JP2015067736A - Method for thermoconductive rubber sheet and thermoconductive rubber sheet - Google Patents

Method for thermoconductive rubber sheet and thermoconductive rubber sheet Download PDF

Info

Publication number
JP2015067736A
JP2015067736A JP2013203936A JP2013203936A JP2015067736A JP 2015067736 A JP2015067736 A JP 2015067736A JP 2013203936 A JP2013203936 A JP 2013203936A JP 2013203936 A JP2013203936 A JP 2013203936A JP 2015067736 A JP2015067736 A JP 2015067736A
Authority
JP
Japan
Prior art keywords
fluorine
sheet
rubber sheet
heat conductive
conductive rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013203936A
Other languages
Japanese (ja)
Other versions
JP6113042B2 (en
Inventor
博久 今田
Hirohisa Imada
博久 今田
亮輔 西
Ryosuke Nishi
亮輔 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Original Assignee
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd, Nihon Valqua Kogyo KK filed Critical Nippon Valqua Industries Ltd
Priority to JP2013203936A priority Critical patent/JP6113042B2/en
Publication of JP2015067736A publication Critical patent/JP2015067736A/en
Application granted granted Critical
Publication of JP6113042B2 publication Critical patent/JP6113042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a thermoconductive rubber sheet difficult to be fixed to a heat generator and a radiator and capable of comparatively easily being peeled after use and to provide a thermoconductive rubber sheet produced by the production method.SOLUTION: The method for producing a thermoconductive rubber sheet comprises: a first crosslinking step of molding a thermoconductive resin composition containing a crosslinkable component and a thermoconductive filler under heating to produce a sheet-like molded product having at least partially crosslinked crosslinkable component; and a surface treatment step of contacting at least a part of the surface of the sheet-like molded product with a fluorine-based silane coupling agent. The thermoconductive rubber sheet is produced by the production method.

Description

本発明は、発熱体と放熱体との間に介在させて、発熱体の熱を効率的に放熱体に伝導させるためのシート等として用いられる熱伝導性ゴムシートを製造するための方法、及び当該製造方法によって得られる熱伝導性ゴムシートに関する。   The present invention is a method for producing a thermally conductive rubber sheet used as a sheet or the like that is interposed between a heating element and a radiator and efficiently conducts heat of the heating element to the radiator, and The present invention relates to a thermally conductive rubber sheet obtained by the production method.

各種装置や電子機器の内部で発生する熱を外部に効率的に放出するための手段として、電子部品等の発熱体と放熱体(放熱用部材あるいは冷却用部材)との間に熱伝導性ゴムシートを配置することが従来行われている。熱伝導性能の良好な熱伝導性ゴムシートを介在させることにより、発熱体から放熱体への熱伝導効率を改善することができる。   Thermally conductive rubber between a heat generating body such as an electronic component and a heat radiating body (a heat radiating member or a cooling member) as a means for efficiently releasing heat generated inside various devices and electronic devices to the outside Conventionally, a sheet is arranged. By interposing a heat conductive rubber sheet having a good heat conduction performance, the heat conduction efficiency from the heating element to the heat radiating body can be improved.

現在多く市場流通しているケイ素を主成分とするシリコーンゴムからなる熱伝導性シートであるが、近年では、フッ素ゴム系の熱伝導性シートも提案されている(例えば特許文献1)。   Although it is a heat conductive sheet made of silicone rubber containing silicon as a main component, which is currently on the market, a fluororubber-based heat conductive sheet has also been proposed in recent years (for example, Patent Document 1).

特開2010−232535号公報JP 2010-232535 A

熱伝導性ゴムシートには、良好な熱伝導効率が求められることは勿論であるが、使用時に接して配置される発熱体や放熱体に強く固着せず、使用後においても比較的容易に剥離できることが求められる。とりわけ、半導体製造装置に熱伝導性ゴムシートを適用する場合においては、僅かな汚染物質の混入でも、半導体デバイスの歩留まりや動作信頼性に大きな影響を与え得るため、熱伝導性ゴムシートが固着してしまったときには、使用後に固着した熱伝導性ゴムシートを削り取ったり、固着表面を研磨したりして、固着成分を完全に洗浄除去するための作業に多大な労力とコストを費やす必要がある。   The heat conductive rubber sheet is required to have good heat conduction efficiency, but it does not adhere strongly to the heating element and heat radiator that are in contact with each other during use, and it is relatively easy to peel off even after use. We need to be able to do it. In particular, in the case of applying a heat conductive rubber sheet to a semiconductor manufacturing apparatus, even if a slight amount of contaminants are mixed, the yield and operation reliability of the semiconductor device can be greatly affected. If this happens, it is necessary to spend a great deal of labor and cost on the work for completely washing and removing the fixed components by scraping off the thermally conductive rubber sheet fixed after use or polishing the fixed surface.

本発明の目的は、発熱体や放熱体に固着しにくく、使用後において比較的容易に剥離することができる熱伝導性ゴムシートを製造するための方法、及び当該製造方法によって得られる熱伝導性ゴムシートを提供することにある。   An object of the present invention is to provide a method for producing a heat conductive rubber sheet that is difficult to adhere to a heating element and a heat radiator and can be peeled relatively easily after use, and heat conductivity obtained by the production method. It is to provide a rubber sheet.

本発明は、以下の熱伝導性ゴムシートの製造方法及び熱伝導性ゴムシートを提供する。
〔1〕 架橋性成分及び熱伝導性フィラーを含有する熱伝導性樹脂組成物を加熱下に成型して、前記架橋性成分が少なくとも部分的に架橋されたシート状成型物を得る1次架橋工程と、
シート状成型物の表面の少なくとも一部をフッ素系シランカップリング剤に接触させる表面処理工程と、
を含む、熱伝導性ゴムシートの製造方法。
The present invention provides the following method for producing a heat conductive rubber sheet and a heat conductive rubber sheet.
[1] A primary crosslinking step of molding a thermally conductive resin composition containing a crosslinking component and a thermally conductive filler under heating to obtain a sheet-like molded product in which the crosslinking component is at least partially crosslinked. When,
A surface treatment step of contacting at least a part of the surface of the sheet-like molded product with a fluorine-based silane coupling agent;
The manufacturing method of the heat conductive rubber sheet containing this.

〔2〕 加熱処理により、前記シート状成型物中の前記架橋性成分の架橋反応を促進させる2次架橋工程をさらに含む、〔1〕に記載の熱伝導性ゴムシートの製造方法。   [2] The method for producing a thermally conductive rubber sheet according to [1], further comprising a secondary crosslinking step of accelerating a crosslinking reaction of the crosslinking component in the sheet-like molded product by heat treatment.

〔3〕 前記1次架橋工程と前記2次架橋工程との間に前記表面処理工程を行う、〔2〕に記載の熱伝導性ゴムシートの製造方法。   [3] The method for producing a thermally conductive rubber sheet according to [2], wherein the surface treatment step is performed between the primary crosslinking step and the secondary crosslinking step.

〔4〕 前記2次架橋工程の後に前記表面処理工程を行う、〔2〕に記載の熱伝導性ゴムシートの製造方法。   [4] The method for producing a thermally conductive rubber sheet according to [2], wherein the surface treatment step is performed after the secondary crosslinking step.

〔5〕 前記熱伝導性ゴムシートは、フッ素系ゴムで構成される、〔1〕〜〔4〕のいずれかに記載の熱伝導性ゴムシートの製造方法。   [5] The method for producing a heat conductive rubber sheet according to any one of [1] to [4], wherein the heat conductive rubber sheet is made of a fluorine-based rubber.

〔6〕 前記架橋性成分は、主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にヒドロシリル基を1〜2個有する化合物であって、ヒドロシリル基を2個有する分子の含有率が60〜100モル%であるフッ素系化合物(A1)、並びに、主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にアルケニル基を1〜2個有する化合物であって、アルケニル基を2個有する分子の含有率が60〜100モル%であるフッ素系化合物(B1)を含む、〔6〕に記載の熱伝導性ゴムシートの製造方法。   [6] The crosslinkable component is a compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 hydrosilyl groups at the molecular ends, and the content of the molecule having 2 hydrosilyl groups is 60. ˜100 mol% of the fluorine-based compound (A1), and a compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 alkenyl groups at the molecular ends, and having 2 alkenyl groups The manufacturing method of the heat conductive rubber sheet as described in [6] containing the fluorine-type compound (B1) whose molecular content rate is 60-100 mol%.

〔7〕 前記フッ素系化合物(A1)及び(B1)は、下記式[1]:   [7] The fluorine-based compounds (A1) and (B1) are represented by the following formula [1]:

Figure 2015067736
Figure 2015067736

(式中、nは1〜10の整数である。)
で表される主鎖構造を有する、〔6〕に記載の熱伝導性ゴムシートの製造方法。
(In the formula, n is an integer of 1 to 10.)
The manufacturing method of the heat conductive rubber sheet as described in [6] which has the principal chain structure represented by these.

〔8〕 前記フッ素系化合物(B1)が有するアルケニル基は、ビニル基である、〔6〕又は〔7〕に記載の熱伝導性ゴムシートの製造方法。   [8] The method for producing a thermally conductive rubber sheet according to [6] or [7], wherein the alkenyl group of the fluorine compound (B1) is a vinyl group.

〔9〕 前記熱伝導性樹脂組成物は、前記架橋性成分100重量部に対して、前記熱伝導性フィラーを50〜500重量部含む、〔1〕〜〔8〕のいずれかに記載の熱伝導性ゴムシートの製造方法。   [9] The heat according to any one of [1] to [8], wherein the thermally conductive resin composition includes 50 to 500 parts by weight of the thermally conductive filler with respect to 100 parts by weight of the crosslinkable component. A method for producing a conductive rubber sheet.

〔10〕 〔1〕〜〔9〕のいずれかに記載の製造方法により得られる熱伝導性ゴムシート。   [10] A thermally conductive rubber sheet obtained by the production method according to any one of [1] to [9].

本発明によれば、発熱体や放熱体に固着しにくく、使用後において比較的容易に剥離することができる熱伝導性ゴムシートを提供することができる。本発明に係る熱伝導性シートの適用により、固着成分を洗浄除去するための付加的な労力やコストを低減することができ、とりわけ半導体製造装置に適用する場合においては、上記付加的な労力やコストを低減することができるとともに、半導体デバイスの歩留まりや動作信頼性に大きな影響を与え得る固着成分由来の汚染物質を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat conductive rubber sheet which is hard to adhere to a heat generating body and a heat radiator and can be peeled comparatively easily after use can be provided. By applying the heat conductive sheet according to the present invention, it is possible to reduce additional labor and cost for cleaning and removing the fixed component, and particularly when applied to a semiconductor manufacturing apparatus, the additional labor and Costs can be reduced, and contaminants derived from fixed components that can greatly affect the yield and operational reliability of semiconductor devices can be reduced.

