた500mLセパラブルフラスコに、1cm角に裁断したフッ素ゴム(1)60.0g、及びMIBK 140gを入れて、50rpmで5分間撹拌後、回転数を150rpmに上昇し、フッ素ゴム(1)溶液(濃度30.0質量%)200gを調製した。
 撹拌羽根を備えた500mLセパラブルフラスコに、フッ素ゴム(2)60.0g、及びMIBK 140gを入れて、50rpmで5分間撹拌後、回転数を150rpmに上昇し、フッ素ゴム(2)溶液(濃度30.0質量%)200gを調製した。
 50mLスクリュー管瓶に、EP 1.17g、6FDA 0.83g、MIBK 5.20g、及びアセトン12.8gを入れて、ボルテックスミキサーにて撹拌混合し、エポキシ化合物含有液を調製した。
 50mLスクリュー管瓶に、フッ素ゴム(1)溶液3.41g、フッ素ゴム(2)溶液3.63g、エポキシ化合物含有液1.63g、可塑剤0.14g、界面活性剤0.04g、FP-110 0.14g、硬化触媒のMIBK溶液(濃度5.0質量%)0.23gを入れて、ボルテックスミキサーにて撹拌混合後、自転公転ミキサーにて2000rpmで2分間撹拌混合し、フッ素ゴム組成物溶液(A)を得た。
[Example 1]
(Preparation of fluororubber composition solution (A))
In a 500 mL separable flask equipped with a stirring blade, 60.0 g of fluororubber (1) cut into 1 cm squares and 140 g of MIBK were placed, and after stirring at 50 rpm for 5 minutes, the rotation speed was increased to 150 rpm, and the fluororubber ( 1) 200 g of solution (concentration 30.0% by mass) was prepared.
60.0 g of fluororubber (2) and 140 g of MIBK were placed in a 500 mL separable flask equipped with a stirring blade, and after stirring at 50 rpm for 5 minutes, the rotation speed was increased to 150 rpm, and the fluororubber (2) solution (concentration 30.0% by mass) 200g was prepared.
1.17 g of EP, 0.83 g of 6FDA, 5.20 g of MIBK, and 12.8 g of acetone were placed in a 50 mL screw tube bottle and mixed with stirring using a vortex mixer to prepare an epoxy compound-containing liquid.
In a 50 mL screw tube bottle, 3.41 g of fluororubber (1) solution, 3.63 g of fluororubber (2) solution, 1.63 g of epoxy compound-containing liquid, 0.14 g of plasticizer, 0.04 g of surfactant, FP-110. Add 0.14g of MIBK solution (concentration 5.0% by mass) of curing catalyst and mix with a vortex mixer, then stir and mix with an autorotation mixer at 2000 rpm for 2 minutes to obtain a fluororubber composition solution. (A) was obtained.
(表面処理フィラー(B)の調製)
 撹拌羽根、ジムロート冷却管、及び窒素導入管を備えた300mLセパラブルフラスコに、含フッ素アルコール20.0g、及びトルエン35.0gを入れ、流量200mL/分でフラスコ内を窒素パージし、50rpmで5分間撹拌した。このフラスコ内に、HDI 5.05g(NCOインデックス 100)を投入し、70℃のオイルバスで加熱して、30rpmで予備混合した後、回転数を150rpmに上昇した。5分間撹拌後、DBU 0.02gを添加し、3時間反応させた。生成物について、赤外線吸収(IR)スペクトル測定にて、イソシアネート基由来の波数2270cm-1のシグナルの消失を確認した。
 生成物を室温(25℃)まで冷却し、ガラス規格瓶に移して、5℃で1晩静置した。沈殿の上澄み液をスポイトで除去し、桐山ロート(桐山ロート用ろ紙No.5C)にてろ過し、ろ物をトルエンで洗浄して、再びろ過した。ろ物を回収し、1時間風乾後、3時間真空乾燥し、フィラー用分散剤を得た。
(Preparation of surface treated filler (B))
20.0 g of fluorine-containing alcohol and 35.0 g of toluene were placed in a 300 mL separable flask equipped with a stirring blade, a Dimroth cooling tube, and a nitrogen introduction tube, and the inside of the flask was purged with nitrogen at a flow rate of 200 mL/min. Stir for a minute. 5.05 g of HDI (NCO index 100) was placed in this flask, heated in a 70° C. oil bath, premixed at 30 rpm, and then the rotation speed was increased to 150 rpm. After stirring for 5 minutes, 0.02 g of DBU was added and reacted for 3 hours. Regarding the product, disappearance of a signal at a wave number of 2270 cm −1 derived from isocyanate groups was confirmed by infrared absorption (IR) spectrum measurement.
