JP2010210449A - 導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡 - Google Patents

導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡 Download PDF

Info

Publication number
JP2010210449A
JP2010210449A JP2009057279A JP2009057279A JP2010210449A JP 2010210449 A JP2010210449 A JP 2010210449A JP 2009057279 A JP2009057279 A JP 2009057279A JP 2009057279 A JP2009057279 A JP 2009057279A JP 2010210449 A JP2010210449 A JP 2010210449A
Authority
JP
Japan
Prior art keywords
probe
conductive
nanotube
metal
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009057279A
Other languages
English (en)
Inventor
Masayuki Hirooka
誠之 廣岡
Makoto Okai
誠 岡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009057279A priority Critical patent/JP2010210449A/ja
Publication of JP2010210449A publication Critical patent/JP2010210449A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】電気抵抗を低減した導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡を提供する。
【解決手段】導電性基材に金属で接合されたカーボンナノチューブに円錐状の均一な金属被膜を配置し、ナノチューブ探針の先端から根元に向けて電気抵抗を低減させる。金属被膜は、2層以上の多層金属被膜であってもよい。円錐型の構造によって、プロービングで接触する先端部のみ細径化された低抵抗な導電性ナノチューブ探針を提供できる。
【選択図】 図1

Description

本発明は、導電性のナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡に関する。
ナノチューブは機械的・電気的に優れた特性を有した魅力的な素材である。例えば、カーボンナノチューブは先端の曲率半径が極めて小さく(最小曲率半径が数nm以下)、またヤング率が約1TPaと非常に強度が高い。現在、そのような特徴を活かすべく、走査型プローブ顕微鏡やフィールドエミッションディスプレイ,電界効果型トランジスタなどへのカーボンナノチューブの応用研究が盛んに行われている。近年では、走査型プローブ顕微鏡の探針としてカーボンナノチューブが実際に使用されるようになってきている。
カーボンナノチューブの作製方法としてはアーク法,CVD法,レーザーアブレーション法などが知られている。これらのうち、最も結晶性が高いカーボンナノチューブを得られる作製方法はアーク法であり、探針に用いるにはアーク法で作製したカーボンナノチューブが原料素材の素性として良いとされている。
一方、ナノテクノロジーの進展とともに微小領域における物性計測のニーズが高まっている。ナノメートルの空間分解能で物質の構造や物性を評価可能な計測手法として、走査トンネル顕微鏡,原子間力顕微鏡,近接場光学顕微鏡,透過電子顕微鏡,多探針ナノプローブによるナノ計測があげられる。多探針ナノプローブによるナノ計測では4探針を用いることにより、電子相関に関する情報が得られることが期待できる。
多探針ナノプローブを用いた計測システム(以下ナノプローバ)では、探針の細径化に伴う探針の短命化と接触抵抗の増大が問題となっている。特に半導体デバイスの故障解析では、将来のデバイスの微細化に対応するため、探針の導電性の確保および機械強度の向上が重要な因子となる。
例えば、カーボンナノチューブを多探針ナノプローブとして用いる場合、探針の導電性を確保するため、表面に金属被膜を形成する方法がある。金属被膜においては、カーボンナノチューブの根元から先端にかけて均一に被膜されていることが望ましい。
しかしながら、カーボンナノチューブ表面との密着性のよい金属被膜を均一に形成することは容易ではない。
そのような背景の下、カーボンナノチューブ表面に金属被膜を形成する方法や、多探針ナノプローブとして利用する方法が提案されている。金属被膜法としては、非特許文献1に示されるように、パルスドレーザーデポジション(PLD)法を用いた金属被膜方法がある。PtIrまたはWターゲットにパルスレーザーを照射し発生するプルームを利用してカーボンナノチューブ表面に金属を堆積するという方法である。PLD法によって数nmの極めて薄く良質な金属膜をカーボンナノチューブ表面に形成することができる。この方法によって探針抵抗値が数10kΩオーダーまで低減することが可能となった。また、カーボンナノチューブのプローバ探針応用に関する特許文献1では、電子ビーム堆積法によって金属探針に固定したカーボンナノチューブを用い、4端子法で接触抵抗をキャンセルし、微小インピーダンス測定する装置を提案している。
