JP2010212715A - Lead frame laminate and manufacturing method for semiconductor device - Google Patents

Lead frame laminate and manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2010212715A
JP2010212715A JP2010103891A JP2010103891A JP2010212715A JP 2010212715 A JP2010212715 A JP 2010212715A JP 2010103891 A JP2010103891 A JP 2010103891A JP 2010103891 A JP2010103891 A JP 2010103891A JP 2010212715 A JP2010212715 A JP 2010212715A
Authority
JP
Japan
Prior art keywords
resin
lead frame
heat
sealing
resistant sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010103891A
Other languages
Japanese (ja)
Inventor
Hitoshi Takano
均 高野
Yoshihisa Furuta
喜久 古田
Toshimitsu Tachibana
俊光 橘
Norikane Nahata
憲兼 名畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2010103891A priority Critical patent/JP2010212715A/en
Publication of JP2010212715A publication Critical patent/JP2010212715A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead frame laminate in which terminal portions on the outer side is protruded when resin-sealed, and three-dimensional sealing effect is achieved even for such a small terminal as can not prevent resin from creeping, only by adhesive force, and also to provide a method for manufacturing a semiconductor device. <P>SOLUTION: A lead frame laminate is provided with: a lead frame 10 having terminal portions which can protrude from a resin-sealed surface when a semiconductor chip is resin-sealed; and a heat resistant sheet 20 into which each protruded side of the terminal portions 11 was embedded to a depths not less than 5 &mu;m. The heat resistant sheet 20 is provided with: a resin layer 20c which is cured after each protruded side of the terminal portions 11 has been embedded; and a base substrate layer 20d to which the resin layer 20c adhered. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、半導体チップを樹脂封止する際に封止樹脂面から突出可能な端子部を有するリードフレームに耐熱性シートを積層したリードフレーム積層物およびそれを用いた半導体装置の製造方法に関する。   The present invention relates to a lead frame laminate in which a heat-resistant sheet is laminated on a lead frame having a terminal portion that can protrude from a sealing resin surface when a semiconductor chip is resin-sealed, and a method of manufacturing a semiconductor device using the lead frame laminate.

近年、LSIの実装技術において、CSP(Chip Size/Scale Package)技術が注目されている。この技術のうち、QFN(Quad Flat Non−leaded package)に代表されるリード端子がパッケージ内部に取り込まれた形態のパッケージについては、小型化と高集積の面で特に注目されるパッケージ形態のひとつである。このようなQFNパッケージは片面だけをモールド樹脂により封止する構造であることから、反対面側へのモールド樹脂のはみ出しや廻りこみを防止するのが好ましい。   In recent years, CSP (Chip Size / Scale Package) technology has attracted attention in LSI mounting technology. Among these technologies, a package in which a lead terminal represented by a QFN (Quad Flat Non-leaded package) is incorporated in the package is one of the package forms that are particularly noted in terms of miniaturization and high integration. is there. Since such a QFN package has a structure in which only one surface is sealed with a mold resin, it is preferable to prevent the mold resin from protruding or turning around to the opposite surface side.

このため、特開2000−294580号公報には、上記の如きQFNの製造方法において、リードフレームのアウター側に粘着テープを貼り付け、この粘着テープのマスキングによるシール効果により、樹脂封止時のアウター側への樹脂漏れを防ぐ製造方法が開示されている。   For this reason, Japanese Patent Laid-Open No. 2000-294580 discloses that in the method of manufacturing QFN as described above, an adhesive tape is attached to the outer side of the lead frame, and the sealing effect by masking this adhesive tape results in the outer sealing at the time of resin sealing. A manufacturing method for preventing resin leakage to the side is disclosed.

特開2000−294580号公報JP 2000-294580 A

しかしながら、上記の方法では、一般的なQFNにおいては有効であるものの、近年の半導体の高集積化に伴い、端子が複数列に配置されたLLGA(Lead−frame Land Grid Array)パッケージ(図5参照)などでは、個々の端子のサイズが小さいため、テープの粘着力だけでモールド樹脂の廻りこみを抑えることが難しくなってきた。   However, the above method is effective in a general QFN, but with the recent high integration of semiconductors, an LLGA (Lead-frame Land Grid Array) package in which terminals are arranged in a plurality of columns (see FIG. 5). ) And the like, the size of each terminal is small, and it has become difficult to suppress the wrapping of the mold resin only by the adhesive strength of the tape.

また、配線基板への半導体装置の実装時の信頼性を高めるために、封止樹脂面から端子部分がわずかに突出している「スタンドオフ」を持つものが知られており、この突出した端子部によって、配線基板等の平面性誤差による影響を受けにくくしている。しかし、上記従来の粘着テープでは、粘着層の薄いものが好適に使用されるため、端子部を封止樹脂面から突出させるほど、端子部の突出側を埋入させることはできなかった。   In addition, in order to increase the reliability when mounting the semiconductor device on the wiring board, it is known that there is a “stand-off” in which the terminal portion slightly protrudes from the sealing resin surface. This makes it less susceptible to the effects of planarity errors such as the wiring board. However, in the said conventional adhesive tape, since the thing with a thin adhesive layer is used suitably, the protrusion side of a terminal part was not able to be embedded so that a terminal part protruded from the sealing resin surface.

つまり、上記のような、高集積化に伴ったパターンの精細化や、実装時の信頼性向上が求められていくと、従来の単なる耐熱性粘着テープでは充分な対応ができなかった。   In other words, when there is a demand for finer patterns with higher integration and improved reliability during mounting as described above, conventional simple heat-resistant adhesive tapes have not been sufficient.

そこで、本発明の目的は、樹脂封止時にアウター側の端子部を突出させることができ、しかも、粘着力だけでは樹脂の廻りこみを抑制できなかったような小さな端子に対しても、立体的なシール効果が得られるリードフレーム積層物およびそれに用いる耐熱性シート、並びにそれらを用いた半導体装置の製造方法を提供することにある。   Therefore, the object of the present invention is to allow the outer terminal portion to protrude at the time of resin sealing, and even for a small terminal that cannot suppress the resin wraparound only by adhesive force. An object of the present invention is to provide a lead frame laminate capable of providing a good sealing effect, a heat resistant sheet used therefor, and a method for manufacturing a semiconductor device using them.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明のリードフレーム積層物は、半導体チップを樹脂封止する際に封止樹脂面から突出可能な端子部を有するリードフレームと、その端子部の突出側を深さ5μm以上で埋入させた耐熱性シートとを備え、前記耐熱性シートが、前記端子部の突出側を埋入させた後に硬化反応させた樹脂層と、その樹脂層が接着した基材層とを備えることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the lead frame laminate of the present invention embeds a lead frame having a terminal portion that can protrude from the sealing resin surface when resin-sealing a semiconductor chip and a protruding side of the terminal portion at a depth of 5 μm or more. A heat-resistant sheet, and the heat-resistant sheet includes a resin layer that is cured and reacted after embedding the protruding side of the terminal portion, and a base material layer to which the resin layer is bonded. And

他方、本発明の半導体装置の製造方法は、上記いずれかに記載のリードフレーム積層物のインナー側の端子部に半導体チップを電気的に接続した状態で、その半導体チップを封止樹脂によりインナー側から樹脂封止する工程を含むことを特徴とする。   On the other hand, in the method for manufacturing a semiconductor device of the present invention, in the state where the semiconductor chip is electrically connected to the inner terminal portion of the lead frame laminate according to any one of the above, the semiconductor chip is sealed on the inner side with a sealing resin. And a step of sealing with resin.