The product was cooled to room temperature (25°C), transferred to a sized glass bottle, and left at 5°C overnight. The supernatant liquid of the precipitate was removed with a dropper, filtered through a Kiriyama funnel (filter paper No. 5C for Kiriyama funnel), the filtered material was washed with toluene, and filtered again. The filtrate was collected, air-dried for 1 hour, and then vacuum-dried for 3 hours to obtain a filler dispersant.
 100mLポリエチレン製広口瓶に、マグネシア粒子57.06g、アルミナ粒子(1)29.69g、アルミナ粒子(2)13.25g、及びアセチレンブラック0.1gを入れた。これに、フィラー用分散剤2.28gをIPA 33gに60℃で分散させたものを添加し、ボルテックスミキサーにて撹拌混合後、自転公転ミキサーにて1000rpmで1分間撹拌混合し、次いで超音波照射して30分間分散処理し、再び自転公転ミキサーにて1000rpmで1分間撹拌混合した。
 混合物を60℃で温風乾燥し、さらに70℃で3時間真空乾燥して溶媒を除去し、表面処理フィラー(B)を調製した。
57.06 g of magnesia particles, 29.69 g of alumina particles (1), 13.25 g of alumina particles (2), and 0.1 g of acetylene black were placed in a 100 mL wide-mouthed polyethylene bottle. To this was added 2.28 g of filler dispersant dispersed in 33 g of IPA at 60°C, and after stirring and mixing with a vortex mixer, the mixture was stirred and mixed with an autorotation mixer at 1000 rpm for 1 minute, and then irradiated with ultrasonic waves. The mixture was dispersed for 30 minutes, and stirred and mixed again for 1 minute at 1000 rpm using an autorotation/revolution mixer.
The mixture was dried with warm air at 60°C and further vacuum dried at 70°C for 3 hours to remove the solvent, thereby preparing a surface-treated filler (B).
(熱伝導性ゴム組成物の製造)
 100mLポリエチレン製広口瓶に、ホスファロール0.023g、及びフッ素ゴム組成物溶液(A)5.05gの混合物(放熱用ゴム組成物)、並びにマグネシア微粒子のMEK溶液(濃度30.0質量%)4.00gを入れて、ボルテックスミキサーにて撹拌混合後、自転公転ミキサーにて2000rpmで2分間撹拌した。これに、表面処理フィラー(B)21.3gを加え、ボルテックスミキサーにて撹拌混合後、自転公転ミキサーにて2000rpmで2分間撹拌混合し、次いで超音波照射して30分間分散処理し、再び自転公転ミキサーにて2000rpmで2分間撹拌混合した。
 混合物をフッ素樹脂加工トレーに取り出し、70℃のホットプレートにて30分間加熱した後、70℃で30分間真空乾燥して溶媒を除去し、熱伝導性ゴム組成物を得た。
(Manufacture of thermally conductive rubber composition)
In a 100 mL polyethylene wide-mouth bottle, a mixture of 0.023 g of phospharoll, 5.05 g of fluororubber composition solution (A) (rubber composition for heat dissipation), and an MEK solution of magnesia fine particles (concentration 30.0% by mass)4. After stirring and mixing using a vortex mixer, the mixture was stirred for 2 minutes at 2000 rpm using an autorotation/revolution mixer. To this, 21.3 g of surface treatment filler (B) was added, stirred and mixed using a vortex mixer, stirred and mixed for 2 minutes at 2000 rpm using an autorotation/revolution mixer, then subjected to ultrasonic irradiation for dispersion treatment for 30 minutes, and then rotated again. The mixture was stirred and mixed for 2 minutes at 2000 rpm using a revolving mixer.
The mixture was taken out onto a fluororesin processing tray, heated on a hot plate at 70°C for 30 minutes, and then vacuum-dried at 70°C for 30 minutes to remove the solvent, thereby obtaining a thermally conductive rubber composition.
