JP2010196143A - Method for recovering metal in solution by reduction, and apparatus for recovering the same by reduction - Google Patents

Method for recovering metal in solution by reduction, and apparatus for recovering the same by reduction Download PDF

Info

Publication number
JP2010196143A
JP2010196143A JP2009045534A JP2009045534A JP2010196143A JP 2010196143 A JP2010196143 A JP 2010196143A JP 2009045534 A JP2009045534 A JP 2009045534A JP 2009045534 A JP2009045534 A JP 2009045534A JP 2010196143 A JP2010196143 A JP 2010196143A
Authority
JP
Japan
Prior art keywords
liquid
tank
reducing agent
treatment liquid
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009045534A
Other languages
Japanese (ja)
Other versions
JP5344153B2 (en
Inventor
Mirvariev Rinat
ミルワリエフ・リナート
Kazumi Shimura
一美 志村
Nozomi Hasegawa
望 長谷川
Akira Ishii
暁 石井
Toru Taniguchi
徹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009045534A priority Critical patent/JP5344153B2/en
Publication of JP2010196143A publication Critical patent/JP2010196143A/en
Application granted granted Critical
Publication of JP5344153B2 publication Critical patent/JP5344153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reducing and recovering method for reducing metal ions such as copper and bismuth contained in a solution and efficiently recovering the metal, and to provide an apparatus therefor. <P>SOLUTION: In the method for reducing metal ions by bringing a treatment solution containing the metal ions in contact with a reducing agent and recovering the metal, the method for recovering the metal in the solution by reduction includes: setting a contact part of the treatment solution with the reducing agent at the upper part of the liquid surface of the treatment solution to separate a contact reduction region from the inside of the treatment solution; making the treatment solution which has contacted the reducing agent flow down to a treatment solution tank in a lower part; and recovering precipitated metal which deposits in the treatment solution tank. The apparatus for reducing the metal ions and recovering the metal includes: the treatment solution tank having a solid-liquid separation function; a reducing-agent storage part placed above the liquid surface of the treatment solution tank; a means for extracting the treatment solution and sending it to the reducing agent storage part; and a means for extracting the precipitated metal which has deposited on the bottom of the tank. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液中に含まれる銅やビスマス等の金属イオンを還元して効率よく回収する還元回収方法および装置に関する。   The present invention relates to a reduction recovery method and apparatus for efficiently recovering metal ions such as copper and bismuth contained in a liquid by reduction.

工場排水などに含まれている金属イオンを回収する方法として、これらの金属イオンよりも酸化還元電位が卑な金属を用いて金属イオン還元して析出させ、固液分離して回収する方法および装置は従来から知られている。例えば、銅イオンの鉄による回収は、次式に示すように、液中の銅イオンを鉄によって還元し、析出した銅沈殿を固液分離して回収する方法が知られている。Cu+2+Fe=Fe+2+Cu↓ As a method for recovering metal ions contained in factory effluent, etc., a method and apparatus for performing metal ion reduction and precipitation using a metal having a lower oxidation-reduction potential than these metal ions, and separating and solid-liquid separation. Is conventionally known. For example, the recovery of copper ions by iron is known, as shown in the following formula, in which copper ions in the liquid are reduced by iron and the precipitated copper precipitates are recovered by solid-liquid separation. Cu +2 + Fe = Fe +2 + Cu ↓

具体的には、例えば、銅製錬の溶融スラグから銅を還元回収する装置として、溶融スラグを溜める貯槽、該貯槽中の溶融スラグに接触するように吊下げられた金属鉄接触部、該接触部を上下動する手段を有し、溶融スラグに金属鉄を接触させてスラグ中の銅イオンを還元して析出させ、槽底に堆積する金属銅を回収する装置が知られている(特開平8−193229号)。   Specifically, for example, as an apparatus for reducing and recovering copper from molten slag of copper smelting, a storage tank for storing molten slag, a metal iron contact portion suspended so as to contact the molten slag in the storage tank, the contact portion There is known an apparatus for recovering metallic copper deposited on the bottom of a tank by bringing metallic iron into contact with molten slag, reducing and precipitating copper ions in the slag, and means for moving the metal up and down (Japanese Patent Laid-Open No. Hei 8). -193229).

また、排液などに含まれる銅イオンやビスマスイオンを鉄スクラップや鉄粉を用いて還元し回収する装置として以下の装置が知られている。従来の還元回収装置の概略を図9に示す。
(イ)ドラム型の還元槽に鉄スクラップと元液を供給して反応させ、鉄イオンを含む還元後液と金属銅粉ないし金属ビスマス粉を固液分離して回収する装置。
(ロ)振動する還元槽に鉄スクラップと元液を供給して反応させ、鉄イオンを含む還元後液と金属銅粉ないし金属ビスマス粉を固液分離して回収する装置(米国特許第4201573号公報記載)。
(ハ)還元槽内にコーン型の網状収納部が設けられており、該収納部に鉄スクラップを入れ、槽底から元液を鉄スクラップが浸るように供給し、鉄イオンを含む還元後液を槽上部から溢流させ、金属銅粉ないし金属ビスマス粉を槽底から回収する装置。
(ニ) コーン型の還元槽内に、槽底から供給される元液と槽内に上部から投入される鉄粉とを反応させ、鉄イオンを含む還元後液と金属銅粉ないし金属ビスマス粉を固液分離して回収する装置(米国特許第3154411号公報記載)。
Further, the following apparatuses are known as apparatuses for reducing and recovering copper ions and bismuth ions contained in the drainage liquid using iron scrap or iron powder. An outline of a conventional reduction recovery apparatus is shown in FIG.
(A) An apparatus for supplying iron scrap and original liquid to a drum-type reduction tank and reacting them, and separating and recovering the post-reduction liquid containing iron ions and metallic copper powder or metallic bismuth powder.
(B) An apparatus (US Pat. No. 4,201,573) for supplying iron scrap and an original solution to a vibrating reduction tank and reacting them to separate and recover the post-reduction solution containing iron ions and metallic copper powder or metallic bismuth powder. (Publication).
(C) A cone-shaped net-like storage unit is provided in the reduction tank, iron scrap is put into the storage unit, and the original solution is supplied from the bottom of the tank so that the iron scrap is immersed, and the post-reduction liquid containing iron ions That overflows from the top of the tank and collects metal copper powder or metal bismuth powder from the bottom of the tank.
(D) In a corn type reduction tank, the original liquid supplied from the tank bottom and the iron powder charged from the top into the tank are reacted, and the post-reduction liquid containing iron ions and metallic copper powder or metallic bismuth powder. For solid-liquid separation and recovery (described in US Pat. No. 3,154,411).

特開平8−193229号公報JP-A-8-193229 米国特許第4201573号公報U.S. Pat. No. 4,201,573 米国特許第3154411号公報U.S. Pat. No. 3,154,411

特許文献1の還元回収装置は、本出願人によって提案されたものであり、金属鉄接触部を上下動することによって還元反応を制御し、溶融スラグから銅を効率よく簡単に還元回収することができる利点を有している。ただし金属鉄接触部の上下動手段を必要とする。   The reduction recovery apparatus of patent document 1 was proposed by the present applicant, and can control the reduction reaction by moving the metal iron contact portion up and down to efficiently and easily reduce and recover copper from the molten slag. It has the advantage that it can. However, it requires a means for vertically moving the metal iron contact portion.

