JP2010232471A - Method for producing semiconductor device, and semiconductor device - Google Patents

Method for producing semiconductor device, and semiconductor device Download PDF

Info

Publication number
JP2010232471A
JP2010232471A JP2009079134A JP2009079134A JP2010232471A JP 2010232471 A JP2010232471 A JP 2010232471A JP 2009079134 A JP2009079134 A JP 2009079134A JP 2009079134 A JP2009079134 A JP 2009079134A JP 2010232471 A JP2010232471 A JP 2010232471A
Authority
JP
Japan
Prior art keywords
semiconductor device
manufacturing
semiconductor
substrate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009079134A
Other languages
Japanese (ja)
Inventor
Takehiko Maeda
武彦 前田
Yuko Sato
祐子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2009079134A priority Critical patent/JP2010232471A/en
Publication of JP2010232471A publication Critical patent/JP2010232471A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent burrs from being formed in cutting a structure including a heat dissipation plate, by a simple procedure. <P>SOLUTION: A package structure 110 before cutting includes a substrate 102 and a heat spreaders 106 disposed on the substrate. The heat spreaders are each formed with through holes 106a at the intersections of cutting lines 108b extending in an X direction and a cutting lines 108a extending in a Y direction, the through holes being filled with a low ductility material 104 having a lower ductility than that of the material of which the heat spreader is comprised. Such package structure before cutting is cut along each of the cutting line extending in an X direction and the cutting line extending in a Y direction to be diced into a plurality of semiconductor devices. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体装置の製造方法および半導体装置に関する。   The present invention relates to a semiconductor device manufacturing method and a semiconductor device.

特許文献1(特開2003−249512号公報)には、(a)複数の放熱体が一体化してなる集合体を、型の凹部にセットし、(b)複数の半導体チップが平面的に並べて搭載されてなる基板を、複数の半導体チップを凹部内に配置するように型にセットし、(c)凹部に封止材を充填することで、複数の半導体チップを封止するとともに、集合体を取り付けることを含む半導体装置の製造方法が記載されている。この後、この構造体を切断して個片化する。   In Patent Document 1 (Japanese Patent Laid-Open No. 2003-249512), (a) an assembly formed by integrating a plurality of heat dissipating bodies is set in a recess of a mold, and (b) a plurality of semiconductor chips are arranged in a plane. The mounted substrate is set in a mold so that a plurality of semiconductor chips are arranged in the recesses, and (c) the recesses are filled with a sealing material, thereby sealing the plurality of semiconductor chips and collecting the assembly. A method of manufacturing a semiconductor device including mounting is described. Thereafter, the structure is cut into pieces.

しかし、通常、放熱板は、銅等の延性が高い金属材料により構成されており、切断時に材料が延びてバリが発生するという問題があった。このようなバリが発生すると、実装時にバリが脱落し、実装不良の原因となる。   However, the heat radiating plate is usually made of a metal material having high ductility such as copper, and there is a problem in that the material extends during cutting and burrs are generated. When such a burr | flash generate | occur | produces, a burr | flash will fall | omit at the time of mounting, and will cause a mounting defect.

特許文献2(特開2006−41261号公報)には、フィルム上に複数のベアチップがパッケージ化された被加工物を、高速回転する切削ブレードによってフィルム側の面から切削加工して、少なくともフィルム部分を複数のチップに分割した後に、各チップのコーナー部分に生じたバリを除去するバリ除去方法が記載されている。当該方法において、切削ブレードと被加工物との対向位置で切削ブレードの回転方向と逆方向に被加工物を切削ブレードに対して相対移動させて、切削加工によって形成された切削溝を切削ブレードによってなぞることによって、コーナー部分に生じたバリを、なぞられた切削溝に対して直交する他の切削溝に逃がさないように、切削ブレードと各チップとの間に挟み込んで除去している。   In Patent Document 2 (Japanese Patent Laid-Open No. 2006-41261), a workpiece in which a plurality of bare chips are packaged on a film is cut from a surface on the film side by a cutting blade that rotates at high speed, and at least a film portion is obtained. Describes a method of removing burrs in which burrs generated at the corners of each chip are removed after the chip is divided into a plurality of chips. In this method, the workpiece is moved relative to the cutting blade in a direction opposite to the rotation direction of the cutting blade at a position where the cutting blade and the workpiece are opposed to each other, and a cutting groove formed by the cutting is formed by the cutting blade. By tracing, the burrs generated at the corner portions are removed by being sandwiched between the cutting blade and each chip so as not to escape to other cutting grooves orthogonal to the traced cutting grooves.

特許文献3(特開2001−267478号公報)には、ヒートスプレッダとなる金属板の片面に上溝を設ける工程、該金属板に配線層を有する基板を接着するとともに上記の上溝に樹脂を充填する工程、金属板の別の面に下溝を設けて上下の溝を連結する工程を少なくとも有する半導体装置の製造方法が記載されている。   Patent Document 3 (Japanese Patent Laid-Open No. 2001-267478) discloses a step of providing an upper groove on one surface of a metal plate serving as a heat spreader, a step of adhering a substrate having a wiring layer to the metal plate and filling the upper groove with a resin. A method of manufacturing a semiconductor device having at least a step of providing a lower groove on another surface of a metal plate and connecting upper and lower grooves is described.

特許文献4(特開2000−77575号公報)には、ダイ上に、接地パッドに接続される支持部を有する放熱体(ヒートスプレッダ)が配置されたパッケージが記載されている。ここで、ヒートスプレッダは、平面視でダイと重なる中央部で膜厚が厚くなっている。   Patent Document 4 (Japanese Patent Application Laid-Open No. 2000-77575) describes a package in which a radiator (heat spreader) having a support portion connected to a ground pad is arranged on a die. Here, the heat spreader has a thick film thickness at the central portion overlapping the die in plan view.

特開2003−249512号公報JP 2003-249512 A 特開2006−41261号公報JP 2006-41261 A 特開2001−267478号公報JP 2001-267478 A 特開2000−77575号公報JP 2000-77575 A

しかし、特許文献2に記載の技術でも、完全にバリを除くのは困難だった。特許文献1や特許文献2に記載された技術において、バリの発生を防ぐのが困難であることを図24を参照して説明する。図24は、ヒートスプレッダ6の構成を示す平面図である。まず、ヒートスプレッダ6をダイシングライン8aに沿って、第1の方向(図中上から下方向)に切断する(図24(a))。次いで、ヒートスプレッダ6をダイシングライン8bに沿って、第1の方向と直交する第2の方向(図中左から右方向)に切断する(図24(b))。このとき、ダイシングライン8a上では、既にヒートスプレッダ6が切断・除去されている。そのため、ヒートスプレッダ6をダイシングライン8bに沿って横方向に切断する際に生じたバリ10が、ダイシングライン8a上に残ってしまう。このような構成となった場合に、特許文献2に記載された技術のように、再度ダイシングライン8aに沿って、第1の方向と反対側の方向(図中下から上方向)にブレードでなぞっても、バリ10がダイシングライン8b上に移動するだけで、一旦発生したバリ10を完全に除去するのは困難である(図24(c))。   However, even with the technique described in Patent Document 2, it has been difficult to completely remove burrs. With reference to FIG. 24, it will be described that it is difficult to prevent the occurrence of burrs in the techniques described in Patent Document 1 and Patent Document 2. FIG. 24 is a plan view showing the configuration of the heat spreader 6. First, the heat spreader 6 is cut along the dicing line 8a in a first direction (from the top to the bottom in the figure) (FIG. 24A). Next, the heat spreader 6 is cut along a dicing line 8b in a second direction (left to right in the drawing) perpendicular to the first direction (FIG. 24B). At this time, the heat spreader 6 has already been cut and removed on the dicing line 8a. Therefore, burrs 10 generated when the heat spreader 6 is cut in the lateral direction along the dicing line 8b remain on the dicing line 8a. In such a configuration, as in the technique described in Patent Document 2, the blade is again moved along the dicing line 8a in the direction opposite to the first direction (from the bottom to the top in the figure). Even if it is traced, it is difficult to completely remove the burrs 10 once generated by merely moving the burrs 10 onto the dicing line 8b (FIG. 24C).

本発明によれば、
基板と、
前記基板の一面上に配置され、X方向のX方向切断ラインおよび前記X方向と交差するY方向のY方向切断ラインの交点にそれぞれ貫通孔が形成された放熱板であって、当該貫通孔が当該放熱板を構成する材料よりも延性の低い低延性材料で埋め込まれている放熱板と、
を含む構造体を、前記X方向切断ラインおよび前記Y方向切断ラインにそれぞれ沿って切断し、複数の半導体装置に個片化する工程を含む半導体装置の製造方法が提供される。
According to the present invention,
A substrate,
A heat radiating plate disposed on one surface of the substrate and having a through hole formed at an intersection of an X direction cutting line in the X direction and a Y direction cutting line in the Y direction intersecting the X direction, A heat sink embedded with a low ductility material having a lower ductility than the material constituting the heat sink;
Is cut along each of the X-direction cutting line and the Y-direction cutting line, and a method for manufacturing a semiconductor device is provided.

