JP2010199491A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2010199491A
JP2010199491A JP2009045569A JP2009045569A JP2010199491A JP 2010199491 A JP2010199491 A JP 2010199491A JP 2009045569 A JP2009045569 A JP 2009045569A JP 2009045569 A JP2009045569 A JP 2009045569A JP 2010199491 A JP2010199491 A JP 2010199491A
Authority
JP
Japan
Prior art keywords
island
lead
resin
resin package
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009045569A
Other languages
Japanese (ja)
Other versions
JP5411529B2 (en
Inventor
Takashi Kitazawa
崇 北澤
Yasushige Sakamoto
安繁 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009045569A priority Critical patent/JP5411529B2/en
Priority to US13/203,439 priority patent/US8692370B2/en
Priority to PCT/JP2010/053487 priority patent/WO2010098500A1/en
Publication of JP2010199491A publication Critical patent/JP2010199491A/en
Application granted granted Critical
Publication of JP5411529B2 publication Critical patent/JP5411529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/787Means for aligning
    • H01L2224/78703Mechanical holding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein a conventional semiconductor device uses a gold wire as a metal thin wire, and it is difficult to reduce material cost. <P>SOLUTION: The semiconductor device includes a semiconductor element 10 fixed on an island 7, and a plurality of through-holes 8 formed on the island 7 around a fixed region of the semiconductor element 10. Electrode pads of the semiconductor element 10 and leads 4 are electrically connected by copper wires 11. With this structure, the material cost is reduced by using the copper wire 11 as compared with a case of the gold wire. In addition, as a part of a resin package 2 is buried in the through holes 8, a structure easy to support the island 7 in the resin package 2 is obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、銅線を用いてワイヤーボンディングされる半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device wire-bonded using a copper wire and a method for manufacturing the same.

従来の半導体装置の製造方法の一実施例として、下記の製造方法が知られている。図7(A)及び(B)は、従来の半導体装置の製造方法を説明するための断面図である。   As an example of a conventional method for manufacturing a semiconductor device, the following manufacturing method is known. 7A and 7B are cross-sectional views for explaining a conventional method for manufacturing a semiconductor device.

先ず、図7(A)に示す如く、リードフレームのダイパッド41上に半導体素子42を固着した後、リードフレームをワイヤーボンディング装置に設置する。半導体素子42の電極パッド43を約200℃に加熱し、キャピラリ44が電極パッド43上へと移動する。そして、超音波振動併用の熱圧着技術により、キャピラリ44の先端に形成された金属ボールを電極パッド43へと接続する。一般にこれをボールボンディングと言う。   First, as shown in FIG. 7A, after the semiconductor element 42 is fixed on the die pad 41 of the lead frame, the lead frame is set in a wire bonding apparatus. The electrode pad 43 of the semiconductor element 42 is heated to about 200 ° C., and the capillary 44 moves onto the electrode pad 43. Then, a metal ball formed at the tip of the capillary 44 is connected to the electrode pad 43 by a thermocompression bonding technique using ultrasonic vibration. This is generally called ball bonding.

次に、図7(B)に示す如く、キャピラリ44が外部リード46の先端部上方へ移動し、外部リード46に対し金属細線45を所望の荷重にて押し付ける。このとき、外部リード46を約200℃に加熱し、外部リード46に対し超音波振動併用の熱圧着技術により金属細線45を接続する。その後、ワイヤークランパー47を閉じた状態にてキャピラリ44が上昇し、金属細線45を外部リード46の接続箇所にて破断する。一般にこれをステッチボンディングと言う。   Next, as shown in FIG. 7B, the capillary 44 moves above the tip of the external lead 46 and presses the metal thin wire 45 against the external lead 46 with a desired load. At this time, the external lead 46 is heated to about 200 ° C., and the fine metal wire 45 is connected to the external lead 46 by a thermocompression bonding technique using ultrasonic vibration. Thereafter, the capillary 44 is lifted with the wire clamper 47 closed, and the fine metal wire 45 is broken at the connection point of the external lead 46. This is generally called stitch bonding.

そして、図7(A)及び(B)にて説明したワイヤーボンディング作業を繰り返すことで、半導体素子42の全ての電極パッドと外部リードとを金属細線45にて電気的に接続する(例えば、特許文献1参照。)。   Then, by repeating the wire bonding operation described with reference to FIGS. 7A and 7B, all the electrode pads of the semiconductor element 42 and the external leads are electrically connected by the fine metal wires 45 (for example, patents). Reference 1).

特開平7−29943号公報(第4−5頁、第1図)Japanese Patent Laid-Open No. 7-29943 (page 4-5, FIG. 1)

前述したように、ワイヤーボンディング工程では、金属細線45は、全ての電極パッド43に対するワイヤーボンディング作業中は高温状態下に置かれる。このとき、従前の技術では、金属細線として金線を用いることで、特に、酸化の問題は重要視されなかった。   As described above, in the wire bonding process, the fine metal wires 45 are placed in a high temperature state during the wire bonding operation for all the electrode pads 43. At this time, in the prior art, the problem of oxidation was not particularly emphasized by using a gold wire as the thin metal wire.

しかしながら、金属細線45として銅線を用いる場合には、作業中に銅線が酸化されるという問題が発生する。特に、MAP(Mold Array Package)方式の製造方法においては、リードフレームに多数の搭載部が配置される。そして、ワイヤーボンディングされるワイヤーの本数も多くなることで、その作業時間が長くなり、上記酸化の問題が重要視される。また、ダイパッド41や外部リード46等も、メッキ処理等の対応が成されていない場合には、上記作業により酸化されるという問題が発生する。   However, when a copper wire is used as the thin metal wire 45, there arises a problem that the copper wire is oxidized during the operation. In particular, in the manufacturing method of the MAP (Mold Array Package) method, a large number of mounting portions are arranged on the lead frame. And since the number of wires to be wire-bonded increases, the working time becomes long, and the above-mentioned oxidation problem is regarded as important. In addition, the die pad 41, the external lead 46, and the like are also oxidized due to the above-described operation when the corresponding treatment such as plating is not performed.

また、従前の技術では、複数の外部リード46はクランパー(図示せず)にて一括して固定された状態にてワイヤーボンディングが行われる。金属細線45の材料として金線と銅線とを比較すると、金線は、銅線と比較して軟らかく延性が小さい。そのため、金線は、ステッチボンディング時の切断が容易であり、クランパーによるリードの固定状況が特に重要視されなかった。   In the conventional technique, wire bonding is performed in a state where the plurality of external leads 46 are fixed together by a clamper (not shown). When a gold wire and a copper wire are compared as the material of the metal thin wire 45, the gold wire is softer and less ductile than the copper wire. Therefore, the gold wire can be easily cut at the time of stitch bonding, and the lead fixing state by the clamper is not particularly regarded as important.

しかしながら、銅線は金線よりも硬いが、延性を有するため、ステッチボンディング時の荷重が金線よりも大きくなる。そのため、クランパーとリードとの間に隙間が存在すると、ステッチボンディング時の荷重が逃げ、金属細線45が切断し難く、金属細線45の切断箇所が安定し難いという問題が発生する。   However, the copper wire is harder than the gold wire, but has a ductility, so that the load at the time of stitch bonding is larger than that of the gold wire. For this reason, if there is a gap between the clamper and the lead, the load at the time of stitch bonding escapes, causing a problem that the fine metal wire 45 is difficult to cut and the cut portion of the fine metal wire 45 is difficult to stabilize.

更に、金線は銅線と比較して材料費が高く、原価コストを引き上げる問題がある。しかも、金線は銅線よりも比抵抗が大きいため電流容量が小さく、大電流を扱う半導体素子では金線の使用量が増大し、材料コストが余分に掛かるという問題が発生する。   Furthermore, the gold wire has a higher material cost than the copper wire, and there is a problem of raising the cost. In addition, since the specific resistance of the gold wire is larger than that of the copper wire, the current capacity is small. In a semiconductor element that handles a large current, the amount of gold wire used increases, resulting in an extra material cost.