[作用効果]
本発明のリードフレーム積層物によると、リードフレームの端子部の突出側を深さ5μm以上で埋入させた耐熱性シートを積層してあるため、樹脂封止時に端子部が埋入した分に相当するスタンドオフを作成することができ、また、粘着力だけでは樹脂の廻りこみを抑制できなかったような小さな端子に対しても、立体的なシール効果により樹脂の廻りこみを効果的に抑えることができるようになる。
[Function and effect]
According to the lead frame laminate of the present invention, since the heat-resistant sheet in which the protruding side of the terminal portion of the lead frame is embedded at a depth of 5 μm or more is laminated, the terminal portion is embedded at the time of resin sealing. The corresponding stand-off can be created, and even for small terminals that could not suppress the resin sneaking with only the adhesive force, the squeeze of the resin is effectively suppressed by the three-dimensional sealing effect. Will be able to.

また、前記耐熱性シートが、前記端子部の突出側を埋入させた後に硬化反応させた樹脂層と、その樹脂層が接着した基材層とを備える場合、未硬化の状態で端子部の突出側を深さ5μm以上で容易に埋入させることができ、しかも硬化反応後の樹脂層が基材層に接着しているため、基材層と共に樹脂層を剥離し易くなる。   In addition, when the heat-resistant sheet includes a resin layer cured after embedding the protruding side of the terminal portion and a base material layer to which the resin layer is bonded, the terminal portion is uncured. The protruding side can be easily embedded at a depth of 5 μm or more, and since the resin layer after the curing reaction is adhered to the base material layer, the resin layer is easily peeled off together with the base material layer.

一方、本発明の半導体装置の製造方法によると、上記に記載のリードフレーム積層物のインナー側の端子部に半導体チップを電気的に接続した状態で、その半導体チップを封止樹脂によりインナー側から樹脂封止する工程を含むため、樹脂封止時にアウター側の端子部を突出させることができ、しかも、粘着力だけでは樹脂の廻りこみを抑制できなかったような小さな端子に対しても、立体的なシール効果が得られる。その結果、高集積化に伴ったパターンの精細化にも対応でき、また、「スタンドオフ」の形成によって、実装時の信頼性が向上する半導体装置を製造することができる。   On the other hand, according to the method for manufacturing a semiconductor device of the present invention, in a state where the semiconductor chip is electrically connected to the inner side terminal portion of the lead frame laminate described above, the semiconductor chip is sealed from the inner side with a sealing resin. Since the resin sealing process is included, the outer terminal part can be projected at the time of resin sealing, and even for small terminals that could not suppress the resin wrapping only with adhesive strength, Sealing effect can be obtained. As a result, it is possible to cope with the refinement of patterns accompanying high integration, and it is possible to manufacture a semiconductor device in which the reliability at the time of mounting is improved by forming a “stand-off”.

一般的な半導体装置の製造方法の例を示す工程図Process drawing showing an example of a general semiconductor device manufacturing method 本発明におけるリードフレームの一例を示す図であり、(a)は正面図、(b)は要部拡大図、(c)は樹脂封止後の状態を示す底面図It is a figure which shows an example of the lead frame in this invention, (a) is a front view, (b) is a principal part enlarged view, (c) is a bottom view which shows the state after resin sealing 本発明における樹脂封止工程の一例を示す縦断面図The longitudinal cross-sectional view which shows an example of the resin sealing process in this invention 本発明によって得られる半導体装置の一例を示す図であり、(a)は底面図、(b)は正面視断面図It is a figure which shows an example of the semiconductor device obtained by this invention, (a) is a bottom view, (b) is front sectional drawing. 本発明によって得られる半導体装置の他の例を示す図であり、(a)は底面図、(b)は正面視断面図It is a figure which shows the other example of the semiconductor device obtained by this invention, (a) is a bottom view, (b) is front sectional drawing. 耐熱性シートを剥離する前の図5の半導体装置を示す正面視断面図Front view sectional drawing which shows the semiconductor device of FIG. 5 before peeling a heat resistant sheet 耐熱性シートを剥離する前の半導体装置の一例を示す要部拡大した正面視断面図Front view sectional drawing which expanded the principal part which shows an example of the semiconductor device before peeling a heat resistant sheet 耐熱性シートを剥離する前の半導体装置の他の例を示す要部拡大した正面視断面図Front view sectional drawing which expanded the principal part which shows the other example of the semiconductor device before peeling a heat resistant sheet

以下、本発明の実施の形態について、図面を参照しながら説明する。まず、一般的な半導体装置の製造方法について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a general method for manufacturing a semiconductor device will be described.

図1は、当該製造方法の一例を示す工程図である。この実施形態では、図1(a)〜(e)に示すように、耐熱性シート20を積層する積層工程と、半導体チップ15の搭載工程と、ボンディングワイヤ16による接続工程と、封止樹脂17による封止工程と、封止された構造物21を切断する切断工程とを含む例を示す。   FIG. 1 is a process diagram showing an example of the manufacturing method. In this embodiment, as shown in FIGS. 1A to 1E, a stacking process for stacking the heat-resistant sheets 20, a mounting process for the semiconductor chip 15, a connecting process using the bonding wires 16, and a sealing resin 17 are used. The example including the sealing process by and the cutting process which cut | disconnects the sealed structure 21 is shown.

積層工程は、図1(a)に示すように、開口部11a及び表裏両面の端子部11bを備えるリードフレーム10のアウター側(図の下側)に、開口部11aを塞ぐように耐熱性シート20を積層するものである。   In the laminating step, as shown in FIG. 1A, a heat-resistant sheet is formed so as to close the opening 11a on the outer side (the lower side of the drawing) of the lead frame 10 including the opening 11a and the terminal portions 11b on both front and back surfaces. 20 is laminated.