本発明によれば、
基板と、
前記基板に形成された半導体素子と、
前記基板の一面を覆うように配置された放熱板と、
を含み、
前記放熱板は四隅が除かれ、前記四隅には、当該放熱板を構成する材料よりも延性の低い低延性材料が形成されている半導体装置が提供される。
According to the present invention,
A substrate,
A semiconductor element formed on the substrate;
A heat sink arranged to cover one surface of the substrate;
Including
The heat sink is provided with a semiconductor device in which four corners are removed and a low ductility material having a lower ductility than a material constituting the heat sink is formed at the four corners.

放熱板が銅等の延性の高い材料で構成されている場合、構造体を切断用ブレードで切断する際に当該材料が延びてバリが発生してしまう。しかし、本発明の構成によれば、切断ラインの交点に放熱板を構成する材料よりも延性の低い材料が充填されているため、放熱板を構成する材料の延びを抑えることができ、バリの発生を抑えることができる。これにより、実装不良を防ぐことができる。   When the heat sink is made of a highly ductile material such as copper, when the structure is cut with a cutting blade, the material extends to generate burrs. However, according to the configuration of the present invention, since the intersection of the cutting lines is filled with a material having a lower ductility than the material constituting the heat sink, the extension of the material constituting the heat sink can be suppressed. Occurrence can be suppressed. Thereby, mounting failure can be prevented.

ここで、切断ラインの交点に何も形成されていないと、放熱板を構成する材料の延びを抑えることはできない。そのため、たとえば特許文献2に記載されたように、発生したバリを除去しようとしても、たとえばX方向切断ラインに沿って除去作業を行った場合は、上述したように、バリがY方向切断ラインの方向に変形し、逆にY方向切断ラインに沿って除去作業を行った場合には、バリがX方向切断ラインの方向に変形してしまい、一旦バリが発生してしまうと、これを完全に除くのは困難である。本発明の構成によれば、バリの発生自体を防ぐことができるため、簡易な手順で、実装不良を防ぐことができる。   Here, if nothing is formed at the intersection of the cutting lines, the extension of the material constituting the heat sink cannot be suppressed. Therefore, for example, as described in Patent Document 2, even if an attempt is made to remove the generated burr, for example, when the removal operation is performed along the X-direction cutting line, the burr is formed on the Y-direction cutting line as described above. When the removal operation is performed along the Y direction cutting line, the burr is deformed in the direction of the X direction cutting line, and once the burr is generated, this is completely removed. It is difficult to remove. According to the configuration of the present invention, since the occurrence of burrs can be prevented, mounting defects can be prevented with a simple procedure.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置などの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements and a conversion of the expression of the present invention between a method, an apparatus, and the like are also effective as an aspect of the present invention.

本発明によれば、簡易な手順で、放熱板を含む構造体を切断する際のバリの発生を防いで、実装不良を防ぐことができる。   According to the present invention, it is possible to prevent the occurrence of burrs when cutting a structure including a heat sink by a simple procedure, thereby preventing mounting defects.

本発明の実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の構成を示す平面図である。It is a top view which shows the structure of the semiconductor device in embodiment of this invention. 本発明の実施の形態におけるヒートスプレッダの構成を示す平面図である。It is a top view which shows the structure of the heat spreader in embodiment of this invention. 本発明の実施の形態における半導体装置の製造手順を示す断面図である。It is sectional drawing which shows the manufacture procedure of the semiconductor device in embodiment of this invention. 金型から外した切断前パッケージ構造の構成を示す断面図である。It is sectional drawing which shows the structure of the package structure before cutting | disconnection removed from the metal mold | die. 金型から外した切断前パッケージ構造の構成を示す平面図である。It is a top view which shows the structure of the package structure before cutting | disconnection removed from the metal mold | die. 本発明の実施の形態におけるヒートスプレッダの構成を示す平面図である。It is a top view which shows the structure of the heat spreader in embodiment of this invention. 本発明の実施の形態における半導体装置の製造手順を示す断面図である。It is sectional drawing which shows the manufacture procedure of the semiconductor device in embodiment of this invention. 金型から外した切断前パッケージ構造の構成を示す断面図である。It is sectional drawing which shows the structure of the package structure before cutting | disconnection removed from the metal mold | die. 金型から外した切断前パッケージ構造の構成を示す平面図である。It is a top view which shows the structure of the package structure before cutting | disconnection removed from the metal mold | die. 本発明の実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in embodiment of this invention. 本発明の実施の形態におけるヒートスプレッダの構成を示す平面図である。It is a top view which shows the structure of the heat spreader in embodiment of this invention. 本発明の実施の形態における半導体装置の製造手順を示す断面図である。It is sectional drawing which shows the manufacture procedure of the semiconductor device in embodiment of this invention. 金型から外した切断前パッケージ構造の構成を示す断面図である。It is sectional drawing which shows the structure of the package structure before cutting | disconnection removed from the metal mold | die. 金型から外した切断前パッケージ構造の構成を示す平面図である。It is a top view which shows the structure of the package structure before cutting | disconnection removed from the metal mold | die. 本発明の実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in embodiment of this invention. 本発明の実施の形態における切断前パッケージ構造の構成を示す断面図である。It is sectional drawing which shows the structure of the package structure before a cutting | disconnection in embodiment of this invention. 本発明の実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in embodiment of this invention. 従来技術の問題点を説明するための図である。It is a figure for demonstrating the problem of a prior art.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

(第1の実施の形態)
図1は、本実施の形態における半導体装置100の構成を示す断面図である。図2は、本実施の形態における半導体装置100の構成を示す平面図である。図1は、図2のa−a線に沿った断面構造に対応する。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a semiconductor device 100 in the present embodiment. FIG. 2 is a plan view showing the configuration of the semiconductor device 100 according to the present embodiment. FIG. 1 corresponds to a cross-sectional structure taken along line aa in FIG.

半導体装置100は、基板102と、基板102の一面に搭載された半導体素子120と、基板102上に形成され、半導体素子120を封止する封止樹脂104と、封止樹脂104上に配置されたヒートスプレッダ(放熱板)106とを含む。基板102の半導体素子120が搭載された一面と反対側の面には、半田ボール126が設けられている。また、半導体素子120は、ボンディングワイヤ122を介して基板102の配線と接続されている。ボンディングワイヤ122も封止樹脂104により封止されている。基板102は、たとえば、樹脂層と配線パターンとが積層された多層配線基板とすることができる。   The semiconductor device 100 includes a substrate 102, a semiconductor element 120 mounted on one surface of the substrate 102, a sealing resin 104 that is formed on the substrate 102 and seals the semiconductor element 120, and is disposed on the sealing resin 104. And a heat spreader (heat radiating plate) 106. A solder ball 126 is provided on the surface of the substrate 102 opposite to the surface on which the semiconductor element 120 is mounted. Further, the semiconductor element 120 is connected to the wiring of the substrate 102 through the bonding wire 122. The bonding wire 122 is also sealed with the sealing resin 104. The substrate 102 can be, for example, a multilayer wiring board in which a resin layer and a wiring pattern are laminated.

平面視において、ヒートスプレッダ106は、基板102上の四隅を除いた箇所ほぼ全面に設けられる。また、本実施の形態において、ヒートスプレッダ106が形成されていない四隅には、封止樹脂104が形成されている。封止樹脂104は、ヒートスプレッダ106を構成する材料よりも延性の低い材料とすることができる。本実施の形態において、ヒートスプレッダ106は、銅により構成することができる。   In plan view, the heat spreader 106 is provided on almost the entire surface of the substrate 102 except for the four corners. In the present embodiment, sealing resin 104 is formed at the four corners where the heat spreader 106 is not formed. The sealing resin 104 can be made of a material having lower ductility than the material constituting the heat spreader 106. In the present embodiment, the heat spreader 106 can be made of copper.

ここで、ヒートスプレッダ106の封止樹脂104と接する面と反対側の一面(図1中上面)とその四隅に露出した封止樹脂104の表面とは高さがほぼ等しく形成することができる。   Here, one surface (upper surface in FIG. 1) opposite to the surface in contact with the sealing resin 104 of the heat spreader 106 and the surface of the sealing resin 104 exposed at the four corners thereof can be formed to have substantially the same height.

次に、図3および図4を参照して、本実施の形態における半導体装置100の製造手順を説明する。
図3は、本実施の形態におけるヒートスプレッダ106の構成を部分的に示す平面図である。
本実施の形態において、ヒートスプレッダ106には、X方向(図中横方向)のX方向切断ライン108bおよびX方向に直交するY方向(図中縦方向)のY方向切断ライン108aの交点108にそれぞれ貫通孔106aが形成されている。ここで、貫通孔106aの直径は、後に切断前パッケージ構造を個片化する際のパッケージ切断用ブレードの歯の幅よりも広くなるように形成することができる。本実施の形態において、ヒートスプレッダ106は、平板とすることができる。ここで、たとえば、平板に形成されたヒートスプレッダ106の該当箇所を打ち抜く等により貫通孔106aを形成することができる。また、シート状のヒートスプレッダ材料を打ち抜いて、個々のヒートスプレッダ106を形成する際に、同時に貫通孔106aを打ち抜くこともできる。
Next, with reference to FIG. 3 and FIG. 4, the manufacturing procedure of the semiconductor device 100 in the present embodiment will be described.
FIG. 3 is a plan view partially showing the configuration of the heat spreader 106 in the present embodiment.
In the present embodiment, the heat spreader 106 has an X-direction cutting line 108b in the X direction (lateral direction in the drawing) and an intersection 108 of the Y-direction cutting line 108a in the Y direction (vertical direction in the drawing) orthogonal to the X direction. A through hole 106a is formed. Here, the diameter of the through-hole 106a can be formed so as to be wider than the width of the teeth of the package cutting blade when the package structure before cutting is separated into pieces later. In the present embodiment, the heat spreader 106 may be a flat plate. Here, for example, the through hole 106a can be formed by punching out a corresponding portion of the heat spreader 106 formed on a flat plate. Further, when the individual heat spreaders 106 are formed by punching a sheet-like heat spreader material, the through holes 106a can be punched simultaneously.