上述した各事情に鑑みて成されたものであり、本発明の半導体装置では、アイランドと、前記アイランドを囲むように配置された複数のリードと、前記アイランド上に接着材を介して固着された半導体素子と、前記半導体素子の電極パッドと前記リードとを電気的に接続する銅線と、前記アイランド、前記リード、前記銅線及び前記半導体素子とを被覆する樹脂パッケージとを有する半導体装置において、前記アイランドには、前記半導体素子の固着領域の周囲に複数の貫通孔が形成され、前記貫通孔は前記樹脂パッケージを構成する樹脂により充填されることを特徴とする。従って、本発明では、銅線を用いることで材料コストが低減される。そして、貫通孔を利用することでアイランドと樹脂パッケージの密着性が向上される。   In view of the circumstances described above, the semiconductor device of the present invention is fixed to the island, a plurality of leads arranged so as to surround the island, and an adhesive on the island. In a semiconductor device comprising: a semiconductor element; a copper wire that electrically connects the electrode pad of the semiconductor element and the lead; and a resin package that covers the island, the lead, the copper wire, and the semiconductor element. In the island, a plurality of through holes are formed around a fixed region of the semiconductor element, and the through holes are filled with a resin constituting the resin package. Therefore, in this invention, material cost is reduced by using a copper wire. And the adhesiveness of an island and a resin package is improved by utilizing a through-hole.

また、本発明の半導体装置の製造方法では、アイランドと、前記アイランドを囲むように配置された複数のリードと、前記アイランドから延在された吊りリードとを有する搭載部が複数個集合した集合ブロックが設けられ、前記アイランドには、それぞれ複数の貫通孔が設けられたリードフレームを準備し、前記アイランド上に半導体素子を固着した後、前記半導体素子の電極パッドと前記リードとを銅線によりワイヤーボンディングし、前記集合ブロック内の電気的接続を完了し、前記集合ブロックを樹脂で被覆し、樹脂パッケージを形成し、前記樹脂パッケージを個片化する半導体装置の製造方法において、前記貫通孔をワイヤーボンディング装置の載置台に設けられたガス抜き孔上に位置させ、前記搭載部へ供給した不活性ガスを前記貫通孔を介して前記ガス抜き孔から引き抜くことを特徴とする。従って、本発明では、ワイヤーボンディングされた銅線の周囲に不活性ガスが充満され易く、銅線の酸化が防止される。   In the method for manufacturing a semiconductor device of the present invention, an assembly block in which a plurality of mounting portions each having an island, a plurality of leads arranged so as to surround the island, and a suspension lead extending from the island is assembled. A lead frame provided with a plurality of through holes is prepared for each of the islands. After fixing a semiconductor element on the island, the electrode pad of the semiconductor element and the lead are wired with a copper wire. In the method of manufacturing a semiconductor device in which bonding, electrical connection in the assembly block is completed, the assembly block is covered with resin, a resin package is formed, and the resin package is separated into pieces, the through hole is wired Positioned on a vent hole provided in the mounting table of the bonding apparatus, the inert gas supplied to the mounting part is Through the hole, characterized in that withdrawn from the gas vent hole. Therefore, in the present invention, the inert gas is easily filled around the wire-bonded copper wire, and the copper wire is prevented from being oxidized.

本発明では、銅線を用いてワイヤーボンディングが行われることで、金線が用いられる場合と比較して材料コストが低減される。   In this invention, material cost is reduced compared with the case where a gold wire is used by performing wire bonding using a copper wire.

また、本発明では、アイランドの貫通孔が、樹脂パッケージの一部により埋設され、アイランドと樹脂パッケージとの密着性が向上される。   In the present invention, the through hole of the island is buried by a part of the resin package, and the adhesion between the island and the resin package is improved.

また、本発明では、ワイヤーボンディング領域に供給された不活性ガスをアイランドに形成された貫通孔を介して引き抜く。そして、ワイヤーボンディングされた銅線の周囲に不活性ガスが充満され易くすることで、銅線の酸化が防止される。   Moreover, in this invention, the inert gas supplied to the wire bonding area | region is extracted through the through-hole formed in the island. And the oxidation of a copper wire is prevented by making it easy to fill an inert gas around the copper wire by which wire bonding was carried out.

また、本発明では、クランパーにより複数のリードを個別に固定した状態にてワイヤーボンディング作業を行う。そして、ステッチボンディング時の荷重の逃げを防止し、銅線の切断箇所を安定させる。   In the present invention, the wire bonding operation is performed in a state where a plurality of leads are individually fixed by a clamper. And the escape of the load at the time of stitch bonding is prevented, and the cut portion of the copper wire is stabilized.

また、本発明では、アイランドの貫通孔と吊りリードの裏面側まで樹脂を充填することで、アイランドが樹脂パッケージから抜け落ち難い構造を実現できる。   Further, in the present invention, by filling the resin up to the through hole of the island and the back side of the suspension lead, it is possible to realize a structure in which the island does not easily come off from the resin package.

本発明の実施の形態における半導体装置を説明するための(A)斜視図、(B)斜視図、(C)断面図、(D)斜視図、(E)斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS (A) Perspective view, (B) Perspective view, (C) Cross-sectional view, (D) Perspective view, (E) Perspective view for explaining a semiconductor device in an embodiment of the present invention. 本発明の実施の形態における半導体装置を説明するための(A)平面図、(B)平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a plan view for explaining a semiconductor device in an embodiment of the present invention, and FIG. 本発明の実施の形態における半導体装置の製造方法を説明するための平面図である。It is a top view for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)平面図、(B)断面図である。It is (A) top view and (B) sectional drawing for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)断面図、(B)断面図、(C)断面図である。1A is a cross-sectional view for explaining a method of manufacturing a semiconductor device in an embodiment of the present invention, FIG. 2B is a cross-sectional view, and FIG. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)平面図、(B)断面図である。It is (A) top view and (B) sectional drawing for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 従来の実施の形態における半導体装置の製造方法を説明するための(A)断面図、(B)断面図である。It is (A) sectional drawing for demonstrating the manufacturing method of the semiconductor device in conventional embodiment, (B) It is sectional drawing.

以下に、本発明の半導体装置について説明する。図1(A)、(B)、(D)及び(E)は、樹脂パッケージを説明するための斜視図である。図1(C)は、樹脂パッケージを説明するための断面図である。図2(A)は、リードフレームを説明するための平面図である。図2(B)は、図2(A)にワイヤーボンディングした状況を示す図である。   The semiconductor device of the present invention will be described below. FIGS. 1A, 1 </ b> B, 1 </ b> D, and 1 </ b> E are perspective views for explaining a resin package. FIG. 1C is a cross-sectional view for explaining the resin package. FIG. 2A is a plan view for explaining the lead frame. FIG. 2B is a diagram illustrating a state in which wire bonding is performed in FIG.

図1(A)に示す如く、半導体装置1は、例えば、MAP方式の樹脂パッケージ2から成る。図6を用いて後述するが、集合ブロックを一括封止後、ダイシングにより個片化するため、樹脂パッケージ2の側面3からリード4が露出する。そして、露出するリード4は、樹脂パッケージ2の側面3と同一面を形成する。尚、リード4の露出形状は、図示した形状に限定するものではない。例えば、図1(D)に示すように、ダイシングブレードの消耗を抑制するため、リード4の露出形状がT字型となる場合でも良い。また、図1(E)に示すように、リード4の裏面側のダイシング領域がハーフエッチングされ、リード4の露出面が樹脂パッケージ2の側辺5から樹脂パッケージ2の表面側へ離間する場合でも良い。   As shown in FIG. 1A, the semiconductor device 1 includes, for example, a MAP type resin package 2. As will be described later using FIG. 6, the leads 4 are exposed from the side surfaces 3 of the resin package 2 because the collective blocks are collectively sealed and then separated into pieces by dicing. The exposed lead 4 forms the same surface as the side surface 3 of the resin package 2. The exposed shape of the lead 4 is not limited to the illustrated shape. For example, as shown in FIG. 1D, the exposed shape of the lead 4 may be a T-shape in order to suppress wear of the dicing blade. Further, as shown in FIG. 1E, even when the dicing area on the back surface side of the lead 4 is half-etched and the exposed surface of the lead 4 is separated from the side 5 of the resin package 2 to the surface side of the resin package 2. good.