しかしながら、2端子法での測定が必要な場合では、カーボンナノチューブを固定している金属探針との間に生じる接触抵抗値、また、カーボンナノチューブそのものの抵抗値が数k〜数10kΩと高くなるために、実デバイスの抵抗値測定は困難であることが考えられる。基板コンタクトや配線,ビア抵抗測定では接触抵抗および探針抵抗はできるだけ低いことが望ましく、10Ωオーダーまで低減させる必要がある。また、非特許文献1に開示される均一な金属被膜カーボンナノチューブ探針においては、抵抗値を10Ωオーダーに低減することは困難である。
特許第3638865号公報
Japan Journal of Applied Physics Vol.44 L1563 (2005)
本発明の目的は、電気抵抗を低減した導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡を提供することにある。
すなわち、本発明の導電性ナノチューブ探針は、円錐状の導電性ナノチューブ探針であって、導電性基材と、前記導電性基材に接合されたカーボンナノチューブと、前記導電性基材及びカーボンナノチューブを覆う円錐状の金属被膜と、を具備することを特徴とする。
本発明によれば、電気抵抗を低減した導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡を提供することができる。
本発明の第1の実施形態に係る導電性ナノチューブ探針の構成を示した模式図である。 本発明の第1の実施形態に係る探針作製過程の一例を示した模式図である。 本発明の第2の実施形態に係る探針作製過程の一例を示した模式図である。 本発明の第3の実施形態に係る導電性ナノチューブ探針の構成を示した模式図である。 本発明の第3の実施形態に係る探針作製過程の一例を示した模式図である。 本発明の第4の実施形態に係る導電性ナノチューブ探針の構成を示した模式図である。 本発明の第4の実施形態に係る探針作製過程の一例を示した模式図である。 本発明の第5の実施形態に係る導電性ナノチューブ探針の構成を示した模式図である。 本発明の第5の実施形態に係る探針作製過程の一例を示した模式図である。 本発明に係る導電性ナノチューブ探針を用いた電気特性評価装置の模式図である。 本発明に係る導電性ナノチューブ探針を用いた走査型プローブ顕微鏡の模式図である。 本発明の第8の実施形態に係る導電性ナノチューブ探針の構成を示した模式図である。
以下、図面を参照しながら、本発明に係る実施の形態を説明する。ただし、本発明はここで取り上げた実施の形態に限定されることはなく、適宜組み合わせてもよい。なお、図面中で同義の部分には同一の符号を付して重複する説明を省略する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る導電性ナノチューブ探針1の構成を示した模式図である。本発明に係る導電性ナノチューブ探針1は、導電性基材2と、カーボンナノチューブ3と、金属被膜4とを有する。金属被膜4は、金属ナノ粒子402で形成されている。
導電性基材2には、金,PtIr,タングステンなどの素材を用いることができる。また、カーボンナノチューブ3を用いる場合は、接触抵抗低減のため、あらかじめ表面にチタンやパラジウムの被膜を行ってもよい。導電性基材2の先端部は機械・化学研磨によって数10ナノメートルオーダーの先端曲率半径を有していることが望ましい。
カーボンナノチューブ3は物理的な衝撃による座屈や曲げを生じても復元するため、本発明で用いる探針としては最も好適である。カーボンナノチューブ3は、多層カーボンナノチューブ,ボロンや窒素をドープしたカーボンナノチューブ,金属原子やフラーレンを内包したナノチューブなどを使用することが可能である。
ナノ粒子には、金や白金やパラジウムなどの貴金属類が好ましいが、特に限定されるものではない。また、粒径は小さいほど融点が低下するため良い。例えば直径5nmの金ナノ粒子では約200℃で拡散を開始する。
図2は、本実施形態における探針作製過程の一例を示した模式図である。先ず、導電性基材2を金属ナノ粒子分散液401に浸して引き上げることによって被膜し、乾燥させる。その後、電子顕微鏡内でマニピュレーションし、カーボンナノチューブ3を導電性基材2に担持させる。カーボンナノチューブ3の長さを調整するために通電切断することが可能であり、探針のアプリケーションによってその長さを決定すればよい。多探針ナノプローブに用いる場合は、カーボンナノチューブ3の長さは数100nm〜1μmの範囲で作製されることが好ましい。次に、電極と架橋し通電加熱することによって、金属ナノ粒子402がカーボンナノチューブ3表面上で熱拡散する。通電加熱は、直流、または交流を印加する方法を用いる。電流値100マイクロアンペア程度で金属ナノ粒子402を拡散することが可能である。また、パルス電流を印加する方法があり、より効率よく金属ナノ粒子402を拡散させることが可能となる。さらに通電加熱を継続すると、金属ナノ粒子402表面の保護膜が蒸発し、金属ナノ粒子402同士が融着して一様な金属皮膜を形成することが可能となる。このとき、金属ナノ粒子402はテーパー状に突出部に拡散するため、導電性ナノチューブ探針1は円錐型となる。この円錐形の金属被膜によって電気抵抗を数10〜100Ωに低減することができる。