本実施の形態において、図3に示したようなヒートスプレッダ106を用いて、金型200により、半導体素子120を封止樹脂104で封止する。図4(a)は、図3に示したヒートスプレッダ106のb−b線に沿った断面構造に対応する。   In the present embodiment, the semiconductor element 120 is sealed with the sealing resin 104 by the mold 200 using the heat spreader 106 as shown in FIG. 4A corresponds to the cross-sectional structure along the line bb of the heat spreader 106 shown in FIG.

まず、基板102上に複数の半導体素子120を搭載し、ボンディングワイヤ122を介して基板102の配線と接続しておく。次いで、ワイヤボンディング済みの複数の半導体素子120が搭載された基板102を、半導体素子120が搭載された面が下型202と向かい合うようにして、金型200の上型204に配置する。また、金型200の下型202にヒートスプレッダ106を配置する。このような状態で、金型200の導入口から封止樹脂104を導入する(図4(b))。これにより、半導体素子120およびボンディングワイヤ122が封止樹脂104で封止されるとともに、ヒートスプレッダ106の貫通孔106a内にも封止樹脂104が充填される(図4(c))。この時、ヒートスプレッダ106と下型202との間に、リリースフィルム(たとえば4H−4F共重合物のフィルム、不図示)を敷いておいてもよい。リリースフィルムを敷くことで、貫通孔106a内に充填された封止樹脂104と下型202とが直接接しなくなるため、金型200からの取り外しが容易になる。   First, a plurality of semiconductor elements 120 are mounted on the substrate 102 and connected to the wiring of the substrate 102 through bonding wires 122. Next, the substrate 102 on which the plurality of wire-bonded semiconductor elements 120 are mounted is placed on the upper mold 204 of the mold 200 so that the surface on which the semiconductor elements 120 are mounted faces the lower mold 202. Further, the heat spreader 106 is disposed on the lower mold 202 of the mold 200. In such a state, the sealing resin 104 is introduced from the introduction port of the mold 200 (FIG. 4B). As a result, the semiconductor element 120 and the bonding wire 122 are sealed with the sealing resin 104, and the sealing resin 104 is also filled into the through holes 106a of the heat spreader 106 (FIG. 4C). At this time, a release film (for example, a 4H-4F copolymer film, not shown) may be laid between the heat spreader 106 and the lower mold 202. By laying the release film, the sealing resin 104 filled in the through hole 106a and the lower mold 202 are not in direct contact with each other, so that the removal from the mold 200 is facilitated.

なお、図4では、金型200の導入口から封止樹脂104を導入するトランスファーモールド方式による樹脂封止を例示したが、樹脂封止は、これに限定されるものではない。たとえば、樹脂封止は、圧縮成形方式で行うこともできる。この場合も、トランスファーモールド方式と同様に、ワイヤボンディング済みの複数の半導体素子120が搭載された基板102を、半導体素子120が搭載された面が下型202と向かい合うようにして、金型200の上型204に配置する。次いで、金型200の下型202にヒートスプレッダ106を配置した状態で、封止樹脂のプリフォーム(体)をヒートスプレッダ106上に載置し、その後、プリフォーム(体)を加熱溶融しながら上型204と下型202とを閉じ合わせて樹脂封止する。   4 illustrates the resin sealing by the transfer mold method in which the sealing resin 104 is introduced from the inlet of the mold 200, the resin sealing is not limited to this. For example, the resin sealing can be performed by a compression molding method. Also in this case, similarly to the transfer mold method, the substrate 102 on which a plurality of wire-bonded semiconductor elements 120 are mounted is arranged so that the surface on which the semiconductor elements 120 are mounted faces the lower mold 202. Arranged in the upper mold 204. Next, in a state where the heat spreader 106 is arranged on the lower mold 202 of the mold 200, the sealing resin preform (body) is placed on the heat spreader 106, and then the upper mold is heated while melting the preform (body). 204 and the lower mold 202 are closed and sealed with resin.

図5は、金型200から外し、基板102の半導体素子120が搭載された一面と反対側の面に外部端子(半田ボール126)を形成した切断前パッケージ構造110の構成を示す断面図である。図6は、金型200から外した切断前パッケージ構造110の構成を部分的に示す平面図である。図5は、図6のc−c線に沿った断面構造に対応する。切断前パッケージ構造110は、MAP方式(多数個取り)の半導体パッケージとすることができる。   FIG. 5 is a cross-sectional view illustrating a configuration of the package structure 110 before cutting in which external terminals (solder balls 126) are formed on the surface opposite to the surface on which the semiconductor element 120 of the substrate 102 is mounted, which is removed from the mold 200. . FIG. 6 is a plan view partially showing the configuration of the package structure 110 before cutting removed from the mold 200. FIG. 5 corresponds to a cross-sectional structure taken along the line cc of FIG. The package structure 110 before cutting can be a MAP (multi-chip) semiconductor package.

このような構成の切断前パッケージ構造110を、パッケージ切断用ブレード(不図示)でX方向切断ライン108bおよびY方向切断ライン108aに沿って切断する。これにより、図1および図2を参照して説明した半導体装置100が得られる。   The package structure 110 before cutting having such a configuration is cut along the X-direction cutting line 108b and the Y-direction cutting line 108a with a package cutting blade (not shown). Thereby, the semiconductor device 100 described with reference to FIGS. 1 and 2 is obtained.

本実施の形態において、ヒートスプレッダ106には、X方向切断ライン108bおよびY方向切断ライン108aの交点108に貫通孔106aが形成されており、貫通孔106aには封止樹脂104が埋め込まれる。ここで、封止樹脂104は、ヒートスプレッダ106を構成する材料よりも延性が低い。そのため、切断前パッケージ構造110をパッケージ切断用ブレードで切断する際に、パッケージ切断用ブレードによる切断部のだれやのびが発生しないようにすることができる。そのため、切断前パッケージ構造110をパッケージ切断用ブレードで切断する際に、交点108でのバリの発生を防ぐことができ、実装不良を防ぐことができる。   In the present embodiment, a through hole 106a is formed in the heat spreader 106 at the intersection 108 of the X direction cutting line 108b and the Y direction cutting line 108a, and the sealing resin 104 is embedded in the through hole 106a. Here, the sealing resin 104 has a lower ductility than the material constituting the heat spreader 106. Therefore, when the pre-cut package structure 110 is cut by the package cutting blade, it is possible to prevent the cutting portion from being drooped or stretched by the package cutting blade. Therefore, when the pre-cut package structure 110 is cut with a package cutting blade, the occurrence of burrs at the intersection 108 can be prevented, and mounting defects can be prevented.

また、ヒートスプレッダ106に貫通孔106aを設けておくだけで、半導体素子120を封止樹脂104で封止する際に一体成型で貫通孔106a内に封止樹脂104を埋め込む構成とすることができ、簡易な手順で上記の効果を得ることができる。   Further, by simply providing the through hole 106a in the heat spreader 106, the sealing resin 104 can be embedded in the through hole 106a by integral molding when the semiconductor element 120 is sealed with the sealing resin 104. The above effects can be obtained with a simple procedure.

本実施の形態において、ヒートスプレッダ106には、X方向切断ライン108bおよびY方向切断ライン108aの交点108に選択的に貫通孔106aを形成するので、ヒートスプレッダ106を貫通する貫通孔106aを形成しても、複数の半導体素子120に対応する平板のヒートスプレッダ106が分離されることがない。そのため、簡易な手順で、バリの発生を防ぐことのできる構成が得られる。一方、特許文献3に記載の技術では、ヒートスプレッダを個片化する際に、切断用砥石が樹脂層のみを切断するように、切断ライン全体にわたって溝を形成している。そのため、上溝と下溝とをそれぞれ形成する必要があり、工程が複雑になる。そのため、経済性に優れないという問題がある。   In the present embodiment, the heat spreader 106 is selectively formed with the through-hole 106a at the intersection 108 of the X-direction cutting line 108b and the Y-direction cutting line 108a. Therefore, even if the through-hole 106a that penetrates the heat spreader 106 is formed. The flat plate heat spreader 106 corresponding to the plurality of semiconductor elements 120 is not separated. Therefore, the structure which can prevent generation | occurrence | production of a burr | flash with a simple procedure is obtained. On the other hand, in the technique described in Patent Document 3, when the heat spreader is separated into pieces, grooves are formed over the entire cutting line so that the cutting grindstone cuts only the resin layer. Therefore, it is necessary to form an upper groove and a lower groove, respectively, and the process becomes complicated. Therefore, there is a problem that it is not economical.

