JP5403224B2 - How to recover bismuth - Google Patents

How to recover bismuth Download PDF

Info

Publication number
JP5403224B2
JP5403224B2 JP2009045425A JP2009045425A JP5403224B2 JP 5403224 B2 JP5403224 B2 JP 5403224B2 JP 2009045425 A JP2009045425 A JP 2009045425A JP 2009045425 A JP2009045425 A JP 2009045425A JP 5403224 B2 JP5403224 B2 JP 5403224B2
Authority
JP
Japan
Prior art keywords
bismuth
liquid
leaching
sulfuric acid
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009045425A
Other languages
Japanese (ja)
Other versions
JP2010196140A (en
Inventor
ミルワリエフ・リナート
一美 志村
望 長谷川
暁 石井
徹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009045425A priority Critical patent/JP5403224B2/en
Publication of JP2010196140A publication Critical patent/JP2010196140A/en
Application granted granted Critical
Publication of JP5403224B2 publication Critical patent/JP5403224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ビスマス共存金属からビスマスを効率良く分離精製して回収する方法に関する。より詳しくは、銅製錬工程で生じる塩酸硫酸酸性溶液などからビスマスを効率良く分離し、精製して高純度の硫酸ビスマスを回収するビスマスの精製回収方法に関する。   The present invention relates to a method for efficiently separating and recovering bismuth from a bismuth coexisting metal. More specifically, the present invention relates to a method for purifying and recovering bismuth in which bismuth is efficiently separated from a hydrochloric acid sulfuric acid acidic solution or the like generated in a copper smelting process and purified to recover high-purity bismuth sulfate.

ビスマスは、銅、鉛などの鉱石中に含まれ、これらの非鉄金属の製錬副産物として産出されている。例えば、銅鉱石に随伴するビスマスの一部は、銅の乾式製錬工程で高熱によって揮発し、煙灰として鉛、砒素、アンチモン等と共にコットレル等に捕集され、これらは更に鉛製錬工程に送られて分離回収される。   Bismuth is contained in ores such as copper and lead, and is produced as a smelting byproduct of these non-ferrous metals. For example, a part of bismuth accompanying copper ore is volatilized by high heat in the copper dry smelting process and is collected as smoky ash together with lead, arsenic, antimony, etc. in cotrel, and these are further sent to the lead smelting process. Separated and recovered.

一方、粗銅中に残留したビスマスは、銅の電解精製工程において他の不純物と共に電解液または電解スライム中に分配される。銅電解液中のビスマスなどの不純物は、これを一定濃度以下に保つため、電解液の一部を系外除去し、様々の方法で浄液が行われる。一方、電解スライム中に貴金属、セレン、テルル、鉛などと共に濃縮されたビスマスについては、乾式処理によってスラグとして分離され、鉛製錬工程に送られる。また、最近は、銅電解スライム中の貴金属を湿式処理によって回収する方法も確立されている。この方法では、ビスマスは貴金属回収工程の排水中に濃縮し、銅製錬の排水処理工程へ送られる。このため大量の排水スラッジにビスマスが含まれており、これは銅製錬工程へ戻され、繰返し処理される。   On the other hand, bismuth remaining in the crude copper is distributed in the electrolytic solution or the electrolytic slime together with other impurities in the copper electrolytic purification process. In order to keep impurities such as bismuth in the copper electrolyte at a certain concentration or less, a part of the electrolyte is removed from the system and purified by various methods. On the other hand, bismuth concentrated together with noble metals, selenium, tellurium, lead, etc. in electrolytic slime is separated as slag by dry processing and sent to the lead smelting process. Recently, a method for recovering noble metals in copper electrolytic slime by wet processing has also been established. In this method, bismuth is concentrated in the wastewater of the precious metal recovery process and sent to the wastewater treatment process of copper smelting. For this reason, bismuth is contained in a large amount of wastewater sludge, which is returned to the copper smelting process and repeatedly processed.

銅製錬で生じる酸性溶液中のビスマスを回収する様々な方法が従来から知られている。例えば、(イ)特許第3350917号公報には、電解液中のアンチモン、ビスマスをキレート樹脂に吸着させ、これらを選択的に溶離して回収する方法が記載されている。(ロ)特許第3704266号公報には、塩酸酸性溶液を中和してビスマスを選択的に沈殿させ、固液分離して回収した固形分を再溶解した後に、液中のビスマスを卑な金属で還元し、粗ビスマスを回収する方法が記載されている。(ハ)特開2003−213350号公報には、水溶液中のビスマスを配位結合する樹脂(MRT樹脂)に吸着させた後、樹脂中のビスマスを熱硫酸溶液で溶離し、溶離液を冷却・ろ過し、硫酸ビスマスを回収する方法が記載されている(図4参照)。   Various methods for recovering bismuth in an acidic solution produced by copper smelting are conventionally known. For example, (a) Japanese Patent No. 3350917 describes a method in which antimony and bismuth in an electrolytic solution are adsorbed on a chelate resin, and these are selectively eluted and recovered. (B) Japanese Patent No. 3704266 discloses a method in which an acidic solution of hydrochloric acid is neutralized to selectively precipitate bismuth, and solids separated by solid-liquid separation are redissolved, and then bismuth in the liquid is converted into a base metal. In which the crude bismuth is recovered. (C) In Japanese Patent Application Laid-Open No. 2003-213350, after adsorbing bismuth in an aqueous solution to a resin (MRT resin) that coordinates and bonds, bismuth in the resin is eluted with a hot sulfuric acid solution, and the eluent is cooled. A method of filtering and recovering bismuth sulfate is described (see FIG. 4).

