JP2010230688A - 電解コンデンサの測定方法及び測定プログラム - Google Patents

電解コンデンサの測定方法及び測定プログラム Download PDF

Info

Publication number
JP2010230688A
JP2010230688A JP2010153732A JP2010153732A JP2010230688A JP 2010230688 A JP2010230688 A JP 2010230688A JP 2010153732 A JP2010153732 A JP 2010153732A JP 2010153732 A JP2010153732 A JP 2010153732A JP 2010230688 A JP2010230688 A JP 2010230688A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
discharge
capacitance
current
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010153732A
Other languages
English (en)
Inventor
Takashi Nabeshima
隆 鍋島
Kazuhiro Higuchi
和浩 樋口
Hironari Tamai
裕也 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2010153732A priority Critical patent/JP2010230688A/ja
Publication of JP2010230688A publication Critical patent/JP2010230688A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract


【課題】電解コンデンサの静電容量の測定に関し、高周波領域等における静電容量を容易に測定する。
【解決手段】高周波領域又は大電流放電開始直後の電解コンデンサの測定方法であって、静電容量を測定すべき電解コンデンサ(4)に充電区間と放電区間とを設定して充放電を一定周期で繰り返し、放電区間では抵抗を含む放電回路(10)で電解コンデンサを放電させ、電解コンデンサの複数の放電区間で端子電圧及び電流を観測し、放電区間における一定時間ΔTsと電流iとの乗算値の積算値Σi・ΔTs、静電容量Cによる電圧降下Vcにより、式(C=Σi・ΔTs/Vc)から電解コンデンサの静電容量Cを算出し、一定時間ΔTsを所定時間ずつずらし静電容量Cの算出にスムージングを施している。
【選択図】図6