図1(B)に示す如く、樹脂パッケージ2の裏面6にはアイランド7が露出し、このアイランド7は、樹脂パッケージ2の裏面6とほぼ同一面を形成する。そして、アイランド7内の外周領域には複数の貫通孔8が形成され、貫通孔8には樹脂パッケージ2を構成する絶縁性樹脂が充填される。また、樹脂パッケージ2の裏面6にはリード4が露出し、アイランド7を囲むように配置される。   As shown in FIG. 1B, an island 7 is exposed on the back surface 6 of the resin package 2, and the island 7 forms substantially the same surface as the back surface 6 of the resin package 2. A plurality of through holes 8 are formed in the outer peripheral area of the island 7, and the through holes 8 are filled with an insulating resin constituting the resin package 2. Further, the lead 4 is exposed on the back surface 6 of the resin package 2 and is disposed so as to surround the island 7.

図1(C)では、図1(B)に示すA−A線方向の断面図を示し、アイランド7に形成された貫通孔8を含む断面である。図示したように、アイランド7上には、例えば、Agペースト、半田等の接着材9により半導体素子10が固着される。半導体素子10の電極パッドとリード4とは本願のテーマである銅線11により電気的に接続される。銅線11は、例えば、径が33〜50μm、99.9〜99.99wt%の銅から成るものが使用される。そして、銅線11は、半導体素子10の電極パッド上にボールボンディングされ、リード4上にステッチボンディングされる。尚、銅線11の径は、使用される用途に応じて任意の設計変更が可能である。   FIG. 1C shows a cross-sectional view in the direction of line AA shown in FIG. 1B and includes a through hole 8 formed in the island 7. As illustrated, the semiconductor element 10 is fixed on the island 7 by an adhesive 9 such as an Ag paste or solder. The electrode pad of the semiconductor element 10 and the lead 4 are electrically connected by the copper wire 11 which is the theme of the present application. The copper wire 11 is made of, for example, copper having a diameter of 33 to 50 μm and 99.9 to 99.99 wt%. The copper wire 11 is ball bonded on the electrode pad of the semiconductor element 10 and stitch bonded on the lead 4. In addition, the design of the diameter of the copper wire 11 can be arbitrarily changed according to the intended use.

また、アイランド7は、例えば、厚さが約100〜250μmの銅を主材料とするフレームから成り、アイランド7には複数の貫通孔8が形成される。詳細は後述するが、貫通孔8は、ダイボンディング時やワイヤーボンディング時に不活性ガス(フォーミングガス)の流通経路として利用されるため、半導体素子10の固着領域の外周領域に配置される。そして、樹脂モールド時には、貫通孔8は絶縁性樹脂により埋設される。この構造により、樹脂パッケージ2とアイランド7との密着領域が増大し、アイランド7内に樹脂が入り込み、アイランド7が樹脂パッケージ2内へと強固に支持される。樹脂パッケージ2内では、例えば、樹脂パッケージ2や接着材9内に含まれる低分子成分が半導体素子10の駆動熱等により気化し、ガスが発生する。上記ガスによりアイランド7は樹脂パッケージ2から押し出される方向へと外力を受ける。特に、アイランド7が樹脂パッケージ2の裏面6側から露出する薄型パッケージでは、アイランド7と樹脂パッケージ2の密着度も弱く、上記ガスによりアイランド7が樹脂パッケージ2から押し出され易い。そこで、アイランド7の周囲において、一環状に樹脂パッケージ2とアイランド7との密着度を向上させることで、樹脂パッケージ2からアイランド7が抜け落ち難い構造となる。   Further, the island 7 is made of a frame whose main material is copper having a thickness of about 100 to 250 μm, for example, and a plurality of through holes 8 are formed in the island 7. Although details will be described later, the through hole 8 is used as a distribution path of an inert gas (forming gas) at the time of die bonding or wire bonding, and thus is disposed in the outer peripheral region of the fixing region of the semiconductor element 10. And at the time of resin molding, the through-hole 8 is embed | buried with insulating resin. With this structure, the adhesion region between the resin package 2 and the island 7 is increased, the resin enters the island 7, and the island 7 is firmly supported in the resin package 2. In the resin package 2, for example, a low molecular component contained in the resin package 2 or the adhesive 9 is vaporized by the driving heat of the semiconductor element 10, and gas is generated. The island 7 receives an external force in the direction in which the island 7 is pushed out of the resin package 2 by the gas. In particular, in a thin package in which the island 7 is exposed from the back surface 6 side of the resin package 2, the adhesion between the island 7 and the resin package 2 is weak, and the island 7 is easily pushed out of the resin package 2 by the gas. Therefore, by improving the degree of adhesion between the resin package 2 and the island 7 in a single ring around the island 7, a structure in which the island 7 does not easily fall out of the resin package 2 is obtained.

更に、貫通孔8は、樹脂パッケージ2内、特に、アイランド7周囲にて発生した上記ガスの排出経路としても利用される。上記ガスが、貫通孔8を介して短い経路で樹脂パッケージ2外部へと排出されることで、上記ガスによりアイランド7が樹脂パッケージ2外部へと押し出され難くなる。   Further, the through hole 8 is also used as a discharge path for the gas generated in the resin package 2, particularly around the island 7. When the gas is discharged to the outside of the resin package 2 through a short path through the through hole 8, the island 7 is not easily pushed out of the resin package 2 by the gas.

図2(A)に示す如く、リードフレーム12としては、一般には銅を主材料とするフレームが用いられるが、Fe−Niを主材料とするフレームの場合でも良く、また、他の金属材料から成る場合でも良い。そして、これらの材料から成るリードフレーム12には、一点鎖線で示す搭載部13が複数形成される。尚、図では、1つの搭載部13が示されているが、図3に示す如く、例えば、この搭載部13が4つ集まることで1つの集合ブロックが形成される。そして、この集合ブロック毎に一体に樹脂モールドされる。   As shown in FIG. 2A, as the lead frame 12, a frame mainly made of copper is generally used, but a frame mainly made of Fe-Ni may be used. It may be the case. A plurality of mounting portions 13 indicated by alternate long and short dash lines are formed on the lead frame 12 made of these materials. In the figure, one mounting portion 13 is shown, but as shown in FIG. 3, for example, four mounting portions 13 are gathered to form one collective block. Then, resin molding is integrally performed for each aggregate block.

この搭載部13は、主に、アイランド7と、アイランド7を支持する吊りリード14と、アイランド7の4側辺の近傍に位置するリード4と、複数のリード4を支持するタイバー15とから構成される。そして、吊りリード14はアイランド7の4つのコーナー部から延在し、タイバー15の交差する支持領域16と連結する。支持領域16はリードフレーム12と一体となり、アイランド7がリードフレーム12に支持される。そして、アイランド7に点線で示す領域が半導体素子10の固着領域となることから、本発明のポイントである貫通孔8は、固着領域を囲むような位置に配置される。   The mounting portion 13 mainly includes an island 7, a suspension lead 14 that supports the island 7, a lead 4 that is located near the four sides of the island 7, and a tie bar 15 that supports a plurality of leads 4. Is done. The suspension leads 14 extend from the four corners of the island 7 and are connected to the support regions 16 where the tie bars 15 intersect. The support region 16 is integrated with the lead frame 12, and the island 7 is supported by the lead frame 12. And since the area | region shown with a dotted line in the island 7 turns into the adhering area | region of the semiconductor element 10, the through-hole 8 which is the point of this invention is arrange | positioned in the position which surrounds an adhering area | region.