特許第3350917号公報Japanese Patent No. 3350917 特許第3704266号公報Japanese Patent No. 3704266 特開2003−213350号公報JP 2003-213350 A

上記(イ)の方法は、処理工程が複雑であり、また溶離液は塩酸性のため、塩素イオンの一部が電解液中に混入する可能性が高い。上記(ロ)の方法は、溶液中の酸濃度が高いと中和剤の消費量が多く、pH調整(維持)が難しい。またPb,Sn,Sb,Teが共存している場合、これらが共沈し、ビスマスを選択的に沈殿させることが難しい。上記(ハ)の方法は、塩酸性溶液中のビスマスイオンはBiCl6 -3の形で存在し、MRT樹脂にこの塩化物イオンの形態で吸着されるので、硫酸で溶離したときにビスマスと共に塩素イオンが溶離液中に移行し、ビスマス回収のため溶離液を冷却する際に硫酸ビスマスが効率良く沈殿し難いと云う問題がある。 In the method (a), the processing steps are complicated, and the eluent is hydrochloric acid, so that there is a high possibility that a part of chlorine ions is mixed in the electrolytic solution. In the method (b), when the acid concentration in the solution is high, the consumption of the neutralizing agent is large, and pH adjustment (maintenance) is difficult. Moreover, when Pb, Sn, Sb, and Te coexist, they coprecipitate and it is difficult to selectively precipitate bismuth. In the method (c), bismuth ions in a hydrochloric acid solution exist in the form of BiCl 6 -3 and are adsorbed on the MRT resin in the form of chloride ions. There is a problem that bismuth sulfate is not easily precipitated efficiently when ions migrate into the eluent and the eluent is cooled for bismuth recovery.

本発明の回収方法は、従来の回収方法における上記問題を解決したものであり、樹脂によるビスマスの吸着分離に代えて、ビスマス含有溶液の鉄還元を行い、その還元滓を硫酸浸出して塩素イオンを含まない浸出液にし、これを冷却して硫酸ビスマスを効率良く選択的に沈殿させる方法を提供する。   The recovery method of the present invention solves the above-mentioned problems in the conventional recovery method. Instead of adsorption separation of bismuth by a resin, iron reduction of a bismuth-containing solution is performed, and the reduced soot is leached with sulfuric acid to remove chloride ions. And a method for efficiently and selectively precipitating bismuth sulfate.

本発明によれば、以下の構成によって上記課題を解決したビスマスの回収方法が提供される。
〔1〕ビスマスイオンを含有する酸性溶液を還元処理してビスマスを含む還元滓を生成させ(還元工程)、該還元滓に熱濃硫酸を加えてビスマスを浸出し(浸出工程)、固液分離した濾液を冷却して硫酸ビスマスを析出させ(冷却析出工程)、これを固液分離して硫酸ビスマスを回収する(回収工程)ことを特徴とするビスマスの回収方法。
〔2〕硫酸ビスマス回収工程の後に、その濾液(濃硫酸)の少なくとも一部を加熱してビスマス浸出工程に返送する工程を有し、返送した濾液をビスマス浸出の熱濃硫酸として再利用する上記[1]に記載するビスマスの回収方法。
〔3〕 ビスマスイオンを含有する酸性溶液が、銅製錬工程の塩酸酸性溶液、硫酸酸性溶液、または塩酸硫酸酸性溶液である上記[1]または上記[2]に記載するビスマスの回収方法。
〔4〕ビスマス浸出工程の熱濃硫酸が硫酸濃度8モル以上であって液温40℃以上である上記[1]〜上記[3]の何れかに記載するビスマスの回収方法。
〔5〕還元滓の浸出スラリーを固液分離して浸出残渣を除去し、濾液を攪拌しながら冷却して硫酸ビスマスを析出させる上記[1]〜上記[4]の何れかに記載するビスマスの回収方法。
〔6〕銅製錬工程の酸性溶液を還元して、共存金属の一部を液中に残したまま、ビスマスを含む還元滓を生成させ、固液分離して回収した還元滓を熱濃硫酸で浸出し、この浸出スラリーを固液分離して浸出残渣を除去し、一方、ビスマスを含む濾液を冷却して、一部溶解した共存金属イオンを液中に残したまま、硫酸ビスマスを結晶化することによって、共存金属を分離してビスマスを精製する上記[1]〜上記[5]の何れかに記載するビスマスの回収方法。
〔7〕上記[6]の回収方法において、ビスマスと共に、ヒ素、銅、アンチモン、鉛、スズ、ニッケルを含有する硫酸塩酸酸性溶液を鉄還元処理して、ビスマスと共にヒ素、銅、アンチモンの少なくとも1種を含む還元滓を生成させ、一方、液中に鉛、スズ、ニッケルの金属イオンを残し、次いで、固液分離した還元滓を熱濃硫酸で浸出し、浸出残渣を固液分離し、浸出液を攪拌しながら冷却して硫酸ビスマスを析出させ、一方、ヒ素、銅、アンチモンの少なくとも1種の共存金属イオンを液中に残し、固液分離して硫酸ビスマスを回収するビスマスの回収方法
〔8〕ビスマスの浸出工程、冷却析出工程、回収工程、返送工程を繰り返すことによって、浸出スラリーを固液分離した濾液中の金属イオン濃度を安定化する上記[2]〜上記[7]の何れかに記載するビスマスの回収方法。