リードフレーム10とは、例えば銅、銅を含む合金などの金属を素材としてCSPの端子パターンが刻まれたものであり、その電気接点部分には、銀、ニッケル、パラジウム、金などの素材で被覆(めっき)されている場合もある。なお、リードフレーム10の厚みは、50〜300μmが一般的である。   The lead frame 10 is made by engraving a CSP terminal pattern made of a metal such as copper or an alloy containing copper, and the electrical contact portion is covered with a material such as silver, nickel, palladium, or gold. (Plating) may be done. The lead frame 10 generally has a thickness of 50 to 300 μm.

リードフレーム10は、後の切断工程にて切り分けやすいよう、個々のQFNの配置パターンが整然と並べられているものが好ましい。例えば図2に示すように、リードフレーム10上に縦横のマトリックス状に配列された形状などは、マトリックスQFNあるいはMAP−QFNなどと呼ばれ、もっとも好ましいリードフレーム形状のひとつである。   The lead frame 10 is preferably one in which arrangement patterns of individual QFNs are arranged in an orderly manner so that the lead frame 10 can be easily separated in a subsequent cutting step. For example, as shown in FIG. 2, a shape arranged in a vertical and horizontal matrix on the lead frame 10 is called a matrix QFN or MAP-QFN, and is one of the most preferable lead frame shapes.

図2(a)〜(b)に示すように、リードフレーム10のパッケージパターン領域11には、隣接した複数の開口部11aに端子部11bを複数配列した、QFNの基板デザインが整然と配列されている。一般的なQFNの場合、各々の基板デザイン(図2(a)の格子で区分された領域)は、開口部11aの周囲に配列された端子部11bと、開口部11aの中央に配置されるダイパッド11cと、ダイパッド11cを開口部11aの4角に支持させるダイバー11dとで構成される。   As shown in FIGS. 2A to 2B, the package pattern region 11 of the lead frame 10 has a QFN substrate design in which a plurality of terminal portions 11b are arranged in a plurality of adjacent openings 11a. Yes. In the case of a general QFN, each board design (region divided by the lattice in FIG. 2A) is arranged in the center of the opening 11a and the terminal 11b arranged around the opening 11a. It consists of a die pad 11c and a diver 11d that supports the die pad 11c at the four corners of the opening 11a.

耐熱性シート20は、開口部11aを塞ぐように、少なくともパッケージパターン領域11より外側に積層され、樹脂封止される樹脂封止領域の外側の全周を含む領域に積層するのが好ましい。リードフレーム10は、通常、樹脂封止時の位置決めを行うための、ガイドピン用孔13を端辺近傍に有しており、それを塞がない領域に積層するのが好ましい。また、樹脂封止領域はリードフレーム10の長手方向に複数配置されるため、それらの複数領域を渡るように連続して耐熱性シート20を積層するのが好ましい。   The heat-resistant sheet 20 is preferably laminated at least outside the package pattern region 11 so as to close the opening 11a and in a region including the entire circumference outside the resin-sealed region to be resin-sealed. The lead frame 10 usually has a guide pin hole 13 for positioning at the time of resin sealing in the vicinity of the end side, and it is preferable that the lead frame 10 be laminated in a region where it is not blocked. In addition, since a plurality of resin-sealed regions are arranged in the longitudinal direction of the lead frame 10, it is preferable that the heat-resistant sheets 20 are continuously laminated so as to cross the plurality of regions.

本発明のリードフレーム積層物は、上記のようなリードフレーム10が樹脂封止の際に封止樹脂面から突出可能な端子部を有すると共に、上記の耐熱性シート20が端子部の突出側を深さ5μm以上で埋入させることを特徴とする。これらの点については、後に詳述する。   The lead frame laminate of the present invention has a terminal portion that can protrude from the sealing resin surface when the lead frame 10 is sealed with resin, and the heat-resistant sheet 20 has a protruding side of the terminal portion. It is embedded at a depth of 5 μm or more. These points will be described in detail later.

搭載工程は、図1(b)に示すように、リードフレーム10のダイパッド11c上に半導体チップ15をボンディングする工程である。半導体チップ15とは、例えば半導体集積回路部分であるシリコン・チップを指す。ダイパッド11cは半導体チップ15を固定するためのエリアであり、ダイパッド11cヘのボンディング(固定)の方法は、導電性ペースト19を使用したり、接着テープ、接着剤など各種の方法が用いられる。導電性ペーストや熱硬化性の接着剤等を用いてダイボンドする場合、一般的に150〜200℃程度の温度で30分〜90分程度加熱キュアする。   The mounting process is a process of bonding the semiconductor chip 15 onto the die pad 11c of the lead frame 10 as shown in FIG. The semiconductor chip 15 refers to, for example, a silicon chip that is a semiconductor integrated circuit portion. The die pad 11c is an area for fixing the semiconductor chip 15, and the bonding (fixing) method to the die pad 11c uses a conductive paste 19 or various methods such as an adhesive tape and an adhesive. When die bonding is performed using a conductive paste, a thermosetting adhesive, or the like, generally heat curing is performed at a temperature of about 150 to 200 ° C. for about 30 to 90 minutes.

結線工程は、図1(c)に示すように、リードフレーム10のインナー側の端子部11b(インナーリード)と半導体チップ15上の電極パッド15aとをボンディングワイヤ16で電気的に接続する工程である。ボンディングワイヤ16としては、例えば金線あるいはアルミ線などが用いられる。一般的には150〜250℃に加熱された状態で、超音波による振動エネルギーと印加加圧による圧着エネルギーの併用により結線される。その際、リードフレーム10に積層した耐熱性シート20面を真空吸引することで、ヒートブロックに確実に固定することができる。   As shown in FIG. 1 (c), the connection process is a process of electrically connecting the terminal portion 11 b (inner lead) on the inner side of the lead frame 10 and the electrode pad 15 a on the semiconductor chip 15 with a bonding wire 16. is there. For example, a gold wire or an aluminum wire is used as the bonding wire 16. In general, in a state heated to 150 to 250 ° C., the wire is connected by a combination of vibration energy by ultrasonic waves and pressure energy by applying pressure. At that time, the surface of the heat-resistant sheet 20 laminated on the lead frame 10 can be securely fixed to the heat block by vacuum suction.