また、吊りリード14のハッチングにて示す領域は、リードフレーム12の裏面側から0.05〜0.15μm程度エッチングされ、窪んだ領域となる。そして、吊りリード14の上記窪んだ領域には樹脂が充填され、吊りリード14が樹脂パッケージ2に支持され、アンカー効果が得られる。   Further, the area indicated by hatching of the suspension lead 14 is etched by about 0.05 to 0.15 μm from the back surface side of the lead frame 12 and becomes a recessed area. The recessed area of the suspension lead 14 is filled with resin, and the suspension lead 14 is supported by the resin package 2 to obtain an anchor effect.

そして、樹脂パッケージ2や接着材9内に発生した上記ガスにより、アイランド7が樹脂パッケージ2から押し出される外力を受ける場合もある。この場合には、アイランド7は、吊りリード14により樹脂パッケージ2内に支持され、樹脂パッケージ2からアイランド7が抜け落ち難い構造となる。尚、図1(B)に示すように、樹脂パッケージ2の裏面6からは、吊りリード14が露出しない構造となる。   In some cases, the island 7 receives an external force that pushes the island 7 out of the resin package 2 due to the gas generated in the resin package 2 or the adhesive 9. In this case, the island 7 is supported in the resin package 2 by the suspension leads 14, and the island 7 does not easily come off from the resin package 2. As shown in FIG. 1B, the suspension lead 14 is not exposed from the back surface 6 of the resin package 2.

また、リード4のハッチングにて示す領域も、リードフレーム12の裏面側から、例えば、0.05〜0.18μm程度エッチングされ、窪んだ領域となる。そして、ハッチングで示す窪んだ領域が、ダイシングラインとなる。この構造により、容易にリードフレーム12から個々の樹脂パッケージ2に分割することができる。   The area indicated by hatching of the lead 4 is also a recessed area that is etched, for example, by about 0.05 to 0.18 μm from the back surface side of the lead frame 12. And the recessed area | region shown by hatching becomes a dicing line. With this structure, the lead frame 12 can be easily divided into individual resin packages 2.

図2(B)に示す如く、アイランド7上には半導体素子10が固着され、電極パッド17とリード4とは銅線11により電気的に接続される。そして、銅線11や銅線11と電極パッド17との接続部位等の酸化を防止する必要がある。図4(B)を用いて後述するが、貫通孔8から不活性ガスを引き抜く構造とすることで、不活性ガスは上方からボンディング領域へと流れ、常時、銅線11の配置領域が、不活性ガスにより満たされ易くなる。そして、銅線11は、酸化し易い材料であるが、不活性ガスの存在によりその酸化が防止される。その結果、ワイヤーボンディング材料として、不活性で安定した材料である金線に換えて銅線11を用いることが可能となり、銅線を用いることで材料コストが低減される。   As shown in FIG. 2B, the semiconductor element 10 is fixed on the island 7, and the electrode pad 17 and the lead 4 are electrically connected by the copper wire 11. Then, it is necessary to prevent oxidation of the copper wire 11 or the connection portion between the copper wire 11 and the electrode pad 17. As will be described later with reference to FIG. 4B, the inert gas flows from the upper side to the bonding region by adopting a structure in which the inert gas is extracted from the through-hole 8, and the arrangement region of the copper wire 11 is always ineffective. It becomes easy to be filled with the active gas. And although the copper wire 11 is a material which is easy to oxidize, the oxidation is prevented by presence of an inert gas. As a result, the copper wire 11 can be used as the wire bonding material in place of the gold wire which is an inert and stable material, and the material cost is reduced by using the copper wire.

また、貫通孔8の形状は、円形、楕円形または矩形から成り、貫通孔8の幅は、隣り合うリード4間の離間幅と同等または大きくなる。この構造により、不活性ガスの吸引力も大きくなり、銅線11の酸化が防止される。そして、貫通孔8が不活性ガスの流路となることで、貫通孔8側面の酸化が防止され、貫通孔8を埋設する絶縁性樹脂との密着性も向上される。   The shape of the through hole 8 is a circle, an ellipse, or a rectangle, and the width of the through hole 8 is equal to or larger than the separation width between the adjacent leads 4. With this structure, the suction force of the inert gas is increased and the oxidation of the copper wire 11 is prevented. And since the through-hole 8 becomes a flow path of an inert gas, the oxidation of the side surface of the through-hole 8 is prevented, and the adhesiveness with the insulating resin which embeds the through-hole 8 is also improved.

また、大電流を扱う半導体素子では、金線の場合には、1つの電極パッドに対して複数本の金線を用いて大電流に対応するが、銅線の場合には、非抵抗が小さく、電流容量が大きいため金線の場合よりも少ない本数で大電流に対応できる。その結果、金線の場合よりもボンディング領域の面積を小さくでき、半導体素子の微細化が実現される。   In the case of a semiconductor element that handles a large current, in the case of a gold wire, a plurality of gold wires are used for one electrode pad to cope with the large current, but in the case of a copper wire, the non-resistance is small. Since the current capacity is large, it is possible to cope with a large current with a smaller number than that of the gold wire. As a result, the area of the bonding region can be made smaller than in the case of a gold wire, and miniaturization of the semiconductor element is realized.

尚、本実施の形態では、MAP方式の樹脂パッケージ2について説明したが、このパッケージに限定するものではない。例えば、QFP(Quad Flat Package)方式のパッケージやQFN(Quad Flat Non−leaded Package)方式のパッケージ等のように、個別モールド型のパッケージにおいても、アイランドに貫通孔を設けることで、銅線によるワイヤーボンディングが可能となり、上述した同様な効果が得られる。その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。   In the present embodiment, the MAP type resin package 2 has been described. However, the present invention is not limited to this package. For example, even in an individual mold type package such as a QFP (Quad Flat Package) type package or a QFN (Quad Flat Non-Leaded Package) type package, a wire made of copper wire is provided by providing a through hole in an island. Bonding is possible, and the same effect as described above can be obtained. In addition, various modifications can be made without departing from the scope of the present invention.

次に、本発明の半導体装置の製造方法について説明する。図3は、リードフレームを説明するための平面図である。図4(A)は、クランパーを説明するための平面図である。図4(B)は、ワイヤーボンディング時における不活性ガスの流れを説明するための断面図である。図5(A)〜(C)は、ワイヤーボンディング工程を説明するための断面図である。図6(A)は、樹脂モールド工程を説明するための平面図である。図6(B)は、ダイシング工程を説明するための断面図である。尚、以下の説明では、図1及び図2を用いて説明した半導体装置の各構成要素と同じ構成要素には同じ符番を付す。また、本実施の形態の製造方法の説明において、適宜、図1及び図2を用いて説明する。   Next, a method for manufacturing a semiconductor device of the present invention will be described. FIG. 3 is a plan view for explaining the lead frame. FIG. 4A is a plan view for explaining the clamper. FIG. 4B is a cross-sectional view for explaining the flow of an inert gas during wire bonding. 5A to 5C are cross-sectional views for explaining the wire bonding process. FIG. 6A is a plan view for explaining the resin molding process. FIG. 6B is a cross-sectional view for explaining the dicing process. In the following description, the same reference numerals are assigned to the same components as those of the semiconductor device described with reference to FIGS. Further, in the description of the manufacturing method of the present embodiment, it will be described with reference to FIGS. 1 and 2 as appropriate.