本発明の熱伝導性ゴムシートの製造方法は、
架橋性成分及び熱伝導性フィラー(C)を含有する熱伝導性樹脂組成物を加熱下に成型して、架橋性成分が少なくとも部分的に架橋されたシート状成型物を得る1次架橋工程、及び
シート状成型物の表面の少なくとも一部をフッ素系シランカップリング剤(E)に接触させる表面処理工程
を含み、好ましくは
加熱処理により、シート状成型物中の架橋性成分の架橋反応を促進させる2次架橋工程
をさらに含む。以下、実施の形態を示しながら各工程について詳細に説明する。
The method for producing the heat conductive rubber sheet of the present invention is as follows.
A primary crosslinking step in which a thermally conductive resin composition containing a crosslinking component and a thermally conductive filler (C) is molded under heating to obtain a sheet-like molded product in which the crosslinking component is at least partially crosslinked; And a surface treatment step in which at least a part of the surface of the sheet-like molded product is brought into contact with the fluorine-based silane coupling agent (E), and preferably promotes the crosslinking reaction of the crosslinkable component in the sheet-like molded product by heat treatment. And a secondary crosslinking step. Hereafter, each process is demonstrated in detail, showing embodiment.

〔I〕1次架橋工程
(熱伝導性樹脂組成物)
熱伝導性ゴムシートのシート原料となる熱伝導性樹脂組成物は、架橋(硬化)反応によってバインダー成分としてのゴム成分を形成する架橋性成分と、熱伝導性フィラー(C)とを含むものである。
[I] Primary cross-linking step (thermally conductive resin composition)
The heat conductive resin composition used as a raw material of the heat conductive rubber sheet contains a crosslinkable component that forms a rubber component as a binder component by a crosslink (curing) reaction, and a heat conductive filler (C).

架橋性成分としては、架橋(硬化)反応によってゴム成分を形成できるものであれば特に限定されず、例えばシリコーンゴム形成用のシリコン含有架橋性成分、フッ素ゴム形成用のフッ素含有架橋性成分を挙げることができる。シリコン含有架橋性成分には、従来公知のシリコーンゴム系熱伝導性シートに用いられているシリコーンゴム形成用のシリコン含有架橋性成分を用いることができる。   The crosslinkable component is not particularly limited as long as it can form a rubber component by a crosslinking (curing) reaction, and examples thereof include a silicon-containing crosslinkable component for forming silicone rubber and a fluorine-containing crosslinkable component for forming fluororubber. be able to. As the silicon-containing crosslinkable component, a silicon-containing crosslinkable component for forming a silicone rubber used in a conventionally known silicone rubber-based heat conductive sheet can be used.

中でも、本発明においては、フッ素含有架橋性成分を用いることが好ましい。フッ素含有架橋性成分を用いたフッ素ゴム系の熱伝導性ゴムシートは、例えば次の点で、シリコーンゴム系の熱伝導性ゴムシートに比して有利である。   Among these, in the present invention, it is preferable to use a fluorine-containing crosslinkable component. A fluororubber-based thermally conductive rubber sheet using a fluorine-containing crosslinkable component is advantageous as compared with a silicone rubber-based thermally conductive rubber sheet in the following points, for example.

a)ゴムの性質上、シリコーンゴム系の熱伝導性ゴムシートに比べて、使用後においても発熱体や放熱体に固着しにくい。シリコーンゴム系の熱伝導性ゴムシートが比較的固着しやすいのは、高温環境下での使用により、低分子量シロキサン成分のようなブリード成分が生じたり、ゴム自体が熱劣化しやすかったりするためである。これに比べてフッ素ゴムは、ブリード成分の発生や熱劣化が生じにくい。   a) Due to the nature of rubber, it is difficult to adhere to a heating element or a heat dissipation element even after use, as compared to a silicone rubber-based thermally conductive rubber sheet. The reason why silicone rubber-based heat conductive rubber sheets are relatively easy to fix is that when used in a high temperature environment, bleed components such as low molecular weight siloxane components are produced, and the rubber itself is susceptible to thermal degradation. is there. In comparison, fluororubber is less prone to generation of bleed components and thermal degradation.

b)フッ素ゴムは、シリコーンゴムに比べて耐熱性に優れている。
c)上記a)及びb)の理由から、半導体デバイスの製造プロセス等を汚染する汚染物質となり得る、ブリード成分や、熱等によるゴムの分解に起因するパーティクル(微粒子)の発生量を抑制することができる。
b) Fluororubber is superior in heat resistance compared to silicone rubber.
c) For the reasons of a) and b), the generation amount of particles (fine particles) caused by decomposition of rubber due to bleed components or heat, which can be a contaminant that contaminates the manufacturing process of semiconductor devices, etc., is suppressed. Can do.

d)上記a)〜c)の理由から、フッ素ゴム系の熱伝導性ゴムシートは、200℃以上の高温での使用に耐える熱伝導性シートが要求されており、汚染物質の混入が厳しく制限されている半導体製造装置等に好適に適用することができる。   d) For the reasons of a) to c) above, the fluororubber-based heat conductive rubber sheet requires a heat conductive sheet that can withstand use at a high temperature of 200 ° C. or higher, and the contamination of contaminants is severely restricted. The present invention can be suitably applied to a semiconductor manufacturing apparatus that has been used.

以上の観点から、本発明の方法によって製造される熱伝導性ゴムシートは、とりわけ半導体製造装置等に適用する場合において、フッ素ゴムで構成される熱伝導性シートであることが好ましいが、本発明によれば、シリコーンゴムを用いる場合であっても発熱体や放熱体に固着しにくく、使用後において比較的容易に剥離することができる熱伝導性ゴムシートを提供することが可能である。   From the above viewpoint, the heat conductive rubber sheet produced by the method of the present invention is preferably a heat conductive sheet composed of fluororubber, particularly when applied to a semiconductor manufacturing apparatus or the like. According to the present invention, it is possible to provide a heat conductive rubber sheet that is difficult to adhere to a heating element or a heat radiating element even when silicone rubber is used and can be peeled relatively easily after use.

フッ素含有架橋性成分を用いる場合において、上記架橋性成分は、従来公知のフッ素ゴムを形成するフッ素含有架橋性成分であってもよいが、少なくとも以下のフッ素系化合物:
主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にヒドロシリル基を1〜2個有する化合物であって、ヒドロシリル基を2個有する分子の含有率が60〜100モル%であるフッ素系化合物(A1)、及び
主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にアルケニル基を1〜2個有する化合物であって、アルケニル基を2個有する分子の含有率が60〜100モル%であるフッ素系化合物(B1)
を含むものであることが好ましい。
In the case of using a fluorine-containing crosslinkable component, the crosslinkable component may be a fluorine-containing crosslinkable component that forms a conventionally known fluororubber, but at least the following fluorine-based compound:
Fluorine-based compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 hydrosilyl groups at the molecular ends, and having a molecule content of 2 hydrosilyl groups of 60 to 100 mol% (A1), and a compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 alkenyl groups at the molecular ends, the content of the molecule having 2 alkenyl groups being 60 to 100 mol% Fluorine compound (B1)
It is preferable that it contains.

フッ素系化合物(A1)及び(B1)を含む熱伝導性樹脂組成物からなるフッ素ゴム系熱伝導性シートによれば、上述のa)〜d)の有利性を得ることができるとともに、熱伝導性シートとして好適な硬度や表面粘着性を示す熱伝導性シートを得ることが可能となる。   According to the fluororubber-based heat conductive sheet comprising the heat-conductive resin composition containing the fluorine-based compounds (A1) and (B1), the advantages a) to d) described above can be obtained and the heat conduction It becomes possible to obtain a heat conductive sheet exhibiting hardness and surface adhesiveness suitable as a conductive sheet.

フッ素系化合物(A1)及び(B1)は、それら同士の架橋(硬化)反応によりエラストマー特性を示すフッ素系ポリマー(ゴム状弾性体)を形成するフッ素系化合物対である。「エラストマー特性」とは、JIS K6253に準拠して測定されるShore A硬度が20〜40の範囲内であることをいう。   The fluorine-based compounds (A1) and (B1) are a fluorine-based compound pair that forms a fluorine-based polymer (rubber-like elastic body) that exhibits elastomeric properties by a cross-linking (curing) reaction between them. “Elastomer characteristics” means that Shore A hardness measured in accordance with JIS K6253 is in the range of 20-40.

フッ素系化合物(A1)は、主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にヒドロシリル基(SiH基)を1〜2個有する化合物であって、ヒドロシリル基を2個有する分子の含有率が60〜100モル%、好ましくは80〜100モル%であり(従って、ヒドロシリル基を1個有する分子の含有率が0〜40モル%、好ましくは0〜20モル%であり)、フッ素系化合物(B1)のような、分子末端にアルケニル基を有するフッ素系化合物の当該アルケニル基と付加反応可能なフッ素系化合物である。   The fluorine-based compound (A1) is a compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 hydrosilyl groups (SiH groups) at the molecular ends, and containing a molecule having 2 hydrosilyl groups The rate is 60 to 100 mol%, preferably 80 to 100 mol% (therefore, the content of molecules having one hydrosilyl group is 0 to 40 mol%, preferably 0 to 20 mol%), and fluorine-based It is a fluorine compound that can undergo an addition reaction with the alkenyl group of a fluorine compound having an alkenyl group at the molecular end, such as the compound (B1).

フッ素系化合物(A1)の主鎖構造は、パーフルオロオキシアルキレン単位から構成されるものであることができ、好ましくは下記式[1]:   The main chain structure of the fluorine-based compound (A1) can be composed of perfluorooxyalkylene units, and preferably the following formula [1]:

Figure 2015067736
Figure 2015067736

(式[1]中、nは1〜10の整数である。)
で表される構造である。
(In formula [1], n is an integer of 1 to 10)
It is a structure represented by.

フッ素系化合物(A1)として好適に用いられる化合物の代表例は、下記式[2]:   A typical example of a compound suitably used as the fluorine-based compound (A1) is the following formula [2]:

Figure 2015067736
Figure 2015067736

で表されるヒドロシリル基末端フッ素系化合物である。式[2]中、nは上記と同じ意味を表す。Z1はヒドロシリル基を含む架橋部であり、Si(H)(R12を表す。Z2は、末端ヒドロシリル基を2個有する分子においては、Z1と同様、Si(H)(R22を表し、末端ヒドロシリル基を1個有する分子においては、Si(R33を表す。 It is a hydrosilyl group terminal fluorine-type compound represented by these. In formula [2], n represents the same meaning as described above. Z 1 is a cross-linking portion containing a hydrosilyl group and represents Si (H) (R 1 ) 2 . Z 2 represents Si (H) (R 2 ) 2 similarly to Z 1 in a molecule having two terminal hydrosilyl groups, and Si (R 3 ) 3 in a molecule having one terminal hydrosilyl group. Represent.