封止工程は、図1(d)に示すように、封止樹脂17により半導体チップ側を片面封止する工程である。封止工程は、リードフレーム10に搭載された半導体チップ15やボンディングワイヤ16を保護するために行われ、とくにエポキシ系の樹脂をはじめとした封止樹脂17を用いて金型中で成型されるのが代表的である。その際、図3に示すように、複数のキャビティを有する上金型18aと下金型18bからなる金型18を用いて、複数の封止樹脂17にて同時に封止工程が行われるのが一般的である。具体的には、例えば樹脂封止時の加熱温度は170〜180℃であり、この温度で数分間キュアされた後、更に、ポストモールドキュアが数時間行われる。なお、耐熱性シート20はポストモールドキュアの前に剥離するのが好ましい。   The sealing step is a step of sealing one side of the semiconductor chip side with a sealing resin 17 as shown in FIG. The sealing process is performed to protect the semiconductor chip 15 and the bonding wire 16 mounted on the lead frame 10 and is molded in a mold using a sealing resin 17 including an epoxy resin in particular. Is typical. At that time, as shown in FIG. 3, a sealing process is simultaneously performed with a plurality of sealing resins 17 using a mold 18 composed of an upper mold 18a and a lower mold 18b having a plurality of cavities. It is common. Specifically, for example, the heating temperature at the time of resin sealing is 170 to 180 ° C. After curing at this temperature for several minutes, post mold curing is further performed for several hours. The heat resistant sheet 20 is preferably peeled before post mold curing.

切断工程は、図1(e)に示すように、封止された構造物21を個別の半導体装置21aに切断する工程である。一般的にはダイサーなどの回転切断刃を用いて封止樹脂17の切断部17aをカットする切断工程が挙げられる。   The cutting step is a step of cutting the sealed structure 21 into individual semiconductor devices 21a as shown in FIG. Generally, there is a cutting step of cutting the cutting portion 17a of the sealing resin 17 using a rotary cutting blade such as a dicer.

一方、本発明のリードフレーム積層物は、半導体チップを樹脂封止する際に封止樹脂面から突出可能な端子部を有するリードフレームと、その端子部の突出側を深さ5μm以上で埋入させた耐熱性シートとを備えるものである。   On the other hand, the lead frame laminate of the present invention embeds a lead frame having a terminal portion that can protrude from the sealing resin surface when resin-sealing a semiconductor chip and a protruding side of the terminal portion at a depth of 5 μm or more. A heat-resistant sheet.

本発明に用いられるリードフレームは、図1〜図3に示すように、リードフレーム10のアウター側(図の下側)面がフラットなものでもよく、その場合、図4(a)〜(b)に示すように、端子部11bの全面が封止樹脂17面から突出(スタンドオフ)した状態となる。また、図5〜図6に示すように、リードフレーム10のアウター側面が凸状となった端子部11f,11gを有するものでもよい(LLGAタイプ)。その場合、図6に示すように、端子部11f,11gの突出側が封止樹脂17面から突出(スタンドオフ)した状態となる。なお、内周側の端子部11fと外周側の端子部11gとは、リードフレーム10の開口部11aに対して順次交互に配列されている。   As shown in FIGS. 1 to 3, the lead frame used in the present invention may have a flat outer side (lower side) surface of the lead frame 10, in which case FIGS. ), The entire surface of the terminal portion 11b protrudes (stands off) from the surface of the sealing resin 17. Moreover, as shown in FIGS. 5-6, you may have the terminal parts 11f and 11g which the outer side surface of the lead frame 10 became convex shape (LLGA type). In this case, as shown in FIG. 6, the protruding side of the terminal portions 11 f and 11 g protrudes (stands off) from the surface of the sealing resin 17. Note that the inner peripheral terminal portions 11 f and the outer peripheral terminal portions 11 g are sequentially and alternately arranged with respect to the opening 11 a of the lead frame 10.

本発明における耐熱性シートは、少なくともモールド樹脂による封止の工程でかかる加熱に対して耐えるだけの耐熱性を有していればよく、モールド樹脂による封止工程は一般的に175℃前後の温度がかかることから、このような温度条件下での著しい収縮といった変形、あるいは流動や分解などシートそのものが破壊を生じない耐熱性を持っている必要性がある。さらに好ましくは、リードフレームとの合わせる作業性を考慮した場合、ワイヤボンディング工程以前、あるいは半導体チップの搭載工程以前にあらかじめリードフレームと合わせておくことも考えられるため、それぞれの工程に対してもかかる温度に十分耐える熱特性を有していることがさらに好ましい。   The heat-resistant sheet in the present invention only needs to have heat resistance sufficient to withstand such heating at least in the sealing step with the mold resin, and the sealing step with the mold resin is generally performed at a temperature of about 175 ° C. Therefore, it is necessary to have heat resistance such that the sheet itself does not break, such as deformation such as significant shrinkage under such temperature conditions, or flow and decomposition. More preferably, when considering the workability with the lead frame, it may be possible to pre-fit with the lead frame before the wire bonding process or before the semiconductor chip mounting process. More preferably, it has a thermal characteristic that can sufficiently withstand the temperature.

なお、本発明のリードフレーム積層物とは、粘着あるいは接着テープのように貼り合わせるタイプだけでなく、成型金型中などでリードフレームとシートを重ねて単に密着させている場合なども含まれる。   The lead frame laminate of the present invention includes not only a type of bonding such as an adhesive or an adhesive tape, but also a case where the lead frame and the sheet are simply stuck together in a molding die or the like.

本発明の特徴は、図6に示すように、上記のごとき積層状態で、リードフレーム10の端子部11f,11gの突出側を深さ5μm以上で耐熱性シート20に埋入させたことにある。すなわち、リードフレーム10の端子部11f,11gのアウター側の最表面に単に粘着テープがついているだけでなく、リードフレームの端子部11f,11gと立体的な接触を得ることで、テープの粘着力だけでは抑えにくかった小型の端子部分に関しても立体的にシールする形とすることで、樹脂の廻りこみをよく抑えることが出来る。なお、埋入するとは、端子部11f,11gなど一部分だけが埋入していてもよく、この場合の5μm以上というのは最大埋入深さを意味している。   The feature of the present invention is that, as shown in FIG. 6, the protruding side of the terminal portions 11f and 11g of the lead frame 10 is embedded in the heat-resistant sheet 20 at a depth of 5 μm or more in the laminated state as described above. . That is, not only the adhesive tape is attached to the outermost surface of the terminal portions 11f and 11g of the lead frame 10 but also the three-dimensional contact with the terminal portions 11f and 11g of the lead frame, whereby the adhesive strength of the tape is obtained. Even with small terminal parts that were difficult to suppress by itself, it is possible to suppress the resin wrapping well by adopting a three-dimensional seal. The term “embedding” may mean that only a part of the terminal portions 11f, 11g, etc. is buried, and in this case, 5 μm or more means the maximum embedding depth.