Description

本発明は、電解コンデンサの高周波領域等における静電容量測定に用いられる電解コンデンサの測定方法及び測定プログラムに関する。
通常、コンデンサの静電容量は主としてインピーダンスアナライザ等による周波数領域で測定される。スイッチング電源用コンデンサでは平滑やデカップリング等の用途により数アンペアを超える大電流が流れ、過渡応答を有する用途例えば、VRM(Voltage Regulate Module)電源では、電流変化が数百A/μs以上の急峻な値を呈する。このような用途に適合する電解コンデンサでは、放電直後、数μsの短時間での大電流放電が求められる。従って、高周波領域における静電容量を測定しておくことが不可欠であるが、通常のLCRメータでは、50kHzを超える周波数領域の静電容量の測定は困難である。
周波数特性を考慮に入れた静電容量の測定について、特許文献1には、電気二重層キャパシタではあるが、周波数f、±Icの矩形波定電流をその電気二重層キャパシタに流し、1周期以上の電圧データを調べ、遷移部分を除いて放電波形と充電波形とを直線近似して充電回帰直線と放電回帰直線の勾配から容量を求めることが開示されている。
特開2001−255345号公報
ところで、高周波領域における静電容量の測定において、特許文献1に開示された測定回路や測定方法は一般の電解コンデンサに比較して耐圧が極めて低い特性を持つ電気二重層キャパシタを測定対象とした回路や測定方法を提供したものであり、このような回路や測定方法を用いてもVRM電源における数百A/μs以上の急峻な電流変化に対応した電解コンデンサの静電容量を正確に求めることはできない。しかも、特許文献1には、斯かる課題についての開示や示唆はなく、その解決手段についての開示や示唆もない。
そこで、本発明は、電解コンデンサの高周波領域等における静電容量の測定に関し、高周波領域等における静電容量を容易に測定できる電解コンデンサの測定方法及び測定プログラムを提供することを目的とする。
上記目的を達成するため、本発明の電解コンデンサの測定方法は、高周波領域又は大電流放電開始直後の電解コンデンサの測定方法であって、静電容量を測定すべき電解コンデンサに充電区間と放電区間とを設定して充放電を一定周期で繰り返す処理と、前記放電区間では抵抗を含む放電回路で前記電解コンデンサを放電させる処理と、前記電解コンデンサの複数の前記放電区間で端子電圧及び電流を観測する処理と、前記放電区間における一定時間ΔTsと電流iとの乗算値の積算値Σi・ΔTs、静電容量Cによる電圧降下Vcにより、式(C=Σi・ΔTs/Vc)から前記電解コンデンサの静電容量Cを算出する処理と、前記一定時間ΔTsを所定時間ずつずらし前記静電容量Cの算出にスムージングを施す処理とを含む構成である。
斯かる構成において、一定時間ΔTsは、繰り返される放電区間における初期放電時間であり、電流iは、そのときに流れる電流である。これらの乗算値i・ΔTsの積算値Σi・ΔTsは、電流iの積分値であり、その値は電荷を表している。そこで、静電容量Cは、式(C=Σi・ΔTs/Vc)から算出することができる。
上記目的を達成するため、本発明の電解コンデンサの測定方法は、高周波領域又は大電流放電開始直後の電解コンデンサの測定方法であって、静電容量を測定すべき電解コンデンサに充電区間と放電区間とを設定して充放電を一定周期で繰り返す処理と、前記放電区間では抵抗を含む放電回路で前記電解コンデンサを放電させる処理と、前記電解コンデンサの複数の前記放電区間で端子電圧及び電流を観測する処理と、前記端子電圧及び前記電流から一定時間内での放電電荷量ΔQ、電圧変化幅ΔVを求め、式(C=ΔQ/ΔV)から前記電解コンデンサの静電容量Cを算出する処理と、前記一定時間を所定時間ずつずらし前記静電容量Cの算出にスムージングを施す処理とを含む構成としてもよい。
上記目的を達成するためには、本発明の電解コンデンサの測定方法において、前記端子電圧及び前記電流の観測は、前記電解コンデンサの外部端子の根元部で行う構成としてもよい。
上記目的を達成するため、本発明の電解コンデンサの測定プログラムは、高周波領域又は大電流放電開始直後の電解コンデンサの測定プログラムであって、静電容量を測定すべき電解コンデンサに充電区間と放電区間とを設定して充放電を一定周期で繰り返すとともに、前記放電区間で前記電解コンデンサに抵抗を含む放電回路により放電させて観測される複数の端子電圧及び電流を取り込むステップと、前記放電区間における一定時間ΔTsと電流iとの乗算値の積算値Σi・ΔTs、静電容量Cによる電圧降下Vcを求めるステップと、式(C=Σi・ΔTs/Vc)から前記電解コンデンサの静電容量Cを算出するステップと、前記一定時間ΔTsを所定時間ずつずらし前記静電容量Cの算出にスムージングを施すステップとを含み、これらステップをコンピュータによって実行させる構成である。斯かる構成によれば、既述の測定方法をコンピュータによって実現でき、高周波領域等における電解コンデンサの静電容量を容易に算出することができる。