上記R1、R2、R3は、同じであっても異なっていてもよく、それぞれ独立して、置換又は非置換の一価炭化水素基であり、その具体例は、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、ペンチル基、ヘキシル基のようなアルキル基;フェニル基、トリル基、キシリル基のようなアリール基;3−クロロプロピル基、3,3,3−トリフルオロプロピル基のようなハロゲン化アルキル基を含む。R1、R2、R3は、好ましくは炭素原子数1〜5のアルキル基である。 R 1 , R 2 and R 3 may be the same or different and are each independently a substituted or unsubstituted monovalent hydrocarbon group. Specific examples thereof include a methyl group and an ethyl group. , N-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, alkyl group such as pentyl group, hexyl group; aryl group such as phenyl group, tolyl group, xylyl group A halogenated alkyl group such as a 3-chloropropyl group or a 3,3,3-trifluoropropyl group; R 1 , R 2 and R 3 are preferably alkyl groups having 1 to 5 carbon atoms.

フッ素系化合物(A1)は、JIS K7117−1に準拠して測定される粘度が1.5〜4.0Pa・sであることが好ましい。   The fluorine compound (A1) preferably has a viscosity of 1.5 to 4.0 Pa · s measured according to JIS K7117-1.

式[2]で表されるフッ素系化合物(A1)として、信越化学工業(株)製の商品名「SIFEL 8370−A」等を好適に用いることができる。   As the fluorine-based compound (A1) represented by the formula [2], trade name “SIFEL 8370-A” manufactured by Shin-Etsu Chemical Co., Ltd. can be preferably used.

フッ素系化合物(B1)は、主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にアルケニル基を1〜2個有する化合物であって、アルケニル基を2個有する分子の含有率が60〜100モル%、好ましくは80〜100モル%であり(従って、アルケニル基を1個有する分子の含有率が0〜40モル%、好ましくは0〜20モル%であり)、フッ素系化合物(A1)のような、分子末端にヒドロシリル基を有するフッ素系化合物の当該ヒドロシリル基と付加反応可能なフッ素系化合物である。   The fluorine-based compound (B1) is a compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 alkenyl groups at the molecular ends, and the content of molecules having 2 alkenyl groups is 60 to 100 mol%, preferably 80 to 100 mol% (therefore, the content of molecules having one alkenyl group is 0 to 40 mol%, preferably 0 to 20 mol%), and the fluorine-based compound (A1) Such a fluorine-based compound that can undergo an addition reaction with the hydrosilyl group of a fluorine-based compound having a hydrosilyl group at the molecular end.

フッ素系化合物(B1)の主鎖構造は、パーフルオロオキシアルキレン単位から構成されるものであることができ、好ましくは上記式[1]で表される構造である。フッ素系化合物(B1)においても、式[1]中のnは1〜10の整数である。フッ素系化合物(B1)におけるnの数は、フッ素系化合物(A1)と同じであっても、異なっていてもよい。   The main chain structure of the fluorine-based compound (B1) can be composed of perfluorooxyalkylene units, and is preferably a structure represented by the above formula [1]. Also in the fluorine compound (B1), n in the formula [1] is an integer of 1 to 10. The number of n in the fluorine compound (B1) may be the same as or different from that in the fluorine compound (A1).

フッ素系化合物(B1)として好適に用いられる化合物の代表例は、下記式[3]:   A typical example of the compound suitably used as the fluorine-based compound (B1) is the following formula [3]:

Figure 2015067736
Figure 2015067736

で表されるアルケニル基末端フッ素系化合物である。式[3]中、nは上記と同じ意味を表す。Z3はアルケニル基を含む架橋部であり、Si(アルケニル基)(R42を表す。Z4は、末端アルケニル基を2個有する分子においては、Z3と同様、Si(アルケニル基)(R52を表し、末端アルケニル基を1個有する分子においては、Si(R63を表す。 It is an alkenyl group terminal fluorine-type compound represented by these. In formula [3], n represents the same meaning as described above. Z 3 is a cross-linked portion containing an alkenyl group, and represents Si (alkenyl group) (R 4 ) 2 . Z 4 represents Si (alkenyl group) (R 5 ) 2 as in Z 3 in a molecule having two terminal alkenyl groups, and Si (R 6 ) 3 in a molecule having one terminal alkenyl group. Represents.

上記R4、R5、R6は、同じであっても異なっていてもよく、それぞれ独立して、置換又は非置換の一価炭化水素基であり、その具体例は、上記R1、R2、R3について述べたものと同様である。R4、R5、R6は、好ましくは炭素原子数1〜5のアルキル基である。 R 4 , R 5 and R 6 may be the same or different and are each independently a substituted or unsubstituted monovalent hydrocarbon group, and specific examples thereof include the above R 1 , R 2 and R 3 are the same as described above. R 4 , R 5 and R 6 are preferably alkyl groups having 1 to 5 carbon atoms.

アルケニル基としては、例えば、ビニル基、メチルビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基のような炭素原子数2〜8のアルケニル基が挙げられる。好ましくは2〜4程度のアルケニル基であり、より好ましくはビニル基である。   Examples of the alkenyl group include alkenyl groups having 2 to 8 carbon atoms such as vinyl group, methylvinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, and heptenyl group. Preferably it is an alkenyl group of about 2 to 4, more preferably a vinyl group.

フッ素系化合物(B1)は、JIS K7117−1に準拠して測定される粘度が1.5〜4.0Pa・sであることが好ましい。   The fluorine-based compound (B1) preferably has a viscosity of 1.5 to 4.0 Pa · s measured according to JIS K7117-1.

式[3]で表されるフッ素系化合物(B1)として、信越化学工業(株)製の商品名「SIFEL 8370−B」等を好適に用いることができる。   As the fluorine-based compound (B1) represented by the formula [3], a trade name “SIFEL 8370-B” manufactured by Shin-Etsu Chemical Co., Ltd. can be suitably used.

架橋性成分におけるフッ素系化合物(A1)とフッ素系化合物(B1)との含有量比は、重量比で、例えば20/80〜80/20の範囲内であることができ、好ましくは30/70〜70/30の範囲内、より好ましくは40/60〜60/40の範囲内(例えば50/50程度)である。   The content ratio of the fluorine-based compound (A1) and the fluorine-based compound (B1) in the crosslinkable component can be within a range of, for example, 20/80 to 80/20, preferably 30/70. It is in the range of ˜70 / 30, more preferably in the range of 40/60 to 60/40 (for example, about 50/50).

架橋性成分は、フッ素系化合物(A1)及び(B1)以外の他の架橋性成分を含むことができ、例えば、以下に示す2種のフッ素系化合物(A2)及び(B2)をさらに含むことができる。フッ素系化合物(A2)及び(B2)は、それら同士の架橋(硬化)によりゲル特性を示すフッ素系ポリマー(ゲル状弾性体)を形成するフッ素系化合物対である。「ゲル特性」とは、JIS K2207に準拠して測定される針入度が60〜80の範囲内であることをいう。   The crosslinkable component can include other crosslinkable components other than the fluorine-based compounds (A1) and (B1). For example, the crosslinkable component further includes the following two fluorine-based compounds (A2) and (B2): Can do. The fluorine-based compounds (A2) and (B2) are a fluorine-based compound pair that forms a fluorine-based polymer (gel-like elastic body) exhibiting gel characteristics by cross-linking (curing) between them. “Gel characteristics” means that the penetration measured in accordance with JIS K2207 is in the range of 60-80.

フッ素系化合物(A1)及び(B1)に加えて、フッ素系化合物(A2)及び(B2)をさらに含有させると、熱伝導性フィラー(C)を高充填した場合であっても、良好な低硬度性と高表面粘着性とを併せ持ち、優れた熱伝導効率を示す熱伝導性ゴムシートが得られやすい。   In addition to the fluorine-based compounds (A1) and (B1), when the fluorine-based compounds (A2) and (B2) are further contained, even if the thermally conductive filler (C) is highly filled, a good low It is easy to obtain a heat conductive rubber sheet having both hardness and high surface adhesiveness and showing excellent heat transfer efficiency.

すなわち、熱伝導性シート自体に高い熱伝導性能を付与するために比較的多量の熱伝導性フィラー(C)を含有させると、これに伴ってシートの硬度が高くなったり、シート表面の粘着性が低下したりすることがある。このような硬度の上昇及び表面粘着性の低下はいずれも、熱伝導性シートに隣接して配置される発熱体及び放熱体との接触性(密着性)を悪化させ、接触熱抵抗を上昇させる要因となる。接触熱抵抗が高くなると、熱伝導性シート自体の熱伝導性能が高い場合であっても、その性能を十分に発揮することができず、発熱体から放熱体への良好な熱伝導効率を得ることができない。   That is, when a relatively large amount of the heat conductive filler (C) is contained in the heat conductive sheet itself in order to give high heat conductive performance, the hardness of the sheet is increased accordingly, and the adhesiveness of the sheet surface is increased. May decrease. Both the increase in hardness and the decrease in surface adhesiveness deteriorate the contact (adhesiveness) between the heating element and the heat dissipation element disposed adjacent to the heat conductive sheet, and increase the contact thermal resistance. It becomes a factor. When the contact thermal resistance is high, even if the thermal conductivity of the thermal conductive sheet itself is high, the performance cannot be fully exhibited, and a good thermal conduction efficiency from the heating element to the radiator is obtained. I can't.

フッ素系化合物(A1)及び(B1)と、フッ素系化合物(A2)及び(B2)との併用は、上記のような問題を解消するのに有効な手段であり、熱伝導性フィラー(C)を高充填した場合でも、良好な低硬度性と高表面粘着性とを併せ持つ熱伝導性ゴムシートが得られやすい。   The combined use of the fluorine-based compounds (A1) and (B1) and the fluorine-based compounds (A2) and (B2) is an effective means for solving the above problems, and the thermally conductive filler (C) Even when high is filled, it is easy to obtain a heat conductive rubber sheet having both good low hardness and high surface tackiness.

フッ素系化合物(A2)は、主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にヒドロシリル基(SiH基)を1〜2個有する化合物であって、ヒドロシリル基を2個有する分子の含有率が0〜40モル%、好ましくは20〜40モル%であり(従って、ヒドロシリル基を1個有する分子の含有率が60〜100モル%、好ましくは60〜80モル%であり)、フッ素系化合物(B1)及び(B2)のアルケニル基と付加反応可能なフッ素系化合物である。   The fluorine-based compound (A2) is a compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 hydrosilyl groups (SiH groups) at the molecular ends, and containing a molecule having 2 hydrosilyl groups The rate is 0 to 40 mol%, preferably 20 to 40 mol% (therefore, the content of molecules having one hydrosilyl group is 60 to 100 mol%, preferably 60 to 80 mol%), and fluorine-based It is a fluorine-based compound that can undergo an addition reaction with the alkenyl group of the compounds (B1) and (B2).

フッ素系化合物(A2)の主鎖構造は、パーフルオロオキシアルキレン単位から構成されるものであることができ、好ましくは上記式[1]で表される構造である。フッ素系化合物(A2)においても、式[1]中のnは1〜10の整数である。フッ素系化合物(A2)におけるnの数は、フッ素系化合物(A1)や(B1)と同じであっても、異なっていてもよい。   The main chain structure of the fluorine-based compound (A2) can be composed of perfluorooxyalkylene units, and is preferably a structure represented by the above formula [1]. Also in the fluorine compound (A2), n in the formula [1] is an integer of 1 to 10. The number of n in the fluorine compound (A2) may be the same as or different from that of the fluorine compound (A1) or (B1).