また、耐熱性シート20に埋入している分だけ、封止樹脂17による封止が行われないことから、結果的にスタンドオフを形成することとなり、半導体装置の基板等への実装信頼性も向上する。この場合のスタンドオフは少なくとも5μm以上、好ましくは10〜50μm程度がもっとも効果的である。従って、耐熱性シート20に埋入する深さも、10〜50μmが好ましい。   Further, since sealing with the sealing resin 17 is not performed by the amount embedded in the heat resistant sheet 20, a standoff is formed as a result, and mounting reliability of the semiconductor device on the substrate or the like is increased. Will also improve. In this case, the stand-off is most effective at least 5 μm or more, preferably about 10 to 50 μm. Therefore, the depth embedded in the heat resistant sheet 20 is also preferably 10 to 50 μm.

具体的な埋入の方法は、特に限定されるものではないが、たとえば、
(1)耐熱性シートを構成する部材の一部または全部が変形しやすい構造を備えており、リードフレームと合わせた際にその密着力によって埋入させる方法、
(2)耐熱性シートを構成する一部が、積層時において未硬化あるいは軟化状態でリードフレームを積層して埋入させ、後に樹脂封止あるいはその後のシート剥離に耐える剛性強度に硬化させる方法、
(3)耐熱性シートとリードフレームを合わせた後、耐熱性シート側が膨張変形してリードフレームを取り込む方法などが挙げられる。
The specific embedding method is not particularly limited. For example,
(1) A method in which part or all of the members constituting the heat-resistant sheet has a structure that is easily deformed, and is embedded by its adhesion when combined with the lead frame,
(2) A method in which a part of the heat-resistant sheet is laminated and embedded in an uncured or softened state at the time of lamination, and then cured to a rigid strength that can withstand resin sealing or subsequent sheet peeling,
(3) After the heat-resistant sheet and the lead frame are combined, the heat-resistant sheet side is expanded and deformed to take in the lead frame.

上記(1)の方法としては、例えば多孔質、発泡体などのクッション素材を配置するものが挙げられる。好ましくは、耐熱性樹脂からなる多孔質層を備える耐熱性シートを用いる方法であり、封止工程で封止樹脂が多孔質層に含浸されるのを防止する上で、図7に示すように、多孔質層20bの封止する側の表面に非多孔質層20aを設けたものが更に好ましい。   As a method of said (1), what arrange | positions cushion materials, such as a porous and a foam, is mentioned, for example. Preferably, it is a method using a heat-resistant sheet comprising a porous layer made of a heat-resistant resin, and in order to prevent the porous resin from being impregnated with the sealing resin in the sealing step, as shown in FIG. More preferably, the porous layer 20b is provided with a non-porous layer 20a on the surface to be sealed.

多孔質層を形成する耐熱性樹脂としては、ポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂、又はポリイミド、ポリエステル、ポリアミド、特に芳香族ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルサルホン等が挙げられる。また、多孔質層は、湿式凝固法、乾式凝固法、延伸法など種々の製膜法にて形成することができる。   Examples of the heat resistant resin for forming the porous layer include polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene. -Fluororesin such as hexafluoropropylene copolymer (FEP), or polyimide, polyester, polyamide, especially aromatic polyamide, polyamideimide, polyetherimide, polyethersulfone and the like. The porous layer can be formed by various film forming methods such as a wet coagulation method, a dry coagulation method, and a stretching method.

また、多孔質層の空孔率は、好適な埋入深さを得る上での変形のしやすさから、少なくとも30%以上、更に取扱い性なども考慮すると、40〜80%程度であることがよい。また、多孔質層の厚みは、同様の理由から、10〜500μmが好ましい。   In addition, the porosity of the porous layer is at least 30% or more from the viewpoint of ease of deformation for obtaining a suitable embedding depth, and is also about 40 to 80% in consideration of handling properties. Is good. The thickness of the porous layer is preferably 10 to 500 μm for the same reason.

非多孔質層を設ける場合の材質としては、上記と同様の耐熱性樹脂などが挙げられるが、封止樹脂との離型性の点から、フッ素樹脂、例えばポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等が好適なものとして挙げられる。また、端子部の埋入を好適にする上で、非多孔質層の厚みは5〜50μmが好ましい。非多孔質層を多孔質層と積層一体化する方法は、全面に接着剤等や、熱ラミネートして貼り合わせる他、部分的に端部のみ接着させて実質的に重ねられた状態であってもよい。   Examples of the material for providing the non-porous layer include the same heat-resistant resin as described above. From the viewpoint of releasability from the sealing resin, fluororesin such as polytetrafluoroethylene (PTFE), ethylene Preferred examples include -tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and the like. Moreover, when making embedding of a terminal part suitable, the thickness of a non-porous layer has preferable 5-50 micrometers. The method of laminating and integrating the non-porous layer with the porous layer is a state in which the entire surface is substantially overlapped with adhesive or the like, or heat laminated and bonded partially only to the end portion. Also good.

上記(2)の方法の場合、図8に示すように、耐熱性シート20が、端子部11f,11gの突出側を埋入させた後に硬化反応させた樹脂層20cと、その樹脂層20cが接着した基材層20dとを備えるものとなる。樹脂層20cは、ホットメルト型接着剤のように加熱状態で軟化する樹脂層でもよいが、端子部の突出側を埋入させた後に硬化反応によりある程度硬化する粘着剤又は接着剤からなる樹脂層が好ましい。当該樹脂層20cとしては、UV架橋性樹脂、熱架橋性樹脂などを樹脂成分とするものが挙げられ、アクリル系の粘着剤、シリコーン系の粘着剤などが好ましい。   In the case of the above method (2), as shown in FIG. 8, the heat resistant sheet 20 has a resin layer 20 c that has undergone a curing reaction after embedding the protruding sides of the terminal portions 11 f and 11 g, and the resin layer 20 c includes The substrate layer 20d is adhered. The resin layer 20c may be a resin layer that softens in a heated state like a hot melt adhesive, but a resin layer made of a pressure-sensitive adhesive or adhesive that cures to some extent by a curing reaction after embedding the protruding side of the terminal portion. Is preferred. Examples of the resin layer 20c include those having a UV-crosslinkable resin, a heat-crosslinkable resin, or the like as a resin component, and an acrylic pressure-sensitive adhesive or a silicone-based pressure-sensitive adhesive is preferable.