上記(イ)〜上記(ニ)の装置は何れも接触還元域が処理液の液中であるため還元反応を制御するのが難しいと云う問題がある。さらに、上記(イ)の装置は鉄スクラップが液中に混在するので固液分離に手間がかかる。また、上記(ロ)の装置は装置全体を振動させるエネルギー消費が多いため経済的に不利である。さらに、上記(ニ)の装置は、鉄粉を用いるので還元反応は早いが、反応のコントロールが難しい。このため還元反応が過剰に進行し、水素ガスなどが発生する問題がある。また鉄スクラップに比べて鉄粉末は価格が高いので経済的に不利である。さらに、鉄粉が回収金属粉中に混入しやすく、また通液量に等しい大量の金属粉含有スラリーを固液分離する必要がある。   All of the above devices (a) to (d) have a problem that it is difficult to control the reduction reaction because the catalytic reduction zone is in the processing liquid. Furthermore, in the apparatus (b), since iron scrap is mixed in the liquid, it takes time to separate the solid and the liquid. Further, the apparatus (b) is economically disadvantageous because it consumes a lot of energy to vibrate the entire apparatus. Furthermore, since the apparatus (d) uses iron powder, the reduction reaction is fast, but the control of the reaction is difficult. Therefore, there is a problem that the reduction reaction proceeds excessively and hydrogen gas or the like is generated. Moreover, since iron powder is expensive compared with iron scrap, it is economically disadvantageous. Furthermore, iron powder is likely to be mixed into the recovered metal powder, and a large amount of metal powder-containing slurry equal to the amount of liquid flow needs to be subjected to solid-liquid separation.

このため、上記(ハ)の装置が広く使われているが、液中での還元反応であるので、反応を直ぐに止められず、温度コントロールやガス発生時の対策を施し難い問題がある。   For this reason, the apparatus (c) is widely used, but since it is a reduction reaction in liquid, the reaction cannot be stopped immediately, and there is a problem that it is difficult to take measures for temperature control and gas generation.

本発明は従来の回収方法ないし回収装置における上記問題を解決したものであり、金属イオンを含有する処理液と還元剤の接触部分を処理液の液面上方に設置することによって接触還元域を該処理液の液中から分離し、還元反応を制御しやすくし、また還元剤が処理液に混入するのを抑制して析出金属の回収を容易にし、処理液槽内で析出金属と上澄み処理液とを分離させることによって、析出金属の回収を容易にすると共に、上澄み処理液を再利用する液中金属の還元回収方法および装置を提供する。   The present invention solves the above-mentioned problems in the conventional recovery method or recovery device, and the contact reduction zone is formed by placing the contact portion between the treatment liquid containing metal ions and the reducing agent above the liquid surface of the treatment liquid. Separating from the treatment liquid, making it easy to control the reduction reaction, and suppressing the mixing of the reducing agent into the treatment liquid, facilitating the recovery of the precipitated metal, and the deposited metal and the supernatant treatment liquid in the treatment liquid tank And a method for recovering and recovering metal in the liquid and reusing the supernatant treatment liquid.

本発明は、以下の構成によって従来の問題を解決した、液中金属の還元回収方法および装置に関する。
〔1〕 金属イオン含有処理液を還元剤に接触させて該金属イオンを還元して回収する方法において、上記処理液と還元剤の接触部分を処理液の液面上方に設置することによって接触還元域を処理液の液中から分離し、還元剤に接触した処理液を下方の処理液槽に流下させ、該処理液槽に堆積する析出金属を回収することを特徴とする液中金属の還元回収方法。
〔2〕 処理液の一部を抜き出し、該処理液槽の液面上方に設置された還元剤に注ぎ入れて処理液と還元剤を接触させ、析出した金属と共に処理液を処理液槽に流下させ、処理液槽は固液分離機能を有しており、析出金属を槽底に沈下させ、一方、槽上部の上澄み処理液を抜き出して還元剤に接触させ、槽底に堆積した析出金属を回収する上記[1]に記載する還元回収方法。
〔3〕 処理液が銅、ビスマス、ヒ素、アンチモンの少なくとも一種を含有し、還元剤として鉄スクラップを用い、処理液に含まれる上記金属イオンを還元して回収する上記[2]に記載する還元回収方法。
〔4〕 固液分離機能を有する処理液槽、該処理液槽の液面上方に設置された還元剤収納部、処理液を抜き出して還元剤収納部に送液する手段、槽底に堆積した析出金属を抜き出す手段を有することを特徴とする金属イオンの還元回収装置。
〔5〕 還元剤収納部が網材または多孔材料によって形成されており、該還元剤収納部に鉄スクラップが収納されている上記[4]に記載する還元回収装置。
〔6〕 処理液槽と共に貯槽が設けられており、処理液が貯槽に供給されると共に、処理液槽の上澄み処理液が貯槽に導入され、処理液を抜き出して還元剤収納部に送液する手段が貯槽に接続している上記[4]または上記[5]に記載する還元回収装置。
〔7〕 処理液の一部を抜き出して還元剤収納部に送る手段として、メカニカルポンプまたはエアリフトが設けられている上記[4]〜上記[6]の何れかに記載する還元回収装置。
〔8〕 処理液を還元剤収納部に送る管路に加熱手段が設けられており、該処理液の温度調節ができる上記[4]〜上記[7]の何れかに記載する還元回収装置。
The present invention relates to a method and apparatus for reducing and recovering metal in a liquid, which has solved the conventional problems with the following configuration.
[1] In a method of reducing a metal ion by bringing a metal ion-containing treatment solution into contact with a reducing agent and recovering the metal ions, contact reduction is performed by placing a contact portion between the treatment solution and the reducing agent above the surface of the treatment solution. The metal in the liquid is characterized by separating the zone from the liquid of the processing liquid, causing the processing liquid in contact with the reducing agent to flow down to the lower processing liquid tank and recovering the deposited metal deposited in the processing liquid tank Collection method.
[2] A part of the processing liquid is extracted, poured into a reducing agent installed above the liquid level of the processing liquid tank, the processing liquid and the reducing agent are brought into contact with each other, and the processing liquid flows down to the processing liquid tank together with the deposited metal. The treatment liquid tank has a solid-liquid separation function, and the deposited metal is allowed to sink to the bottom of the tank. On the other hand, the supernatant treatment liquid is extracted and brought into contact with the reducing agent, and the deposited metal deposited on the tank bottom is removed. The reduction recovery method according to the above [1] for recovery.
[3] The reduction according to [2], wherein the treatment liquid contains at least one of copper, bismuth, arsenic, and antimony, uses iron scrap as a reducing agent, and reduces and recovers the metal ions contained in the treatment liquid. Collection method.
[4] A treatment liquid tank having a solid-liquid separation function, a reducing agent storage section installed above the liquid level of the processing liquid tank, means for extracting the processing liquid and feeding it to the reducing agent storage section, and depositing on the tank bottom An apparatus for reducing and recovering metal ions, comprising means for extracting a deposited metal.
[5] The reduction recovery apparatus according to [4], wherein the reducing agent storage unit is formed of a net material or a porous material, and iron scrap is stored in the reducing agent storage unit.
[6] A storage tank is provided together with the processing liquid tank, the processing liquid is supplied to the storage tank, and the supernatant processing liquid is introduced into the storage tank, and the processing liquid is extracted and sent to the reducing agent storage unit. The reduction recovery apparatus according to [4] or [5], wherein the means is connected to a storage tank.
[7] The reduction recovery apparatus according to any one of [4] to [6], wherein a mechanical pump or an air lift is provided as means for extracting a part of the processing liquid and sending it to the reducing agent storage unit.
[8] The reduction recovery apparatus according to any one of [4] to [7] above, wherein a heating unit is provided in a conduit for sending the treatment liquid to the reducing agent storage unit, and the temperature of the treatment liquid can be adjusted.

本発明の還元回収方法および装置は、処理液と還元剤の接触還元域が液中から分離されており、還元剤を処理液に浸す方法ではなく、鉄スクラップなどの還元剤の表面を処理液が流下する構成であるので、還元剤表面が処理液によって洗われる状態になり、還元剤表面の処理液の流速が大きく、還元剤表面に析出する金属粒子を引き剥がす力が増し、還元反応が促進する。   In the reduction recovery method and apparatus of the present invention, the contact reduction zone of the treatment liquid and the reducing agent is separated from the liquid, and not the method of immersing the reducing agent in the treatment liquid, but the surface of the reducing agent such as iron scrap is treated with the treatment liquid. Therefore, the surface of the reducing agent is washed with the treatment liquid, the flow rate of the treatment liquid on the surface of the reducing agent is large, the force to peel off the metal particles deposited on the surface of the reducing agent is increased, and the reduction reaction is performed. Facilitate.