(放熱シートの製造)
 上記により得られた熱伝導性ゴム組成物を細かくほぐし、3本ロールミル(120℃、ロールクリアランス:前50μm、後30μm、5回)にて混練した。
 混練物20gをフッ素樹脂加工シート(厚さ0.3mm)の間に挟み込み、90℃の熱平プレス機にて、加圧1回毎に折り畳み、5MPaで5回、及び3MPaで1回の加圧を行い、硬化物前駆体を得た。
 硬化物前駆体からフッ素樹脂加工シートを剥ぎ取り、40℃のシーティングロールで圧延した後、再びフッ素樹脂加工シートの間に挟み込み、120℃熱ロールプレス機にて圧延した。次いで、175℃の熱平プレス機にて、3.5MPaで15分、及び0.5MPaで15分、計30分間熱プレスし、その後、225℃の乾燥機にて30分間加熱し、放熱シート(厚さ250μm、径約110mm)を得た。
(Manufacture of heat dissipation sheet)
The thermally conductive rubber composition obtained above was finely loosened and kneaded in a three-roll mill (120° C., roll clearance: 50 μm before, 30 μm after, 5 times).
20g of the kneaded material was sandwiched between fluororesin processed sheets (thickness 0.3mm), folded after each pressurization in a hot flat press at 90°C, and pressurized 5 times at 5MPa and once at 3MPa. Pressure was applied to obtain a cured product precursor.
The fluororesin processed sheet was peeled off from the cured product precursor and rolled with sheeting rolls at 40°C, then sandwiched again between the fluororesin processed sheets and rolled with a 120°C hot roll press. Next, in a hot flat press at 175°C, heat pressing was carried out for 15 minutes at 3.5 MPa and 15 minutes at 0.5 MPa for a total of 30 minutes, and then heated for 30 minutes in a dryer at 225°C to form a heat dissipating sheet. (thickness: 250 μm, diameter: approximately 110 mm) was obtained.
[実施例2~4及び比較例1~3]
 実施例1において、下記表1に示す原料配合に変更し、それ以外は実施例1と同様にして、各放熱シートを得た。
[Examples 2 to 4 and Comparative Examples 1 to 3]
In Example 1, each heat dissipation sheet was obtained in the same manner as in Example 1 except that the raw material composition was changed to the one shown in Table 1 below.
[測定評価]
 各放熱シートについて、以下の各種測定評価を行った。これらの測定評価結果を表1に示す。
[Measurement evaluation]
The following various measurements and evaluations were performed for each heat dissipation sheet. The results of these measurements are shown in Table 1.
(タック性)
 温度25℃にて、固定したアルミニウム製平板上に、放熱シートを2cm四方に裁断した試料を載せ、その上に15mm角のアルミニウム製ヒートシンク(側縁部に針金で持ち手を付けたもの)を載せた。メカニカルフォースゲージ(「FB-50N」、株式会社イマダ製)を用いて、ヒートシンクの上から荷重50Nで押し付けて1分間保持した。その後、デジタルフォースゲージ(「ZP-20N」、株式会社イマダ製)に取り付けたヒートシンクの持ち手を300mm/sで引き上げ、ヒートシンクを引き離すのに要する力を測定し、これをタック性とした。
 タック性が3.5N以上であれば、タック性が良好であると言える。
(Tackiness)
At a temperature of 25°C, a sample of heat dissipation sheet cut into 2cm squares was placed on a fixed aluminum flat plate, and a 15mm square aluminum heat sink (with a wire handle attached to the side edge) was placed on top of it. I posted it. Using a mechanical force gauge ("FB-50N", manufactured by Imada Co., Ltd.), a load of 50 N was pressed onto the heat sink and held for 1 minute. Thereafter, the handle of the heat sink attached to a digital force gauge (ZP-20N, manufactured by Imada Co., Ltd.) was pulled up at 300 mm/s, and the force required to separate the heat sink was measured, and this was defined as tackiness.
If the tackiness is 3.5N or more, it can be said that the tackiness is good.