但し、本発明では、樹脂封止後に耐熱性シートを剥離する必要があり、その際に接着力が高過ぎると、半導体装置を破損するおそれがあるため、上記の樹脂層が、金属及び封止樹脂との接着力が適度に小さいことが好ましい。かかる観点から、当該樹脂層としては、アクリル系又はシリコーン系の粘着剤とUV硬化型の架橋剤を混合して用いることが、硬化前の粘度と硬化後の強度を任意に調整しやすいので好ましい。なお、樹脂層の厚みは、端子部の埋入深さ以上となる5μm以上であればよいが、硬化反応後の樹脂層のクッション性(弾性)が高くなる材質の場合には、端子部の埋入深さに合わせて、厚さ10〜50μmが好ましい。   However, in the present invention, it is necessary to peel off the heat-resistant sheet after resin sealing, and if the adhesive force is too high, the semiconductor device may be damaged. It is preferable that the adhesive strength with the resin is moderately small. From this point of view, it is preferable to use a mixture of an acrylic or silicone adhesive and a UV curable crosslinking agent as the resin layer, because it is easy to arbitrarily adjust the viscosity before curing and the strength after curing. . The thickness of the resin layer may be 5 μm or more which is equal to or greater than the embedding depth of the terminal portion. However, in the case of a material that increases the cushioning property (elasticity) of the resin layer after the curing reaction, The thickness is preferably 10 to 50 μm according to the embedding depth.

基材層としては、アルミニウム箔などの金属箔や、耐熱性樹脂フィルムが使用でき、耐熱性樹脂フィルムとしては、耐熱性の高いポリイミドフィルムやアラミドフィルムの他、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリエーテルサルフォン(PES)フィルム、ポリエーテルイミド(PEI)フィルム、ポリサルフォン(PSF)フィルム、ポリフェニレンサルファイド(PPS)フィルム、ポリアリレート(PAR)フィルム、又は液晶ポリマー(LCP)フィルムなどが挙げられる。基材層の厚みは、耐熱性シートの引き剥がし時に、破断を生じくくする上で、10〜100μmが好ましく、20〜50μmがより好ましい。   As the base material layer, a metal foil such as an aluminum foil or a heat-resistant resin film can be used. As the heat-resistant resin film, in addition to a highly heat-resistant polyimide film or aramid film, a polyethylene terephthalate (PET) film or a polyethylene naphthalate film is used. Phthalate (PEN) film, polyethersulfone (PES) film, polyetherimide (PEI) film, polysulfone (PSF) film, polyphenylene sulfide (PPS) film, polyarylate (PAR) film, or liquid crystal polymer (LCP) film Etc. The thickness of the base material layer is preferably 10 to 100 μm and more preferably 20 to 50 μm in order to prevent breakage when the heat-resistant sheet is peeled off.

また、封止樹脂面から突出させる端子部のアウター側面を平坦化(面一)する上で、端子部のアウター側面の少なくとも一部が、基材層の表面に接当した状態で樹脂層に埋入していることが好ましい。   In addition, when flattening the outer side surface of the terminal portion that protrudes from the sealing resin surface, the resin layer is in a state where at least a part of the outer side surface of the terminal portion is in contact with the surface of the base material layer. It is preferable that it is embedded.

上記(3)の方法において、積層後に膨張変形する材料としては、加熱等により発泡増量して不可逆的に厚みが増加する熱発泡体シートや、それを基材層に形成したものなどが挙げられる。   In the method of (3) above, examples of the material that expands and deforms after lamination include a thermal foam sheet in which the foam is increased by heating or the like and the thickness is irreversibly increased, or a material formed on the base material layer. .

一方、本発明の半導体装置の製造方法は、以上のようなリードフレーム積層物のインナー側の端子部に半導体チップを電気的に接続した状態で、その半導体チップを封止樹脂によりインナー側から樹脂封止する工程を含むものである。具体的には、図1に示すように、耐熱性シート20を積層する積層工程と、半導体チップ15の搭載工程と、ボンディングワイヤ16による接続工程と、封止樹脂17による封止工程と、封止された構造物21を切断する切断工程とを含むものが例示できる。   On the other hand, in the method for manufacturing a semiconductor device of the present invention, in the state where the semiconductor chip is electrically connected to the terminal portion on the inner side of the lead frame laminate as described above, the semiconductor chip is resinated from the inner side with a sealing resin. It includes a step of sealing. Specifically, as shown in FIG. 1, a stacking process for stacking the heat-resistant sheet 20, a mounting process for the semiconductor chip 15, a connecting process using a bonding wire 16, a sealing process using a sealing resin 17, and a sealing process. The thing including the cutting process which cut | disconnects the stopped structure 21 can be illustrated.

〔別の実施形態〕
(1)前述の実施形態では、ダイパッドを有するリードフレームを用いた半導体装置の製造方法の例を示したが、ダイパッドを有しないリードフレームを用いてもよい。また、端子部の配置形状なども何れでもよい。またリードフレームは、少なくとも端子部が金属製であればよく、他の部分は耐熱性樹脂やセラミックス等で形成されていてもよい。
[Another embodiment]
(1) In the above-described embodiment, an example of a method for manufacturing a semiconductor device using a lead frame having a die pad has been described. However, a lead frame having no die pad may be used. Further, the terminal portion may be arranged in any shape. The lead frame only needs to have at least a terminal portion made of metal, and the other portion may be formed of a heat resistant resin, ceramics, or the like.

(2)前述の実施形態では、ボンディングワイヤにて接続工程を行う例を示したが、例えば半導体チップの下側に設けた電極パッドと端子部との間で、はんだ等のソルダーによる接続を行ってもよい。これは、第2実施形態についても同様である。 (2) In the above-described embodiment, the example in which the connection process is performed using the bonding wire has been described. For example, the connection between the electrode pad provided on the lower side of the semiconductor chip and the terminal portion is performed using solder such as solder. May be. The same applies to the second embodiment.

(3)前述の実施形態では、複数の半導体チップ15を同じキャビティ内で一括封止する例を示したが、液状の封止樹脂を用いて、ポッティング後に硬化させてもよい。また、1つの半導体チップのみをキャビティ内で個別封止してもよい。個別封止の場合、封止樹脂を切断する工程が不要となる。 (3) In the above-described embodiment, an example in which a plurality of semiconductor chips 15 are collectively sealed in the same cavity has been described. However, liquid sealing resin may be used and cured after potting. Further, only one semiconductor chip may be individually sealed in the cavity. In the case of individual sealing, a step of cutting the sealing resin is not necessary.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。   Examples and the like specifically showing the configuration and effects of the present invention will be described below.