本発明の還元回収方法および装置では、処理液と共に処理液槽に流下した析出金属は処理液槽の底部に溜まり、一方、処理液上部は析出金属が除かれた上澄みの処理液になり、析出金属と上澄み処理液が槽内で分離する。この上澄み処理液を抜き出し、再び還元剤収納部に戻して還元剤に流し込み、還元反応に利用することができるので、効率よく還元反応を進めることができ、また処理液を繰り返し循環して使用するので低コストで液中金属を回収することができる。   In the reduction and recovery method and apparatus of the present invention, the deposited metal that has flowed down to the treatment liquid tank together with the treatment liquid is accumulated at the bottom of the treatment liquid tank, while the upper part of the treatment liquid becomes a supernatant treatment liquid from which the precipitated metal has been removed. The metal and the supernatant treatment liquid are separated in the tank. The supernatant treatment liquid is extracted, returned to the reducing agent storage section, poured into the reducing agent, and can be used for the reduction reaction. Therefore, the reduction reaction can be efficiently performed, and the treatment liquid is repeatedly circulated and used. Therefore, the metal in the liquid can be recovered at a low cost.

さらに、処理液を槽内から抜き出して還元反応に使用するので、処理液の液温および液量の制御が容易であり、還元反応を制御しやすい。また、処理液を還元剤収納部に送液する手段として、この送液管路に圧縮した空気または不活性ガスまたは還元性ガスまたは圧縮水蒸気を導入して処理液を揚水するエアリフトを用いれば処理液に金属粉が混入しても支障なく装置を運転することができる。   Furthermore, since the treatment liquid is extracted from the tank and used for the reduction reaction, the liquid temperature and the liquid amount of the treatment liquid can be easily controlled, and the reduction reaction can be easily controlled. In addition, as a means for sending the treatment liquid to the reducing agent storage unit, an air lift that pumps the treatment liquid by introducing compressed air, an inert gas, a reducing gas, or compressed steam into the liquid supply pipe line is used. Even if metal powder is mixed in the liquid, the apparatus can be operated without any problem.

本発明の還元回収装置の概略断面図。The schematic sectional drawing of the reduction | restoration collection apparatus of this invention. エアリフトを用いた本発明還元回収装置の概略断面図。The schematic sectional drawing of this invention reduction | restoration collection | recovery apparatus using an air lift. 他のエアリフトを用いた本発明還元回収装置の概略断面図。The schematic sectional drawing of this invention reduction | restoration collection | recovery apparatus using another air lift. 貯槽を設けた本発明の還元回収装置の概略断面図。The schematic sectional drawing of the reduction | restoration collection apparatus of this invention which provided the storage tank. 貯槽の内部に他の加熱手段を設けた本発明の還元回収装置の概略断面図。The schematic sectional drawing of the reduction | restoration collection | recovery apparatus of this invention which provided the other heating means inside the storage tank. 貯槽にエアリフトを設けた本発明の還元回収装置の概略断面図。The schematic sectional drawing of the reduction | restoration collection | recovery apparatus of this invention which provided the air lift in the storage tank. 貯槽に他のエアリフトを設けた本発明の還元回収装置の概略断面図。The schematic sectional drawing of the reduction | restoration collection | recovery apparatus of this invention which provided the other air lift in the storage tank. (イ)〜(ト)、実施例2の結果を示すグラフ。(A) to (G) are graphs showing the results of Example 2. 従来の装置構成を示す模式図。The schematic diagram which shows the conventional apparatus structure.

本発明の還元回収方法および装置について、以下、実施形態に基づいて具体的に説明する。
〔還元回収方法〕
本発明の還元回収方法は、金属イオン含有処理液を還元剤に接触させて該金属イオンを還元して回収する方法において、上記処理液と還元剤の接触部分を処理液の液面上方に設置することによって接触還元域を処理液の液中から分離し、還元剤に接触した処理液を下方の処理液槽に流下させ、該処理液槽に堆積する析出金属を回収することを特徴とする液中金属の還元回収方法である。
The reduction recovery method and apparatus of the present invention will be specifically described below based on embodiments.
[Reduction recovery method]
The reduction recovery method of the present invention is a method in which a metal ion-containing treatment liquid is brought into contact with a reducing agent to reduce and recover the metal ions, and the contact portion between the treatment liquid and the reducing agent is installed above the liquid surface of the treatment liquid. To separate the contact reduction zone from the liquid of the processing liquid, flow down the processing liquid in contact with the reducing agent to the lower processing liquid tank, and collect the deposited metal deposited in the processing liquid tank. This is a method for reducing and recovering metal in liquid.

本発明の還元回収方法は、処理液と還元剤の接触還元を処理液の液面上方で行い、還元剤と接触した処理液を、還元反応によって析出した金属と共に下方の処理液槽に流下させる。処理液と還元剤の接触部分を処理液の液面上方に設置することによって接触還元域が処理液の液中から分離されている。一方、従来の上記(イ)〜上記(ニ)の装置は何れも鉄スクラップや鉄粉を処理液に投入しあるいは処理液に浸漬する構成であり、接触還元域は液中である。このため従来の還元回収方法および装置は還元反応を制御し難く、また還元剤の鉄スクラップ表面に析出金属が付着して還元反応が遅くなるなどの問題がある。   In the reduction recovery method of the present invention, the contact reduction between the treatment liquid and the reducing agent is performed above the liquid surface of the treatment liquid, and the treatment liquid in contact with the reducing agent is caused to flow down to the lower treatment liquid tank together with the metal deposited by the reduction reaction. . The contact reduction zone is separated from the liquid of the processing liquid by placing the contact portion of the processing liquid and the reducing agent above the liquid surface of the processing liquid. On the other hand, any of the conventional apparatuses (A) to (D) is configured to put iron scrap or iron powder into the treatment liquid or to be immersed in the treatment liquid, and the catalytic reduction zone is in the liquid. For this reason, the conventional reduction recovery method and apparatus have problems that it is difficult to control the reduction reaction and that the deposited metal adheres to the iron scrap surface of the reducing agent to slow down the reduction reaction.

本発明の還元回収方法および装置は、接触還元域が処理液の液中から分離されており、処理液の液面上方で接触還元を行うので、処理液の液量や液温を容易に制御することができ、また、鉄スクラップなどの還元剤の表面を処理液が流下するので、還元剤表面が処理液によって洗われる状態になり、還元剤表面の処理液の流速が大きいため、還元剤表面に析出する金属粒子を引き剥がす力が増し、還元反応を促進する。   In the reduction recovery method and apparatus of the present invention, the contact reduction zone is separated from the liquid of the processing liquid, and the catalytic reduction is performed above the liquid level of the processing liquid, so that the liquid volume and liquid temperature of the processing liquid can be easily controlled. In addition, since the treatment liquid flows down the surface of the reducing agent such as iron scrap, the reducing agent surface is washed by the treatment liquid, and the flow rate of the treatment liquid on the reducing agent surface is large. The force to peel off the metal particles deposited on the surface is increased, and the reduction reaction is promoted.

処理液は処理液槽から抜き出して接触還元部に送り、還元剤収納部に流し入れて還元剤と接触させ、処理液中の金属イオンを還元する。処理液の液量は還元剤の使用量に応じて調整すればよい。処理液として、例えば、銅製錬工程で生じる液などを用いることができる。   The processing liquid is extracted from the processing liquid tank, sent to the contact reducing unit, poured into the reducing agent storage unit, brought into contact with the reducing agent, and metal ions in the processing solution are reduced. What is necessary is just to adjust the liquid volume of a process liquid according to the usage-amount of a reducing agent. As a processing liquid, the liquid etc. which arise in a copper smelting process can be used, for example.