(第2の実施形態)
本発明の第2の実施形態に係る導電性ナノチューブ探針1は、導電性基材2と、カーボンナノチューブ3と、金属被膜4とを有する。本実施形態の導電性ナノチューブ探針1は、図1と同様の構成である。金属被膜4は、低融点金属403で形成されている。
低融点金属403には、スズを用いたが、共晶を形成する合金でも良く、100〜200℃の融点を有するものを用いることができる。
図3は、本実施形態における探針作製過程の一例を示した模式図である。先ず、導電性基材2に低融点金属403を被膜させる。その後、カーボンナノチューブ3を導電性基材2に担持させ、通電加熱することにより、低融点金属403がカーボンナノチューブ3表面上で熱拡散し、表面に金属をコーティングすることが可能となる。このとき、低融点金属403はテーパー状に突出部に拡散するため、導電性ナノチューブ探針1は円錐形となる。この円錐形の金属被膜4によって電気抵抗を数10〜100Ωに低減することができる。
(第3の実施形態)
図4は、本発明の第3の実施形態に係る導電性ナノチューブ探針1の概略を示した模式図である。本実施形態に係る導電性ナノチューブ探針1は、導電性基材2と、カーボンナノチューブ3と、電子ビーム堆積法(EBID:Electron Beam Induced Deposition)によるEBID薄膜6(金属被膜)とを有する。
図5は、本実施形態における探針作製過程の一例を示した模式図である。電子ビーム堆積法は、電子線照射により前駆体となる有機金属ガス602を分解し、金属生成物を堆積する成膜方法である。前駆体としてはタングステン,金,白金,アルミニウム,ニッケルなどの有機金属がある。例えばタングステンの場合には、W(CO)6もしくはWF2を加熱気化させたガスを真空度の高い走査型電子顕微鏡の試料室内部に導入し、ノズル601を用いて前記接触部近傍に放出させる。探針とホルダーの接触部付近に前記ガスの雰囲気を形成した状態を保持し、電子ビーム603をカーボンナノチューブ3および導電性基材2に集中照射して有機金属ガス602を分解し、析出したタングステンを照射領域に堆積させる。その他、金の場合はAu(CH3)2(CH3COCH2COCH3),白金の場合は(CH3)3(CH354)Pt,アルミニウムはAl(CH3)3,ニッケルはNi(CO)4などの前
駆体を用いる。電子ビーム堆積法で形成されたEBID薄膜6は金属ナノ粒子402の凝集体構造となっており、タングステンの場合は約1nm、金の場合は約10nmの粒径の粒子が凝集した構造が得られる。
導電性ナノチューブ探針1へのコンタミネーション付着の低減のために、ガスを分解する電子ビーム603の強度を一定範囲に設定し、カーボンナノチューブ3の裏側にまで回り込んだ状態の金属を堆積させることが好ましい。電子ビーム堆積法によるEBID薄膜6作製では、被膜の形成速度はプローブ電流で調整される。ただし、プローブ電流が大きいほど、コンタミネーションを堆積させてしまう弊害がある。そこで、コンタミネーションの堆積量を減らし、十分な接合強度を有する程度に金属堆積層を設けるため、プローブ電流は1nA以下とすることが望ましい。
EBID薄膜6は、カーボンナノチューブ3突出部の根元に集中して堆積させることが望ましい。このとき、EBID薄膜6はカーボンナノチューブ3突出部の根元より染み出して形成されるため、導電性ナノチューブ探針1は円錐形となる。
(第4の実施形態)
図6は、本発明に係る第4の実施形態に係る導電性ナノチューブ探針1の概略を示した模式図である。本発明に係る導電性ナノチューブ探針1は、導電性基材2と、カーボンナノチューブ3と、高純度金属被膜604とを有する。ここで言う、高純度金属被膜604とは、金属含有量が90wt%以上の金属から構成される膜を意味する。
図7は、本実施形態における探針作製過程の一例を示した模式図である。先ず、導電性基材2にカーボンナノチューブ3を担持させ、高純度金属被膜604は、電子ビーム堆積法によるEBID薄膜6からなる。電子ビーム堆積法は、電子線照射により前駆体となる有機金属ガス602を分解し、金属生成物を堆積することによって薄膜を形成することができるが、前駆体物質中に含まれるカーボンが必ず混入する。例えばタングステンの場合には、W(CO)6のカルボニル基に相当するカーボンが薄膜中に混入する。EBID薄膜6は、カーボンナノチューブ3突出部の根元に集中して堆積させることが望ましい。このとき、EBID薄膜6はカーボンナノチューブ3突出部の根元より染み出して形成されるため、導電性ナノチューブ探針1は円錐形となる。電子ビーム603の堆積によってカーボンナノチューブ3の表面に被膜した後、プラズマ照射605によってカーボン成分を除去する。
プラズマ照射条件は薄膜中の非晶質カーボン成分のみを除去するだけで良いため、出力は小さく、15W程度が好ましい。また、ガスは酸素(1Pa)を用いた。
プラズマ照射605によってカーボン成分を除去した後、数百℃のアニールを実施することで金属を拡散させ伝導パスを形成することにより導電性ナノチューブ探針1の電気抵抗を低減し、数10〜100Ωの導電性ナノチューブ探針1を作製することが可能となる。