先ず、図3に示す如く、例えば、銅を主材料とするリードフレーム12を準備する。図2(A)を用いて上述したように、リードフレーム12には、一点鎖線で示すように、複数の搭載部13が形成される。リードフレーム12の長手方向(紙面X軸方向)は、スリット21により一定間隔に区切られる。そして、スリット21にて区切られたリードフレーム12の1区間には、例えば、4つの搭載部13の集合から成る1つの集合ブロックが形成される。そして、この集合ブロックが、リードフレーム12の長手方向に複数形成される。また、リードフレーム12の長手方向には、その上下端部領域にインデックス孔22が一定の間隔で設けられ、各工程での位置決めに用いられる。尚、搭載部13を構成する詳細の構造は、図2(A)にて説明した通りである。   First, as shown in FIG. 3, for example, a lead frame 12 mainly made of copper is prepared. As described above with reference to FIG. 2A, the lead frame 12 is formed with a plurality of mounting portions 13 as indicated by alternate long and short dash lines. The longitudinal direction (paper surface X-axis direction) of the lead frame 12 is divided at regular intervals by the slits 21. Then, in one section of the lead frame 12 delimited by the slits 21, for example, one collective block made up of a set of four mounting portions 13 is formed. A plurality of collective blocks are formed in the longitudinal direction of the lead frame 12. In the longitudinal direction of the lead frame 12, index holes 22 are provided at regular intervals in the upper and lower end regions, and are used for positioning in each step. The detailed structure constituting the mounting portion 13 is as described with reference to FIG.

また、図4(B)を用いて後述するが、図3の点線にて示す領域が、載置台23のガス抜き孔29の配置領域であり、例えば、1つのガス抜き孔29上に複数の貫通孔8が配置される。この構造により、載置台23上にリードフレーム12を配置する際に、リードフレーム12が若干ずれた場合でも、貫通孔8を介して確実に不活性ガスを吸引することが可能となる。尚、本実施の形態では、貫通孔8とガス抜き孔29との大きさ関係は、上述した場合に限定するものではなく、逆の関係の場合でも良い。この場合には、1つの貫通孔8の下方に複数のガス抜き孔29が配置されることで、リードフレーム12が若干ずれた場合でも、貫通孔8を介して確実に不活性ガスを吸引することが可能となる。また、この場合には、貫通孔8の大きさにより密着領域が増大し、貫通孔8と絶縁性樹脂との密着性が更に向上される。   Further, as will be described later with reference to FIG. 4B, a region indicated by a dotted line in FIG. 3 is an arrangement region of the gas vent holes 29 of the mounting table 23. A through hole 8 is arranged. With this structure, when the lead frame 12 is disposed on the mounting table 23, it is possible to reliably suck the inert gas through the through hole 8 even if the lead frame 12 is slightly displaced. In the present embodiment, the size relationship between the through hole 8 and the gas vent hole 29 is not limited to the above-described case, and may be a reverse relationship. In this case, by arranging a plurality of gas vent holes 29 below one through hole 8, even when the lead frame 12 is slightly displaced, the inert gas is reliably sucked through the through hole 8. It becomes possible. In this case, the close contact area is increased depending on the size of the through hole 8, and the close contact between the through hole 8 and the insulating resin is further improved.

次に、図2(B)に示す如く、リードフレーム12の搭載部13毎に、アイランド7上に接着材9(図1(C)参照)を用いて半導体素子10を固着する。このとき、加熱機構が組み込まれたダイボンド装置の載置台上にリードフレーム12を配置し、クランパーにてリードフレーム12を固定する。そして、リードフレーム12のアイランド7やその作業領域内を、例えば、250〜260℃程度に加熱した状態にて、複数のアイランド7上に連続して半導体素子10を固着する。詳細は図4(B)にて説明するワイヤーボンディング工程の不活性ガスの流れと同様であるが、リードフレーム12を固定するクランパーからその作業領域内に不活性ガスが流入される。そして、不活性ガスが、アイランド7の貫通孔8を介して載置台側へと引き抜かれることで、リードフレーム12の周囲は不活性ガスにより満たされる。その結果、リードフレーム12は銅を主材料とし、長時間高温状態下に配置されるが、その酸化が防止される。   Next, as shown in FIG. 2B, the semiconductor element 10 is fixed on the island 7 using the adhesive 9 (see FIG. 1C) for each mounting portion 13 of the lead frame 12. At this time, the lead frame 12 is arranged on a mounting table of a die bonding apparatus in which a heating mechanism is incorporated, and the lead frame 12 is fixed by a clamper. Then, the semiconductor element 10 is continuously fixed onto the plurality of islands 7 in a state where the island 7 of the lead frame 12 and the work area thereof are heated to about 250 to 260 ° C., for example. The details are the same as the flow of the inert gas in the wire bonding step described with reference to FIG. 4B, but the inert gas flows into the working area from the clamper that fixes the lead frame 12. Then, the inert gas is drawn out to the mounting table side through the through holes 8 of the island 7, so that the periphery of the lead frame 12 is filled with the inert gas. As a result, the lead frame 12 is mainly made of copper and is placed in a high temperature state for a long time, but its oxidation is prevented.

次に、図4(A)、(B)及び図5(A)〜(C)に示す如く、ワイヤーボンディング装置の載置台23上にリードフレーム12を配置し、リードフレーム12の搭載部13毎にワイヤーボンディングを行う。   Next, as shown in FIGS. 4A and 4B and FIGS. 5A to 5C, the lead frame 12 is disposed on the mounting table 23 of the wire bonding apparatus, and each mounting portion 13 of the lead frame 12 is mounted. Wire bonding is performed.

先ず、図4(A)に示すクランパー24について説明する。クランパー24は、不活性ガスを送り込むパイプ25と、搭載部13の大きさに合わせて開口された開口領域26とを有する。そして、クランパー24のパイプ25から送風された不活性ガスは、リード固定領域27間から開口領域26へと吹き込む。銅線11の径が45μmの場合には、例えば、1.9リットル/分の窒素ガス(若干の水素ガスが含まれる)が用いられる。そして、銅線11は、高温状態の作業領域内に置かれることで酸化し易い状態となるが、上記不活性ガスの存在により銅線11の酸化が防止される。   First, the clamper 24 shown in FIG. The clamper 24 includes a pipe 25 that feeds an inert gas and an opening region 26 that is opened in accordance with the size of the mounting portion 13. Then, the inert gas blown from the pipe 25 of the clamper 24 is blown into the opening region 26 from between the lead fixing regions 27. When the diameter of the copper wire 11 is 45 μm, for example, 1.9 liter / min of nitrogen gas (including some hydrogen gas) is used. And although the copper wire 11 will be in the state which is easy to oxidize by putting in the work area | region of a high temperature state, the oxidation of the copper wire 11 is prevented by presence of the said inert gas.

更に、開口領域26の周囲のクランパー24には、搭載部13のリード4形状に合わせて複数のリード固定領域27が、櫛歯形状に配置される。そして、複数のリード4は、リード固定領域27により個別に載置台23(図4(B)参照)上に固定される。リード4側では、ワイヤーボンディングのステッチボンディングが行われる。このとき、銅線11は金線と比較して硬いが、延性を有する。そのため、確実に銅線11を切断するためにステッチボンディング時の荷重(キャピラリ30(図5(A)参照)から加えられる荷重)が金線よりも大きくなる。そして、複数のリード4は、それぞれの形状に対応したクランパー24のリード固定領域27により個別に固定されることで、ステッチボンディング時の荷重の逃げが防止される。そして、銅線11はリード4上に確実に接着した状態にて切断され、銅線11の切断箇所が安定することで、切断後の銅線11の形状も安定する。   Furthermore, a plurality of lead fixing regions 27 are arranged in a comb-tooth shape on the clamper 24 around the opening region 26 in accordance with the shape of the lead 4 of the mounting portion 13. The plurality of leads 4 are individually fixed on the mounting table 23 (see FIG. 4B) by the lead fixing region 27. On the lead 4 side, wire bonding stitch bonding is performed. At this time, the copper wire 11 is harder than the gold wire, but has ductility. Therefore, in order to cut the copper wire 11 reliably, the load at the time of stitch bonding (the load applied from the capillary 30 (see FIG. 5A)) becomes larger than that of the gold wire. The plurality of leads 4 are individually fixed by the lead fixing regions 27 of the clamper 24 corresponding to the respective shapes, thereby preventing the load from escaping during stitch bonding. And the copper wire 11 is cut | disconnected in the state adhere | attached on the lead 4 reliably, and the shape of the copper wire 11 after a cutting | disconnection is also stabilized because the cutting location of the copper wire 11 is stabilized.

次に、図4(B)に示す不活性ガスの流れについて説明する。加熱機構28を有する載置台23には、ガス抜き孔29が形成される。そして、ガス抜き孔29上面にアイランド7の貫通孔8が位置するように、載置台23上にリードフレーム12を配置する。点線の矢印で示すように、不活性ガスは、クランパー24のリード固定領域27間から開口領域26の中央側(搭載部)へと吹き込まれる。つまり、開口領域26では、その全周囲から中央側へと不活性ガスが吹き込まれる。そして、開口領域26には蓋がされてなく、開口領域26内が高温状態となることで、不活性ガスは、上昇気流により開口領域26上方へと放出されてしまう。そこで、本実施の形態では、貫通孔8を介して載置台23のガス抜き孔29から不活性ガスを吸引することで、リード4側から吹き込まれた不活性ガスは、主に、アイランド7の貫通孔8側へと流れる。その結果、不活性ガスの主たる流れは、開口領域26の下方側(載置台23側)へとなり、銅線11の配置領域は不活性ガスにて満たされ易い領域となる。   Next, the flow of the inert gas illustrated in FIG. 4B will be described. A gas vent hole 29 is formed in the mounting table 23 having the heating mechanism 28. Then, the lead frame 12 is arranged on the mounting table 23 so that the through hole 8 of the island 7 is located on the upper surface of the gas vent hole 29. As indicated by the dotted arrow, the inert gas is blown from between the lead fixing regions 27 of the clamper 24 toward the center side (mounting portion) of the opening region 26. That is, in the opening region 26, the inert gas is blown from the entire periphery to the center side. Then, the opening area 26 is not covered, and the inside of the opening area 26 is in a high temperature state, so that the inert gas is released upward of the opening area 26 by the rising airflow. Therefore, in the present embodiment, the inert gas blown from the lead 4 side mainly sucks the island 7 by sucking the inert gas from the gas vent hole 29 of the mounting table 23 through the through hole 8. It flows to the through hole 8 side. As a result, the main flow of the inert gas is to the lower side (the mounting table 23 side) of the opening region 26, and the arrangement region of the copper wire 11 is a region that is easily filled with the inert gas.

そして、クランパー24の開口領域26内である作業領域内は、加熱機構28により、例えば、250〜260℃程度に維持される。ワイヤーボンディングされた銅線11は、半導体素子10の全ての電極パッドに対しワイヤーボンディングが終わる(例えば、1つの集合ブロック内の全ての半導体素子10に対してワイヤーボンディングが終わる)までは、その高温状態の作業領域内に置かれる。そこで、上述した不活性ガスの流れを起すことで、銅線11の周囲には不活性ガス充満し易く、効率的に銅線11の酸化が防止される。また、リード4等のリードフレーム12も酸化され易い状況下に置かれるが、不活性ガスが載置台23側へと流れることで、リードフレーム12も効率的に酸化が防止される。   And the inside of the work area which is the opening area 26 of the clamper 24 is maintained at about 250 to 260 ° C., for example, by the heating mechanism 28. The wire wire-bonded copper wire 11 has a high temperature until wire bonding is completed for all electrode pads of the semiconductor element 10 (for example, wire bonding is completed for all the semiconductor elements 10 in one assembly block). Placed in the work area of the state. Therefore, by causing the above-described flow of the inert gas, the copper wire 11 is easily filled with the inert gas, and the oxidation of the copper wire 11 is efficiently prevented. In addition, the lead frame 12 such as the lead 4 is also easily oxidized, but the inert gas flows toward the mounting table 23, so that the lead frame 12 is also efficiently prevented from being oxidized.

尚、開口領域26内に吹き込まれた全ての不活性ガスが、載置台23のガス抜き孔29から吸引される訳ではなく、不活性ガスの一部は開口領域26上方へと流れる。そして、開口領域26及びその周辺は、不活性ガスにより満たされた領域となる。   Note that not all of the inert gas blown into the opening region 26 is sucked from the gas vent holes 29 of the mounting table 23, and part of the inert gas flows upward of the opening region 26. And the opening area | region 26 and its periphery become an area | region filled with the inert gas.

次に、図5(A)に示す如く、キャピラリ30の中心孔には銅線31が挿通され、キャピラリ30の上方には銅線31を挟持するためのワイヤークランパー32が配置される。そして、ワイヤークランパー32が開放し、キャピラリ30の先端からは所望の長さの銅線31が導出し、キャピラリ30近傍に位置するトーチ33から放電され、キャピラリ30の先端にはイニシャルボール34が形成される。ここで、径が45μmの銅線31を用いた場合、イニシャルボール34の形成時には、例えば、125mAの電流が必要となる。そして、同じ径の金線を用いてイニシャルボールを形成する際には、例えば、75mAの電流が必要となる。この電流の相違は、銅線31が金線と比較して熱伝導率が高く、放熱性に優れる材料であり、銅線31は不活性ガスにより冷却され易いからである。尚、図示したように、イニシャルボール34を形成する作業領域には、上記不活性ガスが供給される。そのため、不活性ガス内に含まれる水素による酸化還元作用により、イニシャルボール34の球面形状が安定して形成される。   Next, as shown in FIG. 5A, a copper wire 31 is inserted into the center hole of the capillary 30, and a wire clamper 32 for holding the copper wire 31 is disposed above the capillary 30. Then, the wire clamper 32 is opened, a copper wire 31 having a desired length is led out from the tip of the capillary 30 and discharged from the torch 33 located near the capillary 30, and an initial ball 34 is formed at the tip of the capillary 30. Is done. Here, when the copper wire 31 having a diameter of 45 μm is used, for example, a current of 125 mA is required when the initial ball 34 is formed. When an initial ball is formed using a gold wire having the same diameter, for example, a current of 75 mA is required. This difference in current is because the copper wire 31 is a material having higher thermal conductivity and excellent heat dissipation than the gold wire, and the copper wire 31 is easily cooled by an inert gas. As shown in the drawing, the inert gas is supplied to the work area where the initial ball 34 is formed. Therefore, the spherical shape of the initial ball 34 is stably formed by the redox action of hydrogen contained in the inert gas.

次に、図5(B)に示す如く、キャピラリ30が半導体素子10の電極パッド17上に向けて下降し、イニシャルボール34を電極パッド17上面に押し付ける。そして、超音波振動併用の熱圧着技術により、キャピラリ30の先端に形成されたイニシャルボール34が電極パッド17と接続する。尚、この作業時には、ワイヤークランパー32は開放された状態である。   Next, as shown in FIG. 5B, the capillary 30 descends onto the electrode pad 17 of the semiconductor element 10 and presses the initial ball 34 against the upper surface of the electrode pad 17. Then, the initial ball 34 formed at the tip of the capillary 30 is connected to the electrode pad 17 by a thermocompression bonding technique using ultrasonic vibration. During this operation, the wire clamper 32 is open.