According to the present invention, there is provided a method for recovering bismuth that solves the above problems by the following configuration.
[1] Reduction treatment of an acidic solution containing bismuth ions to produce reduced soot containing bismuth (reduction process), hot concentrated sulfuric acid is added to the reduced soot to leach bismuth (leaching process), and solid-liquid separation The recovered filtrate is cooled to precipitate bismuth sulfate (cooling precipitation step), and this is solid-liquid separated to recover bismuth sulfate (recovery step).
[2] The step of heating at least a part of the filtrate (concentrated sulfuric acid) after the bismuth sulfate recovery step and returning it to the bismuth leaching step, and recycling the returned filtrate as hot concentrated sulfuric acid for bismuth leaching The method for recovering bismuth according to [1].
[3] The method for recovering bismuth according to [1] or [2] above, wherein the acidic solution containing bismuth ions is a hydrochloric acid acidic solution, a sulfuric acid acidic solution, or a hydrochloric acid sulfuric acid acidic solution in a copper smelting step.
[4] The method for recovering bismuth according to any one of [1] to [3] above, wherein the hot concentrated sulfuric acid in the bismuth leaching step has a sulfuric acid concentration of 8 mol or higher and a liquid temperature of 40 ° C. or higher.
[5] The leaching slurry of reduced soot is solid-liquid separated to remove the leaching residue, and the filtrate is cooled with stirring to precipitate bismuth sulfate. The bismuth sulfate according to any one of [1] to [4] above Collection method.
[6] Reduce the acidic solution of the copper smelting process to produce reduced soot containing bismuth while leaving a part of the coexisting metal in the liquid, and separate the recovered soot collected by solid-liquid separation with hot concentrated sulfuric acid. The leaching slurry is solid-liquid separated to remove the leaching residue, while the filtrate containing bismuth is cooled to crystallize bismuth sulfate while leaving partially dissolved coexisting metal ions in the liquid. The method for recovering bismuth according to any one of [1] to [5] above, wherein the bismuth is purified by separating the coexisting metal.
[7] In the recovery method of [6] above, an acidic solution containing sulfuric acid containing arsenic, copper, antimony, lead, tin, nickel together with bismuth is subjected to iron reduction treatment, and at least one of arsenic, copper, and antimony together with bismuth. Reduced soot containing seeds is produced, while lead, tin, and nickel metal ions are left in the liquid, and then the solid-liquid separated reduced soot is leached with hot concentrated sulfuric acid, and the leaching residue is separated into solid and liquid. the precipitate of bismuth sulfate and cooled with stirring, while arsenic, copper, leaving at least one coexisting metal ions antimony in the liquid, the recovery method of bismuth the recovery of bismuth sulfate and solid-liquid separation.
[8] Any of the above [2] to [7], which stabilizes the metal ion concentration in the filtrate obtained by solid-liquid separation of the leaching slurry by repeating the bismuth leaching step, the cooling precipitation step, the recovery step, and the return step. A method for recovering bismuth as described above.


本発明の回収方法は、ビスマス含有溶液の鉄還元を行い、その還元滓を硫酸浸出し、この浸出液を冷却して硫酸ビスマスを沈殿させる方法であり、浸出液が塩素イオンを含まないため硫酸ビスマスが選択的に効率良く析出し、純度99wt%以上の硫酸ビスマスを回収することができる。   The recovery method of the present invention is a method of performing iron reduction of a bismuth-containing solution, leaching the reduced soot with sulfuric acid, and cooling this leachate to precipitate bismuth sulfate. Since the leachate does not contain chloride ions, Preferentially and efficiently precipitated, bismuth sulfate having a purity of 99 wt% or more can be recovered.

本発明の回収方法は、樹脂によるビスマスの吸着分離を行わないので、低コストでビスマスを回収することができる。具体的には、例えば、ビスマス含有溶液の鉄還元を安価な鉄スクラップを用いて行うことができ、また還元滓の浸出に用いる硫酸も安価であり、硫酸ビスマスの析出も浸出液の液温の調整によって行い、これら各工程は何れも低コストで実施することができるので、本発明の回収方法は経済性に優れている。   Since the recovery method of the present invention does not perform adsorption separation of bismuth with a resin, bismuth can be recovered at a low cost. Specifically, for example, iron reduction of a bismuth-containing solution can be performed using inexpensive iron scrap, sulfuric acid used for leaching reduced soot is also inexpensive, precipitation of bismuth sulfate and adjustment of the temperature of the leachate Since each of these steps can be carried out at a low cost, the recovery method of the present invention is excellent in economic efficiency.

本発明の回収方法は、ビスマスと他の共存金属を含む溶液からビスマスを選択的に分離し回収することができるので、銅製錬工程の排液などについて、ビスマスと共に、ヒ素、銅、アンチモン、鉛、スズ、ニッケルなどを含有する硫酸塩酸酸性溶液からビスマスを選択的に分離し精製回収する方法として好適である。   Since the recovery method of the present invention can selectively separate and recover bismuth from a solution containing bismuth and other coexisting metals, bismuth, arsenic, copper, antimony, lead, etc., for effluent of the copper smelting process It is suitable as a method for selectively separating, purifying and recovering bismuth from an acidic sulfuric acid solution containing tin, nickel and the like.

本発明の処理工程の概略を示す工程図。Process drawing which shows the outline of the process of this invention. 本発明の鉄還元工程に用いる装置の概略図。The schematic of the apparatus used for the iron reduction process of this invention. 実施例のBi還元の処理効果を示すグラフ。The graph which shows the processing effect of Bi reduction | restoration of an Example. 従来の処理工程の概略を示す工程図。Process drawing which shows the outline of the conventional process process.

本発明の回収方法は、ビスマスイオンを含有する酸性溶液を還元処理してビスマスを含む還元滓を生成させ(還元工程)、該還元滓に後工程で分離した熱濃硫酸を加えてビスマスを浸出し(浸出工程)、固液分離した濾液を冷却して硫酸ビスマスを析出させ(冷却析出工程)、これを固液分離して硫酸ビスマスを回収し(回収工程)、この濾液(濃硫酸)を加熱して上記浸出工程に戻してビスマスの溶解に使用する(返送工程)ことを特徴とするビスマスの回収方法である。   In the recovery method of the present invention, an acidic solution containing bismuth ions is reduced to produce reduced soot containing bismuth (reduction process), and hot concentrated sulfuric acid separated in a subsequent process is added to the reduced soot to leach bismuth. (Leaching step), the filtrate separated by solid-liquid separation is cooled to precipitate bismuth sulfate (cooling precipitation step), this is solid-liquid separated to recover bismuth sulfate (recovery step), and the filtrate (concentrated sulfuric acid) is recovered. A method for recovering bismuth, characterized by being heated and returned to the leaching step and used for dissolving bismuth (returning step).