(第5の実施形態)
図8は、本発明の第5の実施形態に係る導電性ナノチューブ探針1の概略を示した模式図である。本発明に係る導電性ナノチューブ探針1は、導電性基材2と、カーボンナノチューブ3と、電子ビーム堆積法による金属被膜44と、多層金属被膜7とを有する。本実施形態の金属被膜44は、電子ビーム堆積法(電子ビームを集中して照射したサンプル表面に金属被膜を形成する方法)により形成されるが、電子散乱などの影響によって、ビームを照射した部分よりも外側(100nm程度)に、薄く金属被膜が形成されている。
多層金属被膜7は、スパッタ,抵抗加熱蒸着、または電子ビーム蒸着を用いることが可能である。カーボンナノチューブ3との密着性を考慮した材料を選ぶ必要があり、例えばカーボンナノチューブ3を用いる場合は、Au/Ti,Pt/Ti,Au/Crの2層でコーティングすることで密着性のよい被膜を形成することが可能となる。
図9は、本実施形態における探針作製過程の一例を示した模式図である。先ず、導電性基材2にカーボンナノチューブ3を担持させ、有機金属ガス602を試料室内部に導入し、ノズル601を用いて前記接触部近傍に放出させる。そして、カーボンナノチューブ3突出部の根元に集中して電子ビーム603を照射することによってEBID薄膜6を堆積させる。このとき、EBID薄膜はカーボンナノチューブ3突出部の根元より染み出して形成されるため、導電性ナノチューブ探針1は円錐形となる。スパッタ,抵抗加熱蒸着、または電子ビーム蒸着を用いて、カーボンナノチューブ3および導電性基材2を覆うようにして金属を被膜することで、円錐型を保持したまま、多層金属被膜7の作製が可能となり、電気抵抗を数10〜100Ωに低減することが可能となる。
(第6の実施形態)
図10は、本発明に係る導電性ナノチューブ探針1を用いた電気特性評価装置8の模式図である。実施例1〜5のいずれかの方法で作製されたナノチューブ探針4本を探針ホルダー804に接続しコントローラ801を用いてピエゾ駆動させる。電子ビーム603で観察しながら、探針先端をステージ803上の測定サンプル805(試料)の表面に接触させて、半導体パラメータアナライザ802を用いて四端子法により測定サンプル805の電気伝導特性を測定することが可能となる。
(第7の実施形態)
図11は、本発明に係る導電性ナノチューブ探針1を用いた走査型プローブ顕微鏡9の模式図である。実施例1〜5のいずれかの方法で作製された導電性ナノチューブ探針1をピエゾ駆動探針ホルダー901に接続し、原子間力やトンネル電流を利用し測定サンプル902の表面に近接させ走査することによって、コントローラ903でフィードバック制御しながらサンプル表面形状のプロファイルや、サンプル表面の電気伝導特性をモニタ904に出力することが可能となる。
(第8の実施形態)
図11は、本発明の第8の実施形態に係る導電性ナノチューブ探針1の構成を示した模式図である。本発明に係る導電性ナノチューブ探針1は、導電性基材2と、先鋭化部分10を有したカーボンナノチューブ3と、多層金属被膜7とを有する。
多層金属被膜7は、スパッタ,抵抗加熱蒸着、または電子ビーム蒸着を用いることが可能である。カーボンナノチューブ3との密着性を考慮した材料を選ぶ必要があり、例えば先鋭化部分10を有したカーボンナノチューブ3を用いる場合は、Au/Ti,Pt/Ti,Au/Crの2層でコーティングすることで密着性のよい被膜を形成することが可能となる。
図12は、本実施形態における探針作製過程の一例を示した模式図である。先ず、導電性基材2に先鋭化部分10を有したカーボンナノチューブ3を担持させ、有機金属ガス602を試料室内部に導入し、ノズル601を用いて前記接触部近傍に放出させる。そして、カーボンナノチューブ3突出部の根元に集中して電子ビーム603を照射することによってEBID薄膜6を堆積させる。このとき、EBID薄膜はカーボンナノチューブ3突出部の根元より染み出して形成されるため、導電性ナノチューブ探針1は円錐形となる。
スパッタ,抵抗加熱蒸着、または電子ビーム蒸着を用いて、先鋭化したカーボンナノチューブ3および導電性基材2を覆うようにして金属を被膜することで、円錐型を保持したまま、多層金属被膜7の作製が可能となり、電気抵抗を数10〜100Ωに低減することが可能となる。さらにカーボンナノチューブ3は先鋭化部分10を有しているため、機械的強度向上のために直径が50nm以上のカーボンナノチューブ3を採用しても、32nmノード以降のデバイスへのプロービングが可能となる。
1 導電性ナノチューブ探針
2 導電性基材
3 カーボンナノチューブ
4 金属被膜
5 電極
6 EBID薄膜
7 多層金属被膜
8 電気特性評価装置
9 走査型プローブ顕微鏡
10 先鋭化部分
401 金属ナノ粒子分散液
402 金属ナノ粒子
403 低融点金属
601 ノズル
602 有機金属ガス
603 電子ビーム
604 高純度金属被膜
605 プラズマ照射
701 スパッタ装置
702 ターゲット
801,903 コントローラ
802 半導体パラメータアナライザ
803 ステージ
804 探針ホルダー
805 測定サンプル
901 ピエゾ駆動探針ホルダー
902 測定サンプル
904 モニタ