次に、図5(C)に示す如く、ワイヤークランパー32が開放された状態にて、一定のループを描きながらキャピラリ30がリード4上面に移動する。そして、ワイヤークランパー32にて銅線31を挟持した後、キャピラリ30がリード4上に下降し、銅線31をリード4上面に押し付ける。そして、超音波振動併用の熱圧着技術により銅線31がリード4と接続する。その後、キャピラリ30が上昇し、銅線31を切断する。その後、半導体素子10の全ての電極パッド17とリード4に対して図5(A)〜(C)を用いて上述したワイヤーボンディング作業を繰り返す。上述したように、リード4は、それぞれ個別にクランパー24のリード固定領域27により載置台23上に固定されることで、銅線31が確実に切断される。   Next, as shown in FIG. 5C, the capillary 30 moves to the upper surface of the lead 4 while drawing a fixed loop in a state where the wire clamper 32 is opened. Then, after the copper wire 31 is sandwiched by the wire clamper 32, the capillary 30 is lowered onto the lead 4 and presses the copper wire 31 against the upper surface of the lead 4. The copper wire 31 is connected to the lead 4 by a thermocompression bonding technique using ultrasonic vibration. Thereafter, the capillary 30 is raised and the copper wire 31 is cut. Thereafter, the wire bonding operation described above is repeated for all the electrode pads 17 and the leads 4 of the semiconductor element 10 with reference to FIGS. As described above, the lead 4 is individually fixed on the mounting table 23 by the lead fixing region 27 of the clamper 24, whereby the copper wire 31 is reliably cut.

次に、図6(A)に示す如く、リードフレーム12上の集合ブロック毎に樹脂モールドし、共通の樹脂パッケージ35を形成する。例えば、リードフレーム12の裏面側に樹脂モールド用のシート36(図6(B)参照)を貼り合せた後、リードフレーム12を樹脂封止金型内に配置する。そして、樹脂封止金型内に絶縁性樹脂を充填することで、集合ブロック毎に共通の樹脂パッケージ35を形成する。上述したように、共通の樹脂パッケージ35内には、4つの搭載部13が含まれる。   Next, as shown in FIG. 6A, resin molding is performed for each aggregate block on the lead frame 12 to form a common resin package 35. For example, after a sheet 36 for resin molding (see FIG. 6B) is bonded to the back side of the lead frame 12, the lead frame 12 is placed in a resin-sealed mold. Then, by filling the resin sealing mold with an insulating resin, a common resin package 35 is formed for each assembly block. As described above, the four mounting portions 13 are included in the common resin package 35.

最後に、図6(B)に示す如く、リードフレーム12から搭載部13毎に共通の樹脂パッケージ35を切断して、個々の樹脂パッケージ2に個片化する。切断にはダイシング装置のダイシングブレード37を用い、ダイシングライン38に沿って共通の樹脂パッケージ35とリードフレーム12とを同時にダイシングする。このとき、シート36は、その一部のみが切断されることで、個片化された個々の樹脂パッケージ2はシート36上に支持される。また、本実施の形態では、図2(A)に示すリード4のハッチング領域が、ダイシングラインに配置される。そして、リード4の窪んだ領域をダイシングブレード37にて切断することで、ダイシングブレード37の負担が軽減され、長期間の使用が可能となる。   Finally, as shown in FIG. 6B, the common resin package 35 is cut from the lead frame 12 for each mounting portion 13 and separated into individual resin packages 2. A dicing blade 37 of a dicing apparatus is used for cutting, and the common resin package 35 and the lead frame 12 are diced simultaneously along the dicing line 38. At this time, only a part of the sheet 36 is cut, so that the individual resin packages 2 separated into pieces are supported on the sheet 36. In the present embodiment, the hatched area of the lead 4 shown in FIG. 2A is arranged on the dicing line. Then, by cutting the recessed area of the lead 4 with the dicing blade 37, the load on the dicing blade 37 is reduced, and the long-term use becomes possible.

尚、本実施の形態では、吹き込まれる不活性ガスの温度に関し特に限定していないが、例えば、不活性ガスを加熱した後、開口領域26内に吹き込む場合でも良い。この場合には、銅線31が不活性ガスにより冷却され難く、イニシャルボール形成時の電流効率を向上させることができる。   In the present embodiment, the temperature of the inert gas to be blown is not particularly limited. However, for example, the inert gas may be blown into the opening region 26 after being heated. In this case, the copper wire 31 is not easily cooled by the inert gas, and the current efficiency at the time of forming the initial ball can be improved.

また、ワイヤーボンディングの際、クランパー24の開口領域26上方がプレート等の蓋部材によりカバーされない状況にて作業を行う場合について説明したが、この場合に限定するものではない。例えば、作業領域のみ開口した蓋部材により開口領域26上方をカバーし、その蓋部材が作業領域に合わせてスライドする場合でもよい。この場合には、開口領域26上方が概ね蓋部材によりカバーされることで、開口領域26内が不活性ガスで充満され易くなる。そして、不活性ガスの供給量も低減され、製造コストを抑制できる効果も得られる。   Further, although the case where the work is performed in a state where the upper portion of the opening region 26 of the clamper 24 is not covered with a lid member such as a plate during wire bonding has been described, the present invention is not limited to this case. For example, the upper part of the opening area 26 may be covered with a lid member that opens only in the work area, and the lid member may slide in accordance with the work area. In this case, the upper part of the opening area 26 is generally covered with the lid member, so that the opening area 26 is easily filled with the inert gas. And the supply amount of an inert gas is also reduced and the effect which can suppress manufacturing cost is also acquired.

また、ワイヤーボンディングの際、個々のリード4が、それぞれクランパー24のリード固定領域27により固定される場合について説明したがこの場合に限定するものではない。例えば、リードの形状やリードの高さ等のリード配置状況に応じて、しっかりと個々のリードが固定出来る場合には、隣接する複数のリード毎に区分けしてリード固定領域により固定する場合でもよい。この場合には、リード固定領域の数は、リードの総数よりも少なくなるが、不活性ガスの吹き込み方法は、上述したようにリード固定領域間から吹き込む方法と同様である。その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。   Further, the case where each lead 4 is fixed by the lead fixing region 27 of the clamper 24 at the time of wire bonding has been described, but the present invention is not limited to this case. For example, when individual leads can be firmly fixed according to the lead arrangement situation such as the lead shape and lead height, it may be divided into a plurality of adjacent leads and fixed by the lead fixing area. . In this case, the number of lead fixing regions is smaller than the total number of leads, but the method of blowing inert gas is the same as the method of blowing from between the lead fixing regions as described above. In addition, various modifications can be made without departing from the scope of the present invention.

1 半導体装置
2 樹脂パッケージ
7 アイランド
8 貫通孔
24 クランパー
26 開口領域
27 リード固定領域
29 ガス抜き孔
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Resin package 7 Island 8 Through-hole 24 Clamper 26 Opening area 27 Lead fixing area 29 Gas vent hole

Claims (7)