フッ素系化合物(A2)として好適に用いられる化合物の代表例は、下記式[4]:   A typical example of the compound suitably used as the fluorine-based compound (A2) is the following formula [4]:

Figure 2015067736
Figure 2015067736

で表されるヒドロシリル基末端フッ素系化合物である。式[4]中、nは上記と同じ意味を表す。Z5及びZ6はそれぞれ、上記Z1及びZ2と同じ意味を表す。 It is a hydrosilyl group terminal fluorine-type compound represented by these. In formula [4], n represents the same meaning as described above. Z 5 and Z 6 represent the same meaning as Z 1 and Z 2 , respectively.

フッ素系化合物(A2)は、JIS K7117−1に準拠して測定される粘度が1.5〜500Pa・sであることが好ましい。   The fluorine compound (A2) preferably has a viscosity of 1.5 to 500 Pa · s measured in accordance with JIS K7117-1.

式[4]で表されるフッ素系化合物(A2)として、信越化学工業(株)製の商品名「SIFEL 3405−A」、「SIFEL 3505−A」等を好適に用いることができる。   As the fluorine-based compound (A2) represented by the formula [4], trade names “SIFEL 3405-A”, “SIFEL 3505-A” and the like manufactured by Shin-Etsu Chemical Co., Ltd. can be suitably used.

フッ素系化合物(B2)は、主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にアルケニル基を1〜2個有する化合物であって、アルケニル基を2個有する分子の含有率が0〜40モル%、好ましくは20〜40モル%であり(従って、アルケニル基を1個有する分子の含有率が60〜100モル%、好ましくは60〜80モル%であり)、フッ素系化合物(A1)及び(A2)のヒドロシリル基と付加反応可能なフッ素系化合物である。   The fluorine-based compound (B2) is a compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 alkenyl groups at the molecular ends, and the content of molecules having 2 alkenyl groups is 0 to 0. 40 mol%, preferably 20 to 40 mol% (therefore, the content of the molecule having one alkenyl group is 60 to 100 mol%, preferably 60 to 80 mol%), and the fluorine-based compound (A1) And a fluorine-based compound capable of undergoing an addition reaction with the hydrosilyl group of (A2).

フッ素系化合物(B2)の主鎖構造は、パーフルオロオキシアルキレン単位から構成されるものであることができ、好ましくは上記式[1]で表される構造である。フッ素系化合物(B2)においても、式[1]中のnは1〜10の整数である。フッ素系化合物(B2)におけるnの数は、フッ素系化合物(A1)や(B1)、(A2)と同じであっても、異なっていてもよい。   The main chain structure of the fluorine-based compound (B2) can be composed of perfluorooxyalkylene units, and is preferably a structure represented by the above formula [1]. Also in the fluorine compound (B2), n in the formula [1] is an integer of 1 to 10. The number of n in the fluorine-based compound (B2) may be the same as or different from that of the fluorine-based compound (A1), (B1), or (A2).

フッ素系化合物(B2)として好適に用いられる化合物の代表例は、下記式[5]:   A typical example of a compound suitably used as the fluorine-based compound (B2) is the following formula [5]:

Figure 2015067736
Figure 2015067736

で表されるアルケニル基末端フッ素系化合物である。式[5]中、nは上記と同じ意味を表す。Z7及びZ8はそれぞれ、上記Z3及びZ4と同じ意味を表す。アルケニル基は、フッ素系化合物(B1)と同様、例えば、ビニル基、メチルビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基のような炭素原子数2〜8のアルケニル基であることができる。好ましくは2〜4程度のアルケニル基であり、より好ましくはビニル基である。フッ素系化合物(B2)のアルケニル基は、フッ素系化合物(B1)のアルケニル基と同じであってもよいし、異なっていてもよい。 It is an alkenyl group terminal fluorine-type compound represented by these. In formula [5], n represents the same meaning as described above. Z 7 and Z 8 represent the same meaning as Z 3 and Z 4 , respectively. The alkenyl group is an alkenyl group having 2 to 8 carbon atoms such as a vinyl group, a methylvinyl group, an allyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group, as in the fluorine compound (B1). Can be a group. Preferably it is an alkenyl group of about 2 to 4, more preferably a vinyl group. The alkenyl group of the fluorine compound (B2) may be the same as or different from the alkenyl group of the fluorine compound (B1).

フッ素系化合物(B2)は、JIS K7117−1に準拠して測定される粘度が1.5〜500Pa・sであることが好ましい。   The fluorine compound (B2) preferably has a viscosity of 1.5 to 500 Pa · s measured according to JIS K7117-1.

式[5]で表されるフッ素系化合物(B2)として、信越化学工業(株)製の商品名「SIFEL 3405−B」、「SIFEL 3505−B」等を好適に用いることができる。   As the fluorine compound (B2) represented by the formula [5], trade names “SIFEL 3405-B”, “SIFEL 3505-B” and the like manufactured by Shin-Etsu Chemical Co., Ltd. can be suitably used.

架橋性成分がフッ素系化合物(A1)、(B1)、(A2)及び(B2)を含む場合において、熱伝導性樹脂組成物は、これらのフッ素系化合物含有量に関し、重量比で、下記式[6]〜[8]:
〔(A1)+(B1)〕/〔(A2)+(B2)〕=20/80〜80/20 [6]
(A1)/(B1)=20/80〜80/20 [7]
(A2)/(B2)=20/80〜80/20 [8]
を満たすことが好ましい。
In the case where the crosslinkable component contains the fluorine-based compounds (A1), (B1), (A2) and (B2), the heat conductive resin composition relates to the content of these fluorine-based compounds and is expressed by the following formula. [6] to [8]:
[(A1) + (B1)] / [(A2) + (B2)] = 20/80 to 80/20 [6]
(A1) / (B1) = 20/80 to 80/20 [7]
(A2) / (B2) = 20/80 to 80/20 [8]
It is preferable to satisfy.

上記式[6]〜[8]を満たす含有量比で、フッ素系化合物(A1)、(B1)、(A2)及び(B2)を含有させることにより、上述の効果をより効果的に発現させることができる。   By containing the fluorine-based compounds (A1), (B1), (A2), and (B2) at a content ratio that satisfies the above formulas [6] to [8], the above-described effects are more effectively expressed. be able to.

より優れた低硬度性及び高表面粘着性を得るために、含有量比〔(A1)+(B1)〕/〔(A2)+(B2)〕は、25/75以上とすることが好ましく、30/70以上とすることがより好ましく、また、75/25以下とすることが好ましい。含有量比〔(A1)+(B1)〕/〔(A2)+(B2)〕は、例えば、70/30以下、60/40以下、あるいは50/50程度とすることができる。含有量比〔(A1)+(B1)〕/〔(A2)+(B2)〕が20/80未満である場合には、熱伝導性シートへの成型が困難となる傾向にある。一方、含有量比〔(A1)+(B1)〕/〔(A2)+(B2)〕が80/20を超える場合には、フッ素系化合物(A2)及び(B2)を配合することによって得られる上述の効果が認められにくい。   In order to obtain more excellent low hardness and high surface tackiness, the content ratio [(A1) + (B1)] / [(A2) + (B2)] is preferably 25/75 or more, It is more preferable to set it as 30/70 or more, and it is preferable to set it as 75/25 or less. The content ratio [(A1) + (B1)] / [(A2) + (B2)] can be, for example, about 70/30, 60/40, or about 50/50. When the content ratio [(A1) + (B1)] / [(A2) + (B2)] is less than 20/80, it tends to be difficult to mold into a heat conductive sheet. On the other hand, when the content ratio [(A1) + (B1)] / [(A2) + (B2)] exceeds 80/20, it is obtained by blending the fluorine-based compounds (A2) and (B2). It is difficult to recognize the above effect.

上記式[6]に加えて含有量比(A1)/(B1)及び(A2)/(B2)をそれぞれ20/80〜80/20の範囲内とする(上記式[7]及び[8]を満たす)ことにより、良好な低硬度性と高表面粘着性とを両立させる効果をより効果的に発現させることが可能であるが、より優れた低硬度性を得るためには、含有量比(A1)/(B1)及び(A2)/(B2)は、下記式[9]及び[10]:
(A1)/(B1)=20/80〜40/60又は60/40〜80/20 [9]
(A2)/(B2)=20/80〜40/60又は60/40〜80/20 [10]
を満たすことが好ましい。
In addition to the above formula [6], the content ratios (A1) / (B1) and (A2) / (B2) are within the range of 20/80 to 80/20, respectively (the above formulas [7] and [8] In order to obtain more effective low hardness, it is possible to achieve the effect of achieving both good low hardness and high surface adhesion. (A1) / (B1) and (A2) / (B2) are represented by the following formulas [9] and [10]:
(A1) / (B1) = 20/80 to 40/60 or 60/40 to 80/20 [9]
(A2) / (B2) = 20/80 to 40/60 or 60/40 to 80/20 [10]
It is preferable to satisfy.

すなわち、上記式[9]及び[10]を満たすように、フッ素系化合物(A1)又は(B1)のいずれか一方を他方に対して過剰に配合し、フッ素系化合物(A2)又は(B2)のいずれか一方を他方に対して過剰に配合することにより、過剰分のフッ素系化合物が効果的に作用して、熱伝導性シートの低硬度性を向上させることができる。ただし、上記過剰分が過度に多いと、すなわち、含有量比(A1)/(B1)又は(A2)/(B2)が20/80未満又は80/20を超える場合には、上記式[6]を満たしている場合であっても、熱伝導性シートへの成型が困難となる傾向にある。   That is, either one of the fluorine-based compounds (A1) or (B1) is excessively blended with respect to the other so as to satisfy the above formulas [9] and [10], and the fluorine-based compounds (A2) or (B2) By excessively blending any one of the above with respect to the other, an excessive amount of the fluorine-based compound acts effectively, and the low hardness of the thermally conductive sheet can be improved. However, when the excess is excessively large, that is, when the content ratio (A1) / (B1) or (A2) / (B2) is less than 20/80 or exceeds 80/20, the above formula [6 ], It tends to be difficult to mold into a heat conductive sheet.

なお、上記過剰分のフッ素系化合物は、熱伝導性シートを構成するバインダーと分子構造が類似しているため、高温使用時においてもブリードしない(又は極めてブリードしにくい)。高温使用時におけるシート含有成分のブリードは、系を汚染する要因となるが、上記式[9]及び[10]を満たす熱伝導性シートはこのような不具合が生じず、この点においても高耐熱性である。   The excess fluorine-based compound has a molecular structure similar to that of the binder constituting the heat conductive sheet, and therefore does not bleed even when used at a high temperature (or extremely difficult to bleed). Bleeding of the sheet-containing component at the time of high-temperature use is a factor that pollutes the system, but the heat conductive sheet satisfying the above formulas [9] and [10] does not cause such a problem, and in this respect also has high heat resistance. It is sex.