実施例1
PTFEファインパウダー(ダイキン(株)製ポリフロンF−104)に液状潤滑剤20wt%を加えたペースト状の混和物を予備成形し、ペースト押出により丸棒状に成型した。成形物を厚み0.2mmに圧延し液状潤滑剤を除去後、二軸に延伸して厚さ:40μm,気孔率:55%のPTFE多孔質シートを得た。次いで、厚さ10μmのPTFEフィルム上に厚さ約2μmのFEP層をキャスティングした基材フィルムに、上記多孔質シートを加熱ラミネートして貼り合わせ、耐熱性シートを得た。
Example 1
A paste-like mixture obtained by adding 20 wt% of a liquid lubricant to PTFE fine powder (Polyflon F-104 manufactured by Daikin Co., Ltd.) was preformed and formed into a round bar shape by paste extrusion. The molded product was rolled to a thickness of 0.2 mm to remove the liquid lubricant and then stretched biaxially to obtain a PTFE porous sheet having a thickness of 40 μm and a porosity of 55%. Subsequently, the porous sheet was laminated by heating to a base film obtained by casting an FEP layer having a thickness of about 2 μm on a PTFE film having a thickness of 10 μm to obtain a heat-resistant sheet.

この耐熱製シートのPTFEキャスティングフィルム側を、端子部分に銀めっきが施された一辺が9Pin×2列配列タイプのLLGAが3個×3個に配列された銅製のリードフレームのアウター側に圧着した。その際、リード端子を初めとしたパターン部分のPTFE多孔質部分が潰れて,PTFEキャスティングフィルムが変形し、結果的に耐熱性シートへ30〜40μm程度リードフレームの端子部が食い込んだ状態となった(図7参照)。   The PTFE casting film side of this heat-resistant sheet was pressure-bonded to the outer side of a copper lead frame in which 3 × 3 rows of 9-pin × 2-row LLGA with silver plating on the terminal portion were arranged . At that time, the PTFE porous portion of the pattern portion including the lead terminal was crushed, the PTFE casting film was deformed, and as a result, the terminal portion of the lead frame was bitten into the heat resistant sheet by about 30 to 40 μm. (See FIG. 7).

このリードフレームのダイパッド部分に半導体チップをエポキシフェノール系の銀ペーストを用いて接着し、180℃にて1時間ほどキュアすることで固定した。つぎに、リードフレームは耐熱性シート側から真空吸引する形で200℃に加熱したヒートブロックに固定し、さらにリードフレームの周辺部分をウインドクランパーにて押さえて固定した。これらを、(日本アビオニクス製)の60KHzワイヤボンダーを用いての25μmの金線(田中貴金属製GLD−25)にてワイヤボンディングを行った。   The semiconductor chip was bonded to the die pad portion of the lead frame using an epoxyphenol-based silver paste and fixed by curing at 180 ° C. for about 1 hour. Next, the lead frame was fixed to a heat block heated to 200 ° C. by vacuum suction from the heat-resistant sheet side, and further, the peripheral portion of the lead frame was pressed and fixed with a wind clamper. These were wire-bonded with a 25 μm gold wire (GLD-25, Tanaka Kikinzoku) using a 60 KHz wire bonder (manufactured by Nippon Avionics).

さらにエポキシ系モールド樹脂(日東電工製HC−300)により、これらをモールドマシン(TOWA製Model−Y−serise)を用いて、175℃で、プレヒート40秒、インジェクション時間11.5 秒、キュア時間120秒にてモールドした後、耐熱性シートを剥離した。なお、さらに175℃にて3時間ほどポストモールドキュアを行って樹脂を十分に硬化させた後、ダイサーによって切断して、個々のLLGAタイプ半導体装置を得た。   Furthermore, with epoxy mold resin (HC-300 manufactured by Nitto Denko), these were used at 175 ° C. using a molding machine (Model-Y-series manufactured by TOWA), preheating 40 seconds, injection time 11.5 seconds, cure time 120 After molding in seconds, the heat-resistant sheet was peeled off. Further, after post-curing at 175 ° C. for about 3 hours to sufficiently cure the resin, the resin was cut by a dicer to obtain individual LLGA type semiconductor devices.

このようにして得られたLLGAは、樹脂のはみ出しもなく、また各リード端子部分におよそ20μmのスタンドオフを作成することができた。   The LLGA thus obtained did not protrude from the resin, and was able to produce a standoff of about 20 μm at each lead terminal portion.

実施例2
アクリル酸エステル(2−エチルヘキシルアクリレート)80重量部にアクリル酸20重量部と光開始剤(チバガイギー製『イルガキュア184』)を0.5重量部混合したUV硬化型粘着剤を、厚さ50μmのFTFE製フィルムに約30〜35μmの厚さで塗布した。この粘着層側に実施例1と同様のリードフレームを載せて積層し、その端子部のアウター側が基材フィルムに接当した状態(図8参照、埋入深さ約35μm)、高圧水銀灯にて紫外線を照射し、粘着剤を充分硬化させることで貼り合わせを行った。
Example 2
FTFE having a thickness of 50 μm was prepared by mixing a UV curable adhesive prepared by mixing 80 parts by weight of acrylic ester (2-ethylhexyl acrylate) with 0.5 parts by weight of 20 parts by weight of acrylic acid and “Irgacure 184” manufactured by Ciba Geigy. The film was applied to a thickness of about 30 to 35 μm. A lead frame similar to that of Example 1 was placed on the adhesive layer side and laminated, and the outer side of the terminal portion was in contact with the base film (see FIG. 8, depth of embedding about 35 μm), using a high pressure mercury lamp. Bonding was performed by irradiating ultraviolet rays and sufficiently curing the adhesive.

以下、実施例1と同様に処理したところ、得られたLLGAは、樹脂のはみ出しもなく、また各リード端子部分に35μm程度のスタンドオフを作成することができた。更に、樹脂封止後の耐熱性シートの剥離性も良好であった。   Thereafter, the same treatment as in Example 1 was carried out. As a result, the obtained LLGA did not protrude from the resin, and a standoff of about 35 μm could be formed in each lead terminal portion. Furthermore, the peelability of the heat-resistant sheet after resin sealing was also good.

比較例1
25μmポリイミドフィルム(東レデュポン製カプトン100H)を基材として、シリコーン系粘着材(東レダウコーニング製SD−4587L)を用いた厚さ5μmの粘着層を設けた耐熱性粘着テープを作成した。
Comparative Example 1
Using a 25 μm polyimide film (Toray DuPont Kapton 100H) as a base material, a heat-resistant adhesive tape provided with a 5 μm thick adhesive layer using a silicone-based adhesive material (SD-487L manufactured by Toray Dow Corning) was prepared.

このテープを実施例1の耐熱性シートと同様にリードフレームに貼り合わせた(実質的に埋入せず)以外は、実施例1と同様に処理したが、端子部分への樹脂の廻りこみを充分に抑えることができず、約60%以上の端子にフラッシュバリが認められた。また、スタンドオフも実質的にほとんど確認できなかった。   The tape was processed in the same manner as in Example 1 except that the tape was bonded to the lead frame in the same manner as in the heat-resistant sheet of Example 1 (substantially not embedded), but the resin wraps around the terminal portion. The flash burrs were observed at about 60% or more of the terminals. Moreover, virtually no standoffs were confirmed.