Claims (10)

  1. 円錐状の導電性ナノチューブ探針であって、
    導電性基材と、
    前記導電性基材に接合されたカーボンナノチューブと、
    前記導電性基材及びカーボンナノチューブを覆う円錐状の金属被膜と、
    を具備することを特徴とする導電性ナノチューブ探針。
  2. 円錐状の導電性ナノチューブ探針であって、
    導電性基材と、
    前記導電性基材に接合された円錐状のカーボンナノチューブと、
    前記導電性基材及びカーボンナノチューブを覆う金属被膜と、
    を具備することを特徴とする導電性ナノチューブ探針。
  3. 前記金属被膜は、2層以上の多層金属被膜であることを特徴とする請求項1または2に記載の導電性ナノチューブ探針。
  4. 前記多層金属被膜は、Pt/Tiから構成されることを特徴とする請求項3に記載の導電性ナノチューブ探針。
  5. 請求項1乃至4のいずれか1項に記載の導電性ナノチューブ探針が接続された探針ホルダーと、
    前記探針ホルダーをピエゾ駆動させるコントローラと、
    ピエゾ駆動する前記導電性ナノチューブ探針をステージ上の測定試料に接触させて、前記測定試料の電気伝導特性を測定する半導体パラメータアナライザと、
    を具備することを特徴とする電気特性評価装置。
  6. 請求項1乃至4のいずれか1項に記載の導電性ナノチューブ探針が接続された探針ホルダーと、
    前記探針ホルダーをピエゾ駆動させるコントローラと、
    ピエゾ駆動する前記導電性ナノチューブ探針をステージ上の測定試料を走査させ、前記測定試料の電気伝導特性を出力するモニタと、
    を具備することを特徴とする走査型プローブ顕微鏡。
  7. 導電性基材に、金属ナノ粒子または融点100〜200℃の低融点金属を塗布する工程と、
    前記導電性基材にカーボンナノチューブを接触させた状態で、通電加熱で前記金属ナノ粒子又は低融点金属を拡散させ、前記導電性基材及びカーボンナノチューブを覆うように円錐状の金属被膜を形成する工程と、
    を有することを特徴とする導電性ナノチューブ探針の製造方法。
  8. 導電性基材にカーボンナノチューブを接触させた状態で、電子ビーム堆積法((Electron Beam Induced Deposition)により、前記導電性基材及びカーボンナノチューブを覆うように円錐状の金属被膜を形成する工程と、
    を有することを特徴とする導電性ナノチューブ探針の製造方法。
  9. 導電性基材にカーボンナノチューブを接触させた状態で、電子ビーム堆積法((Electron Beam Induced Deposition)により、前記導電性基材とカーボンナノチューブ接触部を覆うように金属被膜を形成する工程と、
    スパッタ,抵抗加熱蒸着、または電子ビーム蒸着を用いて、カーボンナノチューブおよび導電性基材を覆うようにして金属を被膜する工程と、
    を有することを特徴とする導電性ナノチューブ探針の製造方法。
  10. さらに、金属被膜をプラズマ照射する工程を有することを特徴とする請求項7乃至9のいずれか1項に記載の導電性ナノチューブ探針の製造方法。
JP2009057279A 2009-03-11 2009-03-11 導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡 Pending JP2010210449A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057279A JP2010210449A (ja) 2009-03-11 2009-03-11 導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057279A JP2010210449A (ja) 2009-03-11 2009-03-11 導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡

Publications (1)

Publication Number Publication Date
JP2010210449A true JP2010210449A (ja) 2010-09-24

Family

ID=42970778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057279A Pending JP2010210449A (ja) 2009-03-11 2009-03-11 導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡

Country Status (1)

Country Link
JP (1) JP2010210449A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071442A (ja) * 2019-11-01 2021-05-06 国立研究開発法人産業技術総合研究所 金属基板上に形成された薄膜の電気抵抗率の測定方法、並びに当該測定方法を利用する電子部品の製造方法及び電子部品の製造装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132579A (ja) * 1992-09-01 1994-05-13 Canon Inc 変位素子及びそれを用いたプローブ、同プローブを有する機器
JP2004079223A (ja) * 2002-08-12 2004-03-11 Hitachi Ltd カーボンナノチューブを有する電子源とそれを用いた電子顕微鏡および電子線描画装置
JP2006267113A (ja) * 2006-04-10 2006-10-05 Yoshikazu Nakayama 先端被覆ナノチューブ、走査型顕微鏡用先端被覆プローブ、これを用いた加工装置及び加工方法
JP2007187665A (ja) * 2006-01-14 2007-07-26 Samsung Electronics Co Ltd 導電性カーボンナノチューブチップ、これを備えた走査型プローブ顕微鏡のプローブ、及び該導電性カーボンナノチューブチップの製造方法
JP2007242253A (ja) * 2006-03-06 2007-09-20 Hitachi High-Technologies Corp 先鋭化カーボンナノチューブ及びそれを用いた電子源
JP2008145208A (ja) * 2006-12-08 2008-06-26 Hitachi High-Technologies Corp 半導体検査装置
JP2008275440A (ja) * 2007-04-27 2008-11-13 Hitachi Kenki Fine Tech Co Ltd 走査型プローブ顕微鏡用カーボンナノチューブカンチレバーとその製造方法および走査型プローブ顕微鏡