上記目的を達成するためには、本発明の電解コンデンサの測定プログラムは、高周波領域又は大電流放電開始直後の電解コンデンサの測定プログラムであって、静電容量を測定すべき電解コンデンサに充電区間と放電区間とを設定して充放電を一定周期で繰り返すとともに、前記放電区間で前記電解コンデンサに抵抗を含む放電回路により放電させて観測される複数の端子電圧及び電流を取り込むステップと、一定時間内での放電電荷量ΔQ、電圧変化幅ΔVを求めるステップと、式(C=ΔQ/ΔV)から前記電解コンデンサの静電容量Cを算出するステップと、前記一定時間を所定時間ずつずらし前記静電容量Cの算出にスムージングを施すステップとを含み、これらステップをコンピュータによって実行させる構成としてもよい。
以上の通り、本発明によれば、高周波領域や大電流放電開始直後における電解コンデンサの静電容量を容易に測定することができ、その測定値によりVRM電源等の高周波スイッチングに適した電解コンデンサの信頼性の高い評価を実現することができ、質の高い電解コンデンサの製造に寄与することができる。
本発明の第1の実施形態に係る測定装置を示す図である。 スイッチングパルスを示す図である。 スイッチングパルスに対応した充電回路及び放電回路の構成を示す図である。 電解コンデンサの等価回路を示す図である。 コンデンサの電流の推移を示す図である。 第1の実施形態に係る測定方法及び測定プログラムの処理手順を示すフローチャートである。 第2の実施形態に係る測定方法に用いる電圧情報及び電流情報を示す図である。 第2の実施形態に係る測定方法及び測定プログラムの処理手順を示すフローチャートである。 第3の実施形態に係る測定装置とコンデンサとの接続を示す図である。 第4の実施形態に係る測定装置を示す回路図である。 高周波領域(30kHz)の静電容量についての実験結果を示す図である。 高周波領域(50kHz)の静電容量についての実験結果を示す図である。
〔第1の実施形態〕
本発明の第1の実施形態について、図1を参照して説明する。図1は、第1の実施形態に係る電解コンデンサ測定装置の概要を示す図である。
この電解コンデンサ測定装置(以下「測定装置」と称する)2には、例えば、高周波領域における静電容量を測定すべき電解コンデンサ(以下「コンデンサ」と称する)4の測定回路6が設置され、この測定回路6はコンデンサ4を充電する充電回路8とコンデンサ4を放電する放電回路10とを備えている。充電回路8は、直流電源12を備え、この直流電源12に第1のスイッチング素子としてNチャネル型電界効果トランジスタ(FET)14を介して直列にコンデンサ4を接続し、FET14の導通区間でコンデンサ4に給電する構成である。また、放電回路10は、コンデンサ4に抵抗16及び第2のスイッチング素子としてNチャネル型電界効果トランジスタ(FET)18を直列に接続したものであり、FET18が導通時にコンデンサ4を放電させる構成である。即ち、この測定回路6において、コンデンサ4の充電にはFET14を導通、FET18を非導通とし、また、コンデンサ4の放電にはFET14を非導通、FET18を導通とし、このスイッチング動作を交互に所定周波数で繰り返すことにより、コンデンサ4の充放電を繰り返すことができる。この測定回路6において、抵抗16には低抵抗及び/又は定抵抗が用いられ、抵抗値として例えば、0.22〔Ω〕の抵抗器が用いられている。
そして、コンデンサ4の充放電を制御する充放電制御部としてスイッチング制御部20が設置され、このスイッチング制御部20はFET14、18のゲートに接続されている。このスイッチング制御部20には、FET14を一定周期Tで導通させる第1のスイッチングパルスVG1が出力されるとともに、FET18を一定周期Tで導通させる第2のスイッチングパルスVG2が出力される。スイッチングパルスVG1とスイッチングパルスVG2とは互いに逆相関係にある。そこで、FET14のゲートにスイッチングパルスVG1、FET18のゲートにスイッチングパルスVG2が加えられると、FET14とFET18とは交互に導通状態となり、FET14の導通区間でFET18が非導通区間、FET14の非導通区間でFET18が導通区間となる。この結果、コンデンサ4は、スイッチングパルスVG1、VG2に設定された繰返し周波数f(=1/T)により、交互に充放電を繰り返すことになる。
また、コンデンサ4には電圧測定手段、電流測定手段を構成する波形観測装置22が接続され、この波形観測装置22は例えば、ディジタルオシロスコープで構成されている。この波形観測装置22により、放電時の電圧降下Vc及び電流icが測定される。例えば、これらの電圧降下Vc及び電流icは、FET14、18のスイッチングに同期して測定され、各測定値は波形観測装置22の内部記憶装置に測定データとして格納される。