還元剤は処理液に含まれる金属よりも卑な金属スクラップが用いられる。具体的には、銅(Cu)、ビスマス(Bi)、ヒ素(As)、アンチモン(Sb)、テルル(Te)などを含む処理液について、還元剤としては鉄が好ましい。還元剤の鉄は鉄粉よりも鉄スクラップが好ましい。鉄粉は板状または塊状の鉄スクラップに比べて表面積が大きく、還元反応も早いが処理液と共に流下して処理液槽の底部に溜まり、ガス発生の原因になり、または析出金属に混入することもしばしば見られるので好ましくない。処理液に含まれる銅、ビスマス、ヒ素、アンチモンは接触還元時間および液温に比例して析出量が増加する。   As the reducing agent, scrap metal that is lower than the metal contained in the treatment liquid is used. Specifically, iron is preferable as the reducing agent for the treatment liquid containing copper (Cu), bismuth (Bi), arsenic (As), antimony (Sb), tellurium (Te), and the like. The reducing agent iron is preferably iron scrap rather than iron powder. Iron powder has a larger surface area than plate-like or lump-like iron scraps, and the reduction reaction is quick, but it flows down with the treatment liquid and collects at the bottom of the treatment liquid tank, causing gas generation or being mixed into the deposited metal. Is also undesirable because it is often seen. The amount of precipitation of copper, bismuth, arsenic and antimony contained in the treatment liquid increases in proportion to the catalytic reduction time and the liquid temperature.

鉄スクラップを用いた場合、処理液に含まれるスズ、ニッケルは殆ど還元されずに液中に残る。従って、銅やビスマスと共にスズ、ニッケルを含む処理液について、鉄還元によって、銅およびビスマスのグループと、スズおよびニッケルのグループとを分離することができる。また、処理液に鉛が含まれている場合、鉛は還元反応の液温が50℃以下ではある程度析出するが、液温が60℃以上では殆ど析出しないので、液温を調整することによって、鉛を液中に残し、または一部を析出させて液中から除去することができる。   When iron scrap is used, tin and nickel contained in the treatment liquid are hardly reduced and remain in the liquid. Therefore, the copper and bismuth group and the tin and nickel group can be separated from the treatment liquid containing tin and nickel together with copper and bismuth by iron reduction. Further, when lead is contained in the treatment liquid, lead precipitates to some extent when the liquid temperature of the reduction reaction is 50 ° C. or lower, but hardly precipitates when the liquid temperature is 60 ° C. or higher, so by adjusting the liquid temperature, Lead can be left in the liquid or removed from the liquid by precipitating a part thereof.

本発明の還元回収方法および装置は、鉄スクラップなどの還元剤の表面を流れた処理液を析出金属と共に処理液槽に流下させる。この処理液槽は固液分離機能を有しており、処理液槽に流下したスラリー状の析出金属は槽底に沈下し、槽上部は析出金属が除かれた上澄み処理液になる。この上澄み処理液を抜き出し、再び還元剤収納部に戻して還元剤に流し込み、還元反応に利用することができる。槽低に堆積した析出金属は槽底の排出口から抜き出して回収する。   In the reduction recovery method and apparatus of the present invention, the treatment liquid flowing on the surface of the reducing agent such as iron scrap is caused to flow down together with the deposited metal into the treatment liquid tank. This treatment liquid tank has a solid-liquid separation function, and the slurry-like deposited metal flowing down into the treatment liquid tank sinks to the bottom of the tank, and the upper part of the tank becomes a supernatant treatment liquid from which the precipitated metal has been removed. The supernatant treatment liquid can be extracted, returned again to the reducing agent storage section, poured into the reducing agent, and used for the reduction reaction. The deposited metal deposited in the tank low is withdrawn from the tank bottom outlet and collected.

本発明の還元回収方法および装置によれば、スラリー状の析出金属は処理液槽の底部に沈下し、槽上部は上澄み処理液になり、この処理液を抜き出して繰り返し循環して使用することができるので還元反応を効率よく進めることができ、かつ低コストで液中金属を回収することができる。   According to the reduction and recovery method and apparatus of the present invention, the slurry-like deposited metal sinks to the bottom of the processing liquid tank, and the upper part of the tank becomes the supernatant processing liquid, and this processing liquid can be extracted and repeatedly circulated for use. Therefore, the reduction reaction can proceed efficiently, and the metal in the liquid can be recovered at low cost.

〔還元回収装置〕
本発明の還元回収装置の構成例を図1〜図7に示す。
図1の装置は、処理液槽10、処理液槽10の液面上方に設置された還元剤収納部11、処理液槽10から処理液を抜き出して還元剤収納部11に送液する循環路12と循環ポンプ13が設けられている。処理液槽10の槽底中央部には堆積したスラリー状の析出金属を抜き出す排出路15が接続しており、排出路15にはバルブ16が設けられている。排出路15の下方には受槽17が設置されている。
[Reduction recovery equipment]
The structural example of the reduction | restoration collection apparatus of this invention is shown in FIGS.
The apparatus of FIG. 1 includes a processing liquid tank 10, a reducing agent storage unit 11 installed above the liquid level of the processing liquid tank 10, and a circulation path for extracting the processing liquid from the processing liquid tank 10 and feeding it to the reducing agent storage unit 11. 12 and a circulation pump 13 are provided. A discharge path 15 for extracting the deposited slurry-like deposited metal is connected to the center of the bottom of the processing liquid tank 10, and a valve 16 is provided in the discharge path 15. A receiving tank 17 is installed below the discharge path 15.

還元剤収納部11は、網材または多孔質の材料によって形成されており、鉄スクラップ18を保持しつつ注入した処理液が下方に流下するように形成されている。循環路12は還元剤収納部11の上方に延びており、循環路12を通じて導入された処理液が鉄スクラップ18に流入される。   The reducing agent storage unit 11 is formed of a net material or a porous material, and is formed so that the processing liquid injected while holding the iron scrap 18 flows downward. The circulation path 12 extends above the reducing agent storage unit 11, and the treatment liquid introduced through the circulation path 12 flows into the iron scrap 18.

処理液槽10の槽内は仕切板14によって区切られており、一方の槽壁側に還元剤収納部11が設けられており、他方の槽壁側に処理液の供給手段20、水蒸気供給手段21が接続している。また、これら供給手段20、21の管路が設けられている区画部分(供給管路側区画と云う)に循環ポンプ(メカニカルポンプ)13が接続している。還元剤収納部11から流れ落ちるスラリー状の析出金属は槽底に堆積し、仕切板14によって阻まれて供給管路側区画に流入しないように形成されている。循環ポンプ13によって供給管路側区画から処理液が抜き出され、循環路12を通じて還元剤収納部11に送られる。   The tank of the processing liquid tank 10 is partitioned by a partition plate 14, a reducing agent storage unit 11 is provided on one tank wall side, and a processing liquid supply means 20 and a water vapor supply means are provided on the other tank wall side. 21 is connected. In addition, a circulation pump (mechanical pump) 13 is connected to a partition portion (referred to as a supply pipeline side partition) where the supply means 20 and 21 are provided. The slurry-like deposited metal that flows down from the reducing agent storage unit 11 is deposited on the bottom of the tank and is blocked by the partition plate 14 so as not to flow into the supply line side section. The processing liquid is extracted from the supply pipe side section by the circulation pump 13 and sent to the reducing agent storage unit 11 through the circulation path 12.