10 リードフレーム
11a 開口部
11b 端子部
11c ダイパッド
11f〜g 端子部
15 半導体チップ
15a 電極パッド
16 ボンディングワイヤ
17 封止樹脂
20 耐熱性シート
20a 非多孔質層
20b 多孔質層
20c 樹脂層
20d 基材層
21 封止された構造物
21a 半導体装置
DESCRIPTION OF SYMBOLS 10 Lead frame 11a Opening part 11b Terminal part 11c Die pad 11f-g Terminal part 15 Semiconductor chip 15a Electrode pad 16 Bonding wire 17 Sealing resin 20 Heat resistant sheet 20a Non-porous layer 20b Porous layer 20c Resin layer 20d Base material layer 21 Sealed structure 21a Semiconductor device

Claims (2)

半導体チップを樹脂封止する際に封止樹脂面から突出可能な端子部を有するリードフレームと、その端子部の突出側を深さ5μm以上で埋入させた耐熱性シートとを備え、
前記耐熱性シートが、前記端子部の突出側を埋入させた後に硬化反応させた樹脂層と、その樹脂層が接着した基材層とを備えるリードフレーム積層物。
A lead frame having a terminal portion that can protrude from the sealing resin surface when the semiconductor chip is resin-sealed, and a heat-resistant sheet in which the protruding side of the terminal portion is embedded at a depth of 5 μm or more,
A lead frame laminate comprising a resin layer in which the heat-resistant sheet has been subjected to a curing reaction after embedding the protruding side of the terminal portion, and a base material layer to which the resin layer is adhered.
請求項1に記載のリードフレーム積層物のインナー側の端子部に半導体チップを電気的に接続した状態で、その半導体チップを封止樹脂によりインナー側から樹脂封止する工程を含む半導体装置の製造方法。   A manufacturing method of a semiconductor device including a step of resin-sealing the semiconductor chip from the inner side with a sealing resin in a state where the semiconductor chip is electrically connected to the terminal portion on the inner side of the lead frame laminate according to claim 1. Method.
JP2010103891A 2010-04-28 2010-04-28 Lead frame laminate and manufacturing method for semiconductor device Pending JP2010212715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103891A JP2010212715A (en) 2010-04-28 2010-04-28 Lead frame laminate and manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103891A JP2010212715A (en) 2010-04-28 2010-04-28 Lead frame laminate and manufacturing method for semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001020244A Division JP4526714B2 (en) 2001-01-29 2001-01-29 Lead frame laminate and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2010212715A true JP2010212715A (en) 2010-09-24

Family

ID=42972505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103891A Pending JP2010212715A (en) 2010-04-28 2010-04-28 Lead frame laminate and manufacturing method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2010212715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531340A (en) * 2011-09-06 2014-11-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH COMPRESSION TOOL FOR PRODUCING SILICON MEMBER AND METHOD FOR PRODUCING SILICONE MEMBER

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982741A (en) * 1995-09-19 1997-03-28 Seiko Epson Corp Chip carrier structure and its manufacture
JPH09246427A (en) * 1996-03-12 1997-09-19 Dainippon Printing Co Ltd Surface packaged semiconductor device and its manufacturing method
JP2000294579A (en) * 1999-04-06 2000-10-20 Nitto Denko Corp Resin sealing method of semiconductor chip and release film used therefor
JP2000307045A (en) * 1999-04-23 2000-11-02 Matsushita Electronics Industry Corp Lead frame and manufacture of resin sealed semiconductor device using it
JP2001024001A (en) * 1999-07-12 2001-01-26 Matsushita Electronics Industry Corp Manufacture of resin-encapsulated semiconductor device and lead frame

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982741A (en) * 1995-09-19 1997-03-28 Seiko Epson Corp Chip carrier structure and its manufacture
JPH09246427A (en) * 1996-03-12 1997-09-19 Dainippon Printing Co Ltd Surface packaged semiconductor device and its manufacturing method
JP2000294579A (en) * 1999-04-06 2000-10-20 Nitto Denko Corp Resin sealing method of semiconductor chip and release film used therefor
JP2000307045A (en) * 1999-04-23 2000-11-02 Matsushita Electronics Industry Corp Lead frame and manufacture of resin sealed semiconductor device using it
JP2001024001A (en) * 1999-07-12 2001-01-26 Matsushita Electronics Industry Corp Manufacture of resin-encapsulated semiconductor device and lead frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531340A (en) * 2011-09-06 2014-11-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH COMPRESSION TOOL FOR PRODUCING SILICON MEMBER AND METHOD FOR PRODUCING SILICONE MEMBER

Similar Documents

Publication Publication Date Title
JP5551568B2 (en) Resin-sealing adhesive tape and method for manufacturing resin-sealed semiconductor device using the same
JP2004253674A (en) Semiconductor device and its manufacturing method
JP3849978B2 (en) Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor
JP4125668B2 (en) Manufacturing method of semiconductor device
JP4566568B2 (en) Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor
JP2012059934A (en) Adhesive tape for resin sealing and method of manufacturing resin sealed semiconductor device
JP2006318999A (en) Adhesive film for manufacturing semiconductor device
JP4357754B2 (en) Manufacturing method of semiconductor device
JP2011124495A (en) Heat-resistant adhesive tape for sealing resin, and method of manufacturing resin-sealed semiconductor device using the same
JP4526714B2 (en) Lead frame laminate and method for manufacturing semiconductor device
JP3934041B2 (en) Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor
JP2010212715A (en) Lead frame laminate and manufacturing method for semiconductor device
CN103305138A (en) Pressure-sensitive adhesive tape for resin sealing and production method for resin sealing type semiconductor device
JP5160575B2 (en) Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor
JP4910336B2 (en) Adhesive sheet laminating method and semiconductor device manufacturing method
JP4790750B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP2005056888A (en) Heat-resistant sheet
JP2005243706A (en) Heat resistant adhesive tape for manufacturing semiconductor device and method of manufacturing semiconductor device
JP4507380B2 (en) Manufacturing method of semiconductor device and lead frame laminate used therefor
JP2002110884A (en) Lead frame laminate
JP4140963B2 (en) Manufacturing method of semiconductor device, adhesive tape used in the method, and semiconductor device manufactured by the method
KR101923736B1 (en) Pressure-sensitive adhesive tape for resin encapsulation and method for producing resin encapsulation type semiconductor device
JP4902627B2 (en) Semiconductor device
JP5275159B2 (en) Manufacturing method of semiconductor device
JP2009044010A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Effective date: 20121130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A02 Decision of refusal

Effective date: 20130205

Free format text: JAPANESE INTERMEDIATE CODE: A02