波形観測装置22には演算装置としてのパーソナルコンピュータ(PC)24が接続され、このPC24にはコンデンサ4の測定データとして端子電圧を表す既述の電圧降下Vc及び電流icが取り込まれる。
このように構成された測定装置2を用いれば、スイッチング制御部20で例えば、図2のA及びBに示すように、互いに逆相関係にあるスイッチングパルスVG1、VG2を発生させると、FET14、18を交互に導通させることができる。FET14の導通区間(T/2)では図3のAに示す充電回路8が形成され、このとき、コンデンサ4は直流電源12によって充電される。即ち、コンデンサ4には直流電源12から導通状態にあるFET14を介して充電電流isが流れる。また、FET18の導通区間(T/2)では図3のBに示す放電回路10が形成され、このとき、コンデンサ4は抵抗16及び導通状態にあるFET18を通して放電され、放電回路10には放電電流icが流れる。
そして、コンデンサ4の端子電圧である電圧降下Vc及び電流icは波形観測装置22によって観測され、観測された端子電圧データ及び電流データが放電周期に対応して蓄積される。また、スイッチングパルスVG1、VG2の周波数fは任意に設定することができ、波形観測装置22の応答速度も任意に設定できるものとすれば、その周波数fに対応した測定データを波形観測装置22に取り込むことができる。
次に、この測定装置2を用いた電解コンデンサの測定方法又は測定プログラムについて、図4及び図5を参照して説明する。図4は、電解コンデンサの等価回路を示す回路図、図5はコンデンサ4に流れる電流icである。
コンデンサ4を例えば、アルミニウム電解コンデンサであるとすると、電極箔を巻回してコンデンサ素子が形成されていることから、図4に示すように、抵抗rc、インダクタンスLc及びキャパシタンス(静電容量)Cで構成されている。この場合、誘電体酸化皮膜が持つダイオード成分は省略している。
このようなコンデンサ4について、既述の測定装置2を用いて充放電を繰り返した場合、コンデンサ4に発生する端子電圧降下をV、コンデンサ4に流れる電流をicとすると、等価直列抵抗rc、等価直列インダクタンスLc及び静電容量Cについて、式(1)ないし(4)に示すように、電圧降下Vr、VL 及びVcが生じる。
Figure 2010230688
コンデンサ4に流れる電流icについて、横軸に時間t、縦軸に電流icを取って示すと、図5に示すように、非直線的な傾きを以て推移する。
この曲線から得られる電流icについて、時刻tnで電流in、時刻tn-1 で電流in-1 、時刻tn-2 で電流in-2 、時刻tn+1 で電流in+1 、時刻tn+2 で電流in+2 のような推移を辿る。各時刻間隔、即ち、時間をΔTsとする。この時間ΔTsは、サンプリング間隔に対応するので、小さいほど精度が上がって好ましい。通常は5ns以下、好ましくは1ns以下、さらに好ましくは0.5ns以下である。この場合、等価直列抵抗rc、等価直列インダクタンスLc及び静電容量Cについて、電圧降下Vr(n)、VL (n)及びVc(n)が生じる。
Figure 2010230688
これら式(5)〜(8)から明らかなように、等価直列抵抗分による電圧変化は抵抗値×電流値であり、等価直列インダクタンス分(ESL)による電圧変化は電流値の傾き(微分値)、静電容量Cによる電圧変化は電流値の面積(積分値)によって表されることが判る。
そこで、式(8)から、静電容量Cによる電圧降下Vc(n)は
Vc(n)=V(n)−Vr(n)−VL (n) ・・・(9)
となる。ここで、等価直列抵抗rc及び等価直列インダクタンスLcを既知と仮定すれば、Vr(n)及びVL (n)は式(5)、(6)から算出されるので、電圧降下Vc(n)が求められる。
とすれば、静電容量Cは、式(7)、(9)から算出される。
ここで、ΔTs×nを数μsとすれば、放電後、数μsの静電容量を推定することができる。
次に、第1の実施形態に係る電解コンデンサの測定方法又は測定プログラムの処理手順について、図6を参照して説明する。図6は第1の実施形態に係る測定方法又は測定プログラムの処理手順を示している。なお、この測定プログラムは、PC24のROM(Read-Only Memory)等の記録媒体又は外部記録媒体に格納されている。
このコンデンサ4の測定に当たっては、既述の測定装置2が用いられ、測定すべきコンデンサ4が接続された後、スイッチング制御部20を駆動し、コンデンサ4の端子電圧である電圧降下Vc及び電流icを測定する。そこで、これら電圧降下Vc及び電流icのデータ取込みを行い(ステップS1)、データ蓄積を行う。そして、式(5)〜(8)の導出を行い(ステップS2)、式(7)から静電容量Cの算出を行う(ステップS3)。