本発明の処理工程の概略を図1に示す。図1の処理工程は、ビスマス含有溶液を鉄還元する工程、この還元滓に後工程で分離した熱濃硫酸を加えてビスマスを浸出する工程、この浸出スラリーを固液分離し、浸出残渣を系外に送り、濾液(ビスマス浸出液)を冷却して硫酸ビスマスを析出させる工程、これを固液分離して硫酸ビスマスを回収する工程、この濾液(濃硫酸)を加熱して上記浸出工程に戻してビスマスの溶解に使用し、一部の濾液を排水する返送工程を有している。   An outline of the processing steps of the present invention is shown in FIG. The processing step in FIG. 1 includes a step of iron-reducing the bismuth-containing solution, a step of adding hot concentrated sulfuric acid separated in the subsequent step to leaching out bismuth, and a solid-liquid separation of the leaching slurry, and a leaching residue as a system. The process of cooling the filtrate (bismuth leachate) to precipitate bismuth sulfate, the step of recovering bismuth sulfate by solid-liquid separation, and heating the filtrate (concentrated sulfuric acid) to return to the leaching step. It is used to dissolve bismuth and has a return process that drains some of the filtrate.

ビスマス含有液(処理液と云う場合がある)は、銅製錬において生じる酸性溶液を用いることができる。銅製錬の排出液(塩酸酸性、硫酸酸性、または塩酸硫酸酸性の溶液)にビスマス、ヒ素、銅、アンチモン、鉛、スズ、ニッケルなどが含まれている。この金属イオン含有酸性溶液から本発明の処理方法によってビスマスを回収することができる。   As the bismuth-containing liquid (sometimes referred to as a treatment liquid), an acidic solution generated in copper smelting can be used. Copper smelting effluent (hydrochloric acid, sulfuric acid acid, or hydrochloric acid sulfuric acid solution) contains bismuth, arsenic, copper, antimony, lead, tin, nickel, etc. Bismuth can be recovered from the metal ion-containing acidic solution by the treatment method of the present invention.

〔Bi還元工程〕
ビスマスより卑な金属、例えば、鉄を還元剤として用い、ビスマス含有液に鉄を投入してビスマスを還元させれば良い。例えば、鉄粉を使用した場合には、還元反応は早いが、鉄粉の添加速度や終点のコントロールが難しいため、未反応の鉄粉が処理液槽の底部に溜まり、ガス発生の原因にもなり、また、鉄粉が還元滓に混入することもよくあるので、鉄粉より鉄板や鉄スクラップが好ましい。また鉄粉のコストに比べて鉄板や鉄スクラップの使用は経済的である。
[Bi reduction process]
What is necessary is just to reduce | restore bismuth by using iron as a reducing agent, for example, iron as a reducing agent, throwing iron into a bismuth containing liquid. For example, when iron powder is used, the reduction reaction is fast, but it is difficult to control the addition rate and end point of the iron powder, so unreacted iron powder accumulates at the bottom of the treatment tank, causing gas generation. In addition, since iron powder is often mixed into the reduced soot, an iron plate or iron scrap is preferable to iron powder. In addition, the use of iron plates and iron scrap is more economical than the cost of iron powder.

鉄板や鉄スクラップを還元剤として使用した場合、例えば、図2に示す装置のように、接触還元域を液面上方に設置することによって、ビスマス含有液を上方から流して鉄と接触させ、流下させるようにして還元を行うと、液量や液温を容易に制御することができ、また、鉄の表面がビスマス含有液によって洗われる状態になり、析出する金属粒子を引き剥がす力が増し、還元反応が促進される。   When an iron plate or iron scrap is used as the reducing agent, for example, as shown in the apparatus shown in FIG. 2, the contact reduction zone is installed above the liquid surface, so that the bismuth-containing liquid flows from above and contacts the iron. When the reduction is performed, the amount of liquid and the temperature of the liquid can be easily controlled, and the surface of the iron is washed with the bismuth-containing liquid, and the power to peel off the precipitated metal particles is increased. Reduction reaction is promoted.

図2の装置は、処理液槽10、処理液槽10の液面上方に設置された還元剤収納部11、処理液槽10から処理液を抜き出して還元剤収納部11に送液する循環路12と循環ポンプ13が設けられている。処理液槽10の槽底中央部には堆積したスラリー状の析出金属を抜き出す排出路15が接続しており、排出路15にはバルブ16が設けられている。排出路15の下方には受槽17が設置されている。   The apparatus of FIG. 2 includes a processing liquid tank 10, a reducing agent storage unit 11 installed above the liquid level of the processing liquid tank 10, and a circulation path that extracts the processing liquid from the processing liquid tank 10 and sends the processing liquid to the reducing agent storage unit 11. 12 and a circulation pump 13 are provided. A discharge path 15 for extracting the deposited slurry-like deposited metal is connected to the center of the bottom of the processing liquid tank 10, and a valve 16 is provided in the discharge path 15. A receiving tank 17 is installed below the discharge path 15.

還元剤収納部11は、網材または多孔質の材料によって形成されており、鉄スクラップ18を保持しつつ注入した処理液が下方に流下するように形成されている。循環路12は処理液槽10の底部から還元剤収納部11の上方に延びており、循環路12を通じて導入された処理液が鉄スクラップ18に散布され、処理液に含まれるビスマス、ヒ素、銅などの金属イオンが鉄スクラップに接触して還元される。   The reducing agent storage unit 11 is formed of a net material or a porous material, and is formed so that the processing liquid injected while holding the iron scrap 18 flows downward. The circulation path 12 extends from the bottom of the treatment liquid tank 10 to above the reducing agent storage part 11, and the treatment liquid introduced through the circulation path 12 is sprayed on the iron scrap 18, and bismuth, arsenic, copper contained in the treatment liquid. Such metal ions come into contact with iron scrap and are reduced.