熱伝導性フィラー(C)としては、熱伝導率が1W/m・K以上のものを用いることが好ましい。具体例を挙げれば、例えば、酸化アルミニウム(Al23)、結晶性酸化ケイ素(SiO2)、酸化マグネシウム(MgO)、酸化ベリリウム(BeO)、酸化亜鉛(ZnO)、窒化ケイ素(Si34)、窒化ホウ素(六方晶BNや立方晶BN)、窒化アルミニウム(AlN)、炭化ケイ素(SiC)、ダイヤモンドである。 As the heat conductive filler (C), it is preferable to use one having a thermal conductivity of 1 W / m · K or more. Specific examples include, for example, aluminum oxide (Al 2 O 3 ), crystalline silicon oxide (SiO 2 ), magnesium oxide (MgO), beryllium oxide (BeO), zinc oxide (ZnO), silicon nitride (Si 3 N 4 ), boron nitride (hexagonal BN and cubic BN), aluminum nitride (AlN), silicon carbide (SiC), and diamond.

熱伝導性フィラー(C)の形状は、粒状、鱗片状、針状等であり得るが、より高密度充填できることから粒状であることが好ましい。粒状である熱伝導性フィラー(C)の平均粒子径は、例えば0.1〜100μmであり、好ましくは0.5〜50μmである。平均粒子径は、レーザー回折・散乱法(マイクロトラック法)により得られる粒径分布におけるd50である。   The shape of the thermally conductive filler (C) can be granular, scale-like, needle-like, etc., but is preferably granular because it can be filled with higher density. The average particle diameter of the granular heat conductive filler (C) is, for example, 0.1 to 100 μm, and preferably 0.5 to 50 μm. The average particle size is d50 in the particle size distribution obtained by the laser diffraction / scattering method (microtrack method).

熱伝導性フィラー(C)として、1種の熱伝導性フィラーを単独で用いてもよいし、2種以上の熱伝導性フィラーを混合して用いてもよい。また、高密度充填性等を考慮して、平均粒子径の異なる2種以上の熱伝導性フィラーを混合して用いることもできる。   As the heat conductive filler (C), one type of heat conductive filler may be used alone, or two or more types of heat conductive fillers may be mixed and used. In consideration of high density packing properties, two or more kinds of thermally conductive fillers having different average particle diameters can be mixed and used.

熱伝導性フィラー(C)の含有量は、上記架橋性成分100重量部に対して、通常50〜500重量部であり、好ましくは100〜400重量部である。熱伝導性フィラー(C)の含有量が架橋性成分100重量部に対して50重量部以上、好ましくは100重量部以上、より好ましくは250重量部以上であると、熱伝導性シート自体の十分な熱伝導性性能が得られやすい。また、熱伝導性フィラー(C)の含有量が架橋性成分100重量部に対して500重量部以下、好ましくは400重量部以下であると、熱伝導性シートへの成型性を十分に確保できるとともに、極度の熱伝導性フィラー充填による熱伝導性シートの硬度上昇を抑制することができる。   Content of a heat conductive filler (C) is 50-500 weight part normally with respect to 100 weight part of said crosslinkable components, Preferably it is 100-400 weight part. When the content of the heat conductive filler (C) is 50 parts by weight or more, preferably 100 parts by weight or more, more preferably 250 parts by weight or more with respect to 100 parts by weight of the crosslinkable component, the heat conductive sheet itself is sufficient. Heat conductivity performance is easy to obtain. Moreover, the moldability to a heat conductive sheet can fully be ensured that content of a heat conductive filler (C) is 500 weight part or less with respect to 100 weight part of crosslinking | crosslinked components, Preferably it is 400 weight part or less. In addition, an increase in the hardness of the heat conductive sheet due to the extreme filling of the heat conductive filler can be suppressed.

熱伝導性樹脂組成物は、架橋性成分の架橋(硬化)反応を触媒する触媒成分(D)を含むことができる。例えば、熱伝導性樹脂組成物がフッ素系化合物(A1)及び(B1)を含む場合や、フッ素系化合物(A2)及び(B2)をさらに含む場合、熱伝導性樹脂組成物は、ヒドロシリル基とアルケニル基との架橋反応(ヒドロシリル化反応)を触媒する白金族系触媒を含むことができる。白金族系触媒としては、白金系触媒が好ましく用いられる。白金系触媒としては、白金の単体;塩化白金酸;塩化白金;白金−オレフィン錯体;白金−アルケニルシロキサン錯体;白金−カルボニル錯体;白金−ホスフィン錯体;白金−アルコール錯体;アルミナ、シリカ、カーボンブラック等の担体に白金を担持させたものが挙げられる。   A heat conductive resin composition can contain the catalyst component (D) which catalyzes the crosslinking (curing) reaction of a crosslinkable component. For example, when the thermally conductive resin composition contains fluorine-based compounds (A1) and (B1), or when it further contains fluorine-based compounds (A2) and (B2), the thermally conductive resin composition has a hydrosilyl group and A platinum group catalyst that catalyzes a crosslinking reaction (hydrosilylation reaction) with an alkenyl group may be included. As the platinum group catalyst, a platinum catalyst is preferably used. Platinum-based catalysts include: platinum alone; chloroplatinic acid; platinum chloride; platinum-olefin complexes; platinum-alkenylsiloxane complexes; platinum-carbonyl complexes; platinum-phosphine complexes; platinum-alcohol complexes; In which platinum is supported on these carriers.

白金系触媒以外の白金族系触媒としては、ロジウム系化合物、ルテニウム系化合物、イリジウム系化合物、パラジウム系化合物が挙げられる。   Examples of platinum group catalysts other than platinum catalysts include rhodium compounds, ruthenium compounds, iridium compounds, and palladium compounds.

白金族系触媒のような触媒成分(D)の含有量は、熱伝導性樹脂組成物の架橋硬化を促進するために必要な有効量であれば特に限定されず、上記架橋性成分100重量部に対して、0〜10重量部であることができ、典型的には、上記架橋性成分100重量部に対して、0.1〜1000ppm程度である。   The content of the catalyst component (D) such as a platinum group catalyst is not particularly limited as long as it is an effective amount necessary for accelerating the crosslinking and curing of the thermally conductive resin composition, and 100 parts by weight of the crosslinking component. Can be 0 to 10 parts by weight, and typically about 0.1 to 1000 ppm with respect to 100 parts by weight of the crosslinkable component.

熱伝導性樹脂組成物は必要に応じて、フッ素系オイルのような可塑剤;シランカップリング剤;界面活性剤;架橋促進剤;溶剤;分散剤;老化防止剤;酸化防止剤;難燃剤;顔料;カーボンブラック、グラファイト(黒鉛)、カーボンナノチューブ、カーボン中空粒子、炭素繊維のような導電性フィラー等の添加剤を含むことができる。   The heat conductive resin composition is optionally made of a plasticizer such as a fluorinated oil; a silane coupling agent; a surfactant; a crosslinking accelerator; a solvent; a dispersant; an anti-aging agent; an antioxidant; Pigments; additives such as conductive fillers such as carbon black, graphite (graphite), carbon nanotubes, carbon hollow particles, and carbon fibers can be included.

以上説明した架橋性成分、熱伝導性フィラー(C)や、必要に応じて添加される触媒成分(D)及びその他の添加剤を混合し、ミキサーやロール等を用いて混練分散させることにより、熱伝導性樹脂組成物を調製することができる。   By mixing the crosslinkable component described above, the heat conductive filler (C), the catalyst component (D) added as necessary, and other additives, and kneading and dispersing using a mixer, roll, etc. A heat conductive resin composition can be prepared.

(1次架橋工程)
本工程は、上述のような熱伝導性樹脂組成物を加熱下に成型して、架橋性成分が少なくとも部分的に架橋されたシート状成型物を得る工程である。本工程によって、熱伝導性ゴムシートとして使用できる程度の架橋密度を有するシート状成型物を得てもよいが、後述する2次架橋工程を設ける場合には、本工程では架橋性成分の部分的な架橋(加硫)を行う。架橋(加硫)を完了させやすく、また、脱ガス成分をより確実に放出できることから、架橋性成分の架橋を、第1架橋工程(本工程)と後述する第2架橋工程の2つに分けて行うことが好ましい。
(Primary crosslinking step)
This step is a step of obtaining a sheet-like molded product in which the crosslinkable component is at least partially crosslinked by molding the heat conductive resin composition as described above under heating. By this step, a sheet-like molded product having a crosslinking density that can be used as a heat conductive rubber sheet may be obtained. However, in the case where a secondary crosslinking step described later is provided, in this step, a partial crosslinkable component is used. Cross-linking (vulcanization). Since crosslinking (vulcanization) is easy to complete and the degassed component can be released more reliably, the crosslinking of the crosslinkable component is divided into a first crosslinking step (this step) and a second crosslinking step described later. It is preferable to carry out.

本工程におけるシート状成型物への成型時の温度(架橋温度)は、例えば90〜150℃とすることができる。成型方法は特に制限されず、プレス成型(圧縮成型)、射出成型、トランスファー成型、押出成型、注型成型、ブロー成型、カレンダー成型等を用いることができる。   The temperature (crosslinking temperature) at the time of molding into a sheet-like molded product in this step can be, for example, 90 to 150 ° C. The molding method is not particularly limited, and press molding (compression molding), injection molding, transfer molding, extrusion molding, cast molding, blow molding, calendar molding, and the like can be used.

〔II〕2次架橋工程
上述のように、本発明の熱伝導性ゴムシートの製造方法は、1次架橋工程によって形成されたシート状成型物中の架橋性成分の架橋(硬化)反応を加熱処理によって促進させる2次架橋工程を含むことができる。本工程における架橋条件は、所望のゴム硬度やゴム弾性率等が得られるように適宜調整されることが好ましい。本工程における加熱処理の温度は、例えば120〜180℃とすることができる。
[II] Secondary Crosslinking Step As described above, the method for producing a heat conductive rubber sheet of the present invention heats the crosslinking (curing) reaction of the crosslinkable component in the sheet-like molded product formed by the primary crosslinking step. A secondary cross-linking step promoted by treatment can be included. The crosslinking conditions in this step are preferably adjusted as appropriate so that desired rubber hardness, rubber elastic modulus, and the like can be obtained. The temperature of the heat treatment in this step can be set to 120 to 180 ° C., for example.

〔III〕表面処理工程
本工程は、シート状成型物の表面の少なくとも一部をフッ素系シランカップリング剤(E)に接触させる工程である。この工程を含む本発明の熱伝導性ゴムシートの製造方法によれば、発熱体や放熱体への固着が抑制され、使用後においても比較的容易に剥離することができる熱伝導性ゴムシートを得ることができる。
[III] Surface treatment step This step is a step of bringing at least a part of the surface of the sheet-like molded product into contact with the fluorinated silane coupling agent (E). According to the method for producing a heat conductive rubber sheet of the present invention including this step, a heat conductive rubber sheet that is prevented from adhering to a heat generator or a heat radiator and can be peeled relatively easily even after use. Can be obtained.