このような処理手順によれば、放電直後の静電容量Cの推定を行うことができ、コンデンサ4の評価に必要な測定データを得ることができる。例えば、ΔTs=1ns、n=2000とすると、放電直後2μsの静電容量を推定することができる。
〔第2の実施形態〕
次に、本発明の第2の実施形態について、図7及び図8を参照して説明する。図7は、第2の実施形態に係る電解コンデンサの測定方法及び測定プログラムに用いられる電圧及び電流情報を示し、図8は処理手順を示している。なお、この測定プログラムがPC24のROM等の記録媒体又は外部記録媒体に格納されていることは既述の通りである。
この第2の実施形態では、コンデンサ4の静電容量Cの推定による算出方法を示している。図7において、Aは電流icの推移、Bは電圧降下Vcの推移である。この場合、時刻tkでの容量Ctkは、時刻tkを中心とする一定期間Twでの放電電荷量ΔQkと電圧変化幅ΔVckを用いて式(10)から算出することができる。
Ctk=ΔQk/ΔVck ・・・(10)
即ち、この計算法ではESR等の変化による過去の履歴の影響から開放されるために、容量推定誤差が小さくなっているが、時間窓(幅)を短く取ると、例えば、8bit量子化誤差による影響が大きくなるため、静電容量Cの推定曲線には凸凹が現れる。そのため、時間窓Twを少しずつ(1/10〜1/30程度、即ち、Tw=1μsに対して50ns程度)ずらしながらスムージングを行うこととしたものである。
そこで、この測定に当たっては、既述の測定装置2が用いられ、測定すべきコンデンサ4が接続された後、スイッチング制御部20を駆動し、コンデンサ4の端子電圧である電圧降下Vc及び電流icを測定することは既述の通りである。そこで、これら電圧降下Vc及び電流icのデータ取込みを行い(ステップS11)、データ蓄積を行う。そして、放電電荷量ΔQk及び電圧変化幅ΔVckを算出し(ステップS12)、式(10)から静電容量Cの算出を行う(ステップS13)。
このような処理手順により、コンデンサ4の評価に必要な測定データを得ることができることは第1の実施形態と同様である。
〔第3の実施形態〕
次に、本発明の第3の実施形態について、図9を参照して説明する。図9は、第3の実施形態に係るコンデンサ測定の概要を示す図である。この実施形態において、第1の実施形態と同一部分には同一符号を付してある。
この実施形態では、コンデンサ4と測定装置2との接続関係について示したものである。この測定方法にあっては、図9に示すように、コンデンサ4の封口部から露出する外部端子41、43の根元部分に波形観測装置22の測定端子23、25を当てて電気的接続を取ることにより、コンデンサ4に係わる等価直列抵抗rc及び等価直列インダクタンスLcの影響を軽減することが可能である。
このように波形観測装置22をコンデンサ4に接続し、既述の測定方法及び測定プログラムの実行により、高周波域における静電容量Cを高精度に測定することができる。
〔第4の実施形態〕
次に、本発明の第4の実施形態について、図10を参照して説明する。図10は、第4の実施形態に係る電解コンデンサの測定装置の概要を示す図である。図10において、図1と同一部分には同一符号を付してある。
この実施形態に係る測定装置2は、第1の実施形態に対し、FET14、18のスイッチング回路及びスイッチング制御部20を具体化したものである。この場合、コンデンサ4は測定端子26、28に接続されている。また、充電回路8では、直流電源12のプラス極側に抵抗30を介してFET14が直列に接続され、FET14のソース・ドレイン間にはコンデンサ32と抵抗34との直列回路が接続され、コンデンサ32によってスイッチングによるノイズを吸収させている。FET14のゲート・ドレイン間には、抵抗35が接続されて所定のバイアスが設定されている。
また、放電回路10では、FET18のソース・ドレイン間にはコンデンサ36と抵抗38との直列回路が接続され、コンデンサ36によってスイッチングによるノイズを吸収させている。また、FET18のゲート側にはドライブ回路40が設置され、この場合、トランジスタ42、44、コンデンサ46及び抵抗48で構成されている。
FET14、18を交互に所定周波数でスイッチングさせるスイッチング制御部20には、電圧変換部50、スイッチングパルス発生部52及び論理回路54が設置されている。電圧変換部50は、電源端子56に加えられる電圧Vccを所定電圧Vddに変換するとともに、その安定化を図り、この実施形態では3端子レギュレータ58及びコンデンサ60、62、64を備えて定電圧回路を構成している。コンデンサ60は平滑用であり、コンデンサ62、64は入出力部の高周波ノイズの吸収用である。
スイッチングパルス発生部52は、パルス発生回路としてパルス発生用IC66が設置され、このIC66には抵抗68、70及びコンデンサ72からなる時定数回路によって発信周波数決定用の時定数が設定されている。また、反転入力のリセット端子(RESET)には抵抗74を介して電圧Vddが加えられているとともに、電源端子(Vcc)に加えられている。このスイッチングパルス発生部52の出力端子(OUT)には、スイッチングパルスVGが発生する。
そして、論理回路54は、単一のスイッチングパルスVGを以て互いに逆相関係を持つスイッチングパルスVG1、VG2を発生させる。そこで、スイッチングパルス発生部52の出力端子とFET14のゲート間にはインバータ78が設置され、このインバータ78の出力部は抵抗80を介して電圧Vccにプルアップされている。即ち、スイッチングパルス発生部52に発生させたスイッチングパルスVGはインバータ78により反転され、これがスイッチングパルスVG1としてFET14のゲートに加えられている。
また、スイッチングパルス発生部52の出力部とFET18のゲート側のドライブ回路40の間にはインバータ82、84等が設置され、このインバータ82の出力部は抵抗86を介して電圧Vccにプルアップされているとともに、インバータ82とインバータ84との間には、FET14とFET18が放電開始時に同時にオン状態となる期間が生じないよう、遅延回路88を設置させている。この遅延回路88は抵抗90及びコンデンサ92で構成され、FET18のゲート信号の遅延時間は抵抗90及びコンデンサ92の時定数で決まる。通常、この遅延時間は数百ns程度でよい。この遅延回路88を通してインバータ82の出力がインバータ84に加えられる。このインバータ84の出力部は抵抗94を介して電圧Vccにプルアップされている。従って、スイッチングパルス発生部52に発生させたスイッチングパルスVGはインバータ82により反転され、また、インバータ82の出力がインバータ84で再反転されるので、インバータ84の出力はインバータ78の出力と逆相関係となり、インバータ84の出力がスイッチングパルスVG2としてFET18のゲート側に設置されたドライブ回路40のトランジスタ42、44のベースに加えられている。
そして、PC24には情報提示部として設置された表示器96が接続されており、その演算出力が例えば、画像として表示される。この場合、印刷出力としても提示でき、また、コンデンサ製造の制御情報としての提示も可能である。
次に、実験結果について、図11及び図12を参照して説明する。図11及び図12は、既述の測定装置2を用いた測定方法及び測定プログラムにより算出された測定データ及び静電容量Cの2μs、3μsでの値と従来のLCRメータでの30kHz、50kHzの測定値との相関を調査したものであり、図11は30kHzにおける静電容量、図12は50kHzにおける静電容量を示している。測定に用いた値は、ΔTs=1ns、Tw=1μs、スムージングのずらし=50nsである。なお、Vrは120kHz、Lcは10MHzでの値を用いた。
実験から判るように、本発明による2μs、3μsの静電容量は30kHzでの静電容量(図11)よりさらに50kHzでの静電容量(図12)と相関が良く、本発明により周波数50kHzを超える周波数領域での静電容量の推定が可能となった。そして、数μsでの大電流供給が求められるVRM用途の電解コンデンサの評価が可能となっている。
なお、上記実施形態では、第1及び第2のスイッチング素子としてFET14、18を用いたが、他の半導体スイッチや機械的なスイッチを用いてもよい。
また、上記実施形態では、一例として、高周波領域における静電容量の測定について記載したが、本発明は、大電流放電開始直後における静電容量の測定に適用することができ、低周波領域であっても、大電流放電開始直後における静電容量の正確な測定が可能になるので、高周波領域の静電容量に限定されるものではない。
また、実験例では、50kHzを超える周波数領域での静電容量の測定について検証しているが、これは一例であって、本発明の静電容量の測定における周波数領域の限定を付すものではない。
以上述べたように、本発明の最も好ましい実施形態等について説明したが、本発明は上記記載に限定されるものではなく、特許請求の範囲に記載され、又は、発明を実施するための最良の形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であり、斯かる変形や変更が本発明の範囲に含まれることはいうまでもない。
本発明によれば、電解コンデンサの高周波領域や大電流放電開始直後における静電容量を容易にしかも正確に測定することができ、高周波領域や大電流の用途等、使用範囲が拡大された信頼性の高い電解コンデンサの製造や品質確認に利用することができ、有用である。
2 電解コンデンサ測定装置
4 電解コンデンサ
6 測定回路
8 充電回路
10 放電回路
12 直流電源
14 FET(第1のスイッチング素子)
16 抵抗
18 FET(第2のスイッチング素子)
20 スイッチング制御部(充放電制御部)
22 波形観測装置(電圧測定手段、電流測定手段)
24 PC