さらに、図1および図2に示した半導体装置100において、温度サイクル等がかかって半導体装置100に反りが生じた場合に応力が集中するコーナー部に半導体素子120を埋め込む封止樹脂104が一体形成されている。そのため、ヒートスプレッダ106と封止樹脂104との剥がれを生じさせる応力が低減されるため、品質の高いパッケージが得られる。   Further, in the semiconductor device 100 shown in FIGS. 1 and 2, the sealing resin 104 that embeds the semiconductor element 120 in the corner portion where stress is concentrated when the semiconductor device 100 is warped due to a temperature cycle or the like is integrally formed. Has been. Therefore, the stress that causes the heat spreader 106 and the sealing resin 104 to peel off is reduced, and a high-quality package can be obtained.

(第2の実施の形態)
図7は、本実施の形態におけるヒートスプレッダ106の構成を部分的に示す平面図である。
本実施の形態において、ヒートスプレッダ106の貫通孔106aを予め、ヒートスプレッダ106を構成する材料よりも延性の低い低延性材料130で埋め込んでおく点で、第1の実施の形態と異なる。
(Second Embodiment)
FIG. 7 is a plan view partially showing the configuration of the heat spreader 106 in the present embodiment.
The present embodiment is different from the first embodiment in that the through hole 106a of the heat spreader 106 is previously filled with a low ductility material 130 having a lower ductility than the material constituting the heat spreader 106.

本実施の形態においても、ヒートスプレッダ106には、X方向切断ライン108bおよびY方向切断ライン108aの交点108にそれぞれ貫通孔106aが形成されている。本実施の形態において、ヒートスプレッダ106の貫通孔106aには、低延性材料130が埋め込まれている。低延性材料130は、たとえば、後に半導体素子120を封止する封止樹脂104と同様の樹脂材料により構成することができる。また、低延性材料130は、たとえば、銅より延性の低い金属やセラミック等により構成することもできる。   Also in the present embodiment, the heat spreader 106 is formed with through holes 106a at intersections 108 of the X-direction cutting line 108b and the Y-direction cutting line 108a. In the present embodiment, a low ductility material 130 is embedded in the through hole 106 a of the heat spreader 106. The low ductility material 130 can be made of, for example, a resin material similar to the sealing resin 104 that seals the semiconductor element 120 later. Moreover, the low ductility material 130 can also be comprised with a metal, ceramic, etc. whose ductility is lower than copper, for example.

本実施の形態において、低延性材料130は、たとえば、貫通孔106aに対応する直径を有する棒状に形成した後、それをヒートスプレッダ106の膜厚に応じて切断してチップ化することができる。次いで、各チップを貫通孔106aに埋め込むことにより低延性材料130が貫通孔106aに埋め込まれたヒートスプレッダ106を形成することができる。また、低延性材料130として樹脂を用いる場合、印刷技術等を用いて、ヒートスプレッダ106の貫通孔106a内に低延性材料130を埋め込むこともできる。   In the present embodiment, for example, the low ductility material 130 can be formed into a chip by forming it into a rod shape having a diameter corresponding to the through hole 106 a and then cutting it according to the film thickness of the heat spreader 106. Then, the heat spreader 106 in which the low ductility material 130 is embedded in the through hole 106a can be formed by embedding each chip in the through hole 106a. Moreover, when using resin as the low ductility material 130, the low ductility material 130 can also be embedded in the through-hole 106a of the heat spreader 106 using a printing technique etc.

本実施の形態において、図7に示したようなヒートスプレッダ106を用いて、金型200により、半導体素子120を封止樹脂104で封止する。図8(a)は、図7に示したヒートスプレッダ106のd−d線に沿った断面構造に対応する。   In the present embodiment, the semiconductor element 120 is sealed with the sealing resin 104 by the mold 200 using the heat spreader 106 as shown in FIG. FIG. 8A corresponds to the cross-sectional structure along the dd line of the heat spreader 106 shown in FIG.

本実施の形態においても、まず、基板102上に複数の半導体素子120を搭載し、ボンディングワイヤ122を介して基板102の配線と接続しておく。次いで、ワイヤボンディング済みの複数の半導体素子120が搭載された基板102を、半導体素子120が搭載された面が下型202と向かい合うようにして、金型200の上型204に配置する。また、金型200の下型202にヒートスプレッダ106を配置する。このような状態で、金型200の導入口から封止樹脂104を導入する(図8(b))。これにより、半導体素子120およびボンディングワイヤ122が封止樹脂104で封止される(図8(c))。   Also in this embodiment, first, a plurality of semiconductor elements 120 are mounted on the substrate 102 and connected to the wiring of the substrate 102 via bonding wires 122. Next, the substrate 102 on which the plurality of wire-bonded semiconductor elements 120 are mounted is placed on the upper mold 204 of the mold 200 so that the surface on which the semiconductor elements 120 are mounted faces the lower mold 202. Further, the heat spreader 106 is disposed on the lower mold 202 of the mold 200. In such a state, the sealing resin 104 is introduced from the introduction port of the mold 200 (FIG. 8B). Thereby, the semiconductor element 120 and the bonding wire 122 are sealed with the sealing resin 104 (FIG. 8C).

図9は、金型200から外し、基板102の半導体素子120が搭載された一面と反対側の面に外部端子(半田ボール126)を形成した切断前パッケージ構造110の構成を示す断面図である。図10は、金型200から外した切断前パッケージ構造110の構成を示す平面図である。図9は、図10のe−e線に沿った断面構造に対応する。   FIG. 9 is a cross-sectional view illustrating a configuration of the package structure 110 before cutting in which external terminals (solder balls 126) are formed on the surface opposite to the surface on which the semiconductor element 120 of the substrate 102 is mounted, which is removed from the mold 200. . FIG. 10 is a plan view showing the configuration of the pre-cut package structure 110 removed from the mold 200. FIG. 9 corresponds to the cross-sectional structure along the line ee in FIG.

このような構成の切断前パッケージ構造110を、パッケージ切断用ブレード(不図示)でX方向切断ライン108bおよびY方向切断ライン108aに沿って切断する。これにより、図11に示した構成の半導体装置100が得られる。   The package structure 110 before cutting having such a configuration is cut along the X-direction cutting line 108b and the Y-direction cutting line 108a with a package cutting blade (not shown). Thereby, the semiconductor device 100 having the configuration shown in FIG. 11 is obtained.

本実施の形態において、ヒートスプレッダ106には、X方向切断ライン108bおよびY方向切断ライン108aの交点108に貫通孔106aが形成されており、貫通孔106aには低延性材料130が埋め込まれる。ここで、低延性材料130は、ヒートスプレッダ106を構成する材料よりも延性が低い。そのため、切断前パッケージ構造110をパッケージ切断用ブレードで切断する際に、パッケージ切断用ブレードによる切断部のだれやのびが発生しないようにすることができる。そのため、切断前パッケージ構造110をパッケージ切断用ブレードで切断する際に、交点108でのバリの発生を防ぐことができる。   In the present embodiment, the heat spreader 106 is formed with a through hole 106a at the intersection 108 of the X direction cutting line 108b and the Y direction cutting line 108a, and the low ductility material 130 is embedded in the through hole 106a. Here, the low ductility material 130 has lower ductility than the material constituting the heat spreader 106. Therefore, when the pre-cut package structure 110 is cut by the package cutting blade, it is possible to prevent the cutting portion from being drooped or stretched by the package cutting blade. Therefore, when the pre-cutting package structure 110 is cut with a package cutting blade, the occurrence of burrs at the intersection 108 can be prevented.

(第3の実施の形態)
図12は、本実施の形態におけるヒートスプレッダ106の構成を示す平面図である。
本実施の形態において、ヒートスプレッダ106に、平面視で半導体素子120と重なる箇所に、半導体素子120の方向に突出する凹部106bが形成されている点で第1の実施の形態と異なる。
(Third embodiment)
FIG. 12 is a plan view showing the configuration of the heat spreader 106 in the present embodiment.
In the present embodiment, the heat spreader 106 is different from the first embodiment in that a concave portion 106 b that protrudes in the direction of the semiconductor element 120 is formed at a location overlapping the semiconductor element 120 in plan view.

本実施の形態においても、ヒートスプレッダ106には、X方向切断ライン108bおよびY方向切断ライン108aの交点108にそれぞれ貫通孔106aが形成されている。また、本実施の形態において、ヒートスプレッダ106には、ヒートスプレッダ106を基板102上に配置したときに半導体素子120と重なる箇所に、凹部106bが形成されている。   Also in the present embodiment, the heat spreader 106 is formed with through holes 106a at intersections 108 of the X-direction cutting line 108b and the Y-direction cutting line 108a. Further, in the present embodiment, the heat spreader 106 is formed with a recess 106 b at a location overlapping the semiconductor element 120 when the heat spreader 106 is disposed on the substrate 102.