すなわち、発熱体や放熱体(これらは、例えばアルミニウムのような金属からなることが多い)と熱伝導性ゴムシートとが固着してしまう主な要因として、発熱体や放熱体の表面に存在する−COOH基や−OH基のような官能基と、熱伝導性ゴムシートの表面に存在する官能基とが使用の間に化学結合を形成してしまうことが挙げられるところ、シート状成型物の表面をフッ素系シランカップリング剤(E)に接触させる表面処理によって、シート状成型物表面の官能基をフッ素化させ(表面のフッ素含有量を増加させ)、発熱体や放熱体の表面に存在する官能基と反応し得る官能基の量を効果的に低減させることができる。これにより、固着力を発生させる主な要因である上記化学結合を効果的に抑制することができる。   That is, it exists on the surface of a heat generating body or a heat radiator as a main factor which a heat generating body and a heat radiator (these are often made of a metal such as aluminum) and a heat conductive rubber sheet adhere. It is mentioned that a functional group such as —COOH group or —OH group and a functional group present on the surface of the heat conductive rubber sheet may form a chemical bond during use. By surface treatment that brings the surface into contact with the fluorinated silane coupling agent (E), the functional group on the surface of the sheet-like molded product is fluorinated (increases the fluorine content on the surface) and is present on the surface of the heating element and heat radiator. The amount of the functional group that can react with the functional group to be reduced can be effectively reduced. Thereby, the said chemical bond which is the main factor which generate | occur | produces sticking force can be suppressed effectively.

例えば、架橋性成分として上述のようなフッ素系化合物を含む熱伝導性樹脂組成物を用いる場合、シート状成型物の表面には、−H、−OH基、−SiH基、アルケニル基(炭素−炭素二重結合)のような官能基が存在し得、当該官能基は、発熱体や放熱体の表面に存在する官能基と、使用の間に例えば脱水反応を起こして化学結合を形成する。また、シリコーンゴムを用いる場合にも、シート状成型物の表面には、−SiH基のような官能基が存在し得、当該官能基は、発熱体や放熱体の表面に存在する官能基と、使用の間に例えば脱水反応を起こして化学結合を形成するとともに、シリコーンゴムの比較的低い耐熱性に起因して、このような化学結合を形成した状態でゴムが徐々に分解劣化していくため、フッ素ゴムを用いる場合と比較して強固な固着が生じる。   For example, in the case of using a thermally conductive resin composition containing the above-described fluorine-based compound as a crosslinkable component, -H, -OH group, -SiH group, alkenyl group (carbon- There may be a functional group such as a carbon double bond, and the functional group forms a chemical bond with the functional group present on the surface of the heating element or the heat radiating member, for example, by causing a dehydration reaction during use. In addition, when silicone rubber is used, a functional group such as a -SiH group may be present on the surface of the sheet-like molded product, and the functional group may be a functional group present on the surface of a heating element or a heat dissipation element. During use, for example, a dehydration reaction is caused to form a chemical bond, and due to the relatively low heat resistance of silicone rubber, the rubber gradually decomposes and deteriorates in a state where such a chemical bond is formed. Therefore, firm fixation occurs as compared with the case of using fluororubber.

フッ素系シランカップリング剤(E)に接触させる表面処理に供されるシート状成型物の表面は、少なくともそれが有する表面の一部であるが、好ましくは、シート状成型物の2つの主面の少なくとも一方の全面であり、より好ましくは、シート状成型物の2つの主面の全面である。さらにシート状成型物の側面を表面処理してもよい。   The surface of the sheet-like molded article subjected to the surface treatment to be brought into contact with the fluorine-based silane coupling agent (E) is at least a part of the surface of the sheet-like molded article, but preferably two main surfaces of the sheet-like molded article Is more preferably the entire surface of the two main surfaces of the sheet-like molded product. Furthermore, you may surface-treat the side surface of a sheet-like molding.

1次架橋工程のみを行い、2次架橋工程を実施しない場合、表面処理工程は1次架橋工程の後に実施される。一方、1次架橋工程後に2次架橋工程を実施する場合、表面処理工程は、1次架橋工程と2次架橋工程との間に実施してもよいし、2次架橋工程の後に行ってもよい。どちらのタイミングで表面処理工程を実施しても上述の効果を得ることができる。ただし、生産効率の観点からは、1次架橋工程と2次架橋工程との間に表面処理工程を実施することが好ましい。   When only the primary crosslinking step is performed and the secondary crosslinking step is not performed, the surface treatment step is performed after the primary crosslinking step. On the other hand, when the secondary crosslinking step is performed after the primary crosslinking step, the surface treatment step may be performed between the primary crosslinking step and the secondary crosslinking step, or may be performed after the secondary crosslinking step. Good. The above-described effects can be obtained regardless of the timing of the surface treatment process. However, from the viewpoint of production efficiency, it is preferable to perform a surface treatment step between the primary crosslinking step and the secondary crosslinking step.

シート状成型物の表面をフッ素系シランカップリング剤(E)に接触させる具体的手段は特に制限されず、コーター、ロール、スプレー、ディップ(浸漬)等の公知の方法によって表面にフッ素系シランカップリング剤(E)を塗布する方法を用いることができる。   The specific means for bringing the surface of the sheet-like molded product into contact with the fluorine-based silane coupling agent (E) is not particularly limited, and the surface of the sheet-like molded product can be formed on the surface by a known method such as coater, roll, spray, dip (immersion). A method of applying the ring agent (E) can be used.

シート状成型物の表面に存在する上記官能基とフッ素系シランカップリング剤(E)との反応を促進するために、フッ素系シランカップリング剤(E)を塗布した後、シート状成型物を加熱することができる。加熱温度は特に制限されないが、例えば40〜150℃程度であることができ、好ましくは80〜130℃である。1次架橋工程と2次架橋工程との間に表面処理工程を実施する場合、2次架橋工程における加熱処理がフッ素系シランカップリング剤(E)との反応を促進するため当該加熱処理を兼ねていてもよい。   In order to promote the reaction between the functional group present on the surface of the sheet-like molded product and the fluorine-based silane coupling agent (E), after applying the fluorine-based silane coupling agent (E), the sheet-shaped molded product is Can be heated. The heating temperature is not particularly limited, but can be, for example, about 40 to 150 ° C, and preferably 80 to 130 ° C. When performing a surface treatment process between a primary crosslinking process and a secondary crosslinking process, since the heat processing in a secondary crosslinking process accelerates | stimulates reaction with a fluorine-type silane coupling agent (E), it also serves as the said heat processing. It may be.

フッ素系シランカップリング剤(E)は、分子内に有機官能基及び加水分解性シリル基を有し、当該有機官能基中にフッ素原子を含有するものである。好ましく用いられるフッ素系シランカップリング剤(E)としては、下記式[11]:
f(CH2m−SiRa3-a [11]
で表わされるフッ素系シランカップリング剤を挙げることができる。
The fluorine-based silane coupling agent (E) has an organic functional group and a hydrolyzable silyl group in the molecule, and contains a fluorine atom in the organic functional group. As the fluorine-based silane coupling agent (E) preferably used, the following formula [11]:
R f (CH 2 ) m —SiR a X 3-a [11]
The fluorine-type silane coupling agent represented by these can be mentioned.

式[11]中、Rfは炭素数1〜20、好ましくは炭素数1〜10のパーフルオロアルキル基であり、Rはメチル基またはエチル基であり、Xは加水分解性基(Cl、Brのようなハロゲン原子、アルコキシ基等)であり、mは0〜5の整数(好ましくは1〜3の整数)であり、aは0又は1である。 In the formula [11], R f is a perfluoroalkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, R is a methyl group or an ethyl group, and X is a hydrolyzable group (Cl, Br M is an integer of 0 to 5 (preferably an integer of 1 to 3), and a is 0 or 1.

式[11]で表わされるフッ素系シランカップリング剤の具体例は、例えば、CF3(CH22SiCl3;CF3(CF25SiCl3;CF3(CF25(CH22SiCl3;CF3(CF27(CH22SiCl3;CF3(CF27(CH22Si(OCH33;CF3(CF27(CH22Si(CH3)Cl2;CF3(CH22Si(OCH33;CF3(CH22Si(CH3)(OCH32;CF3(CF23(CH22Si(OCH33;CF3(CF26(CH22Si(OCH33;CF3(CF27(CH22Si(CH3)(OCH32;CF3(CF26(CH22Si(OCH33である。中でもCF3(CH22Si(OCH33(トリフルオロプロピルトリメトキシシラン)は、好ましく用いられるフッ素系シランカップリング剤の1つである。フッ素系シランカップリング剤(E)は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。 Specific examples of the fluorine-based silane coupling agent represented by the formula [11] include, for example, CF 3 (CH 2 ) 2 SiCl 3 ; CF 3 (CF 2 ) 5 SiCl 3 ; CF 3 (CF 2 ) 5 (CH 2 2 SiCl 3 ; CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 ; CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 ; CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) Cl 2 ; CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 ; CF 3 (CH 2 ) 2 Si (CH 3 ) (OCH 3 ) 2 ; CF 3 (CF 2 ) 3 (CH 2 ) 2 Si (OCH 3 ) 3 ; CF 3 (CF 2 ) 6 (CH 2 ) 2 Si (OCH 3 ) 3 ; CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) (OCH 3 ) 2 ; CF 3 (CF 2 ) 6 (CH 2 ) 2 Si (OCH 3 ) 3 . Among them, CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 (trifluoropropyltrimethoxysilane) is one of fluorine-based silane coupling agents that are preferably used. A fluorine-type silane coupling agent (E) may be used individually by 1 type, and may use 2 or more types together.

シート状成型物の表面をフッ素系シランカップリング剤(E)に接触させる上述の具体的手段においては、フッ素系シランカップリング剤(E)を希釈せずそのまま用いてもよいし、フッ素系シランカップリング剤(E)を希釈した液(例えば溶液)を用いることもできる。フッ素系シランカップリング剤(E)を希釈する溶剤には、例えば、水や、各種の有機溶剤を用いることができる。上記液におけるフッ素系シランカップリング剤(E)の濃度は、10重量%〜100重量%未満であることが好ましく、15重量%以上であることがより好ましい。濃度が10重量%未満であると、フッ素系シランカップリング剤(E)を用いた表面処理による所望の効果が得られにくい。   In the above-mentioned specific means for bringing the surface of the sheet-like molded product into contact with the fluorine-based silane coupling agent (E), the fluorine-based silane coupling agent (E) may be used as it is without being diluted, or the fluorine-based silane. A liquid (for example, a solution) obtained by diluting the coupling agent (E) can also be used. As the solvent for diluting the fluorine-based silane coupling agent (E), for example, water or various organic solvents can be used. The concentration of the fluorine-based silane coupling agent (E) in the liquid is preferably 10% by weight to less than 100% by weight, and more preferably 15% by weight or more. When the concentration is less than 10% by weight, it is difficult to obtain a desired effect by the surface treatment using the fluorine-based silane coupling agent (E).

以上のような工程を経て製造される熱伝導性ゴムシートの厚みは、適用される用途等により適宜設定されるが、通常0.05〜3mm程度であり、好ましくは0.1〜1mm程度である。   Although the thickness of the heat conductive rubber sheet manufactured through the above steps is appropriately set depending on the application to be applied, it is usually about 0.05 to 3 mm, preferably about 0.1 to 1 mm. is there.

なお、熱伝導性ゴムシートの固着力をより低減させるために、シート状成型物の表面処理とともに、熱伝導性ゴムシートに接する発熱体や放熱体の表面に対して、フッ素系シランカップリング剤(E)を用いた同様の表面処理を施すことも好ましい。   In addition, in order to further reduce the adhesive force of the heat conductive rubber sheet, a fluorine-based silane coupling agent is applied to the surface of the heating element and the heat radiating body in contact with the heat conductive rubber sheet as well as the surface treatment of the sheet-like molded product. It is also preferable to perform the same surface treatment using (E).

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。下記実施例及び比較例で得られた熱伝導性シートについて行った評価試験の試験方法は次のとおりである。評価試験結果は表1に示すとおりであった。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples. The test method of the evaluation test performed about the heat conductive sheet obtained by the following Example and comparative example is as follows. The evaluation test results are shown in Table 1.

〔a〕熱抵抗
発熱基板(発熱量:45W)上に、熱伝導性ゴムシートから切り出した縦10mm、横10mm、厚さ1.0mmの試料片を貼り付けた。試料片の上に、上記発熱基板と同じ材質からなる冷却機構付き基板を配置し、98kPaの一定荷重で圧接した。両基板には温度センサーが取り付けられており、両基板の温度をモニタリングしながら、発熱基板に通電した。通電開始から5分経過後の発熱基板の温度T1(℃)及び冷却機構付き基板T2(℃)を測定し、下記式:
熱抵抗(℃/W)=(T1−T2)/Q 〔Qは発熱基板の発熱量(W)〕
に基づき熱抵抗を算出した。
[A] Thermal resistance A sample piece having a length of 10 mm, a width of 10 mm, and a thickness of 1.0 mm cut out from a heat conductive rubber sheet was attached to a heat generating substrate (amount of heat generation: 45 W). A substrate with a cooling mechanism made of the same material as that of the heat generating substrate was placed on the sample piece and pressed with a constant load of 98 kPa. Temperature sensors were attached to both substrates, and the heating substrate was energized while monitoring the temperature of both substrates. Measure the temperature T 1 (° C.) of the heat generating substrate and the substrate T 2 (° C.) with a cooling mechanism after 5 minutes from the start of energization.
Thermal resistance (° C./W)=(T 1 −T 2 ) / Q [Q is the amount of heat generated by the heating substrate (W)]
Based on the above, the thermal resistance was calculated.

〔b〕硬度
ASKER製のASKER C硬度計を用いて25℃での熱伝導性シートの硬度を測定した。
[B] Hardness The hardness of the thermally conductive sheet at 25 ° C. was measured using an ASKER C hardness meter manufactured by ASKER.

〔c〕引張強さ及び引張伸び
JIS K6251に準拠し、熱伝導性シートより作製したダンベル状(2号形)試験片を一定速度の加重で引張り破断する際に要した力(最大荷重)より引張強さ(MPa)を、破断する際の伸び率より引張伸び(%)を求めた(測定温度23℃)。
[C] Tensile strength and tensile elongation From the force (maximum load) required to pull and break a dumbbell-shaped (No. 2 type) test piece made from a heat conductive sheet at a constant speed according to JIS K6251 The tensile strength (MPa) was determined as the tensile elongation (%) from the elongation at break (measurement temperature 23 ° C.).

〔d〕剥離強度(固着性)
2枚のアルマイト製フランジの間に、熱伝導性シートから切り出した15mm角(厚さ0.5mm)の試験片と硫酸アルマイト製の金属板(厚さ30mm)との積層体を配置し、圧縮率20%となるようにシムで調整しつつ、ボルト/ナットでフランジを締め付けた後、真空雰囲気下で200℃×65時間の加熱処理を行った。次いで、加熱処理後のフランジ対を恒温槽(温度23℃、相対湿度50%)内で充分に冷却し、フランジ温度が23℃となっているのを確認後、ミネベア(株)製の引張圧縮万能材料試験機を用いて、フランジを剥離する際の(すなわち、試験片と金属板とを剥離する際の)剥離強度(固着力,N)を測定した。
[D] Peel strength (stickiness)
A laminate of a 15 mm square (0.5 mm thick) test piece cut out from a thermally conductive sheet and a metal plate (30 mm thick) made of alumite sulfate is placed between two anodized flanges and compressed. The flange was tightened with bolts / nuts while adjusting with a shim so that the rate was 20%, and then heat treatment was performed at 200 ° C. for 65 hours in a vacuum atmosphere. Next, the flange pair after the heat treatment is sufficiently cooled in a thermostat (temperature 23 ° C., relative humidity 50%), and after confirming that the flange temperature is 23 ° C., tensile compression made by Minebea Co., Ltd. Using a universal material testing machine, the peel strength (sticking force, N) at the time of peeling the flange (that is, when peeling the test piece and the metal plate) was measured.

<実施例1>
表1に示される配合比率(数値の単位は重量部である)で同表に示される各配合成分を自動乳鉢を用いて混合し、さらにロールに通して高分散化させた。得られた混練物を、金型を用いて熱プレス(100℃、10分間)でシート状に成型して、シート状成型物を得た(1次架橋工程)。次いで、得られたシート状成型物をフッ素系シランカップリング剤含有液に25℃で5分間浸漬した(表面処理工程)。フッ素系シランカップリング剤含有液には、信越化学工業(株)製の「KBM−7103」(トリフルオロプロピルトリメトキシシラン)を50重量%含有する溶液(溶剤:イオン交換水)を用いた。
<Example 1>
Each compounding component shown in the table with the compounding ratio shown in Table 1 (the unit of numerical values is parts by weight) was mixed using an automatic mortar, and further passed through a roll to be highly dispersed. The obtained kneaded material was molded into a sheet shape by a hot press (100 ° C., 10 minutes) using a mold to obtain a sheet-shaped molded product (primary crosslinking step). Next, the obtained sheet-like molded product was immersed in a fluorine-based silane coupling agent-containing liquid at 25 ° C. for 5 minutes (surface treatment step). A solution (solvent: ion-exchanged water) containing 50% by weight of “KBM-7103” (trifluoropropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. was used as the fluorine-based silane coupling agent-containing liquid.

次に、フッ素系シランカップリング剤で処理したシート状成型物に対して、電気炉を用いて100℃、1時間の加熱処理を施して(2次架橋工程)、熱伝導性ゴムシートを作製した。   Next, the sheet-like molded product treated with the fluorine-based silane coupling agent is subjected to a heat treatment at 100 ° C. for 1 hour using an electric furnace (secondary crosslinking step) to produce a heat conductive rubber sheet. did.

<実施例2>
2次架橋工程における加熱処理条件を120℃、1時間としたこと以外は、実施例1と同様にして熱伝導性ゴムシートを作製した。
<Example 2>
A thermally conductive rubber sheet was produced in the same manner as in Example 1 except that the heat treatment conditions in the secondary crosslinking step were 120 ° C. and 1 hour.

<実施例3>
実施例1と同様にして1次架橋工程を実施した後、表面処理工程を実施することなく、引き続き、実施例1と同様にして2次架橋工程を実施した。その後、実施例1と同様にしてフッ素系シランカップリング剤含有液に浸漬した後、100℃、1時間の加熱処理を再度施して、熱伝導性ゴムシートを作製した。
<Example 3>
After carrying out the primary crosslinking step in the same manner as in Example 1, the secondary crosslinking step was carried out in the same manner as in Example 1 without carrying out the surface treatment step. Then, after immersing in the fluorine-type silane coupling agent containing liquid like Example 1, 100 degreeC and the heat processing for 1 hour were performed again, and the heat conductive rubber sheet was produced.

<比較例1>
フッ素系シランカップリング剤含有液に浸漬する工程を実施しなかったこと以外は、実施例1と同様にして熱伝導性ゴムシートを作製した。
<Comparative Example 1>
A thermally conductive rubber sheet was produced in the same manner as in Example 1 except that the step of immersing in the fluorinated silane coupling agent-containing liquid was not performed.

<比較例2>
表1に示される配合比率(数値の単位は重量部である)で同表に示される各配合成分を用い、かつ、フッ素系シランカップリング剤含有液に浸漬する工程を実施しなかったこと以外は、実施例1と同様にして、シリコーンゴム系の熱伝導性ゴムシートを作製した。
<Comparative Example 2>
Other than not using the blending ratio shown in Table 1 (the unit of the numerical value is parts by weight) and using each blending component shown in the same table and immersing in the fluorinated silane coupling agent-containing liquid In the same manner as in Example 1, a silicone rubber-based thermally conductive rubber sheet was produced.

実施例及び比較例で使用した各配合成分の詳細は次のとおりである。
〔a〕フッ素系化合物(A1):信越化学工業(株)製の商品名「SIFEL 8370−A」(ヒドロシリル基を2個有する分子の含有率が60〜100モル%の範囲内であるフッ素系化合物)、
〔b〕フッ素系化合物(B1):信越化学工業(株)製の商品名「SIFEL 8370−B」(アルケニル基を2個有する分子の含有率が60〜100モル%の範囲内であるフッ素系化合物)、
〔c〕シリコン系化合物:富士高分子社製「サーコン」、
〔d〕酸化アルミニウムA:電気化学工業(株)製「DAM−45」(平均粒子径40μm)、
〔e〕酸化アルミニウムB:電気化学工業(株)製「DAM−05A」(平均粒子径0.5μm)、
〔f〕白金触媒:田中貴金属社製「TEC10E50E」(白金担持量50重量%)。
The detail of each compounding component used by the Example and the comparative example is as follows.
[A] Fluorine compound (A1): trade name “SIFEL 8370-A” manufactured by Shin-Etsu Chemical Co., Ltd. (fluorine compound in which the content of molecules having two hydrosilyl groups is in the range of 60 to 100 mol%) Compound),
[B] Fluorine compound (B1): trade name “SIFEL 8370-B” manufactured by Shin-Etsu Chemical Co., Ltd. (fluorine compound in which the content of molecules having two alkenyl groups is in the range of 60 to 100 mol%) Compound),
[C] Silicon compound: “Sircon” manufactured by Fuji Polymer Co., Ltd.
[D] Aluminum oxide A: “DAM-45” (average particle diameter: 40 μm) manufactured by Denki Kagaku Kogyo Co., Ltd.
[E] Aluminum oxide B: “DAM-05A” (average particle size 0.5 μm) manufactured by Denki Kagaku Kogyo Co., Ltd.
[F] Platinum catalyst: “TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd. (platinum supported amount: 50% by weight).

Figure 2015067736
Figure 2015067736

なお、比較例1及び2においては、剥離強度を求めるための評価試験において熱伝導性シートからなる試験片が破断してしまい、剥離強度を測定することはできなかった。表1に示される数値は、剥離強度を求めるための評価試験において一応計測された数値を記載したものであるが、これらの数値は破断応力に相当するものである。剥離強度は、破断応力よりも大きいものとなる。   In Comparative Examples 1 and 2, the test piece made of the heat conductive sheet was broken in the evaluation test for obtaining the peel strength, and the peel strength could not be measured. The numerical values shown in Table 1 are values that are temporarily measured in the evaluation test for obtaining the peel strength, and these numerical values correspond to the breaking stress. The peel strength is greater than the breaking stress.

Claims (10)

架橋性成分及び熱伝導性フィラーを含有する熱伝導性樹脂組成物を加熱下に成型して、前記架橋性成分が少なくとも部分的に架橋されたシート状成型物を得る1次架橋工程と、
シート状成型物の表面の少なくとも一部をフッ素系シランカップリング剤に接触させる表面処理工程と、
を含む、熱伝導性ゴムシートの製造方法。
A primary crosslinking step of molding a thermally conductive resin composition containing a crosslinking component and a thermally conductive filler under heating to obtain a sheet-like molded product in which the crosslinking component is at least partially crosslinked;
A surface treatment step of contacting at least a part of the surface of the sheet-like molded product with a fluorine-based silane coupling agent;
The manufacturing method of the heat conductive rubber sheet containing this.
加熱処理により、前記シート状成型物中の前記架橋性成分の架橋反応を促進させる2次架橋工程をさらに含む、請求項1に記載の熱伝導性ゴムシートの製造方法。   The manufacturing method of the heat conductive rubber sheet of Claim 1 which further includes the secondary crosslinking process which accelerates | stimulates the crosslinking reaction of the said crosslinkable component in the said sheet-like molding by heat processing. 前記1次架橋工程と前記2次架橋工程との間に前記表面処理工程を行う、請求項2に記載の熱伝導性ゴムシートの製造方法。   The manufacturing method of the heat conductive rubber sheet of Claim 2 which performs the said surface treatment process between the said primary crosslinking process and the said secondary crosslinking process. 前記2次架橋工程の後に前記表面処理工程を行う、請求項2に記載の熱伝導性ゴムシートの製造方法。   The manufacturing method of the heat conductive rubber sheet of Claim 2 which performs the said surface treatment process after the said secondary bridge | crosslinking process. 前記熱伝導性ゴムシートは、フッ素ゴムで構成される、請求項1〜4のいずれか1項に記載の熱伝導性ゴムシートの製造方法。   The said heat conductive rubber sheet is a manufacturing method of the heat conductive rubber sheet of any one of Claims 1-4 comprised with a fluoro rubber. 前記架橋性成分は、主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にヒドロシリル基を1〜2個有する化合物であって、ヒドロシリル基を2個有する分子の含有率が60〜100モル%であるフッ素系化合物(A1)、並びに、主鎖中にパーフルオロアルキルエーテル構造を有し、分子末端にアルケニル基を1〜2個有する化合物であって、アルケニル基を2個有する分子の含有率が60〜100モル%であるフッ素系化合物(B1)を含む、請求項5に記載の熱伝導性ゴムシートの製造方法。   The crosslinkable component is a compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 hydrosilyl groups at the molecular ends, and the content of the molecule having 2 hydrosilyl groups is 60 to 100 mol. % Fluorine-based compound (A1), and a compound having a perfluoroalkyl ether structure in the main chain and having 1 to 2 alkenyl groups at the molecular ends, and having 2 molecules of alkenyl groups The manufacturing method of the heat conductive rubber sheet of Claim 5 containing the fluorine-type compound (B1) whose rate is 60-100 mol%. 前記フッ素系化合物(A1)及び(B1)は、下記式[1]:
Figure 2015067736
(式中、nは1〜10の整数である。)
で表される主鎖構造を有する、請求項6に記載の熱伝導性ゴムシートの製造方法。
The fluorine-based compounds (A1) and (B1) are represented by the following formula [1]:
Figure 2015067736
(In the formula, n is an integer of 1 to 10.)
The manufacturing method of the heat conductive rubber sheet of Claim 6 which has the principal chain structure represented by these.
前記フッ素系化合物(B1)が有するアルケニル基は、ビニル基である、請求項6又は7に記載の熱伝導性ゴムシートの製造方法。   The manufacturing method of the heat conductive rubber sheet of Claim 6 or 7 whose alkenyl group which the said fluorine-type compound (B1) has is a vinyl group. 前記熱伝導性樹脂組成物は、前記架橋性成分100重量部に対して、前記熱伝導性フィラーを50〜500重量部含む、請求項1〜8のいずれか1項に記載の熱伝導性ゴムシートの製造方法。   The thermally conductive rubber according to claim 1, wherein the thermally conductive resin composition contains 50 to 500 parts by weight of the thermally conductive filler with respect to 100 parts by weight of the crosslinkable component. Sheet manufacturing method. 請求項1〜9のいずれか1項に記載の製造方法により得られる熱伝導性ゴムシート。   The heat conductive rubber sheet obtained by the manufacturing method of any one of Claims 1-9.
JP2013203936A 2013-09-30 2013-09-30 Method for producing thermally conductive rubber sheet and thermally conductive rubber sheet Active JP6113042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013203936A JP6113042B2 (en) 2013-09-30 2013-09-30 Method for producing thermally conductive rubber sheet and thermally conductive rubber sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013203936A JP6113042B2 (en) 2013-09-30 2013-09-30 Method for producing thermally conductive rubber sheet and thermally conductive rubber sheet

Publications (2)

Publication Number Publication Date
JP2015067736A true JP2015067736A (en) 2015-04-13
JP6113042B2 JP6113042B2 (en) 2017-04-12

Family

ID=52834763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013203936A Active JP6113042B2 (en) 2013-09-30 2013-09-30 Method for producing thermally conductive rubber sheet and thermally conductive rubber sheet

Country Status (1)

Country Link
JP (1) JP6113042B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170117323A (en) 2016-04-13 2017-10-23 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-conductive fluorinated adhesive composition and electric/electronic part
US10017677B2 (en) 2015-10-28 2018-07-10 Shin-Etsu Chemical Co., Ltd. Heat-conductive fluorinated curable composition, cured product thereof, and electric/electronic part
JP2019011423A (en) * 2017-06-30 2019-01-24 三菱電線工業株式会社 Heat transfer sheet and heat transfer sheet product prepared therewith

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532953A (en) * 1991-05-21 1993-02-09 Nippon Oil & Fats Co Ltd Surface-treating agent
JPH08231742A (en) * 1994-12-27 1996-09-10 Ppg Ind Inc Water-repellent treatment for surface of plastic or coated plastic substrate
JP2003002903A (en) * 2001-06-20 2003-01-08 Fujikura Rubber Ltd Method for surface modification of rubber
EP1316580A2 (en) * 2001-11-30 2003-06-04 The Goodyear Tire & Rubber Company Pneumatic tire having an outer layer of a fluorinated silane coating
JP2004034396A (en) * 2002-07-01 2004-02-05 Bridgestone Corp Coated rubber molding, its manufacturing method, and rubber-containing coating liquid
JP2005146272A (en) * 2003-10-22 2005-06-09 Nippon Arc Co Ltd Method for manufacturing antifouling film-coated resin article
JP2010232535A (en) * 2009-03-27 2010-10-14 Polymatech Co Ltd Heat-resistant heat dissipation sheet
JP2013194117A (en) * 2012-03-19 2013-09-30 Nippon Valqua Ind Ltd Thermally conductive resin composition and thermally conductive sheet using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532953A (en) * 1991-05-21 1993-02-09 Nippon Oil & Fats Co Ltd Surface-treating agent
JPH08231742A (en) * 1994-12-27 1996-09-10 Ppg Ind Inc Water-repellent treatment for surface of plastic or coated plastic substrate
JP2003002903A (en) * 2001-06-20 2003-01-08 Fujikura Rubber Ltd Method for surface modification of rubber
EP1316580A2 (en) * 2001-11-30 2003-06-04 The Goodyear Tire & Rubber Company Pneumatic tire having an outer layer of a fluorinated silane coating
JP2004034396A (en) * 2002-07-01 2004-02-05 Bridgestone Corp Coated rubber molding, its manufacturing method, and rubber-containing coating liquid
JP2005146272A (en) * 2003-10-22 2005-06-09 Nippon Arc Co Ltd Method for manufacturing antifouling film-coated resin article
JP2010232535A (en) * 2009-03-27 2010-10-14 Polymatech Co Ltd Heat-resistant heat dissipation sheet
JP2013194117A (en) * 2012-03-19 2013-09-30 Nippon Valqua Ind Ltd Thermally conductive resin composition and thermally conductive sheet using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10017677B2 (en) 2015-10-28 2018-07-10 Shin-Etsu Chemical Co., Ltd. Heat-conductive fluorinated curable composition, cured product thereof, and electric/electronic part
KR20170117323A (en) 2016-04-13 2017-10-23 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-conductive fluorinated adhesive composition and electric/electronic part
JP2019011423A (en) * 2017-06-30 2019-01-24 三菱電線工業株式会社 Heat transfer sheet and heat transfer sheet product prepared therewith

Also Published As

Publication number Publication date
JP6113042B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5511872B2 (en) Thermally conductive resin composition and thermal conductive sheet using the same
JP6253328B2 (en) Thermally conductive resin composition and thermal conductive sheet using the same
US8211545B2 (en) Heat conductive cured product and making method
JP5154010B2 (en) Thermally conductive silicone rubber composition
JP5471868B2 (en) Thermally conductive silicone rubber composite sheet
JP4572056B2 (en) Thermally conductive silicone rubber composite sheet
JP6136952B2 (en) Thermally conductive composite silicone rubber sheet
JP6204916B2 (en) Molded body with suppressed bleed and method for producing the same
JP6797075B2 (en) Thermal conductivity silicone rubber composite sheet
JPWO2018025600A1 (en) Thermally conductive silicone rubber composite sheet
JP6314915B2 (en) Heat dissipation putty sheet
TWI812693B (en) Thermally conductive silicone composition and hardened product thereof
JP6113042B2 (en) Method for producing thermally conductive rubber sheet and thermally conductive rubber sheet
TW202346510A (en) Thermally conductive silicone rubber sheet having thermally conductive adhesive layer, and method for producing same
JP2007119589A (en) Thermoconductive silicone rubber composition
JP5972731B2 (en) Thermally conductive sheet
US20040106717A1 (en) Heat conductive silicone composition and shaped article
JP6017240B2 (en) Thermally conductive sheet
TW202248352A (en) Thermally conductive silicone composition and cured object obtained therefrom
JP2004010691A (en) Thermally conductive silicone rubber molding
TW201940596A (en) Silicone composition
WO2023189699A1 (en) Thermally conductive silicone composition
JP2012171999A (en) Addition reaction curable silicone rubber composition and semiconductor device sealed by cured material of the same
TW202313338A (en) Thermally conductive sheet product and method for producing same
TW202334320A (en) Thermally conductive composition, thermally conductive sheet, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R150 Certificate of patent or registration of utility model

Ref document number: 6113042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250