Claims (5)

  1. 高周波領域又は大電流放電開始直後の電解コンデンサの測定方法であって、
    静電容量を測定すべき電解コンデンサに充電区間と放電区間とを設定して充放電を一定周期で繰り返す処理と、
    前記放電区間では抵抗を含む放電回路で前記電解コンデンサを放電させる処理と、
    前記電解コンデンサの複数の前記放電区間で端子電圧及び電流を観測する処理と、
    前記放電区間における一定時間ΔTsと電流iとの乗算値の積算値Σi・ΔTs、静電容量Cによる電圧降下Vcにより、式(C=Σi・ΔTs/Vc)から前記電解コンデンサの静電容量Cを算出する処理と、
    前記一定時間ΔTsを所定時間ずつずらし前記静電容量Cの算出にスムージングを施す処理と、
    を含むことを特徴とする電解コンデンサの測定方法。
  2. 高周波領域又は大電流放電開始直後の電解コンデンサの測定方法であって、
    静電容量を測定すべき電解コンデンサに充電区間と放電区間とを設定して充放電を一定周期で繰り返す処理と、
    前記放電区間では抵抗を含む放電回路で前記電解コンデンサを放電させる処理と、
    前記電解コンデンサの複数の前記放電区間で端子電圧及び電流を観測する処理と、
    前記端子電圧及び前記電流から一定時間内での放電電荷量ΔQ、電圧変化幅ΔVを求め、式(C=ΔQ/ΔV)から前記電解コンデンサの静電容量Cを算出する処理と、
    前記一定時間を所定時間ずつずらし前記静電容量Cの算出にスムージングを施す処理と、
    を含むことを特徴とする電解コンデンサの測定方法。
  3. 前記端子電圧及び前記電流の観測は、前記電解コンデンサの外部端子の根元部で行うことを特徴とする請求項1又は2記載の電解コンデンサの測定方法。
  4. 高周波領域又は大電流放電開始直後の電解コンデンサの測定プログラムであって、
    静電容量を測定すべき電解コンデンサに充電区間と放電区間とを設定して充放電を一定周期で繰り返すとともに、前記放電区間で前記電解コンデンサに抵抗を含む放電回路により放電させて観測される複数の端子電圧及び電流を取り込むステップと、
    前記放電区間における一定時間ΔTsと電流iとの乗算値の積算値Σi・ΔTs、静電容量Cによる電圧降下Vcを求めるステップと、
    式(C=Σi・ΔTs/Vc)から前記電解コンデンサの静電容量Cを算出するステップと、
    前記一定時間ΔTsを所定時間ずつずらし前記静電容量Cの算出にスムージングを施すステップと、
    を含み、これらステップをコンピュータによって実行させることを特徴とする電解コンデンサの測定プログラム。
  5. 高周波領域又は大電流放電開始直後の電解コンデンサの測定プログラムであって、
    静電容量を測定すべき電解コンデンサに充電区間と放電区間とを設定して充放電を一定周期で繰り返すとともに、前記放電区間で前記電解コンデンサに抵抗を含む放電回路により放電させて観測される複数の端子電圧及び電流を取り込むステップと、
    一定時間内での放電電荷量ΔQ、電圧変化幅ΔVを求めるステップと、
    式(C=ΔQ/ΔV)から前記電解コンデンサの静電容量Cを算出するステップと、
    前記一定時間を所定時間ずつずらし前記静電容量Cの算出にスムージングを施すステップと、
    を含み、これらステップをコンピュータによって実行させることを特徴とする電解コンデンサの測定プログラム。
JP2010153732A 2010-07-06 2010-07-06 電解コンデンサの測定方法及び測定プログラム Pending JP2010230688A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010153732A JP2010230688A (ja) 2010-07-06 2010-07-06 電解コンデンサの測定方法及び測定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153732A JP2010230688A (ja) 2010-07-06 2010-07-06 電解コンデンサの測定方法及び測定プログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004282711A Division JP2006098145A (ja) 2004-09-28 2004-09-28 電解コンデンサの測定装置、その測定方法及び測定プログラム