還元剤収納部11に送られた処理液は鉄スクラップ18に散布され、処理液に含まれる銅、ビスマスなど鉄より貴な金属イオンが鉄スクラップに接触して還元される。この還元処理によって生じたスラリー状の析出金属は処理液と共に槽内に流下して槽底に溜まり、排出路15を通じて抜き出される。このように、析出金属が槽底に沈下することによって処理液槽内で固液分離が行われ、液面付近の処理液から析出金属が除かれて上澄み処理液になる。   The processing liquid sent to the reducing agent storage unit 11 is sprayed on the iron scrap 18, and metal ions nobler than iron such as copper and bismuth contained in the processing liquid come into contact with the iron scrap and are reduced. The slurry-like deposited metal generated by the reduction treatment flows into the tank together with the treatment liquid, accumulates in the tank bottom, and is extracted through the discharge path 15. In this way, the deposited metal sinks to the bottom of the tank, so that solid-liquid separation is performed in the processing liquid tank, and the precipitated metal is removed from the processing liquid near the liquid surface to become a supernatant processing liquid.

析出金属が除かれた液面付近の処理液は仕切板14をオーバーフローして供給管路側区画に流入する。この部分には水蒸気供給手段21の管路が設けられており、その管端は槽底付近に延びており、該管路を通じて水蒸気が処理液に導入され、処理液が加熱される。加熱された処理液は循環ポンプ13によって抜き出され、還元剤収納部11に送られて再び還元処理に用いられる。   The treatment liquid near the liquid surface from which the deposited metal has been removed overflows the partition plate 14 and flows into the supply pipe side section. This portion is provided with a pipe for the water vapor supply means 21, the pipe end of which extends near the bottom of the tank, through which water vapor is introduced into the processing liquid and the processing liquid is heated. The heated processing liquid is extracted by the circulation pump 13, sent to the reducing agent storage unit 11, and used again for the reduction processing.

還元剤収納部側の槽底には排液ポンプ19が接続しており、該ポンプ19によって還元処理を経た処理液の大部分が槽外に排出される。また、槽底に堆積したスラリー状の析出金属は排出路15を通じて受槽17に抜き出される。   A drainage pump 19 is connected to the tank bottom on the reducing agent storage unit side, and most of the processing liquid that has undergone the reduction process is discharged out of the tank by the pump 19. The slurry-like deposited metal deposited on the bottom of the tank is extracted to the receiving tank 17 through the discharge path 15.

図2の装置は、処理液の循環手段として、エアリフトが用いられている。エアリフトを用いれば処理液に金属粉等が混入しても支障なく送液することができる。具体的には、図2の装置は、処理液槽10の槽内が仕切板14によって仕切られており、その供給管路側区画に、循環路12、処理液の供給手段20が設けられている。さらに、水蒸気導入手段21およびエアリフトのための圧縮ガス導入手段22が設けられている。その他の構成は図1の装置と同様である。   In the apparatus of FIG. 2, an air lift is used as a circulating means for the processing liquid. If an air lift is used, even if metal powder or the like is mixed into the processing liquid, the liquid can be fed without any trouble. Specifically, in the apparatus of FIG. 2, the inside of the processing liquid tank 10 is partitioned by a partition plate 14, and a circulation path 12 and a processing liquid supply means 20 are provided in the supply pipe side section. . Further, a water vapor introducing means 21 and a compressed gas introducing means 22 for air lift are provided. Other configurations are the same as those of the apparatus of FIG.

循環路12は槽底から還元剤収納部11に延びており、槽底付近に圧縮ガス導入手段22の管路が接続している。該管路を通じて圧縮ガスが循環路12に導入され、これによって処理液が循環路12内で揚水され、還元剤収納部11に送液される。圧縮ガスとして空気、不活性ガス、還元作用を有する気体を用いても良い。   The circulation path 12 extends from the tank bottom to the reducing agent storage unit 11, and a compressed gas introduction means 22 is connected to the vicinity of the tank bottom. The compressed gas is introduced into the circulation path 12 through the pipe line, whereby the processing liquid is pumped up in the circulation path 12 and sent to the reducing agent storage unit 11. Air, an inert gas, or a gas having a reducing action may be used as the compressed gas.

水蒸気導入手段21の管路は循環路12の管内に延びており、該管路を通じて水蒸気が循環路内の処理液に導入されて処理液が加熱される。加熱された処理液は循環路12を通じて還元剤収納部11に送られ、鉄スクラップ18に散布される。処理液に含まれる銅、ビスマスなどの金属イオンは鉄スクラップに接触して還元され、この還元処理によって生じたスラリー状の析出金属は処理液と共に槽内に流下して槽底に溜まる。   The pipe of the water vapor introducing means 21 extends into the pipe of the circulation path 12, and the steam is introduced into the treatment liquid in the circulation path through the pipe to heat the treatment liquid. The heated treatment liquid is sent to the reducing agent storage unit 11 through the circulation path 12 and dispersed on the iron scrap 18. Metal ions such as copper and bismuth contained in the treatment liquid come into contact with iron scrap and are reduced, and the slurry-like deposited metal generated by this reduction treatment flows down into the tank together with the treatment liquid and accumulates at the bottom of the tank.

析出金属が槽底に沈下した液面付近の処理液は仕切板14をオーバーフローして供給管路側区画に流入し、再びエアリフトによって循環路12を通じて還元剤収納部11に送られ、管路を流れる間に水蒸気によって加熱され、加熱された処理液が鉄スクラップに散布され、図1の装置と同様の還元処理が行われる。スラリー状の析出金属は排出路15を通じて取り出される。   The treatment liquid in the vicinity of the liquid surface where the deposited metal has settled on the bottom of the tank overflows the partition plate 14 and flows into the supply pipe side section, and is again sent to the reducing agent storage unit 11 through the circulation path 12 by the air lift and flows through the pipe line. Heated with steam in between, the heated treatment liquid is sprinkled on the iron scrap, and a reduction treatment similar to the apparatus of FIG. 1 is performed. The slurry-like deposited metal is taken out through the discharge passage 15.

図3の装置は、水蒸気導入手段21と圧縮ガス導入手段22の共用管路23が循環路12の内部に形成されている。処理液槽10の槽内は仕切板14によって仕切られており、その供給管路側区画部分に、循環路12と処理液供給手段20の管路が設けられている。循環路12は槽底から還元剤収納部11に延びており、その管内に水蒸気導入手段21と圧縮ガス導入手段22の共用管路23が設けられている。該管路23の上端には水蒸気導入手段21と圧縮ガス導入手段22が接続している。その他の構成は図2の装置と同様である。   In the apparatus of FIG. 3, a common conduit 23 for the water vapor introducing means 21 and the compressed gas introducing means 22 is formed inside the circulation path 12. The inside of the processing liquid tank 10 is partitioned by a partition plate 14, and a circulation path 12 and a processing liquid supply means 20 pipe are provided in the supply pipe side partition portion. The circulation path 12 extends from the tank bottom to the reducing agent storage unit 11, and a common pipeline 23 for the water vapor introduction means 21 and the compressed gas introduction means 22 is provided in the pipe. A water vapor introducing means 21 and a compressed gas introducing means 22 are connected to the upper end of the pipe line 23. Other configurations are the same as those of the apparatus shown in FIG.

共用管路23を通じて圧縮空気などのガスと水蒸気が槽内に導入され、この圧縮ガスによって処理液が循環路12に揚水され、同時に水蒸気によって加熱される。加熱された処理液は循環路12を通じて還元剤収納部11に送液され、図1〜図2の装置と同様の還元処理が行われ、スラリー状の析出金属は排出路15を通じて取り出される。図3に示す装置構成によれば装置を小型に形成することができる。   A gas such as compressed air and water vapor are introduced into the tank through the common pipe 23, and the processing liquid is pumped into the circulation path 12 by the compressed gas and simultaneously heated by the water vapor. The heated processing liquid is sent to the reducing agent storage unit 11 through the circulation path 12, and the reduction process similar to the apparatus of FIGS. 1 to 2 is performed, and the slurry-like deposited metal is taken out through the discharge path 15. According to the apparatus configuration shown in FIG. 3, the apparatus can be formed in a small size.