本実施の形態において、図12に示したようなヒートスプレッダ106を用いて、金型200により、半導体素子120を封止樹脂104で封止する。図13(a)は、図12に示したヒートスプレッダ106のf−f線に沿った断面構造に対応する。本実施の形態において、ヒートスプレッダ106は、凹部106bが設けられた箇所およびその外周部の全面にわたって、略等しい厚みを有する構成とすることができる。また、凹部106bの形状は、円形状、矩形状、または多角形状等とすることができる。いずれの場合も、凹部106bは、たとえば、プレス加工により形成することができる。   In the present embodiment, the semiconductor element 120 is sealed with the sealing resin 104 by the mold 200 using the heat spreader 106 as shown in FIG. FIG. 13A corresponds to the cross-sectional structure along the line ff of the heat spreader 106 shown in FIG. In the present embodiment, the heat spreader 106 can be configured to have substantially the same thickness over the portion where the recess 106b is provided and the entire outer periphery thereof. In addition, the shape of the recess 106b can be a circular shape, a rectangular shape, a polygonal shape, or the like. In any case, the recess 106b can be formed by, for example, press working.

本実施の形態においても、まず、基板102上に複数の半導体素子120を搭載し、ボンディングワイヤ122を介して基板102の配線と接続しておく。次いで、ワイヤボンディング済みの複数の半導体素子120が搭載された基板102を、半導体素子120が搭載された面が下型202と向かい合うようにして、金型200の上型204に配置する。また、金型200の下型202にヒートスプレッダ106を配置する。このとき、ヒートスプレッダ106は、凹部106bが半導体素子120の方向に突出するように配置する。このような状態で、金型200の導入口から封止樹脂104を導入する(図13(b))。これにより、半導体素子120およびボンディングワイヤ122が封止樹脂104で封止されるとともに、ヒートスプレッダ106の貫通孔106a内にも封止樹脂104が充填される(図13(c))。   Also in this embodiment, first, a plurality of semiconductor elements 120 are mounted on the substrate 102 and connected to the wiring of the substrate 102 via bonding wires 122. Next, the substrate 102 on which the plurality of wire-bonded semiconductor elements 120 are mounted is placed on the upper mold 204 of the mold 200 so that the surface on which the semiconductor elements 120 are mounted faces the lower mold 202. Further, the heat spreader 106 is disposed on the lower mold 202 of the mold 200. At this time, the heat spreader 106 is disposed so that the recess 106 b protrudes in the direction of the semiconductor element 120. In such a state, the sealing resin 104 is introduced from the introduction port of the mold 200 (FIG. 13B). As a result, the semiconductor element 120 and the bonding wire 122 are sealed with the sealing resin 104, and the sealing resin 104 is also filled into the through hole 106a of the heat spreader 106 (FIG. 13C).

図14は、金型200から外し、基板102の半導体素子120が搭載された一面と反対側の面に外部端子(半田ボール126)を形成した切断前パッケージ構造110の構成を示す断面図である。図15は、金型200から外した切断前パッケージ構造110の構成を示す平面図である。図14は、図15のg−g線に沿った断面構造に対応する。   FIG. 14 is a cross-sectional view illustrating a configuration of the package structure 110 before cutting in which external terminals (solder balls 126) are formed on the surface opposite to the surface on which the semiconductor element 120 of the substrate 102 is mounted, which is removed from the mold 200. . FIG. 15 is a plan view showing the configuration of the pre-cut package structure 110 removed from the mold 200. FIG. 14 corresponds to a cross-sectional structure taken along the line gg of FIG.

このような構成の切断前パッケージ構造110を、パッケージ切断用ブレード(不図示)でX方向切断ライン108bおよびY方向切断ライン108aに沿って切断する。これにより、図16に示した構成の半導体装置100が得られる。   The package structure 110 before cutting having such a configuration is cut along the X-direction cutting line 108b and the Y-direction cutting line 108a with a package cutting blade (not shown). Thereby, the semiconductor device 100 having the configuration shown in FIG. 16 is obtained.

本実施の形態においても、第1の実施の形態と同様の効果が得られる。また、本実施の形態において、ヒートスプレッダ106に凹部106bを設けておくことにより、ヒートスプレッダ106と半導体素子120との距離を近くすることができ、ヒートスプレッダ106による放熱性能を向上することができる。   Also in this embodiment, the same effect as that of the first embodiment can be obtained. In the present embodiment, by providing the heat spreader 106 with the recess 106b, the distance between the heat spreader 106 and the semiconductor element 120 can be reduced, and the heat dissipation performance of the heat spreader 106 can be improved.

本実施の形態において、ヒートスプレッダ106の凹部106bは、プレス加工で形成することができるため、コストアップすることなく、簡易な手順で上記の効果を得ることができる。ヒートスプレッダ106の凹部106bと貫通孔106aとは、同時に形成することもできる。特許文献4(特開2000−77575号公報)に記載の技術では、ヒートスプレッダの中央部のみ膜厚が厚くなる構成となっており、エッチング工程や曲げ加工等加工工程が多く、コストが著しく増大するという問題があった。本実施の形態においては、コストを増大することなく、放熱性能を向上できる半導体装置を提供することができる。   In the present embodiment, since the recess 106b of the heat spreader 106 can be formed by press working, the above-described effects can be obtained with a simple procedure without increasing the cost. The recess 106b and the through hole 106a of the heat spreader 106 can be formed simultaneously. In the technique described in Patent Document 4 (Japanese Patent Laid-Open No. 2000-77575), only the central portion of the heat spreader has a thick film thickness, and there are many processing steps such as an etching step and a bending step, and the cost is remarkably increased. There was a problem. In this embodiment, a semiconductor device that can improve heat dissipation performance without increasing costs can be provided.

また、図17に示すように、半導体素子120とヒートスプレッダ106の凹部106bとの間に、放熱ペースト132を設けることもできる。放熱ペースト132は、たとえばヒートスプレッダ106および基板102を金型200にセットする前に、基板102上に搭載された各半導体素子120の上面に塗布しておくことができる。このような構成により、半導体素子120からヒートスプレッダ106への放熱が向上するため、パッケージの放熱性能を向上することができる。   In addition, as shown in FIG. 17, a heat radiation paste 132 can be provided between the semiconductor element 120 and the recess 106 b of the heat spreader 106. For example, the heat dissipating paste 132 can be applied to the upper surface of each semiconductor element 120 mounted on the substrate 102 before the heat spreader 106 and the substrate 102 are set in the mold 200. With such a configuration, heat dissipation from the semiconductor element 120 to the heat spreader 106 is improved, so that the heat dissipation performance of the package can be improved.

また、本実施の形態で説明した凹部106bを有するヒートスプレッダ106を用いた場合も、第2の実施の形態で説明したように、ヒートスプレッダ106の貫通孔106aを予め、ヒートスプレッダ106を構成する材料よりも延性の低い低延性材料130で埋め込んでおく構成とすることもできる。   In addition, when the heat spreader 106 having the recess 106b described in the present embodiment is used, as described in the second embodiment, the through hole 106a of the heat spreader 106 is made in advance of the material constituting the heat spreader 106. It can also be set as the structure filled with the low ductility material 130 with low ductility.

なお、以上の第1から第3の実施の形態においては、半導体素子120が、ボンディングワイヤ122を介して基板102と接続される構成を示したが、半導体素子120は、基板102とフリップチップ接続された構成とすることもできる。   In the first to third embodiments described above, the configuration in which the semiconductor element 120 is connected to the substrate 102 via the bonding wire 122 is shown. However, the semiconductor element 120 is connected to the substrate 102 in a flip chip manner. It can also be set as the structure made.

図18から図20にこのような構成の半導体装置100の断面図を示す。図18(a)に示したように、半導体素子120は、その素子形成面が基板102の一面と対向するように、基板102の一面上に形成され、端子142を介して基板102に形成された配線等と接続される。また、半導体素子120と基板102との間には、アンダーフィル140が形成されている。図18(a)に示した半導体装置100は、半導体素子120がフリップチップ接続で基板102と接続されている点を除き、図1に示した半導体装置100と同様の構成を有する。同様に、18(b)に示した半導体装置100は、半導体素子120がフリップチップ接続で基板102と接続されている点を除き、図11に示した半導体装置100と同様の構成を有する。   18 to 20 are sectional views of the semiconductor device 100 having such a configuration. As shown in FIG. 18A, the semiconductor element 120 is formed on one surface of the substrate 102 so that its element formation surface faces one surface of the substrate 102, and is formed on the substrate 102 via the terminals 142. Connected to other wiring. An underfill 140 is formed between the semiconductor element 120 and the substrate 102. The semiconductor device 100 shown in FIG. 18A has the same configuration as the semiconductor device 100 shown in FIG. 1 except that the semiconductor element 120 is connected to the substrate 102 by flip chip connection. Similarly, the semiconductor device 100 shown in FIG. 18B has the same configuration as the semiconductor device 100 shown in FIG. 11 except that the semiconductor element 120 is connected to the substrate 102 by flip chip connection.

また、半導体素子120をフリップチップ接続で基板102と接続した構成においては、図19に示したように、半導体素子120は、封止樹脂104で封止されていない構成とすることもできる。図19(a)に示した半導体装置100において、ヒートスプレッダ106は、半導体素子120の素子形成面とは反対側の面上に、当該面と接して設けられている。また、図19(b)に示した半導体装置100において、ヒートスプレッダ106は、半導体素子120の素子形成面とは反対側の面上に、放熱ペースト132を介して設けられている。このような場合、ヒートスプレッダ106の貫通孔106aは、低延性材料130で埋め込んだ構成とすることができる。   Further, in the configuration in which the semiconductor element 120 is connected to the substrate 102 by flip-chip connection, the semiconductor element 120 may be configured not to be sealed with the sealing resin 104 as shown in FIG. In the semiconductor device 100 shown in FIG. 19A, the heat spreader 106 is provided on the surface opposite to the element formation surface of the semiconductor element 120 in contact with the surface. In the semiconductor device 100 shown in FIG. 19B, the heat spreader 106 is provided on the surface of the semiconductor element 120 opposite to the element formation surface via the heat radiation paste 132. In such a case, the through hole 106 a of the heat spreader 106 can be configured to be embedded with the low ductility material 130.