この還元処理によって生じたスラリー状の析出金属は処理液と共に槽内に流下して槽底に溜まり、排出路15を通じて外部に抜き出される。また、析出金属が槽底に沈下することによって処理液槽内で固液分離が行われ、液面付近の処理液から析出金属が除かれて上澄み処理液になる。この上澄み処理液は仕切板14をオーバーフローして供給管路側の区画に流入する。この部分には、処理液の供給手段20と、水蒸気供給手段21の管路が設けられており、その管端は槽底付近に延びており、該管路を通じて水蒸気が処理液に導入され、処理液が加熱される。加熱された処理液は循環ポンプ13によって抜き出され、循環路12を通じて還元剤収納部11に送られて再び還元処理に用いられる。   The slurry-like deposited metal generated by this reduction treatment flows down into the tank together with the treatment liquid, accumulates at the tank bottom, and is extracted outside through the discharge path 15. In addition, when the deposited metal sinks to the bottom of the tank, solid-liquid separation is performed in the processing liquid tank, and the precipitated metal is removed from the processing liquid near the liquid surface to become a supernatant processing liquid. This supernatant treatment liquid overflows the partition plate 14 and flows into the compartment on the supply line side. This portion is provided with a processing liquid supply means 20 and a water vapor supply means 21 pipe line, the pipe ends extending near the bottom of the tank, through which water vapor is introduced into the processing liquid, The treatment liquid is heated. The heated processing liquid is extracted by the circulation pump 13, sent to the reducing agent storage unit 11 through the circulation path 12, and used again for the reduction process.

上記鉄還元によって、処理液のビスマスは還元されて析出する。一方、処理液に含まれるスズ、ニッケル、鉛は殆ど還元されずに液中に残る。従って、ビスマスと共に銅、スズ、ニッケル、鉛を含む処理液は、鉄還元によって、銅およびビスマスのように還元されて還元滓に含まれるグループと、スズおよびニッケル、鉛のように液中に残存するグループとに分離することができる。   By the iron reduction, bismuth in the treatment liquid is reduced and deposited. On the other hand, tin, nickel, and lead contained in the treatment liquid are hardly reduced and remain in the liquid. Therefore, the treatment liquid containing copper, tin, nickel, and lead together with bismuth is reduced by iron reduction as copper and bismuth and contained in the reduced soot, and remains in the liquid as tin, nickel, and lead. Can be separated into groups.

ビスマスの還元は処理液の液温が高いほど促進される。例えば、液温30℃では、90%程度のビスマスの回収率を得るために還元処理には1時間が必要なのに対し、液温95℃の場合には還元処理時間を20分以内までに短縮することができる(図3)。   The reduction of bismuth is promoted as the solution temperature increases. For example, at a liquid temperature of 30 ° C., the reduction process requires 1 hour to obtain a recovery rate of about 90% bismuth, whereas at a liquid temperature of 95 ° C., the reduction process time is shortened to within 20 minutes. (Figure 3).

〔還元滓の浸出工程〕
還元滓に、液温40℃以上および硫酸濃度8モル以上の熱濃硫酸を加えてビスマスを浸出する。この熱濃硫酸は後工程で固液分離した濾液を加熱して再利用するのが好ましい。液温は40℃〜80℃が適当である。液温が40℃より低いとビスマスの浸出が遅い。また、硫酸濃度が8モル未満ではビスマスの浸出が遅い。硫酸濃度は8モル〜12モルが好ましい。浸出条件は、例えば、還元滓:硫酸性浸出液の固液比1:40、液温80℃、濃度9モルの熱濃硫酸を用い、3時間浸出を行えば良い。
[Reduction soot leaching process]
Bismuth is leached by adding hot concentrated sulfuric acid having a liquid temperature of 40 ° C. or higher and a sulfuric acid concentration of 8 mol or higher to the reducing soot. This hot concentrated sulfuric acid is preferably reused by heating the filtrate which has been solid-liquid separated in the subsequent step. The liquid temperature is suitably 40 ° C to 80 ° C. When the liquid temperature is lower than 40 ° C., the leaching of bismuth is slow. Further, when the sulfuric acid concentration is less than 8 mol, the leaching of bismuth is slow. The sulfuric acid concentration is preferably 8 to 12 mol. The leaching conditions may be, for example, leaching for 3 hours using hot concentrated sulfuric acid having a solid-liquid ratio of reduced soot: sulfuric leachate of 1:40, a liquid temperature of 80 ° C., and a concentration of 9 mol.

還元滓にビスマスと共にヒ素、銅、アンチモンなどが含まれている場合、浸出処理によってビスマスが選択的に液中に溶出し、一方、ヒ素、銅、アンチモンはおのおの一部が液中に溶出するが、大部分は浸出残渣に残る。この浸出スラリーを固液分離して浸出残渣を回収し、これを製錬工程に送り、上記残留金属を回収することができる。   If the reduced soot contains arsenic, copper, antimony, etc. along with bismuth, the leaching process will selectively elute bismuth into the liquid, while arsenic, copper, and antimony will each partially elute into the liquid. Most of it remains in the leach residue. The leaching slurry is separated into solid and liquid to recover the leaching residue, which is sent to the smelting process to recover the residual metal.

〔冷却析出・回収工程〕
浸出スラリーを固液分離して得た浸出液を冷却して硫酸ビスマスを析出させる。浸出液を攪拌しながら室温まで冷却すると、無色な浸出液中に白色の硫酸ビスマス結晶が析出する。これを固液分離して硫酸ビスマスを回収する。硫酸ビスマス結晶の純度および粒径制御のため、熱交換コイルなど冷却機能を備えている設備を用い、さらに回収した硫酸ビスマスの一部を種晶として添加すれば良い。
[Cooling precipitation / recovery process]
The leachate obtained by solid-liquid separation of the leach slurry is cooled to precipitate bismuth sulfate. When the leachate is cooled to room temperature while stirring, white bismuth sulfate crystals are precipitated in the colorless leachate. This is separated into solid and liquid to recover bismuth sulfate. In order to control the purity and particle size of the bismuth sulfate crystal, a facility having a cooling function such as a heat exchange coil may be used, and a part of the recovered bismuth sulfate may be added as a seed crystal.