アイランドと、前記アイランドを囲むように配置された複数のリードと、前記アイランド上に接着材を介して固着された半導体素子と、前記半導体素子の電極パッドと前記リードとを電気的に接続する銅線と、前記アイランド、前記リード、前記銅線及び前記半導体素子とを被覆する樹脂パッケージとを有する半導体装置において、
前記アイランドには、前記半導体素子の固着領域の周囲に複数の貫通孔が形成され、前記貫通孔は前記樹脂パッケージを構成する樹脂により充填されることを特徴とする半導体装置。
An island, a plurality of leads arranged so as to surround the island, a semiconductor element fixed on the island via an adhesive, and a copper electrically connecting the electrode pad of the semiconductor element and the lead In a semiconductor device having a wire and a resin package that covers the island, the lead, the copper wire, and the semiconductor element,
In the semiconductor device, a plurality of through holes are formed in the island around a fixed region of the semiconductor element, and the through holes are filled with a resin constituting the resin package.
前記貫通孔の形状は、円形、楕円形または矩形であり、前記貫通孔の幅は、前記隣り合うリード間の離間幅と同等またはそれ以上の幅であることを特徴とする請求項1に記載の半導体装置。 The shape of the through hole is a circle, an ellipse, or a rectangle, and the width of the through hole is equal to or larger than the separation width between the adjacent leads. Semiconductor device. 前記アイランドから延在し、前記樹脂パッケージの裏面側からエッチングされた吊りリードを有し、前記吊りリードのエッチングされた領域には前記樹脂パッケージを構成する樹脂により充填されることを特徴とする請求項1または請求項2に記載の半導体装置。 The suspension lead extending from the island and etched from the back side of the resin package, and the etched region of the suspension lead is filled with a resin constituting the resin package. The semiconductor device according to claim 1 or 2. アイランドと、前記アイランドを囲むように配置された複数のリードと、前記アイランドから延在された吊りリードとを有する搭載部が複数個集合した集合ブロックが設けられ、前記アイランドには、それぞれ複数の貫通孔が設けられたリードフレームを準備し、
前記アイランド上に半導体素子を固着した後、前記半導体素子の電極パッドと前記リードとを銅線によりワイヤーボンディングし、前記集合ブロック内の電気的接続を完了し、
前記集合ブロックを樹脂で被覆し、樹脂パッケージを形成し、前記樹脂パッケージを個片化する半導体装置の製造方法において、
前記貫通孔をワイヤーボンディング装置の載置台に設けられたガス抜き孔上に位置させ、前記搭載部へ供給した不活性ガスを前記貫通孔を介して前記ガス抜き孔から引き抜くことを特徴とする半導体装置の製造方法。
An assembly block is provided in which a plurality of mounting portions each having an island, a plurality of leads arranged so as to surround the island, and a suspension lead extending from the island are provided, and each of the islands includes a plurality of blocks. Prepare a lead frame with through holes,
After fixing the semiconductor element on the island, the electrode pad of the semiconductor element and the lead are wire-bonded with a copper wire, and the electrical connection in the assembly block is completed,
In the method of manufacturing a semiconductor device in which the assembly block is covered with resin, a resin package is formed, and the resin package is separated into pieces,
A semiconductor characterized in that the through hole is positioned on a gas vent hole provided on a mounting table of a wire bonding apparatus, and an inert gas supplied to the mounting portion is extracted from the gas vent hole through the through hole. Device manufacturing method.
前記リードに対応したリード固定領域を有するクランパーにより前記リードを個別に固定することで、前記リードフレームを前記載置台上に配置し、
前記クランパーでは、前記リード固定領域間から前記不活性ガスを供給することを特徴とする請求項4に記載の半導体装置の製造方法。
By individually fixing the leads by a clamper having a lead fixing area corresponding to the leads, the lead frame is disposed on the mounting table,
5. The method of manufacturing a semiconductor device according to claim 4, wherein the clamper supplies the inert gas from between the lead fixing regions.
前記樹脂パッケージを形成するときに前記貫通孔内に前記樹脂を充填させ、前記樹脂パッケージと前記貫通孔内の樹脂とを一体に形成することを特徴とする請求項4または請求項5に記載の半導体装置の製造方法。 The said resin package is filled with the said resin when forming the said resin package, The said resin package and the resin in the said through hole are integrally formed, The Claim 4 or Claim 5 characterized by the above-mentioned. A method for manufacturing a semiconductor device. 前記吊りリードはその裏面からエッチングされ、前記樹脂パッケージを形成するときに前記エッチングされた領域に前記樹脂を充填させ、前記樹脂パッケージと前記エッチングされた領域の樹脂とを一体に形成することを特徴とする請求項4から請求項6のいずれか1項に記載の半導体装置の製造方法。 The suspension lead is etched from the back side, and the resin is filled in the etched region when the resin package is formed, and the resin package and the resin in the etched region are integrally formed. A method for manufacturing a semiconductor device according to any one of claims 4 to 6.
JP2009045569A 2009-02-27 2009-02-27 Manufacturing method of semiconductor device Active JP5411529B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009045569A JP5411529B2 (en) 2009-02-27 2009-02-27 Manufacturing method of semiconductor device
US13/203,439 US8692370B2 (en) 2009-02-27 2010-02-25 Semiconductor device with copper wire ball-bonded to electrode pad including buffer layer
PCT/JP2010/053487 WO2010098500A1 (en) 2009-02-27 2010-02-25 Semiconductor device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045569A JP5411529B2 (en) 2009-02-27 2009-02-27 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2010199491A true JP2010199491A (en) 2010-09-09
JP5411529B2 JP5411529B2 (en) 2014-02-12

Family

ID=42823886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045569A Active JP5411529B2 (en) 2009-02-27 2009-02-27 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5411529B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051849A (en) * 2014-09-01 2016-04-11 株式会社デンソー Semiconductor device
JP2017195344A (en) * 2016-04-22 2017-10-26 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253825A (en) * 1985-05-02 1986-11-11 Toshiba Corp Semiconductor element assembling method
JP2001313363A (en) * 2000-05-01 2001-11-09 Rohm Co Ltd Resin-encapsulated semiconductor device
JP2002083918A (en) * 2000-06-22 2002-03-22 Mitsui High Tec Inc Lead frame and semiconductor device
JP2003303919A (en) * 2002-04-10 2003-10-24 Hitachi Ltd Semiconductor device and its manufacturing method
JP2006318996A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Lead frame and resin sealed semiconductor device
JP2007288093A (en) * 2006-04-20 2007-11-01 Kaijo Corp Work clamp and wire bonding device
JP2008153709A (en) * 2008-03-17 2008-07-03 Sanyo Electric Co Ltd Method of manufacturing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253825A (en) * 1985-05-02 1986-11-11 Toshiba Corp Semiconductor element assembling method
JP2001313363A (en) * 2000-05-01 2001-11-09 Rohm Co Ltd Resin-encapsulated semiconductor device
JP2002083918A (en) * 2000-06-22 2002-03-22 Mitsui High Tec Inc Lead frame and semiconductor device
JP2003303919A (en) * 2002-04-10 2003-10-24 Hitachi Ltd Semiconductor device and its manufacturing method
JP2006318996A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Lead frame and resin sealed semiconductor device
JP2007288093A (en) * 2006-04-20 2007-11-01 Kaijo Corp Work clamp and wire bonding device
JP2008153709A (en) * 2008-03-17 2008-07-03 Sanyo Electric Co Ltd Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051849A (en) * 2014-09-01 2016-04-11 株式会社デンソー Semiconductor device
JP2017195344A (en) * 2016-04-22 2017-10-26 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method and semiconductor device

Also Published As

Publication number Publication date
JP5411529B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5149854B2 (en) Semiconductor device
JP2003243600A (en) Semiconductor device and method of manufacturing the same
JP2010080914A (en) Resin sealing type semiconductor device and method of manufacturing the same, and lead frame
JP2014220439A (en) Method of manufacturing semiconductor device and semiconductor device
US8692370B2 (en) Semiconductor device with copper wire ball-bonded to electrode pad including buffer layer
JP2012109455A (en) Semiconductor device and method of manufacturing the same
KR20120031132A (en) High bond line thickness for semiconductor devices
JP5767294B2 (en) Semiconductor device
JP5411529B2 (en) Manufacturing method of semiconductor device
JP2011091145A (en) Semiconductor device and method of manufacturing the same
TWI453872B (en) Semiconductor package and fabrication method thereof
JP2010258286A (en) Semiconductor device and method of manufacturing the same
JP5585352B2 (en) Lead frame, semiconductor device and manufacturing method thereof
JP5411553B2 (en) Manufacturing method of semiconductor device
JP2010165777A (en) Semiconductor device and method of manufacturing the same
JP2010238947A (en) Semiconductor device and method of manufacturing the same
JP4128088B2 (en) Manufacturing method of semiconductor device
JP5285289B2 (en) Circuit device and manufacturing method thereof
JP2011238663A (en) Method of manufacturing semiconductor device and wire bonding apparatus
JP4066050B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JP2013016851A (en) Method of manufacturing semiconductor device
JP2011204861A (en) Method of manufacturing semiconductor device
JP5385438B2 (en) Semiconductor device
JP4294034B2 (en) Semiconductor device
JP4747188B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5411529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250