図4〜図7の装置は、処理液槽10に貯槽30が付設されている。処理液は貯槽30に供給され、貯槽30から還元剤収納部11に送られる。貯槽30を設けることによって、液量の調整が容易になり、また、処理液槽を小型に形成することができる。   4 to 7, a storage tank 30 is attached to the processing liquid tank 10. The processing liquid is supplied to the storage tank 30 and sent from the storage tank 30 to the reducing agent storage unit 11. By providing the storage tank 30, the liquid amount can be easily adjusted, and the processing liquid tank can be formed in a small size.

図4の装置は、処理液槽10には仕切板が設けられておらず、還元剤収納部11は処理液槽10の中央上部に設けられている。処理液槽10の槽底は中央に向かって傾斜しており、排出路15が接続している。還元剤収納部11は網材や多孔質材料によって形成されており、鉄スクラップ18が収納されている。還元剤収納部11に処理液が散布され、処理液に含まれる銅、ビスマスなどの金属イオンが鉄スクラップに接触して還元される。この還元処理によって生じたスラリー状の析出金属は処理液と共に槽内に流下して槽底に溜まり、排出路15を通じて受槽17に抜き出される。また、析出金属が槽底に沈下することによって処理液槽内で固液分離が行われ、液面付近の処理液から析出金属が除かれる。   In the apparatus of FIG. 4, the processing liquid tank 10 is not provided with a partition plate, and the reducing agent storage unit 11 is provided at the upper center of the processing liquid tank 10. The tank bottom of the processing liquid tank 10 is inclined toward the center, and the discharge path 15 is connected. The reducing agent storage unit 11 is formed of a net material or a porous material, and stores iron scrap 18. The treatment liquid is sprayed on the reducing agent storage unit 11, and metal ions such as copper and bismuth contained in the treatment liquid come into contact with the iron scrap and are reduced. The slurry-like deposited metal generated by this reduction treatment flows down into the tank together with the treatment liquid, accumulates at the bottom of the tank, and is extracted to the receiving tank 17 through the discharge path 15. Moreover, when the deposited metal sinks to the bottom of the tank, solid-liquid separation is performed in the treatment liquid tank, and the deposited metal is removed from the treatment liquid near the liquid surface.

貯槽30は管路31および管路32を通じて処理液槽10に接続している。管路31は処理液槽10の液面のやや下側に設けられており、管路32は貯槽30の下部に設けられている。管路32にはバルブ33が設けられている。さらに、貯槽30には処理液の供給手段20および水蒸気導入手段21が設けられている。また貯槽30の底部から還元剤収納部11に至る循環路12が接続している。循環路12には循環ポンプ13が設けられており、排液路34が分岐して接続している。   The storage tank 30 is connected to the processing liquid tank 10 through a pipe line 31 and a pipe line 32. The pipe line 31 is provided slightly below the liquid level of the processing liquid tank 10, and the pipe line 32 is provided below the storage tank 30. A valve 33 is provided in the pipe line 32. Further, the storage tank 30 is provided with a treatment liquid supply means 20 and a water vapor introduction means 21. Further, a circulation path 12 from the bottom of the storage tank 30 to the reducing agent storage unit 11 is connected. A circulation pump 13 is provided in the circulation path 12, and a drainage path 34 is branched and connected.

処理液が供給手段20を通じて貯槽30に供給されると共に、管路31を通じて処理液槽10の上澄み処理液が貯槽30に導入される。貯槽30の処理液には導入手段21を通じて水蒸気が導入され、液温が調整される。貯槽30の処理液は循環路12を通じて還元剤収納部11に送られ、鉄スクラップに散布されて還元処理が行われる。連続処理を必要としない場合には、処理液供給手段20のバルブ、または循環路12のバルブを閉め、排液路34のバルブを開けて、貯槽30内の液を循環ポンプ13によって排出する。次に、処理液槽10のバルブ33を開けて処理液槽中の液の大部分を管路32を通じて貯槽30へ流し込み、排出する。   The processing liquid is supplied to the storage tank 30 through the supply means 20, and the supernatant processing liquid of the processing liquid tank 10 is introduced into the storage tank 30 through the conduit 31. Water vapor is introduced into the treatment liquid in the storage tank 30 through the introduction means 21 to adjust the liquid temperature. The treatment liquid in the storage tank 30 is sent to the reducing agent storage unit 11 through the circulation path 12, and is sprayed on the iron scrap to perform the reduction process. When continuous processing is not required, the valve of the processing liquid supply means 20 or the valve of the circulation path 12 is closed, the valve of the drainage path 34 is opened, and the liquid in the storage tank 30 is discharged by the circulation pump 13. Next, the valve 33 of the processing liquid tank 10 is opened, and most of the liquid in the processing liquid tank flows into the storage tank 30 through the conduit 32 and is discharged.

図5の装置は、加熱手段として、貯槽30に熱交換コイル35が設けられている。貯槽30の処理液は熱交換コイル35によって液温が調整される。その他の構成は図4の装置と同様である。   The apparatus of FIG. 5 is provided with a heat exchange coil 35 in the storage tank 30 as a heating means. The liquid temperature of the processing liquid in the storage tank 30 is adjusted by the heat exchange coil 35. The other structure is the same as that of the apparatus of FIG.

図6の装置は、処理液の循環手段として、エアリフトが貯槽30に設けられている。具体的には、貯槽30の槽内に循環路12、処理液の供給手段20が設けられている。循環路12は槽底から還元剤収納部11に延びており、槽底付近に圧縮ガス導入手段22の管路が接続している。該管路を通じて圧縮ガスが循環路12に導入されることによって処理液が循環路12に揚水され、還元剤収納部11に送液される。圧縮ガスとして空気に代えて、窒素などの不活性ガス、または二酸化硫黄のような還元性ガスを用いても良い。   In the apparatus of FIG. 6, an air lift is provided in the storage tank 30 as means for circulating the processing liquid. Specifically, the circulation path 12 and the treatment liquid supply means 20 are provided in the tank of the storage tank 30. The circulation path 12 extends from the tank bottom to the reducing agent storage unit 11, and a compressed gas introduction means 22 is connected to the vicinity of the tank bottom. When the compressed gas is introduced into the circulation path 12 through the pipe line, the processing liquid is pumped into the circulation path 12 and sent to the reducing agent storage unit 11. Instead of air as the compressed gas, an inert gas such as nitrogen or a reducing gas such as sulfur dioxide may be used.

水蒸気導入手段21の管路は循環路12の管内に延びており、該管路を通じて水蒸気が循環路内の処理液に導入されて処理液が加熱される。加熱された処理液は循環路12を通じて還元剤収納部11に送られ、鉄スクラップ18に散布される。処理液に含まれる銅、ビスマスなどの金属イオンは鉄スクラップに接触して還元され、この還元処理によって生じたスラリー状の析出金属は処理液と共に槽内に流下して槽底に溜まる。その他の構成は図4〜図5の装置と同様である。   The pipe of the water vapor introducing means 21 extends into the pipe of the circulation path 12, and the steam is introduced into the treatment liquid in the circulation path through the pipe to heat the treatment liquid. The heated treatment liquid is sent to the reducing agent storage unit 11 through the circulation path 12 and dispersed on the iron scrap 18. Metal ions such as copper and bismuth contained in the treatment liquid come into contact with iron scrap and are reduced, and the slurry-like deposited metal generated by this reduction treatment flows down into the tank together with the treatment liquid and accumulates at the bottom of the tank. Other configurations are the same as those of the apparatus shown in FIGS.