〔濾液返送工程〕
硫酸ビスマスを固液分離した濾液は1リッター当り数グラムのビスマスイオンを含む高濃度の硫酸性溶液であるので、この大部分を40℃以上に加熱して還元滓の浸出工程に返送し、ビスマスの浸出に再利用する。浸出液中の不純物濃度に応じて濾液の一部を排水する。たとえば、濾液の約90%を返送し、残り約10%を排水すれば良い。また、浸出工程に返送する液量または硫酸濃度調節のため、水および濃硫酸を補給すれば良い。
[Filtrate return process]
Since the filtrate obtained by solid-liquid separation of bismuth sulfate is a high-concentration sulfuric acid solution containing several grams of bismuth ions per liter, most of this is heated to 40 ° C. or more and returned to the reduction leaching process. Reuse for leaching. Drain part of the filtrate according to the impurity concentration in the leachate. For example, about 90% of the filtrate may be returned and the remaining about 10% may be drained. Further, water and concentrated sulfuric acid may be replenished in order to adjust the amount of liquid to be returned to the leaching process or the sulfuric acid concentration.

ビスマス(還元滓)の浸出工程、冷却析出工程、回収工程、濾液の返送工程を繰り返すことによって、浸出スラリーを固液分離した濾液に含まれる金属イオン濃度が安定化し、該濾液を冷却して純度99%以上の硫酸ビスマスを析出させて回収することができる。   By repeating the leaching process of bismuth (reduced soot), the cooling precipitation process, the recovery process, and the return process of the filtrate, the metal ion concentration contained in the filtrate obtained by solid-liquid separation of the leaching slurry is stabilized, and the filtrate is cooled to purity. 99% or more of bismuth sulfate can be deposited and recovered.

以下、本発明の回収方法について、還元処理工程、浸出処理工程ごとに実施例を示す。
〔還元処理〕
銅製錬の塩酸硫酸酸性溶液(塩酸濃度45g/L、硫酸濃度100g/L)を元液とし、該元液650ccをビーカーに入れ、攪拌しながら50℃まで加温した後、鉄板を還元剤として液中に浸漬し、1時間還元反応を行った。反応終了後、スラリーを濾過し、濾液と還元滓8.6gを得た。元液、濾液、還元滓の組成を表1に示す。また、鉄還元におけるビスマス濃度の経時変化と還元温度(液温)の関係を図3に示した。
Hereinafter, about the collection | recovery method of this invention, an Example is shown for every reduction process and leaching process.
[Reduction treatment]
Copper smelting hydrochloric acid sulfuric acid solution (hydrochloric acid concentration 45 g / L, sulfuric acid concentration 100 g / L) was used as the original solution, and 650 cc of the original solution was put in a beaker and heated to 50 ° C. with stirring. It was immersed in the liquid and subjected to a reduction reaction for 1 hour. After completion of the reaction, the slurry was filtered to obtain a filtrate and 8.6 g of reduced soot. Table 1 shows the composition of the original solution, the filtrate, and the reduced soot. Further, FIG. 3 shows the relationship between the change over time in the bismuth concentration and the reduction temperature (liquid temperature) during iron reduction.

表1に示すように、鉄還元によって、元液に含まれるBi、As、Cu、Sbは90%〜99%が還元滓に移行し、一方、Pbは僅かに還元滓に混入するが、大部分は液中に残り、Sn、Niは実質的に還元されず液中に残る。従って、ビスマスのグループと鉛のグループを選択的に分離することができる。
また、図3に示すように、元液の液温が30℃と低い場合でも、約1時間の還元処理によって、ビスマスの回収率は約90%になる。
As shown in Table 1, 90% to 99% of Bi, As, Cu, and Sb contained in the original solution are transferred to the reduced soot by iron reduction, while Pb is slightly mixed in the reduced soot. The portion remains in the liquid, and Sn and Ni are not substantially reduced and remain in the liquid. Therefore, the bismuth group and the lead group can be selectively separated.
Further, as shown in FIG. 3, even when the liquid temperature of the original solution is as low as 30 ° C., the recovery rate of bismuth becomes about 90% by the reduction treatment for about 1 hour.

Figure 0005403224
Figure 0005403224

〔浸出〜冷却析出〜回収工程〕
80℃に加熱した9M濃度の硫酸溶液345mlが入った容器に、表1に示す組成の還元滓8.6g(乾燥重量)を加え、攪拌しながら3時間、ビスマスを浸出させた。反応終了後スラリーを素早く濾過し、ビスマス浸出液と浸出残渣を分離した。次に、ビスマス浸出液を別の容器に移し、攪拌しながら、自然冷却を行った。冷却時間約1時間の間に、無色透明な浸出液中に白色の硫酸ビスマスの結晶が析出し、これを吸引濾過して分離し回収した。この濾液の約90%をビスマス含有還元滓の浸出工程に返送し再利用し、残り10%の濾液を排水として処理した。
濾液の返送を7回繰り返して還元滓を浸出し、液中の金属イオン濃度が安定化した。還元滓、冷却前の熱ビスマス浸出液、冷却後の濾液(返送分300ml)、排水分(30ml)の濾液の組成を表2に示す。
[Leaching-Cooling deposition-Recovery process]
To a container containing 345 ml of a 9M sulfuric acid solution heated to 80 ° C., 8.6 g (dry weight) of reducing soot having the composition shown in Table 1 was added, and bismuth was leached for 3 hours while stirring. After completion of the reaction, the slurry was quickly filtered to separate the bismuth leachate and the leach residue. Next, the bismuth leachate was transferred to another container and naturally cooled with stirring. During the cooling time of about 1 hour, white crystals of bismuth sulfate precipitated in the colorless and transparent leachate, which was separated by suction filtration and collected. About 90% of this filtrate was returned to the leaching process of bismuth-containing reduced soot and reused, and the remaining 10% of the filtrate was treated as waste water.
The return of the filtrate was repeated 7 times, and the reduced soot was leached, and the metal ion concentration in the liquid was stabilized. Table 2 shows the composition of the reduced soot, the heat bismuth leachate before cooling, the filtrate after cooling (returned portion 300 ml), and the drainage portion (30 ml).