(熱膨張係数)
 熱機械的分析装置(「TMA/SS6100」、株式会社日立ハイテクサイエンス製 ;周波数0.1Hz、振幅1.0mN、引張荷重2mN(一定)、温度-40~225℃、昇温レート10℃/分、試料サイズ4mm×20mm)にて、熱膨張係数を測定した。
 線熱膨張係数が40×10-6/K以下であれば、熱膨張係数が十分に低いと言える。
(coefficient of thermal expansion)
Thermomechanical analyzer ("TMA/SS6100", manufactured by Hitachi High-Tech Science Co., Ltd.; frequency 0.1 Hz, amplitude 1.0 mN, tensile load 2 mN (constant), temperature -40 to 225 °C, heating rate 10 °C/min , sample size 4 mm x 20 mm), the coefficient of thermal expansion was measured.
If the linear thermal expansion coefficient is 40×10 −6 /K or less, it can be said that the thermal expansion coefficient is sufficiently low.
(熱伝導率)
 熱伝導率は、密度、比熱及び熱拡散率を測定し、これらの積の算出値として求めた。
 密度は、3cm四方に裁断した試料について、電子はかり式比重計(「DME-220」、新光電子株式会社製)にて測定した。
 比熱は、示差走査熱量計(「DSC7020」、株式会社日立ハイテクサイエンス製;標準物質:α-アルミナ)にて測定した。
 熱拡散率は、熱拡散率測定装置(「ai-Phase mobile M3 type1」、株式会社アイフェイズ製)にて測定した。
 また、接触熱抵抗を考慮した熱伝導率として、試料を3枚重ねて測定した熱拡散率に基づく熱伝導率(3層)も求めた。この場合の熱拡散率は、レーザーフラッシュ法(測定装置:「LFA447NanoFlash(登録商標)」、ネッチ社製;測定温度25.0±1.0℃、大気雰囲気)による測定値を用いた。
(Thermal conductivity)
Thermal conductivity was determined by measuring the density, specific heat, and thermal diffusivity, and calculating the product of these values.
The density was measured using an electronic scale type hydrometer (“DME-220”, manufactured by Shinko Denshi Co., Ltd.) on a sample cut into 3 cm square pieces.
The specific heat was measured with a differential scanning calorimeter (“DSC7020”, manufactured by Hitachi High-Tech Science Co., Ltd.; standard material: α-alumina).
The thermal diffusivity was measured with a thermal diffusivity measuring device (“ai-Phase mobile M3 type 1”, manufactured by i-Phase Co., Ltd.).
In addition, the thermal conductivity (three layers) based on the thermal diffusivity measured by stacking three samples was also determined as the thermal conductivity considering the contact thermal resistance. For the thermal diffusivity in this case, a value measured by a laser flash method (measuring device: "LFA447NanoFlash (registered trademark)", manufactured by Netch Corporation; measurement temperature: 25.0±1.0° C., atmospheric atmosphere) was used.
(接触熱抵抗)
 放熱シートの作製において、175℃で熱プレス後、225℃で加熱する前のもの(試料a)を4cm四方に裁断した。試料a及び銅板カートリッジ(4cm四方、厚さ1cm)2枚を、70℃で30分間保温後、試料aを銅板カートリッジの間に挟み、銅板カートリッジの上から、メカニカルフォースゲージ(「FB-50N」、株式会社イマダ製)にて、50Nで押し付けて1分間保持した。その後、225℃で30分間加熱して、銅板付き試料を作製した。
 各銅板カートリッジに取り付けた半導体式熱流センサによる放熱量の測定値から、試料と銅板カートリッジとの接触熱抵抗を求めた。
 接触熱抵抗が1K・cm/W以下であれば、十分に低いと言える。
(contact thermal resistance)
In producing the heat dissipation sheet, a sheet (sample a) that had been hot pressed at 175°C but before heating at 225°C was cut into 4 cm square pieces. After incubating sample a and two copper plate cartridges (4 cm square, 1 cm thick) at 70°C for 30 minutes, sample a was sandwiched between the copper plate cartridges, and a mechanical force gauge ("FB-50N") was inserted from above the copper plate cartridge. (manufactured by Imada Co., Ltd.), and was pressed at 50 N and held for 1 minute. Thereafter, it was heated at 225° C. for 30 minutes to produce a sample with a copper plate.
The contact thermal resistance between the sample and the copper plate cartridge was determined from the heat radiation amount measured by the semiconductor heat flow sensor attached to each copper plate cartridge.