処理液槽10の液面付近の上澄み処理液は管路31を通じて貯槽30に導かれ、再びエアリフトによって循環路12を通じて還元剤収納部11に送られ、管路を流れる間に水蒸気によって加熱され、加熱された処理液が鉄スクラップに散布され、図4〜図5の装置と同様の還元処理が行われる。   The supernatant treatment liquid in the vicinity of the liquid surface of the treatment liquid tank 10 is guided to the storage tank 30 through the pipe line 31, is again sent to the reducing agent storage unit 11 through the circulation path 12 by the air lift, and is heated by water vapor while flowing through the pipe line, The heated processing liquid is sprayed on the iron scrap, and the reduction process similar to the apparatus of FIGS. 4-5 is performed.

図7の装置は、水蒸気導入手段21と圧縮ガス導入手段22の管路が循環路12の内部に形成されている。貯槽30の槽内に循環路12と処理液供給手段20の管路が設けられている。循環路12は槽底から還元剤収納部11に延びており、その管内に水蒸気導入手段21と圧縮ガス導入手段22の共用管路23が設けられている。該管路23の上端には水蒸気導入手段21と圧縮ガス導入手段22が接続している。その他の構成は図6の装置と同様である。   In the apparatus of FIG. 7, pipes for the water vapor introducing means 21 and the compressed gas introducing means 22 are formed inside the circulation path 12. In the tank of the storage tank 30, a circulation path 12 and a pipe for the processing liquid supply means 20 are provided. The circulation path 12 extends from the tank bottom to the reducing agent storage unit 11, and a common pipeline 23 for the water vapor introduction means 21 and the compressed gas introduction means 22 is provided in the pipe. A water vapor introducing means 21 and a compressed gas introducing means 22 are connected to the upper end of the pipe line 23. Other configurations are the same as those of the apparatus shown in FIG.

共用管路23を通じて圧縮空気と水蒸気が貯槽30の槽内に導入され、この圧縮空気によって処理液が循環路12に揚水され、同時に水蒸気によって加熱される。加熱された処理液は循環路12を通じて還元剤収納部11に送液され、図4〜図6の装置と同様の還元処理が行われる。図7に示す装置構成によれば装置を小型に形成することができる。   Compressed air and water vapor are introduced into the storage tank 30 through the shared pipe 23, and the processing liquid is pumped into the circulation path 12 by the compressed air and simultaneously heated by the water vapor. The heated processing liquid is sent to the reducing agent storage unit 11 through the circulation path 12, and the same reduction processing as that of the apparatus shown in FIGS. According to the apparatus configuration shown in FIG. 7, the apparatus can be formed in a small size.

〔実施例1〕
図1に示す装置を用い、銅製錬工程の排液(1L)について本発明の還元回収方法を実施した。還元剤として鉄スクラップ20gを用いた。処理液の組成は表1(処理前)に示す金属イオンの他に塩酸50g/Lおよび硫酸100g/Lを含む酸性溶液である。この液温を60℃に保ち、60ml/分の流量で処理液槽から抜き出して鉄スクラップに散布し、処理液を循環して還元反応を行った。反応前の処理液の成分と20〜100分間処理したときの処理液の成分を表1に示した。
表1に示すように、ビスマス、ヒ素、銅、アンチモンの液中濃度は処理時間に比例して大幅に低下しており、回収率が高い。一方、ニッケル、錫、鉛の液中濃度は殆ど変わらず、液中に残留している。従って、ビスマス、ヒ素、銅、アンチモンの金属群と、ニッケル、錫、鉛の金属群の分離性が良い。
[Example 1]
Using the apparatus shown in FIG. 1, the reduction and recovery method of the present invention was carried out on the effluent (1 L) of the copper smelting process. As a reducing agent, 20 g of iron scrap was used. The composition of the treatment liquid is an acidic solution containing 50 g / L hydrochloric acid and 100 g / L sulfuric acid in addition to the metal ions shown in Table 1 (before treatment). The liquid temperature was maintained at 60 ° C., and the liquid was extracted from the treatment liquid tank at a flow rate of 60 ml / min and sprayed on iron scrap, and the reduction reaction was performed by circulating the treatment liquid. The components of the treatment liquid before the reaction and the components of the treatment liquid when treated for 20 to 100 minutes are shown in Table 1.
As shown in Table 1, the concentrations of bismuth, arsenic, copper, and antimony in the liquid are greatly reduced in proportion to the treatment time, and the recovery rate is high. On the other hand, the concentrations of nickel, tin, and lead in the liquid remain almost unchanged and remain in the liquid. Accordingly, the separability between the metal group of bismuth, arsenic, copper and antimony and the metal group of nickel, tin and lead is good.

Figure 2010196143
Figure 2010196143

〔実施例2〕
実施例1と同様の装置で、処理液(銅製錬排液)400mlを液温22℃〜70℃(鉛は30℃〜95℃)に調整し、循環流量500ml/分で処理液槽から抜き出して鉄スクラップに散布し、本発明の還元回収方法を実施した。この結果を図8に示した。図8(イ)はビスマスの濃度変化、(ロ)はヒ素の濃度変化、(ハ)は銅の濃度変化、(ニ)はアンチモンの濃度変化、(ホ)は鉛の濃度変化、(ヘ)はスズの濃度変化、(ト)はニッケルの濃度変化を示すグラフである。
[Example 2]
In the same apparatus as in Example 1, 400 ml of the treatment liquid (copper smelting effluent) is adjusted to a liquid temperature of 22 ° C. to 70 ° C. (lead is 30 ° C. to 95 ° C.) and extracted from the treatment liquid tank at a circulation flow rate of 500 ml / min. The reduction recovery method of the present invention was carried out. The results are shown in FIG. Fig. 8 (b) is bismuth concentration change, (b) is arsenic concentration change, (c) is copper concentration change, (d) is antimony concentration change, (e) is lead concentration change, (f) Is a graph showing changes in tin concentration, and (g) is a graph showing changes in nickel concentration.

図5(イ)〜(ニ)に示すように、本発明の還元回収方法によれば、銅、ビスマス、ヒ素、アンチモンは液温が高いほど濃度低下が大きく、回収率が高い。一方、図5(ホ)に示すように、鉛の濃度変化は液温が低いほど大きく、液温が70℃〜95℃では濃度が殆ど変化しないが、液温20℃〜50℃では鉛の濃度が低下する。また、図5(ヘ)(ト)に示すように、スズとニッケルは液温にかかわらず濃度は殆ど変化しない。   As shown in FIGS. 5A to 5D, according to the reduction and recovery method of the present invention, the concentration of copper, bismuth, arsenic, and antimony is larger as the liquid temperature is higher, and the recovery rate is higher. On the other hand, as shown in FIG. 5 (e), the concentration change of lead is larger as the liquid temperature is lower, and the concentration hardly changes when the liquid temperature is 70 ° C to 95 ° C. The concentration decreases. Further, as shown in FIGS. 5F and 5G, the concentrations of tin and nickel hardly change regardless of the liquid temperature.

10−処理液槽、11−還元剤収納部、12−循環路、13−循環ポンプ、14−仕切板、15−排出路、16−バルブ、17−受槽、18−鉄スクラップ、19−排液ポンプ、20−処理液供給手段、21−水蒸気導入手段、22−圧縮ガス導入手段、23−共用管路、30−貯槽、31−管路、32−管路、33−バルブ、34−排液路。 10-treatment liquid tank, 11-reducing agent storage section, 12-circulation path, 13-circulation pump, 14-partition plate, 15-discharge path, 16-valve, 17-receiving tank, 18-iron scrap, 19-drainage Pump, 20-treatment liquid supply means, 21-water vapor introduction means, 22-compressed gas introduction means, 23-shared pipe, 30-storage tank, 31-pipe, 32-pipe, 33-valve, 34-drainage Road.