また、半導体素子120をフリップチップ接続で基板102と接続した構成においても、以上の第3の実施の形態で説明したように、ヒートスプレッダ106に、平面視で半導体素子120と重なる箇所に、半導体素子120の方向に突出する凹部106bが形成された構成とすることができる。図20(a)、図20(b)、および図20(c)に、このような構成の半導体装置100の断面図を示す。   Even in the configuration in which the semiconductor element 120 is connected to the substrate 102 by flip-chip connection, as described in the third embodiment, the semiconductor element 120 is placed on the heat spreader 106 so as to overlap the semiconductor element 120 in plan view. A recess 106 b protruding in the direction 120 can be formed. 20A, 20B, and 20C are cross-sectional views of the semiconductor device 100 having such a configuration.

さらに、以上の第1から第3の実施の形態においては、各半導体装置100に、それぞれ一つの半導体素子120が設けられた構成を示したが、各半導体装置100には、複数の半導体素子が設けられた構成とすることもできる。たとえば、図21(a)に示したように、基板102の一面に、半導体素子120aと半導体素子120bとが並置された構成とすることができる。この場合、切断前パッケージ構造110において、X方向切断ラインおよびY方向切断ラインでそれぞれ囲まれた領域に、半導体素子120aと半導体素子120bとが並置された構成とすることができる。   Furthermore, in the above first to third embodiments, the configuration in which each semiconductor device 100 is provided with one semiconductor element 120 is shown. However, each semiconductor device 100 includes a plurality of semiconductor elements. It can also be set as the provided structure. For example, as illustrated in FIG. 21A, the semiconductor element 120 a and the semiconductor element 120 b may be arranged in parallel on one surface of the substrate 102. In this case, in the package structure 110 before cutting, the semiconductor element 120a and the semiconductor element 120b can be arranged in parallel in regions surrounded by the X-direction cutting line and the Y-direction cutting line, respectively.

また、たとえば、図21(b)に示したように、基板102の一面に、半導体素子120aと半導体素子120bとが積層された構成とすることもできる。この場合も、切断前パッケージ構造110において、X方向切断ラインおよびY方向切断ラインでそれぞれ囲まれた領域に、半導体素子120aと半導体素子120bとが積層された構成とすることができる。   Further, for example, as illustrated in FIG. 21B, the semiconductor element 120 a and the semiconductor element 120 b may be stacked on one surface of the substrate 102. Also in this case, in the pre-cut package structure 110, the semiconductor element 120a and the semiconductor element 120b can be stacked in regions surrounded by the X-direction cut line and the Y-direction cut line, respectively.

(第4の実施の形態)
以上の実施の形態では、複数の半導体素子120が搭載された基板102上にヒートスプレッダ106を配置するとともに、封止樹脂104で複数の半導体素子120を封止する例を示したが、本発明のヒートスプレッダは、半導体ウェハ上で再配線や保護膜や端子の形成を行い、その後に個片化するウェハレベルパッケージに適用することもできる。
(Fourth embodiment)
In the above embodiment, an example in which the heat spreader 106 is arranged on the substrate 102 on which the plurality of semiconductor elements 120 are mounted and the plurality of semiconductor elements 120 is sealed with the sealing resin 104 has been described. The heat spreader can also be applied to a wafer level package in which rewiring, a protective film, and terminals are formed on a semiconductor wafer and then separated into individual pieces.

図22は、ウェハレベルパッケージの切断前パッケージ構造310の構成を示す断面図である。
本実施の形態において、基板302は、シリコンウェハ等の半導体ウェハとすることができる。基板302の一面には、接着剤(不図示)を介してヒートスプレッダ306が貼り付けられている。ここで、本実施の形態において、ヒートスプレッダ306は、以上の実施の形態で説明したヒートスプレッダ106と同様の構成を有する。ヒートスプレッダ306には、貫通孔306aが設けられている。図22(a)に示したように、たとえば、貫通孔306aは、低延性材料130と同様の材料である低延性材料330により埋め込まれた構成とすることができる。基板302の一面とは反対側の他面には、再配線のための配線や保護膜等を含む配線層304が形成されている。配線層304により、複数の半導体素子が構成される。また、配線層304が基板302と接する面と反対側の面には、外部端子320が形成されている。
FIG. 22 is a cross-sectional view showing the configuration of the pre-cut package structure 310 of the wafer level package.
In the present embodiment, the substrate 302 can be a semiconductor wafer such as a silicon wafer. A heat spreader 306 is attached to one surface of the substrate 302 via an adhesive (not shown). Here, in the present embodiment, the heat spreader 306 has the same configuration as the heat spreader 106 described in the above embodiments. The heat spreader 306 is provided with a through hole 306a. As shown in FIG. 22A, for example, the through hole 306 a can be configured to be embedded with a low ductility material 330 that is the same material as the low ductility material 130. A wiring layer 304 including wiring for rewiring, a protective film, and the like is formed on the other surface opposite to the one surface of the substrate 302. The wiring layer 304 forms a plurality of semiconductor elements. An external terminal 320 is formed on the surface opposite to the surface where the wiring layer 304 is in contact with the substrate 302.

さらに、本実施の形態において、図22(b)に示したように、基板302とヒートスプレッダ306との間には、封止樹脂334が形成されていてもよく、貫通孔306aが封止樹脂334により埋め込まれていてもよい。また、図22(c)に示したように、貫通孔306a内は、封止樹脂334とは別体の低延性材料330で埋め込まれた構成とすることもできる。   Further, in the present embodiment, as shown in FIG. 22B, a sealing resin 334 may be formed between the substrate 302 and the heat spreader 306, and the through hole 306a serves as the sealing resin 334. May be embedded. Further, as shown in FIG. 22C, the through hole 306 a may be embedded with a low ductility material 330 that is separate from the sealing resin 334.

本実施の形態においても、X方向切断ライン(不図示)およびY方向切断ライン(不図示)の交点308に貫通孔306aが形成されており、貫通孔306aには封止樹脂334または低延性材料330が埋め込まれる。ここで、封止樹脂334および低延性材料330は、いずれもヒートスプレッダ306を構成する材料よりも延性が低い。そのため、切断前パッケージ構造310をパッケージ切断用ブレードで切断する際に、パッケージ切断用ブレードによる切断部のだれやのびが発生しないようにすることができる。そのため、切断前パッケージ構造310をパッケージ切断用ブレードで切断する際に、交点308でのバリの発生を防ぐことができる。   Also in this embodiment, a through hole 306a is formed at an intersection 308 of an X direction cutting line (not shown) and a Y direction cutting line (not shown), and a sealing resin 334 or a low ductility material is formed in the through hole 306a. 330 is embedded. Here, both the sealing resin 334 and the low ductility material 330 have lower ductility than the material constituting the heat spreader 306. Therefore, when the pre-cutting package structure 310 is cut by the package cutting blade, it is possible to prevent the cutting portion from being drooped or stretched by the package cutting blade. Therefore, when the pre-cutting package structure 310 is cut by the package cutting blade, the occurrence of burrs at the intersection 308 can be prevented.

図23(a)、図23(b)、および図23(c)は、それぞれ、図22(a)、図22(b)、および図22(c)の切断前パッケージ構造310を切断ラインに沿って切断して個片化した半導体装置300の構成を示す断面図である。   23 (a), FIG. 23 (b), and FIG. 23 (c) use the pre-cut package structure 310 of FIG. 22 (a), FIG. 22 (b), and FIG. 22 (c) as a cutting line, respectively. It is sectional drawing which shows the structure of the semiconductor device 300 cut | disconnected along with and separated into pieces.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

以上の実施の形態で説明した構成に加えて、たとえば、ヒートスプレッダの貫通孔の内壁を粗化させた構成とすることもできる。これにより、ヒートスプレッダと封止樹脂や低延性材料との密着性を良好にすることができ、剥がれの可能性を低減させることができる。また、ヒートスプレッダと基板との間に封止樹脂を設ける構成の場合、ヒートスプレッダの封止樹脂との接着面を粗化させた構成とすることもできる。これにより、ヒートスプレッダと封止樹脂との密着性を良好にすることができ、剥がれの可能性を低減させることができる。   In addition to the configuration described in the above embodiment, for example, the inner wall of the through hole of the heat spreader may be roughened. Thereby, the adhesiveness of a heat spreader, sealing resin, and a low ductility material can be made favorable, and the possibility of peeling can be reduced. Further, in the case where the sealing resin is provided between the heat spreader and the substrate, the adhesive surface of the heat spreader with the sealing resin may be roughened. Thereby, the adhesiveness of a heat spreader and sealing resin can be made favorable, and the possibility of peeling can be reduced.