表2に示すように、熱ビスマス浸出液に含まれる金属濃度と冷却後の濾液に含まれる金属濃度を比較すると、冷却によってビスマスの液中濃度は大幅に低下し、硫酸ビスマスが析出している。一方、ヒ素、銅、アンチモンの液中濃度は殆ど変化せず、冷却しても析出せずに濾液中に残るので、ビスマスと選択性良く分離されることが分かる。また、還元滓に僅かに含まれている鉛、スズ、ニッケルの液中濃度は実質的に変化せず、硫酸ビスマスに混入する量も極微量(約0.136wt%)であり、純度約99.8%の硫酸ビスマスを回収することができる。   As shown in Table 2, when the metal concentration contained in the hot bismuth leachate and the metal concentration contained in the filtrate after cooling were compared, the concentration of bismuth in the liquid was significantly reduced by cooling, and bismuth sulfate was precipitated. On the other hand, the concentrations of arsenic, copper, and antimony in the liquid hardly change and remain in the filtrate without being precipitated even when cooled, so that it can be seen that they are separated from bismuth with high selectivity. The concentration of lead, tin, and nickel contained in the reduced soot in the liquid does not change substantially, and the amount mixed in bismuth sulfate is extremely small (about 0.136 wt%), and the purity is about 99. 8% bismuth sulfate can be recovered.

Figure 0005403224
Figure 0005403224

10−処理液槽、11−還元剤(鉄スクラップ・鉄板)収納部、12−循環路、13−循環ポンプ、14−仕切板、15−排出路、16−バルブ、17−受槽、18−鉄スクラップ・鉄板、19−排液ポンプ、20−処理液(ビスマス含有液)供給手段、21−水蒸気供給手段。 10-treatment liquid tank, 11-reducing agent (iron scrap / iron plate) storage, 12-circulation path, 13-circulation pump, 14-partition plate, 15-discharge path, 16-valve, 17-receiving tank, 18-iron Scrap / iron plate, 19-drainage pump, 20-treatment liquid (bismuth-containing liquid) supply means, 21-water vapor supply means.

Claims (8)

ビスマスイオンを含有する酸性溶液を還元処理してビスマスを含む還元滓を生成させ(還元工程)、該還元滓に熱濃硫酸を加えてビスマスを浸出し(浸出工程)、固液分離した濾液を冷却して硫酸ビスマスを析出させ(冷却析出工程)、これを固液分離して硫酸ビスマスを回収する(回収工程)ことを特徴とするビスマスの回収方法。
An acidic solution containing bismuth ions is reduced to produce a reduced soot containing bismuth (reduction process), hot concentrated sulfuric acid is added to the reduced soot to leach bismuth (leaching process), and the solid-liquid separated filtrate is A method of recovering bismuth, characterized by cooling to precipitate bismuth sulfate (cooling precipitation step), and solid-liquid separation to recover bismuth sulfate (recovery step).
硫酸ビスマス回収工程の後に、その濾液(濃硫酸)の少なくとも一部を加熱してビスマス浸出工程に返送する工程を有し、返送した濾液をビスマス浸出の熱濃硫酸として再利用する請求項1に記載するビスマスの回収方法。
The method according to claim 1, further comprising the step of heating at least a part of the filtrate (concentrated sulfuric acid) and returning it to the bismuth leaching step after the bismuth sulfate recovery step, and recycling the returned filtrate as hot concentrated sulfuric acid for bismuth leaching. The bismuth recovery method described.
ビスマスイオンを含有する酸性溶液が、銅製錬工程の塩酸酸性溶液、硫酸酸性溶液、または塩酸硫酸酸性溶液である請求項1または請求項2に記載するビスマスの回収方法。
The method for recovering bismuth according to claim 1 or 2, wherein the acidic solution containing bismuth ions is a hydrochloric acid acidic solution, a sulfuric acid acidic solution, or a hydrochloric acid sulfuric acid acidic solution in a copper smelting step.
ビスマス浸出工程の熱濃硫酸が硫酸濃度8モル以上であって液温40℃以上である請求項1〜請求項3の何れかに記載するビスマスの回収方法。
The method for recovering bismuth according to any one of claims 1 to 3, wherein the hot concentrated sulfuric acid in the bismuth leaching step has a sulfuric acid concentration of 8 mol or higher and a liquid temperature of 40 ° C or higher.
還元滓の浸出スラリーを固液分離して浸出残渣を除去し、濾液を攪拌しながら冷却して硫酸ビスマスを析出させる請求項1〜請求項4の何れかに記載するビスマスの回収方法。
The method for recovering bismuth according to any one of claims 1 to 4, wherein the leaching slurry of reducing soot is solid-liquid separated to remove the leaching residue, and the filtrate is cooled while stirring to precipitate bismuth sulfate.
銅製錬工程の酸性溶液を還元して、共存金属の一部を液中に残したまま、ビスマスを含む還元滓を生成させ、固液分離して回収した還元滓を熱濃硫酸で浸出し、この浸出スラリーを固液分離して浸出残渣を除去し、一方、ビスマスを含む濾液を冷却して、一部溶解した共存金属イオンを液中に残したまま、硫酸ビスマスを結晶化することによって、共存金属を分離してビスマスを精製する請求項1〜請求項5の何れかに記載するビスマスの回収方法。
Reduce the acidic solution of the copper smelting process to produce reduced soot containing bismuth while leaving some of the coexisting metals in the liquid, leaching the reduced soot collected by solid-liquid separation with hot concentrated sulfuric acid, The leaching slurry is solid-liquid separated to remove the leaching residue, while the filtrate containing bismuth is cooled to crystallize bismuth sulfate while leaving partially dissolved coexisting metal ions in the liquid. The method for recovering bismuth according to any one of claims 1 to 5, wherein the bismuth is purified by separating the coexisting metal.
請求項6の回収方法において、ビスマスと共に、ヒ素、銅、アンチモン、鉛、スズ、ニッケルを含有する硫酸塩酸酸性溶液を鉄還元処理して、ビスマスと共にヒ素、銅、アンチモンの少なくとも1種を含む還元滓を生成させ、一方、液中に鉛、スズ、ニッケルの金属イオンを残し、次いで、固液分離した還元滓を熱濃硫酸で浸出し、浸出残渣を固液分離し、浸出液を攪拌しながら冷却して硫酸ビスマスを析出させ、一方、ヒ素、銅、アンチモンの少なくとも1種の共存金属イオンを液中に残し、固液分離して硫酸ビスマスを回収するビスマスの回収方法。
7. The recovery method according to claim 6, wherein an acidic solution containing sulfuric acid containing arsenic, copper, antimony, lead, tin, nickel together with bismuth is subjected to iron reduction treatment, and the reduction includes at least one of arsenic, copper, and antimony together with bismuth. On the other hand, leaving the metal ions of lead, tin and nickel in the liquid, then leaching the reduced soot separated into solid and liquid with hot concentrated sulfuric acid, separating the leaching residue into solid and liquid, and stirring the leachate A method of recovering bismuth by cooling to precipitate bismuth sulfate, while leaving at least one coexisting metal ion of arsenic, copper, and antimony in the liquid and solid-liquid separation to recover bismuth sulfate .
ビスマスの浸出工程、冷却析出工程、回収工程、返送工程を繰り返すことによって、浸出スラリーを固液分離した濾液中の金属イオン濃度を安定化する請求項2〜請求項7の何れかに記載するビスマスの回収方法。 The bismuth according to any one of claims 2 to 7, wherein the metal ion concentration in the filtrate obtained by solid-liquid separation of the leaching slurry is stabilized by repeating the bismuth leaching step, the cooling precipitation step, the recovery step, and the return step. Recovery method.
JP2009045425A 2009-02-27 2009-02-27 How to recover bismuth Expired - Fee Related JP5403224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009045425A JP5403224B2 (en) 2009-02-27 2009-02-27 How to recover bismuth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045425A JP5403224B2 (en) 2009-02-27 2009-02-27 How to recover bismuth