If the contact thermal resistance is 1 K·cm 2 /W or less, it can be said to be sufficiently low.
(耐熱老化性)
 試料aを12.7mm四方に裁断して3枚重ねて、ジュラルミン板(12.7mm四方、厚さ1.5mm)2枚で挟んでネジ止めして固定し、225℃で30分間加熱したジュラルミン板付き試料について、定温乾燥機(「OFW-300V」、アズワン株式会社製;225℃、1000時間)にて耐熱老化試験を行い、試験後の熱伝導率保持率に基づいて耐熱老化性を評価した。
 熱伝導率保持率は、上記にて測定した熱伝導率(3層)に対する試験後の熱伝導率の比率とした。試験後の熱伝導率は、試験後の試料について、上記と同様にして測定した密度及び比熱と、レーザーフラッシュ法で測定した熱拡散率の測定値の積として算出した。
 熱伝導率保持率が90%以上の場合をA、90%未満の場合をBとして評価した。評価Aの場合、耐熱老化性に優れていると言える。
 なお、熱伝導率保持率が100%以上となる場合がある理由は明らかではないが、試験を経ることにより、放熱シートとジュラルミン板との馴染みがよくなったためであると考えられる。
(Heat aging resistance)
Sample A was cut into 12.7 mm square pieces, stacked in three sheets, sandwiched between two duralumin plates (12.7 mm square, 1.5 mm thick), fixed with screws, and heated at 225°C for 30 minutes. A heat aging test was performed on the plated sample in a constant temperature dryer (OFW-300V, manufactured by As One Corporation; 225°C, 1000 hours), and the heat aging resistance was evaluated based on the thermal conductivity retention rate after the test. did.
The thermal conductivity retention rate was defined as the ratio of the thermal conductivity after the test to the thermal conductivity (three layers) measured above. The thermal conductivity after the test was calculated as the product of the density and specific heat measured in the same manner as above for the sample after the test, and the measured value of the thermal diffusivity measured by the laser flash method.
A case where the thermal conductivity retention rate was 90% or more was evaluated as A, and a case where it was less than 90% was evaluated as B. In the case of evaluation A, it can be said that the heat aging resistance is excellent.
Although the reason why the thermal conductivity retention rate is sometimes 100% or more is not clear, it is thought that it is because the heat dissipation sheet and the duralumin board became more compatible with each other through the test.
(耐湿熱性)
 耐熱老化性試験と同様のジュラルミン板付き試料について、恒温恒湿器(「PL-3KP」、エスペック株式会社製;85℃、85%RH、1000時間)にて、耐湿熱試験を行い、試験後の熱伝導率保持率に基づいて、耐湿熱性を評価した。熱伝導率保持率は、耐熱老化性の評価の場合と同様にして求め、評価も同様にして行った。
(Moisture heat resistance)
A sample with a duralumin board similar to the heat aging resistance test was subjected to a humidity and heat resistance test in a constant temperature and humidity chamber ("PL-3KP", manufactured by ESPEC Co., Ltd.; 85°C, 85% RH, 1000 hours), and after the test Moisture heat resistance was evaluated based on the thermal conductivity retention rate. Thermal conductivity retention was determined in the same manner as in the evaluation of heat aging resistance, and the evaluation was also performed in the same manner.
(耐ヒートサイクル性)
 耐熱老化性試験と同様のジュラルミン板付き試料について、冷熱サイクル試験機(「TSA-71S」、エスペック株式会社製;1サイクル:-40~125℃、1時間、1000サイクル)にて、耐ヒートサイクル試験を行い、試験後の熱伝導率保持率に基づいて、耐湿熱性を評価した。熱伝導率保持率は、耐熱老化性の評価の場合と同様にして求め、評価も同様にして行った。
(Heat cycle resistance)
The heat cycle resistance test was performed using a heat cycle tester (``TSA-71S'', manufactured by ESPEC Co., Ltd.; 1 cycle: -40 to 125°C, 1 hour, 1000 cycles) for the same sample with a duralumin plate as in the heat aging resistance test. A test was conducted, and the heat and humidity resistance was evaluated based on the thermal conductivity retention rate after the test. Thermal conductivity retention was determined in the same manner as in the evaluation of heat aging resistance, and the evaluation was also performed in the same manner.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示したように、本発明の放熱用ゴム組成物を用いて得られた放熱シート(実施例1~4)は、熱膨張係数が低く、良好なタック性を有し、接触熱抵抗が低減されたものであり、かつ、耐熱性(耐熱老化性、耐湿熱性、耐ヒートサイクル性)に優れていることが認められた。 As shown in Table 1, the heat dissipation sheets (Examples 1 to 4) obtained using the heat dissipation rubber composition of the present invention have a low coefficient of thermal expansion, good tackiness, and contact thermal resistance. was found to have been reduced, and was found to be excellent in heat resistance (heat aging resistance, heat and humidity resistance, and heat cycle resistance).