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132579A (ja) * 1992-09-01 1994-05-13 Canon Inc 変位素子及びそれを用いたプローブ、同プローブを有する機器
JP2004079223A (ja) * 2002-08-12 2004-03-11 Hitachi Ltd カーボンナノチューブを有する電子源とそれを用いた電子顕微鏡および電子線描画装置
JP2007187665A (ja) * 2006-01-14 2007-07-26 Samsung Electronics Co Ltd 導電性カーボンナノチューブチップ、これを備えた走査型プローブ顕微鏡のプローブ、及び該導電性カーボンナノチューブチップの製造方法
JP2007242253A (ja) * 2006-03-06 2007-09-20 Hitachi High-Technologies Corp 先鋭化カーボンナノチューブ及びそれを用いた電子源
JP2006267113A (ja) * 2006-04-10 2006-10-05 Yoshikazu Nakayama 先端被覆ナノチューブ、走査型顕微鏡用先端被覆プローブ、これを用いた加工装置及び加工方法
JP2008145208A (ja) * 2006-12-08 2008-06-26 Hitachi High-Technologies Corp 半導体検査装置
JP2008275440A (ja) * 2007-04-27 2008-11-13 Hitachi Kenki Fine Tech Co Ltd 走査型プローブ顕微鏡用カーボンナノチューブカンチレバーとその製造方法および走査型プローブ顕微鏡

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071442A (ja) * 2019-11-01 2021-05-06 国立研究開発法人産業技術総合研究所 金属基板上に形成された薄膜の電気抵抗率の測定方法、並びに当該測定方法を利用する電子部品の製造方法及び電子部品の製造装置
JP7352234B2 (ja) 2019-11-01 2023-09-28 国立研究開発法人産業技術総合研究所 金属基板上に形成された薄膜の電気抵抗率の測定方法、並びに当該測定方法を利用する電子部品の製造方法及び電子部品の製造装置

Similar Documents

Publication Publication Date Title
JP4644723B2 (ja) ナノチューブ探針を有する測定装置
WO2010146773A1 (ja) 微小接触式プローバ
CN100503424C (zh) 精确切削、连接纳米材料的方法
JP4259023B2 (ja) カーボンナノチューブデバイスの作製方法、およびカーボンナノチューブデバイス
JP2007232668A (ja) カーボン細線プローブ
US20110000703A1 (en) Carbon nanotube supporting body and process for producing the carbon nanotube supporting body
US7814565B2 (en) Nanostructure on a probe tip
Wei et al. Cutting and sharpening carbon nanotubes using a carbon nanotube ‘nanoknife’
JP4652679B2 (ja) ナノメータスケールの構造物の作製方法
CN103693634B (zh) 电子束诱导沉积制备碳纳米管的方法
JP2010210449A (ja) 導電性ナノチューブ探針、それを用いた電気特性評価装置及び走査型プローブ顕微鏡
JP4539817B2 (ja) 炭素ナノ構造体の製造方法
JP6608634B2 (ja) 走査型プローブ顕微鏡用のプローブの製造方法
TWI362684B (en) Method of making field emission electron source
JP2008145208A (ja) 半導体検査装置
Park et al. Field-emission properties of carbon nanotubes grown on a submicron-sized tungsten tip in terms of various buffer layers
Sun Growth of silver nanowires on GaAs wafers
Eichhorn et al. Novel four-point-probe design and nanorobotic dual endeffector strategy for electrical characterization of as-grown swcnt bundles
Lee et al. Characterization of plasma synthesized vertical carbon nanofibers for nanoelectronics applications
Chen Ultra‐short vertically aligned carbon nanofibers transfer and application as bonding material
Yenilmez et al. Pattern-free growth of carbon nanotube tips for scanning probe microscopy
Kim et al. Robust Ohmic contact junctions between metallic tips and multiwalled carbon nanotubes for scanned probe microscopy
JP4850900B2 (ja) カーボンナノチューブの生成方法
JP2009281754A (ja) 走査型プローブ顕微鏡用ナノチューブプローブとその製造方法および走査型プローブ顕微鏡
Wang et al. Defect-induced plasmon resonance of SERS-active MoO2-x/Mo composite films by pulsed laser irradiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127