また、ヒートスプレッダの貫通孔の内壁面に凹凸形状や段差を設けた構成とすることもできる。また、ヒートスプレッダの貫通孔の内壁面に凹凸形状や段差を設けるとともに、内壁を粗化させた構成とすることもできる。このような構成により、ヒートスプレッダと封止樹脂や低延性材料との密着性を良好にすることができ、剥がれの可能性を低減させることができる。   Moreover, it can also be set as the structure which provided uneven | corrugated shape and the level | step difference in the inner wall face of the through-hole of a heat spreader. Moreover, while providing an uneven | corrugated shape and a level | step difference in the inner wall face of the through-hole of a heat spreader, it can also be set as the structure which roughened the inner wall. With such a configuration, the adhesion between the heat spreader and the sealing resin or the low ductility material can be improved, and the possibility of peeling can be reduced.

100 半導体装置
102 基板
104 封止樹脂
106 ヒートスプレッダ
106a 貫通孔
106b 凹部
108 交点
108a Y方向切断ライン
108b X方向切断ライン
110 切断前パッケージ構造
120 半導体素子
120a 半導体素子
120b 半導体素子
122 ボンディングワイヤ
126 半田ボール
130 低延性材料
132 放熱ペースト
140 アンダーフィル
142 端子
200 金型
202 下型
204 上型
300 半導体装置
302 基板
304 配線層
306 ヒートスプレッダ
306a 貫通孔
308 交点
310 切断前パッケージ構造
320 外部端子
330 低延性材料
334 封止樹脂
DESCRIPTION OF SYMBOLS 100 Semiconductor device 102 Board | substrate 104 Sealing resin 106 Heat spreader 106a Through-hole 106b Recessed part 108 Intersection 108a Y direction cutting line 108b X direction cutting line 110 Package structure 120 before cutting 120 Semiconductor element 120a Semiconductor element 120b Semiconductor element 122 Bonding wire 126 Solder ball 130 Low Ductile material 132 Heat radiation paste 140 Underfill 142 Terminal 200 Mold 202 Lower mold 204 Upper mold 300 Semiconductor device 302 Substrate 304 Wiring layer 306 Heat spreader 306a Through hole 308 Intersection 310 Package structure before cutting 320 External terminal 330 Low ductility material 334 Sealing resin

Claims (24)

基板と、
前記基板の一面上に配置され、X方向のX方向切断ラインおよび前記X方向と交差するY方向のY方向切断ラインの交点にそれぞれ貫通孔が形成された放熱板であって、当該貫通孔が当該放熱板を構成する材料よりも延性の低い低延性材料で埋め込まれている放熱板と、
を含む構造体を、前記X方向切断ラインおよび前記Y方向切断ラインにそれぞれ沿って切断し、複数の半導体装置に個片化する工程を含む半導体装置の製造方法。
A substrate,
A heat radiating plate disposed on one surface of the substrate and having a through hole formed at an intersection of an X direction cutting line in the X direction and a Y direction cutting line in the Y direction intersecting the X direction, A heat sink embedded with a low ductility material having a lower ductility than the material constituting the heat sink;
A method of manufacturing a semiconductor device including a step of cutting a structure including a plurality of semiconductor devices along the X-direction cutting line and the Y-direction cutting line.
請求項1に記載の半導体装置の製造方法において、
前記複数の半導体装置に個片化する工程において、前記貫通孔の幅よりも幅の狭い切断用ブレードを用いて前記構造体を切断する半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
A method of manufacturing a semiconductor device, wherein in the step of dividing into a plurality of semiconductor devices, the structure is cut using a cutting blade having a width smaller than that of the through hole.
請求項1または2に記載の半導体装置の製造方法において、
前記放熱板は、銅により構成された半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1 or 2,
The said heat sink is a manufacturing method of the semiconductor device comprised with copper.
請求項3に記載の半導体装置の製造方法において、
前記放熱板表面には、金属めっきが施されている半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 3,
A method for manufacturing a semiconductor device, wherein a metal plating is applied to a surface of the heat sink.
請求項1から4いずれかに記載の半導体装置の製造方法において、
前記低延性材料は樹脂である半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claim 1 to 4,
The method for manufacturing a semiconductor device, wherein the low ductility material is a resin.
請求項1から5いずれかに記載の半導体装置の製造方法において、
前記構造体は、前記基板の前記一面上に形成された複数の半導体素子と、前記基板の前記一面と前記放熱板の間に形成された樹脂と、をさらに含む半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claim 1 to 5,
The structure is a method for manufacturing a semiconductor device, further comprising: a plurality of semiconductor elements formed on the one surface of the substrate; and a resin formed between the one surface of the substrate and the heat dissipation plate.
請求項1から5いずれかに記載の半導体装置の製造方法において、
前記構造体は、素子形成面が前記基板の前記一面と対向するように、当該基板の前記一面上に形成された複数の半導体素子をさらに含む半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claim 1 to 5,
The method of manufacturing a semiconductor device, wherein the structure further includes a plurality of semiconductor elements formed on the one surface of the substrate such that an element formation surface faces the one surface of the substrate.
請求項7に記載の半導体装置の製造方法において、
前記構造体は、各前記半導体素子の前記素子形成面と反対の面と、前記放熱板との間に形成された樹脂をさらに含む半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 7,
The said structure is a manufacturing method of the semiconductor device which further contains resin formed between the surface opposite to the said element formation surface of each said semiconductor element, and the said heat sink.
請求項6または8に記載の半導体装置の製造方法において、
前記複数の半導体装置に個片化する工程の前に、
前記貫通孔が形成された前記放熱板と、前記複数の半導体素子が搭載された前記基板とを、前記複数の半導体素子が前記放熱板と対向するように間隔を隔てて配置し、前記放熱板と前記基板との間に前記樹脂を形成して前記複数の半導体素子を前記樹脂で封止する工程をさらに含む半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 6 or 8,
Before the step of dividing into the plurality of semiconductor devices,
The heat radiating plate in which the through-holes are formed and the substrate on which the plurality of semiconductor elements are mounted are arranged at an interval so that the plurality of semiconductor elements face the heat radiating plate, and the heat radiating plate Forming the resin between the substrate and the substrate, and further sealing the plurality of semiconductor elements with the resin.
請求項9に記載の半導体装置の製造方法において、
前記低延性材料は、前記樹脂であって、
前記複数の半導体素子を前記樹脂で封止する工程において、前記樹脂を形成する前には、前記放熱板の前記貫通孔には前記低延性材料が埋め込まれておらず、前記複数の半導体素子を前記樹脂で封止する際に、前記貫通孔にも前記樹脂を埋め込む半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 9,
The low ductility material is the resin,
In the step of sealing the plurality of semiconductor elements with the resin, before the resin is formed, the low ductility material is not embedded in the through hole of the heat sink, and the plurality of semiconductor elements are formed. A method of manufacturing a semiconductor device in which the resin is embedded in the through-hole when the resin is sealed.
請求項9に記載の半導体装置の製造方法において、
前記複数の半導体素子を前記樹脂で封止する工程の前に、前記放熱板の前記貫通孔に前記低延性材料を埋め込む工程をさらに含む半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 9,
A method of manufacturing a semiconductor device, further comprising a step of embedding the low ductility material in the through hole of the heat radiating plate before the step of sealing the plurality of semiconductor elements with the resin.
請求項6から11いずれかに記載の半導体装置の製造方法において、
前記構造体において、前記X方向切断ラインおよび前記Y方向切断ラインでそれぞれ囲まれた領域に、複数の前記半導体素子が並置された構成を有する半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claims 6-11,
A method for manufacturing a semiconductor device, comprising: a plurality of semiconductor elements juxtaposed in regions surrounded by the X-direction cutting line and the Y-direction cutting line in the structure.
請求項6から11いずれかに記載の半導体装置の製造方法において、
前記構造体において、前記X方向切断ラインおよび前記Y方向切断ラインでそれぞれ囲まれた領域に、複数の前記半導体素子が積層された構成を有する半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claims 6-11,
A method for manufacturing a semiconductor device, comprising: a plurality of semiconductor elements stacked in regions surrounded by the X-direction cutting line and the Y-direction cutting line in the structure.
請求項1から5いずれかに記載の半導体装置の製造方法において、
前記基板は、前記一面とは反対側の他面に複数の半導体素子が形成された半導体ウェハであり、
前記放熱板は、前記半導体ウェハの前記一面を覆うように設けられた半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claim 1 to 5,
The substrate is a semiconductor wafer in which a plurality of semiconductor elements are formed on the other surface opposite to the one surface,
The said heat sink is a manufacturing method of the semiconductor device provided so that the said one surface of the said semiconductor wafer might be covered.
請求項14に記載の半導体装置の製造方法において、
前記構造体は、前記半導体ウェハの前記一面と前記放熱板との間に形成された樹脂をさらに含む半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 14,
The structure is a method for manufacturing a semiconductor device, further comprising a resin formed between the one surface of the semiconductor wafer and the heat sink.
請求項15に記載の半導体装置の製造方法において、
前記複数の半導体装置に個片化する工程の前に、
前記貫通孔が形成された前記放熱板と、前記半導体ウェハの前記一面とを、対向するように間隔を隔てて配置し、前記放熱板と前記半導体ウェハとの間に前記樹脂を形成して前記半導体ウェハを前記樹脂で封止する工程をさらに含む半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 15,
Before the step of dividing into the plurality of semiconductor devices,
The heat radiating plate in which the through-hole is formed and the one surface of the semiconductor wafer are arranged so as to oppose each other, and the resin is formed between the heat radiating plate and the semiconductor wafer. The manufacturing method of the semiconductor device which further includes the process of sealing a semiconductor wafer with the said resin.
請求項6から13いずれかに記載の半導体装置の製造方法において、
前記放熱板には、平面視で各前記半導体素子と重なる箇所に、当該半導体素子に近づく方向に突出した凹部が形成された半導体装置の製造方法。
In the manufacturing method of the semiconductor device in any one of Claims 6-13,
The manufacturing method of the semiconductor device by which the recessed part which protruded in the direction which approaches the said semiconductor element in the location which overlaps with each said semiconductor element by planar view was formed in the said heat sink.
基板と、
前記基板に形成された半導体素子と、
前記基板の一面を覆うように配置された放熱板と、
を含み、
前記放熱板は四隅が除かれ、前記四隅には、当該放熱板を構成する材料よりも延性の低い低延性材料が形成されている半導体装置。
A substrate,
A semiconductor element formed on the substrate;
A heat sink arranged to cover one surface of the substrate;
Including
A semiconductor device in which the corners of the heat radiating plate are removed, and a low ductility material having a lower ductility than the material constituting the heat radiating plate is formed in the four corners.
請求項18に記載の半導体装置において、
前記半導体素子が、前記基板の前記一面に形成された半導体装置。
The semiconductor device according to claim 18.
A semiconductor device in which the semiconductor element is formed on the one surface of the substrate.
請求項19に記載の半導体装置において、
前記基板の前記一面上に形成され、前記半導体素子を封止する樹脂をさらに含む半導体装置。
The semiconductor device according to claim 19,
A semiconductor device further comprising a resin formed on the one surface of the substrate and encapsulating the semiconductor element.
請求項20に記載の半導体装置において、
前記低延性材料は、前記樹脂である半導体装置。
The semiconductor device according to claim 20, wherein
The semiconductor device in which the low ductility material is the resin.
請求項19から21いずれかに記載の半導体装置において、
前記基板の前記一面には、複数の前記半導体素子が並置された構成を有する半導体装置。
The semiconductor device according to any one of claims 19 to 21,
A semiconductor device having a configuration in which a plurality of the semiconductor elements are juxtaposed on the one surface of the substrate.
請求項19から21いずれかに記載の半導体装置において、
前記基板の前記一面には、複数の前記半導体素子が積層された構成を有する半導体装置。
The semiconductor device according to any one of claims 19 to 21,
A semiconductor device having a configuration in which a plurality of the semiconductor elements are stacked on the one surface of the substrate.
請求項19から23いずれかに記載の半導体装置において、
前記放熱板には、平面視で前記半導体素子と重なる箇所に、当該半導体素子に近づく方向に突出した凹部が形成された半導体装置。
24. The semiconductor device according to claim 19, wherein
The semiconductor device in which the heat sink has a recess protruding in a direction approaching the semiconductor element at a location overlapping the semiconductor element in plan view.
JP2009079134A 2009-03-27 2009-03-27 Method for producing semiconductor device, and semiconductor device Pending JP2010232471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079134A JP2010232471A (en) 2009-03-27 2009-03-27 Method for producing semiconductor device, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079134A JP2010232471A (en) 2009-03-27 2009-03-27 Method for producing semiconductor device, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2010232471A true JP2010232471A (en) 2010-10-14