Publications (1)

Publication Number Publication Date
JP2010230688A true JP2010230688A (ja) 2010-10-14

Family

ID=43046626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153732A Pending JP2010230688A (ja) 2010-07-06 2010-07-06 電解コンデンサの測定方法及び測定プログラム

Country Status (1)

Country Link
JP (1) JP2010230688A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589375B1 (ko) * 2022-12-29 2023-10-16 주식회사 파두 고해상도 충전용 커패시터 용량 점검 시스템

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150072A (ja) * 1984-05-10 1986-03-12 ユニベルシテ ド レネ アン キヤパシタおよび誘電体の迅速な試験方法および装置
JPH0240572A (ja) * 1988-08-01 1990-02-09 Hitachi Ltd インバータ装置
JPH0384477A (ja) * 1989-08-28 1991-04-10 Fujitsu Ltd コンデンサ試験回路
JPH06268364A (ja) * 1993-03-10 1994-09-22 Funai Denki Kenkyusho:Kk 部品のハンダ接着方法
JPH11101832A (ja) * 1997-09-26 1999-04-13 Nissin Electric Co Ltd 静電容量測定器
JP2000078774A (ja) * 1998-05-29 2000-03-14 Siemens Ag 乗員保護システムにて設けられた蓄積コンデンサの容量の検査チェック方法及び検査チェック装置
JP2001159684A (ja) * 1999-12-01 2001-06-12 Ks Techno Kk 静電容量センサ回路
JP2006098145A (ja) * 2004-09-28 2006-04-13 Nippon Chemicon Corp 電解コンデンサの測定装置、その測定方法及び測定プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150072A (ja) * 1984-05-10 1986-03-12 ユニベルシテ ド レネ アン キヤパシタおよび誘電体の迅速な試験方法および装置
JPH0240572A (ja) * 1988-08-01 1990-02-09 Hitachi Ltd インバータ装置
JPH0384477A (ja) * 1989-08-28 1991-04-10 Fujitsu Ltd コンデンサ試験回路
JPH06268364A (ja) * 1993-03-10 1994-09-22 Funai Denki Kenkyusho:Kk 部品のハンダ接着方法
JPH11101832A (ja) * 1997-09-26 1999-04-13 Nissin Electric Co Ltd 静電容量測定器
JP2000078774A (ja) * 1998-05-29 2000-03-14 Siemens Ag 乗員保護システムにて設けられた蓄積コンデンサの容量の検査チェック方法及び検査チェック装置
JP2001159684A (ja) * 1999-12-01 2001-06-12 Ks Techno Kk 静電容量センサ回路
JP2006098145A (ja) * 2004-09-28 2006-04-13 Nippon Chemicon Corp 電解コンデンサの測定装置、その測定方法及び測定プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589375B1 (ko) * 2022-12-29 2023-10-16 주식회사 파두 고해상도 충전용 커패시터 용량 점검 시스템

Similar Documents

Publication Publication Date Title
JP5280449B2 (ja) 基準周波数生成回路、半導体集積回路、電子機器
JP6479650B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
KR101060443B1 (ko) Rc 발진기
US20130207674A1 (en) Detecting a Dielectric Article
JP2014106112A (ja) 電圧変動検出回路及び半導体集積回路
JP2007033180A (ja) 平均電流検出回路
JP2004198393A (ja) 周波数測定回路およびそれを用いた振動センサ式差圧・圧力伝送器
JP2003014792A (ja) フライングキャパシタ式組電池電圧検出装置
Hua et al. Design considerations of time constant mismatch problem for inductor DCR current sensing method
JP2006098145A (ja) 電解コンデンサの測定装置、その測定方法及び測定プログラム
JP2010230688A (ja) 電解コンデンサの測定方法及び測定プログラム
JP2017224924A (ja) スイッチング制御装置
JP2023109886A (ja) 電圧変化率検出回路、半導体装置及び電力変換器
JP2010025782A (ja) 液位センサ
US8076981B2 (en) Self-calibrating oscillator
JP5262865B2 (ja) 2重積分型アナログデジタルコンバータおよびそれを用いたデジタル温度センサーならびにデジタルマルチメータ
JP6749625B1 (ja) 耐電圧試験装置
JP2010256015A (ja) センサ装置
EP3832888A1 (en) Relaxation oscillator and method
JP3288830B2 (ja) 発振用集積回路
JP2010210307A (ja) 液位センサ
US10656032B2 (en) Temperature sensor in an integrated circuit and method of calibrating the temperature sensor
Hasan et al. Measurement for fractional characteristic of Lithium batteries
CN115902372B (zh) 一种直流电压的测量方法、装置、电子设备及存储介质
JP4551204B2 (ja) インピーダンス測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100707

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A02 Decision of refusal

Effective date: 20120424

Free format text: JAPANESE INTERMEDIATE CODE: A02