Claims (10)

  1.  フッ素ゴム及び環状ホスファゼン化合物を含み、
     前記環状ホスファゼン化合物は、前記フッ素ゴム100質量部に対して1~20質量部であり、フルオロカーボン変性環状ホスファゼン化合物を含む、放熱用ゴム組成物。
    Contains fluororubber and cyclic phosphazene compounds,
    The cyclic phosphazene compound is present in an amount of 1 to 20 parts by mass based on 100 parts by mass of the fluororubber, and the rubber composition for heat dissipation contains the fluorocarbon-modified cyclic phosphazene compound.
  2.  前記環状ホスファゼン化合物は、前記フルオロカーボン変性環状ホスファゼン化合物以外の環状ホスファゼン化合物をさらに含む、請求項1に記載の放熱用ゴム組成物。 The heat dissipating rubber composition according to claim 1, wherein the cyclic phosphazene compound further contains a cyclic phosphazene compound other than the fluorocarbon-modified cyclic phosphazene compound.
  3.  エポキシ化合物をさらに含む、請求項1又は2に記載の放熱用ゴム組成物。 The heat dissipating rubber composition according to claim 1 or 2, further comprising an epoxy compound.
  4.  前記エポキシ化合物は、含フッ素エポキシ化合物を含む、請求項3に記載の放熱用ゴム組成物。 The heat dissipating rubber composition according to claim 3, wherein the epoxy compound includes a fluorine-containing epoxy compound.
  5.  前記エポキシ化合物は、前記フッ素ゴム100質量部に対して1~10質量部である、請求項3又は4に記載の放熱用ゴム組成物。 The heat dissipating rubber composition according to claim 3 or 4, wherein the epoxy compound is present in an amount of 1 to 10 parts by mass based on 100 parts by mass of the fluororubber.
  6.  請求項1~5のいずれか1項に記載の放熱用ゴム組成物、及び熱伝導フィラーを含む、熱伝導性ゴム組成物。 A thermally conductive rubber composition comprising the heat dissipating rubber composition according to any one of claims 1 to 5 and a thermally conductive filler.
  7.  請求項6に記載の熱伝導性ゴム組成物からなる放熱材。 A heat dissipating material comprising the thermally conductive rubber composition according to claim 6.
  8.  放熱シート形成材料、ポッティング材又は封止材である、請求項7に記載の放熱材。 The heat dissipation material according to claim 7, which is a heat dissipation sheet forming material, a potting material, or a sealing material.
  9.  請求項6に記載の熱伝導性ゴム組成物を硬化させてなる硬化物。 A cured product obtained by curing the thermally conductive rubber composition according to claim 6.
  10.  放熱シートである、請求項9に記載の硬化物。 The cured product according to claim 9, which is a heat dissipation sheet.
PCT/JP2023/005494 2022-03-31 2023-02-16 Heat-dissipating rubber composition, thermally conductive rubber composition, heat-dissipating material, and cured product WO2023188952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-059612 2022-03-31
JP2022059612A JP2023150484A (en) 2022-03-31 2022-03-31 Heat-dissipating rubber composition, thermally conductive rubber composition, heat-dissipating material, and cured product

Publications (1)

Publication Number Publication Date
WO2023188952A1 true WO2023188952A1 (en) 2023-10-05

Family

ID=88200305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005494 WO2023188952A1 (en) 2022-03-31 2023-02-16 Heat-dissipating rubber composition, thermally conductive rubber composition, heat-dissipating material, and cured product

Country Status (3)

Country Link
JP (1) JP2023150484A (en)
TW (1) TW202403008A (en)
WO (1) WO2023188952A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021630A1 (en) * 1999-09-21 2001-03-29 Matsumura Oil Research Corp. Phosphazene compounds and lubricants containing the same
JP2010232535A (en) * 2009-03-27 2010-10-14 Polymatech Co Ltd Heat-resistant heat dissipation sheet
JP2019085559A (en) * 2017-11-02 2019-06-06 ダイキン工業株式会社 Fluorine-containing elastomer composition for heat radiation material and sheet
JP2019157065A (en) * 2018-03-16 2019-09-19 ダイキン工業株式会社 Fluorine-containing elastomer composition for heat release material and sheet
WO2021085356A1 (en) * 2019-11-01 2021-05-06 株式会社Moresco Phosphazene compound, lubricant, and connector contact member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021630A1 (en) * 1999-09-21 2001-03-29 Matsumura Oil Research Corp. Phosphazene compounds and lubricants containing the same
JP2010232535A (en) * 2009-03-27 2010-10-14 Polymatech Co Ltd Heat-resistant heat dissipation sheet
JP2019085559A (en) * 2017-11-02 2019-06-06 ダイキン工業株式会社 Fluorine-containing elastomer composition for heat radiation material and sheet
JP2019157065A (en) * 2018-03-16 2019-09-19 ダイキン工業株式会社 Fluorine-containing elastomer composition for heat release material and sheet
WO2021085356A1 (en) * 2019-11-01 2021-05-06 株式会社Moresco Phosphazene compound, lubricant, and connector contact member

Also Published As

Publication number Publication date
JP2023150484A (en) 2023-10-16
TW202403008A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6947032B2 (en) Resin composition, sheet using it, laminate, power semiconductor device, plasma processing device and method for manufacturing semiconductor
TWI821171B (en) Curable resin composition, adhesive, imine oligomer, imine oligomer composition, and hardener
JP6128256B2 (en) Aluminum nitride particles, epoxy resin composition, semi-cured resin composition, cured resin composition, resin sheet, and exothermic electronic component
JP5344880B2 (en) Adhesive resin composition and laminate comprising the same
JP6854505B2 (en) Resin composition, thermosetting film using it
CN1572837A (en) High temperature polymeric materials containing corona resistant composite filler, and preparing methods thereof
EP2647685A1 (en) Adhesive composition, adhesive sheet, and semiconductor device using the adhesive composition or the adhesive sheet
JP6801659B2 (en) Epoxy resin composition, film epoxy resin composition and electronic device
EP3761355B1 (en) Insulating heat dissipation sheet
WO2016190260A1 (en) Epoxy resin composition, thermoconductive material precursor, b-stage sheet, prepreg, heat-dissipating material, laminated plate, metal substrate, and printed circuit board
KR20230126703A (en) Aqueous dispersion and its preparation method
JP6294927B1 (en) Resin composition, heat conductive soft sheet using the same, and heat dissipation structure
TWI825365B (en) Resin compositions, hardened materials, sealing films and sealing structures
JP5803348B2 (en) Polymer nanocomposite resin composition
CN110894339A (en) Thermosetting resin composition, thermosetting resin film, and semiconductor device
WO2023188952A1 (en) Heat-dissipating rubber composition, thermally conductive rubber composition, heat-dissipating material, and cured product
TW202317706A (en) Resin composition, cured product thereof, laminate using same, electrostatic chuck, and plasma processing device
JP5931700B2 (en) Protective film for semiconductor wafer and method for manufacturing semiconductor chip
JP2015193703A (en) Resin composition containing highly thermally-conductive ceramic powder
EP4299649A1 (en) Polyimide resin composition and metal-based substrate
JP7308426B1 (en) Boron nitride-coated thermally conductive particles, method for producing the same, thermally conductive resin composition, and thermally conductive compact
JP2019204865A (en) Method for manufacturing heat dissipation structure
TW202302692A (en) Curable resin composition, cured product, adhesive agent, and adhesive film
JP6706818B2 (en) Semiconductor device
JP2015137287A (en) Protective film for semiconductor wafer and method for producing semiconductor chip with protective film for semiconductor wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778982

Country of ref document: EP

Kind code of ref document: A1