Publications (2)

Publication Number Publication Date
JP2010196140A JP2010196140A (en) 2010-09-09
JP5403224B2 true JP5403224B2 (en) 2014-01-29

Family

ID=42821153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045425A Expired - Fee Related JP5403224B2 (en) 2009-02-27 2009-02-27 How to recover bismuth

Country Status (1)

Country Link
JP (1) JP5403224B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106978538A (en) * 2017-04-13 2017-07-25 中南大学 Treatment method of high-bismuth lead anode mud or bismuth slag
EP3575420A4 (en) * 2017-01-30 2020-09-02 Sumitomo Metal Mining Co., Ltd. Bismuth purification method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344153B2 (en) * 2009-02-27 2013-11-20 三菱マテリアル株式会社 Method and apparatus for reducing and recovering metal in liquid
CN102414571B (en) 2009-04-02 2015-07-01 皇家飞利浦电子股份有限公司 Devices and cabling for use in a multi-resonant magnetic resonance system
JP6233478B2 (en) * 2015-09-28 2017-11-22 住友金属鉱山株式会社 Purification method of bismuth
CN105568002B (en) * 2015-12-28 2017-06-06 中南大学 Method of the bismuth enrichment with reclaiming in a kind of waste acid vulcanized slag

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350917B2 (en) * 1995-08-28 2002-11-25 住友金属鉱山株式会社 Method for selective recovery of antimony and bismuth in electrolytic solution in copper electrorefining
JP3325150B2 (en) * 1995-03-08 2002-09-17 株式会社大和化成研究所 Electrolytic production of tin sulfate and bismuth sulfate for tin-bismuth alloy plating
JP3704266B2 (en) * 1999-12-14 2005-10-12 日鉱金属株式会社 How to recover bismuth
JP2002249827A (en) * 2001-02-26 2002-09-06 Nippon Mining & Metals Co Ltd Treatment method for electrolytic cement copper
JP4059677B2 (en) * 2002-01-24 2008-03-12 日鉱金属株式会社 Bismuth recovery method and bismuth sulfate recovery method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3575420A4 (en) * 2017-01-30 2020-09-02 Sumitomo Metal Mining Co., Ltd. Bismuth purification method
CN106978538A (en) * 2017-04-13 2017-07-25 中南大学 Treatment method of high-bismuth lead anode mud or bismuth slag
CN106978538B (en) * 2017-04-13 2018-07-03 中南大学 Treatment method of high-bismuth lead anode mud or bismuth slag

Also Published As

Publication number Publication date
JP2010196140A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4323492B2 (en) Method for recovering platinum in waste liquid containing selenium using hydrazine
JP5403224B2 (en) How to recover bismuth
TWI428451B (en) Valuable metal recovery method from lead-free waste solder
CN103781923A (en) Process for purifying zinc oxide
CN101743332B (en) Process for producing pure metallic indium from zinc oxide and/or solution containing the metal
KR100804122B1 (en) Method of recovering platinum-group metals selectively
JPS604892B2 (en) How to recover metal from copper refining anode slime
US4662938A (en) Recovery of silver and gold
JP6233478B2 (en) Purification method of bismuth
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
JP2007016259A (en) System for collecting gold while recycling iodine ion in gold-removing liquid
KR20110102461A (en) Hydrometallurgical method for the reuse of secondary zinc oxides rich in fluoride and chloride
WO2018138917A1 (en) Bismuth purification method
JP2009209421A (en) Method for producing high purity silver
JP5320861B2 (en) Operation method of wastewater treatment process of zinc and lead smelting method
JP2005054249A (en) Method for removing copper from anode slime after copper electrolysis
JP7486021B2 (en) Method for producing cadmium hydroxide
JP2009074128A (en) Method for recovering tin
CN109055775B (en) Regeneration method of complexing precipitator for purifying copper electrolyte
JPH0781172B2 (en) Silver refining ore mud purification method
CN102978418A (en) Processing method of casting zinc dross
JP4403259B2 (en) Method for recovering platinum group elements
CN114269954A (en) Method for producing germanium concentrates from metallurgical residues
JP4779163B2 (en) Method for producing copper sulfate solution
JP4274039B2 (en) Method for producing high purity gallium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

LAPS Cancellation because of no payment of annual fees