Family

ID=43048011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079134A Pending JP2010232471A (en) 2009-03-27 2009-03-27 Method for producing semiconductor device, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2010232471A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028484A (en) * 2010-07-22 2012-02-09 Panasonic Corp Module and manufacturing method of the same
JP2013191690A (en) * 2012-03-13 2013-09-26 Shin Etsu Chem Co Ltd Semiconductor device and method of manufacturing the same
JP2017183521A (en) * 2016-03-30 2017-10-05 新光電気工業株式会社 Semiconductor device and semiconductor device manufacturing method
KR102036762B1 (en) * 2018-05-15 2019-10-28 주식회사 네패스 Semiconductor Package
WO2019221406A1 (en) * 2018-05-15 2019-11-21 주식회사 네패스 Semiconductor package
KR20190130946A (en) * 2018-05-15 2019-11-25 주식회사 네패스 Semiconductor Package with heatsink
KR20190130950A (en) * 2018-05-15 2019-11-25 주식회사 네패스 Semiconductor Package
KR20190130947A (en) * 2018-05-15 2019-11-25 주식회사 네패스 Semiconductor Package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102486A (en) * 1999-07-28 2001-04-13 Seiko Epson Corp Substrate for semiconductor device, semiconductor-chip mounting substrate, semiconductor device, their manufacturing method, circuit board and electronic device
JP2002151633A (en) * 2000-11-08 2002-05-24 Citizen Watch Co Ltd Resin-sealed semiconductor device
JP2003249512A (en) * 2002-02-25 2003-09-05 Seiko Epson Corp Semiconductor device, its manufacturing method, circuit board, and electronic equipment
JP2004327556A (en) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd Semiconductor device and its manufacturing process
JP2006294832A (en) * 2005-04-11 2006-10-26 Renesas Technology Corp Manufacturing method of semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102486A (en) * 1999-07-28 2001-04-13 Seiko Epson Corp Substrate for semiconductor device, semiconductor-chip mounting substrate, semiconductor device, their manufacturing method, circuit board and electronic device
JP2002151633A (en) * 2000-11-08 2002-05-24 Citizen Watch Co Ltd Resin-sealed semiconductor device
JP2003249512A (en) * 2002-02-25 2003-09-05 Seiko Epson Corp Semiconductor device, its manufacturing method, circuit board, and electronic equipment
JP2004327556A (en) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd Semiconductor device and its manufacturing process
JP2006294832A (en) * 2005-04-11 2006-10-26 Renesas Technology Corp Manufacturing method of semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028484A (en) * 2010-07-22 2012-02-09 Panasonic Corp Module and manufacturing method of the same
JP2013191690A (en) * 2012-03-13 2013-09-26 Shin Etsu Chem Co Ltd Semiconductor device and method of manufacturing the same
US9401290B2 (en) 2012-03-13 2016-07-26 Shin-Etsu Chemical Co., Ltd. Semiconductor apparatus and method for producing the same
JP2017183521A (en) * 2016-03-30 2017-10-05 新光電気工業株式会社 Semiconductor device and semiconductor device manufacturing method
KR102036762B1 (en) * 2018-05-15 2019-10-28 주식회사 네패스 Semiconductor Package
KR102023100B1 (en) * 2018-05-15 2019-11-04 주식회사 네패스 Semiconductor Package
WO2019221406A1 (en) * 2018-05-15 2019-11-21 주식회사 네패스 Semiconductor package
KR20190130946A (en) * 2018-05-15 2019-11-25 주식회사 네패스 Semiconductor Package with heatsink
KR20190130950A (en) * 2018-05-15 2019-11-25 주식회사 네패스 Semiconductor Package
KR20190130947A (en) * 2018-05-15 2019-11-25 주식회사 네패스 Semiconductor Package
KR102131268B1 (en) 2018-05-15 2020-07-08 주식회사 네패스 Semiconductor Package
KR102167021B1 (en) * 2018-05-15 2020-10-19 주식회사 네패스 Semiconductor Package with heatsink
KR102168214B1 (en) 2018-05-15 2020-10-21 주식회사 네패스 Semiconductor Package
US11404347B2 (en) 2018-05-15 2022-08-02 Nepes Co., Ltd. Semiconductor package

Similar Documents

Publication Publication Date Title
US8039315B2 (en) Thermally enhanced wafer level package
JP2010232471A (en) Method for producing semiconductor device, and semiconductor device
WO2014129351A1 (en) Semiconductor device and method for manufacturing same
US20180190562A1 (en) Electronic device having a grooved chip
US9842794B2 (en) Semiconductor package with integrated heatsink
CN103165531B (en) Die structure and method of fabrication thereof
EP3440697B1 (en) Flat no-leads package with improved contact leads
JP2010251408A (en) Semiconductor device and method of manufacturing the same, and electronic device
US9502392B2 (en) Semiconductor device with embedded semiconductor die and substrate-to-substrate interconnects
JP2011049560A (en) Integrated circuit structure, and method of forming the same
JP6797234B2 (en) Semiconductor package structure and its manufacturing method
JP2007329445A (en) Method of manufacturing resin-sealed semiconductor device, and wiring board therefor
US20090203171A1 (en) Semiconductor device fabricating method
JP6213554B2 (en) Semiconductor device
TW201239998A (en) Method for mold array process to prevent peripheries of substrate exposed
US11735435B2 (en) Quad flat no lead package and method of making
TWI567894B (en) Chip package
CN103065984B (en) For the method for packing of semiconducter device
TWI431728B (en) Semiconductor package with reinforced base
JP2007013073A (en) Substrate for package and method for manufacturing the same for semiconductor light emitting element
US11721654B2 (en) Ultra-thin multichip power devices
TWI582867B (en) Chip packaging process
TWI719006B (en) Semiconductor device
JP2006237375A (en) Method of dicing
US11710684B2 (en) Package with separate substrate sections

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108