Claims (8)

金属イオン含有処理液を還元剤に接触させて該金属イオンを還元して回収する方法において、上記処理液と還元剤の接触部分を処理液の液面上方に設置することによって接触還元域を処理液の液中から分離し、還元剤に接触した処理液を下方の処理液槽に流下させ、該処理液槽に堆積する析出金属を回収することを特徴とする液中金属の還元回収方法。
In the method of bringing a metal ion-containing treatment liquid into contact with a reducing agent and reducing and recovering the metal ions, the contact reduction zone is treated by placing the contact portion between the treatment liquid and the reducing agent above the liquid surface of the treatment liquid. A method for reducing and recovering a metal in a liquid, comprising separating a liquid from the liquid and bringing the treatment liquid in contact with the reducing agent down into a treatment liquid tank below, and collecting deposited metal deposited in the treatment liquid tank.
処理液の一部を抜き出し、該処理液槽の液面上方に設置された還元剤に注ぎ入れて処理液と還元剤を接触させ、析出した金属と共に処理液を処理液槽に流下させ、処理液槽は固液分離機能を有しており、析出金属を槽底に沈下させ、一方、槽上部の上澄み処理液を抜き出して還元剤に接触させ、槽底に堆積した析出金属を回収する請求項1に記載する還元回収方法。
A part of the treatment liquid is extracted, poured into a reducing agent installed above the liquid surface of the treatment liquid tank, the treatment liquid and the reducing agent are brought into contact with each other, and the treatment liquid is allowed to flow down into the treatment liquid tank along with the deposited metal, and the treatment is performed. The liquid tank has a solid-liquid separation function, and the deposited metal is allowed to sink to the bottom of the tank. On the other hand, the supernatant treatment liquid is extracted and brought into contact with the reducing agent, and the deposited metal deposited on the bottom of the tank is recovered. The reduction recovery method according to Item 1.
処理液が銅、ビスマス、ヒ素、アンチモンの少なくとも一種を含有し、還元剤として鉄スクラップを用い、処理液に含まれる上記金属イオンを還元して回収する請求項1または請求項2に記載する還元回収方法。
The reduction according to claim 1 or 2, wherein the treatment liquid contains at least one of copper, bismuth, arsenic, and antimony, uses iron scrap as a reducing agent, and reduces and recovers the metal ions contained in the treatment liquid. Collection method.
固液分離機能を有する処理液槽、該処理液槽の液面上方に設置された還元剤収納部、処理液を抜き出して還元剤収納部に送液する手段、槽底に堆積した析出金属を抜き出す手段を有することを特徴とする金属イオンの還元回収装置。
A processing liquid tank having a solid-liquid separation function, a reducing agent storage part installed above the liquid level of the processing liquid tank, means for extracting the processing liquid and feeding it to the reducing agent storage part, and deposited metal deposited on the bottom of the tank An apparatus for reducing and recovering metal ions, characterized by comprising means for extracting.
還元剤収納部が網材または多孔材料によって形成されており、該還元剤収納部に鉄スクラップが収納されている請求項4に記載する還元回収装置。
The reduction recovery apparatus according to claim 4, wherein the reducing agent storage unit is formed of a net material or a porous material, and iron scrap is stored in the reducing agent storage unit.
処理液槽と共に貯槽が設けられており、処理液が貯槽に供給されると共に、処理液槽の上澄み処理液が貯槽に導入され、処理液を抜き出して還元剤収納部に送液する手段が貯槽に接続している請求項4または請求項5に記載する還元回収装置。
A storage tank is provided together with the processing liquid tank, the processing liquid is supplied to the storage tank, and a supernatant processing liquid is introduced into the storage tank, and a means for extracting the processing liquid and feeding it to the reducing agent storage unit is the storage tank. The reduction recovery device according to claim 4 or 5 connected to.
処理液の一部を抜き出して還元剤収納部に送る手段として、メカニカルポンプまたはエアリフトが設けられている請求項4〜請求項6の何れかに記載する還元回収装置。
The reduction recovery apparatus according to any one of claims 4 to 6, wherein a mechanical pump or an air lift is provided as means for extracting a part of the processing liquid and sending it to the reducing agent storage unit.
処理液を還元剤収納部に送る管路に加熱手段が設けられており、該処理液の温度調節ができる請求項4〜請求項7の何れかに記載する還元回収装置。 The reduction recovery apparatus according to any one of claims 4 to 7, wherein a heating unit is provided in a pipe line for sending the treatment liquid to the reducing agent storage unit, and the temperature of the treatment liquid can be adjusted.
JP2009045534A 2009-02-27 2009-02-27 Method and apparatus for reducing and recovering metal in liquid Expired - Fee Related JP5344153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009045534A JP5344153B2 (en) 2009-02-27 2009-02-27 Method and apparatus for reducing and recovering metal in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045534A JP5344153B2 (en) 2009-02-27 2009-02-27 Method and apparatus for reducing and recovering metal in liquid

Publications (2)

Publication Number Publication Date
JP2010196143A true JP2010196143A (en) 2010-09-09
JP5344153B2 JP5344153B2 (en) 2013-11-20

Family

ID=42821155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045534A Expired - Fee Related JP5344153B2 (en) 2009-02-27 2009-02-27 Method and apparatus for reducing and recovering metal in liquid

Country Status (1)

Country Link
JP (1) JP5344153B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141530A (en) * 1979-04-21 1980-11-05 Fujisash Co Reducing method of heavy metal ion
JP2007217760A (en) * 2006-02-17 2007-08-30 Kobelco Eco-Solutions Co Ltd Process for recovery of metal and equipment therefor
JP2010196140A (en) * 2009-02-27 2010-09-09 Mitsubishi Materials Corp Method for recovering bismuth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141530A (en) * 1979-04-21 1980-11-05 Fujisash Co Reducing method of heavy metal ion
JP2007217760A (en) * 2006-02-17 2007-08-30 Kobelco Eco-Solutions Co Ltd Process for recovery of metal and equipment therefor
JP2010196140A (en) * 2009-02-27 2010-09-09 Mitsubishi Materials Corp Method for recovering bismuth

Also Published As

Publication number Publication date
JP5344153B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
TWI385255B (en) Method and apparatus for recovering indium from discarded liquid crystal displays
US20140144788A1 (en) System and process for the continuous recovery of metals
CN105936980A (en) Method for refining copper concentrate
EA005630B1 (en) System and process for recovering copper from a copper-containing material
RU2455599C2 (en) Device and method for producing metals or metal compounds
JP5403224B2 (en) How to recover bismuth
CN202519343U (en) System for recovering copper from waste circuit board
JPH02197533A (en) Separation of valuable metal
JP6874492B2 (en) Method of separating copper or zinc from the leaching object
JP2009097076A (en) Method for recovering valuable material from metal sulfide containing noble metal
CN116411169B (en) Comprehensive utilization method of leadless hot galvanizing scum
CN104762490A (en) Gold concentrate slagging smelting gold extraction method
JP5344153B2 (en) Method and apparatus for reducing and recovering metal in liquid
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
KR20130100332A (en) Apparatus for manufacturing fine powder of high purity silicon
CN212293695U (en) System for recovering gold, silver and copper from high-silver-copper gold-loaded carbon desorption electrolysis waste liquid
JP5320861B2 (en) Operation method of wastewater treatment process of zinc and lead smelting method
JP5165958B2 (en) Noble metal recovery method and copper production method
JPH07300691A (en) Method for adjusting copper ion concentration in electrolyte for removing copper
JP6205290B2 (en) Method for recovering gold or silver from cyanic waste liquid containing gold or silver
JP2009132970A (en) Method for granulating metal particle, and method for separating metal particle in molten salt
JPH079192A (en) Drawing method and device for manufacture of welding wire
JP2007270342A (en) Process for recovery of indium and equipment therefor
JP2013208587A (en) Separation device, and separation method
RU2224806C1 (en) Gold- and silver-containing floatation concentrates production line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees