JP2007016259A - System for collecting gold while recycling iodine ion in gold-removing liquid - Google Patents
System for collecting gold while recycling iodine ion in gold-removing liquid Download PDFInfo
- Publication number
- JP2007016259A JP2007016259A JP2005196903A JP2005196903A JP2007016259A JP 2007016259 A JP2007016259 A JP 2007016259A JP 2005196903 A JP2005196903 A JP 2005196903A JP 2005196903 A JP2005196903 A JP 2005196903A JP 2007016259 A JP2007016259 A JP 2007016259A
- Authority
- JP
- Japan
- Prior art keywords
- gold
- iodine
- ions
- zinc
- stripping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は産業廃棄物中の有価金属の回収方法に係り、特に電気回路基板廃材等から金または金合金を剥離、回収する方法に関する。 The present invention relates to a method for recovering valuable metals in industrial waste, and more particularly to a method for peeling and recovering gold or a gold alloy from waste electrical circuit boards.
鉱石からの貴金属の溶出液、金、亜鉛等のメッキ錯形成剤、あるいは貴金属加工品の溶離液・エッチング液としてシアンイオンは従来広範囲に利用されており、特に電気回路基板廃材が大量に処分される近年においてはそれらの処理における金のメッキ被着部分の回収のためにシアンイオンを含む剥離液が専ら用いられている。 Cyanide ions have been widely used in the past as eluents for precious metals from ores, plating complexing agents such as gold and zinc, and eluents / etchants for processed precious metal products. In recent years, stripping solutions containing cyan ions have been used exclusively for the recovery of gold plating deposits in these processes.
しかし、シアンイオンは環境に対する負荷が高く、その廃液処理費も年々高くなっており、これらの分野においてシアンイオンに代わる代替品の開発が一般的に求められている。従来電気回路用の半導体ウエハー等の製造技術分野では金または金合金のエッチングにヨウ素イオンを含むエッチング液を用いることが試みられており、たとえば特開昭48−25639号ではAuに対する親和性を改善するためにn−プロピルアルコールを添加することが、また特開2003−109949号にはエッチング精度を上げかつエッチングに所望の異方性を持たせるために脂肪酸アルカノール等の特定の構造の化合物を添加することが提案されている。しかし、これらは前記のようにいずれも半導体ウエハー等のエッチング技術に関するものであって、前記産業用電気回路廃材から金等を剥離回収するためにヨウ素イオンを含む剥離液を用いることは従来知られていない。 However, cyanide has a high environmental load and waste liquid treatment costs are increasing year by year. In these fields, development of alternatives to replace cyanion is generally required. Conventionally, it has been attempted to use an etching solution containing iodine ions for etching gold or gold alloy in the field of manufacturing semiconductor wafers for electric circuits. For example, Japanese Patent Laid-Open No. 48-25639 improves the affinity for Au. In order to improve the etching accuracy and to provide the etching with a desired anisotropy, a compound having a specific structure such as a fatty acid alkanol is added to JP-A-2003-109949. It has been proposed to do. However, as described above, these are all related to etching techniques for semiconductor wafers and the like, and it is conventionally known to use a stripping solution containing iodine ions for stripping and recovering gold from the industrial electrical circuit waste. Not.
本発明者等はたとえば金メッキされた電子基板廃材を処理して金を回収する際のシステムにおいて従来から用いられているシアンイオンの問題点を解決しこれらに変わる実用的な剥離剤を検討した結果、ヨウ素イオンを含む水溶液を剥離液として用いる可能性に着目し、効果的な金回収システムを実用化するに到った。 For example, the present inventors have solved a problem of cyanide ions conventionally used in a system for recovering gold by processing a gold-plated electronic substrate waste material, and as a result of examining a practical release agent that replaces these problems. Focusing on the possibility of using an aqueous solution containing iodine ions as a stripping solution, an effective gold recovery system has been put to practical use.
尚、ヨウ素イオンを含む剥離液を用いて金を回収するための実用的なシステムを構築する場合、ヨウ素の価格がシアン化ナトリウムに比べて高く、その上ヨウ素の分子量はシアン化ナトリウムのほぼ2倍となり、剥離剤としての価格はシアン化ナトリウムの約5倍に相当する。本発明者等は前記金回収システムにおける環境への負荷を軽減するために、金剥離工程にヨウ素イオンを含む剥離液を採用すると共に、前記経済的な問題を解決するためにさらに金の剥離に用いた後の廃液中に含まれるおけるヨウ素を金剥離工程に循環して金剥離液とし再度使用する工程を含むシステムを構築した。 In addition, when constructing a practical system for recovering gold using a stripping solution containing iodine ions, the price of iodine is higher than that of sodium cyanide, and the molecular weight of iodine is almost 2 times that of sodium cyanide. The price as a release agent is about 5 times that of sodium cyanide. In order to reduce the burden on the environment in the gold recovery system, the present inventors employ a stripping solution containing iodine ions in the gold stripping process, and further strip the gold to solve the economic problem. A system including a step of circulating iodine used in the waste liquid after use to the gold stripping step and reusing it as a gold stripper was constructed.
本発明によれば、電気回路基板等の金の被着物を含む廃材を処理して金を剥離回収する際にヨウ素およびヨウ素イオンを含む金剥離用の水溶液で金メッキ廃材を処理して金をヨウ化金として剥離し、剥離した金を含むヨウ素溶液を亜鉛によって処理して金を還元析出させ、析出した金を濾過・洗浄し、王水によって塩化金酸として溶解・抽出し、次いで水酸化ナトリウムによる逆抽出によって酸化金とし、これを還元することによって金を精製回収する(請求項1)。
さらに、前記金の回収方法において、前記金の還元析出後のヨウ素イオンを含む水溶液をアニオン交換樹脂により処理してヨウ素イオンを吸着分離し、これを前記金剥離用の水溶液の形態として金剥離工程に循環させることにより、ヨウ素イオンを循環して使用する(請求項2)。
According to the present invention, when a waste material containing a gold deposit such as an electric circuit board is processed to separate and recover the gold, the gold plating waste material is treated with an aqueous solution for removing the gold containing iodine and iodine ions. The iodine solution containing the separated gold is treated with zinc to reduce and precipitate the gold. The precipitated gold is filtered and washed, dissolved and extracted as chloroauric acid with aqua regia, and then sodium hydroxide. Gold oxide is purified and recovered by reducing the gold oxide by back-extraction by (Claim 1).
Further, in the gold recovery method, an aqueous solution containing iodine ions after reduction and precipitation of the gold is treated with an anion exchange resin to adsorb and separate iodine ions, and this is used as a form of the aqueous solution for removing gold. The iodine ions are circulated and used by circulating them (Claim 2).
本発明によれば金メッキ廃材等からの金の分離および回収のために、ヨウ素およびヨウ素イオンを含む金剥離用の水溶液で金メッキ廃材を処理して金をヨウ化金として剥離させ、前記剥離した金を含むヨウ素溶液を亜鉛で処理して金を還元析出させ、次いでこれを王水による抽出分離で塩化金酸とし、水酸化ナトリウムによる逆抽出で酸化金とした後、還元して金を精製回収しているので、従来の金回収作業においてシアンイオンを用いることにより派生していた環境に及ぼす負荷の問題が大幅に低減される。 According to the present invention, in order to separate and recover gold from gold plating waste material, etc., the gold plating waste material is treated with an aqueous solution for removing gold containing iodine and iodine ions to separate the gold as gold iodide, and the peeled gold The iodine solution containing is treated with zinc to reduce and deposit gold, and then this is converted to chloroauric acid by extraction and separation with aqua regia and gold oxide by back extraction with sodium hydroxide, and then reduced to purify and recover gold. As a result, the load problem on the environment derived from the use of cyanide ions in the conventional gold recovery operation is greatly reduced.
さらに、金を亜鉛で還元析出させた後の処理排液には相当量のヨウ素イオンが含まれているが、これをアニオン交換樹脂により吸着分離して、前記金剥離液の形態として循環し、金の剥離に再使用するため、ヨウ素の高価な材料コストが低減できると共に処理廃液中のヨウ素含有分を低減させて廃液処理の負担を減少させることができる。 Furthermore, the treatment waste liquid after reducing and precipitating gold with zinc contains a considerable amount of iodine ions, this is adsorbed and separated by an anion exchange resin, and circulated in the form of the gold stripping liquid. Since it is reused for peeling gold, the expensive material cost of iodine can be reduced and the iodine content in the treatment waste liquid can be reduced to reduce the burden of waste liquid treatment.
以下本発明の方法の実施態様を各工程について説明する。 Embodiments of the method of the present invention will be described below for each step.
1.ヨウ素およびヨウ素イオンを含む剥離用水溶液およびそれによる金の剥離
(i)ヨウ素の溶解
ヨウ素I2は水には溶解しないが、ヨウ化カリウムKIが存在すると次式に示すように水に溶解する。
KI + I = KI3 (1)
KI3 = K + I3 - (2)
I3 = I + I2 (3)
反応式(1)、(2)、(3)は平衡関係にあって、ヨウ素イオンが消費されると平衡は右に進行する。
1. Stripping aqueous solution containing iodine and iodine ions and gold stripping thereby (i) Dissolution of iodine Although iodine I 2 does not dissolve in water, it dissolves in water when potassium iodide KI is present as shown in the following formula.
KI + I = KI 3 (1)
KI 3 = K + I 3 - (2)
I 3 = I + I 2 (3)
Reaction formulas (1), (2), and (3) are in an equilibrium relationship, and when iodine ions are consumed, the equilibrium proceeds to the right.
(ii)金の剥離
ヨウ素の水への溶解度は25度で0.336g/(L)と低いが、ヨウ化カリを含む水溶液には溶解する。
(Ii) Gold peeling The solubility of iodine in water is as low as 0.336 g / (L) at 25 degrees, but dissolves in an aqueous solution containing potassium iodide.
ヨウ素イオンによる金の溶解量を測定するため、ヨウ化カリ20gを含む水溶液にヨウ素0.5gを溶解した200mlの水溶液を攪拌しながら、金箔を1回当たり0.4gを添加すると6回あたりまでは容易に溶解し、7回目では溶解に時間を要し、8回目以上となると金箔は溶解せずに残る。この結果、表1に示す如く、溶解した金の実質的な量は0.27g/200mlであった。 To measure the amount of gold dissolved by iodine ions, it is easy to add up to 6 times by adding 0.4 g of gold foil at a time while stirring 200 ml of an aqueous solution containing 0.5 g of iodine in an aqueous solution containing 20 g of potassium iodide. In the seventh time, it takes time to dissolve, and in the eighth time or more, the gold foil remains undissolved. As a result, as shown in Table 1, the substantial amount of dissolved gold was 0.27 g / 200 ml.
溶解した金の当量は 1.40g/196.97 = 0.00711mol
ヨウ素の当量は 2.50g/126.91 = 0.00985mol
と計算され、金とヨウ素の当量比は 0.00985mol/0.00711mol = 1.39となる。金の溶解は上記反応式(3)から、ヨウ化カリにも依存するとして、ヨウ素の当量の1/2が金の溶解に関与すると仮定すると全ヨウ素の当量数は
ヨウ素の全当量 0.00985mol + 0.00985mol
× 1/2 = 0.01473mol
と計算される。金と全ヨウ素の当量比は
I/Au = 0.01473mol/0.00711mol = 2.07/1.00
となり、溶解した金の組成はAuI2 - と推定される。
The equivalent amount of dissolved gold is 1.40g / 196.97 = 0.00711mol
The equivalent of iodine is 2.50g / 126.91 = 0.00985mol
The equivalent ratio of gold and iodine is 0.00985mol / 0.00711mol = 1.39. From the above reaction formula (3), the dissolution of gold is also dependent on potassium iodide, and assuming that half of the equivalent of iodine is involved in the dissolution of gold, the equivalent number of total iodine is the total equivalent of iodine 0.00985 mol + 0.00985mol
× 1/2 = 0.01473mol
Is calculated. The equivalent ratio of gold to total iodine is
I / Au = 0.01473mol / 0.00711mol = 2.07 / 1.00
Thus, the composition of dissolved gold is estimated to be AuI 2 − .
ヨウ化カリ水溶液には金箔は溶解しないが、表1に示すようにヨウ素の添加量を増加するとヨウ素イオン量の増加に伴って金箔の溶解量は増加する。 Although the gold foil is not dissolved in the potassium iodide aqueous solution, as shown in Table 1, when the amount of iodine added is increased, the amount of gold foil dissolved is increased as the amount of iodine ions is increased.
(表1)
表1:ヨウ素添加量と金箔の溶解量(KI20gを添加した溶液200mlにヨウ素添加)
(Table 1)
Table 1: Amount of iodine added and amount of gold foil dissolved (iodine added to 200 ml of a solution containing 20 g of KI)
金の厚さ1μm以下の金メッキ層は金箔と同様に容易に溶解するが、メッキ層が厚くなると溶解に要する時間は長くなる。例えば金塊5gをヨウ化カリ40gにヨウ素13gを溶解した溶液500mlに浸積し、3日間放置すると約3.82g溶解する。すなわち、金の表面積が大きいほど金の溶解に要する時間が短くなる。 A gold plating layer having a gold thickness of 1 μm or less is easily dissolved in the same manner as a gold foil. However, as the plating layer becomes thicker, the time required for dissolution becomes longer. For example, 5 g of gold bullion is immersed in 500 ml of a solution of 13 g of iodine in 40 g of potassium iodide, and if left for 3 days, about 3.82 g is dissolved. That is, the larger the surface area of gold, the shorter the time required for dissolution of gold.
ヨウ素イオンによる金の酸化還元電位は次の通りである(化学便覧II、p473、改訂3版、丸善、1984)。
Au + 2I-− 2e = AuI2 - 標準電位Eo = 0.578V
The redox potential of gold by iodine ions is as follows (Chemical Handbook II, p473, revised 3rd edition, Maruzen, 1984).
Au + 2I -- 2e = AuI 2 - Standard potential Eo = 0.578V
この反応はシアン化金の反応に類似し、酸化剤の存在が溶解反応を促進することを示している。金箔の溶解で溶液を攪拌しながら添加すると容易に溶解が進行するのは空気中の酸素が酸化剤として作用することによるものと考えられる。 This reaction is similar to that of gold cyanide, indicating that the presence of an oxidant promotes the dissolution reaction. When the solution is added with stirring while dissolving the gold foil, the dissolution easily proceeds because oxygen in the air acts as an oxidizing agent.
空気中の酸素の酸化作用は水溶液のpHに依存し、次のように表わされる。
E = 1.23 − 0.0591pH(但し温度25度で計算した場合、Eは酸化還元電位)
これよりpHの値を変えて計算した電位を下記の表2に示す。
The oxidizing action of oxygen in the air depends on the pH of the aqueous solution and is expressed as follows.
E = 1.23-0.0591 pH (however, when calculated at a temperature of 25 degrees, E is a redox potential)
The potentials calculated by changing the pH value are shown in Table 2 below.
(表2)
表2:水溶液のpHと電位(V)
(Table 2)
Table 2: pH and potential of aqueous solution (V)
酸化反応で電位差が0.2〜0.4Vあると反応は定量的に進行すると考えられ、金の剥離はpH7よりも酸性側で効果的に進行すると推定される。 If the potential difference is 0.2 to 0.4 V in the oxidation reaction, the reaction is considered to proceed quantitatively, and it is presumed that the peeling of gold proceeds more effectively on the acidic side than pH 7.
空気中の酸素以外に酸化剤としてヨウ素酸塩IO3 - 或いはヨウ素酸塩と過酸化水素水との組み合わせも考えられる。ヨウ素酸は強い酸化剤であるが、pH>5では酸化剤としての反応は遅い。
IO3 - + 6H+ + 5e→1/2I2 + 3H2O Eo = 1.20V
In addition to oxygen in the air, an iodate IO 3 - or a combination of iodate and hydrogen peroxide may be considered as an oxidizing agent. Iodic acid is a strong oxidant, but at pH> 5 the reaction as an oxidant is slow.
IO 3 - + 6H + + 5e → 1 / 2I 2 + 3H 2 O Eo = 1.20V
また、中性でヨウ素酸は過酸化水素水が存在すると間欠的に酸素を発生し、ヨウ素をヨウ素酸に酸化する。反応は
2HIO3 + H2O2 → I2 + 6H2O + O2
I2 + H2O2 → 2HIO3 + 4H2O
で示される。
In addition, neutral iodic acid generates oxygen intermittently in the presence of hydrogen peroxide and oxidizes iodine to iodic acid. The reaction is
2HIO 3 + H 2 O 2 → I 2 + 6H 2 O + O 2
I 2 + H 2 O 2 → 2HIO 3 + 4H 2 O
Indicated by
ヨウ素酸を酸化剤として使用すると、剥離液中のヨウ素濃度は高まり、酸化剤としての反応を促進し、金の溶解量を高める機能を有する。いずれにしても酸化剤は酸性で使用することが好ましい。 When iodic acid is used as an oxidizing agent, the iodine concentration in the stripping solution is increased, and the reaction as an oxidizing agent is promoted to increase the amount of dissolved gold. In any case, the oxidizing agent is preferably used in an acidic state.
金を剥離した後の電子基盤は向流3段で水洗、水切りして銅回収業者へ有価物として渡す。 After the gold is peeled off, the electronic board is washed in three stages of countercurrent, drained, and handed over to the copper collector as a valuable resource.
2.ヨウ化金の還元
金を剥離したヨウ素溶液から、金属亜鉛粉末を使用して金を還元するには酸性およびアルカリ性での還元反応が想定される。これらの酸化還元電位は次に示す。
2. Reduction of gold iodide To reduce gold from an iodine solution from which gold has been removed using metal zinc powder, acidic and alkaline reduction reactions are assumed. These redox potentials are shown below.
金属亜鉛粉末の酸化還元電位は
酸性 Zn -
2e = Zn2+ Eo = −0.763V
アルカリ性 Zn + 2OH- − 2e = ZnO2 2- + 2H+ Eo = −1.22V
である。ヨウ化金の酸化還元電位は
AuI2 - + e = Au + 2I- Eo = 0.578V
であるから、亜鉛とヨウ化金の酸化還元電位の差が大きく影響する。
酸性では AuI2 - + e = Au + 2I- Eo = 0.578V
1/2Zn − e = 1/2Zn2+ Eo = −0.763V
AuI2 - + 1/2Zn = Au + 1/2ZnI4 2-
電位差 0.578 − (−0.763×1/2) = 0.960V
アルカリ性では AuI2 -+e= Au+2I- Eo=0.578V
1/2Zn + OH- −e = 1/2ZnO2 2- + H+ Eo = −1.22V
AuI2 - +1/2Zn+OH- = Au + 2I- + 1/2ZnO2 2- + H+
電位差 0.578−(−1.22×1/2) =1.188V
The oxidation-reduction potential of metallic zinc powder is acidic Zn-
2e = Zn 2+ Eo = −0.763V
Alkaline Zn + 2OH -- 2e = ZnO 2 2- + 2H + Eo = -1.22V
It is. The redox potential of gold iodide is
AuI 2 - + e = Au + 2I - Eo = 0.578V
Therefore, the difference in oxidation-reduction potential between zinc and gold iodide has a great influence.
AuI Under acidic 2 - + e = Au + 2I - Eo = 0.578V
1 / 2Zn − e = 1 / 2Zn 2+ Eo = −0.763V
AuI 2 - + 1 / 2Zn = Au + 1 / 2ZnI 4 2-
Potential difference 0.578 − (−0.763 × 1/2) = 0.960V
AuI 2 in an alkaline - + e = Au + 2I - Eo = 0.578V
1 / 2Zn + OH -- e = 1 / 2ZnO 2 2- + H + Eo = -1.22V
AuI 2 - + 1 / 2Zn + OH - = Au + 2I - + 1 / 2ZnO 2 2- + H +
Potential difference 0.578 − (− 1.22 × 1/2) = 1.188V
電位差は酸性よりもアルカリ性の方が大きいので、アルカリ性で亜鉛還元するのが好ましいが、後述するようにヨウ素を陰イオン樹脂で回収することを考えれば、酸性で亜鉛還元する方が好ましく、これらは目的に応じて選択される。 Since the potential difference is more alkaline than acidic, it is preferable to perform zinc reduction with alkalinity, but considering the recovery of iodine with an anion resin as described later, it is preferable to perform zinc reduction with acid, It is selected according to the purpose.
尚シアン化金の場合の酸化還元電位は
Au(CN)2 -+e=Au+2CN- Eo = −0.611
で、アルカリ性で亜鉛粉末によって還元される。
In the case of gold cyanide, the redox potential is
Au (CN) 2 - + e = Au + 2CN - Eo = -0.611
Thus, it is alkaline and reduced by zinc powder.
シアン化金の酸化還元電位はヨウ化金のそれよりも低い。これはシアン化金錯体の配位結合がヨウ素化金錯体の配位結合よりも大きく、還元しにくい傾向にある。またシアン化金の酸性での還元はシアン化水素の気化によって操作を困難とする。 The redox potential of gold cyanide is lower than that of gold iodide. This is because the coordination bond of the gold cyanide complex is larger than the coordination bond of the iodinated gold complex, and tends to be difficult to reduce. Further, the reduction of gold cyanide with an acid makes operation difficult due to the vaporization of hydrogen cyanide.
3.金の精製
金剥離工程で亜鉛粉末で還元した金は濾過洗浄後、王水に溶解し、メチルイソブチルケトン(MIBK)を用いて塩化金酸HAuCl4を抽出分離する。この操作で水溶液中の硝酸を濃塩酸で処理して行う脱硝操作は省ける。
3. Gold refining Gold that has been reduced with zinc powder in the gold stripping process is filtered and washed, dissolved in aqua regia, and extracted with methyl isobutyl ketone (MIBK) to extract HAuCl 4 chloroaurate. By this operation, the denitration operation performed by treating nitric acid in the aqueous solution with concentrated hydrochloric acid can be omitted.
抽出した塩化金酸は水酸化ナトリウム溶液で逆抽出すると黒色の沈殿を生成する。生成した黒色の沈殿は酸化金Au2O3と推定される。
HAuCl4 + 4NaOH = Au(OH)3 + 4NaCl + H2O
2Au(OH)3 = Au2O3 + 3H2O
黒色の沈殿は希塩酸に溶解し、加温しながら亜硫酸ナトリウムを添加して金を還元凝縮する。温水で洗浄後、105度で乾燥してから黒鉛坩堝で溶融してインゴットとする。
When the extracted chloroauric acid is back extracted with a sodium hydroxide solution, a black precipitate is formed. The generated black precipitate is presumed to be gold oxide Au 2 O 3 .
HAuCl 4 + 4NaOH = Au (OH) 3 + 4NaCl + H 2 O
2Au (OH) 3 = Au 2 O 3 + 3H 2 O
The black precipitate is dissolved in dilute hydrochloric acid, and sodium sulfite is added while heating to reduce and condense gold. After washing with warm water, it is dried at 105 degrees and then melted in a graphite crucible to form an ingot.
4.金還元後の水溶液からのヨウ素(および亜鉛)の回収
ヨウ化金を亜鉛還元して金を除去した濾液にはヨウ素、亜鉛の他、カリウム・ナトリウムなどのイオンが含まれる。これらの水溶液からヨウ素および亜鉛とりわけヨウ素を回収するため、濾液を一旦貯留槽1に集める(システムフロー図、中欄)。
4). Recovery of iodine (and zinc) from aqueous solution after gold reduction The filtrate obtained by reducing gold iodide to zinc to remove gold contains ions such as potassium and sodium in addition to iodine and zinc. In order to recover iodine and zinc, especially iodine, from these aqueous solutions, the filtrate is once collected in the storage tank 1 (system flow diagram, middle column).
ヨウ素イオンは陰イオン交換樹脂で、また後述するように亜鉛イオンは陽イオン交換樹脂をそれぞれ使用して濃縮する。 The iodine ion is an anion exchange resin, and the zinc ion is concentrated using a cation exchange resin as described later.
金還元後の濾液は、酸性で金を還元した場合は水酸化ナトリウムで、アルカリ性で金を還元析出した場合は希硫酸でそれぞれpH=4に調整する。pH調整した水溶液は四級アンモニウムを官能基とする陰イオン交換樹脂を充填した樹脂塔の下部から溶液を注入する流動床方式でヨウ素イオンを吸着する。ヨウ素イオンを吸着したイオン交換樹脂は樹脂塔の下部に集積する。吸着したヨウ素イオンは0.05モル塩化ナトリウム溶液で溶離し、500〜600mVでヨウ素イオンをヨウ素に酸化、濾過、水洗して粗ヨウ素を回収する。金の剥離液としては粗ヨウ素を精製せずに剥離液として金剥離工程に循環して再使用することができる。 The filtrate after the gold reduction is adjusted to pH = 4 with sodium hydroxide when the gold is reduced acidic and with dilute sulfuric acid when the gold is reduced and precipitated alkaline. The pH-adjusted aqueous solution adsorbs iodine ions in a fluidized bed system in which the solution is injected from the bottom of a resin tower packed with an anion exchange resin having a quaternary ammonium functional group. The ion exchange resin that adsorbs iodine ions accumulates in the lower part of the resin tower. The adsorbed iodine ions are eluted with 0.05 molar sodium chloride solution, and the iodine ions are oxidized to iodine at 500 to 600 mV, filtered and washed with water to recover crude iodine. As the gold stripping solution, crude iodine can be recycled and reused as a stripping solution in the gold stripping step without being purified.
酸化剤としてヨウ素酸溶液または過酸化水素水を使用した場合は亜硫酸水素ナトリウムで還元し、生じたヨウ素は共存するヨウ化カリウムによってヨウ素イオンとして溶解する。
2NaIO3 - + 5NaHSO3 → 3NaHSO4 + Na2SO4 + H2O + I2
When an iodic acid solution or hydrogen peroxide solution is used as the oxidizing agent, it is reduced with sodium hydrogen sulfite, and the resulting iodine is dissolved as iodine ions by the coexisting potassium iodide.
2NaIO 3 - + 5NaHSO 3 → 3NaHSO 4 + Na2SO 4 + H 2 O + I 2
陰イオン交換樹脂でヨウ素イオンを吸着分離した後の溶液は貯留槽2に集め(フロー図右欄、カルボキシル基を官能基とする陽イオン交換樹脂充填した樹脂塔の下部から溶液を注入して亜鉛イオンを吸着する。樹脂に吸着した亜鉛は0.1モル希硫酸溶液で溶離し、過剰の酸は酸化亜鉛あるいは亜鉛粉末で中和する。中和した溶液を電解槽に導入し、陽極に銀を含む鉛板を、陰極にアルミニウムあるいは亜鉛板を用い、電流密度1.70〜4.00A/dm2で亜鉛を電解析出する。陰極にアルミニウム板を使用すると析出した亜鉛を剥離する必要があるが、亜鉛板を用いると剥離することなくそのまま売却する事が可能である。亜鉛電解後の溶液は亜鉛イオンを吸着した陽イオン樹脂の溶離液として循環使用できる。 The solution after the adsorption and separation of iodine ions with an anion exchange resin is collected in the storage tank 2 (the right column of the flow diagram, the solution is injected from the bottom of the resin tower packed with a cation exchange resin having a carboxyl group as a functional group to make zinc Zinc adsorbed on the resin is eluted with 0.1 molar dilute sulfuric acid solution, and excess acid is neutralized with zinc oxide or zinc powder.The neutralized solution is introduced into the electrolytic cell and contains silver at the anode. A lead plate is used, and an aluminum or zinc plate is used as the cathode, and zinc is electrolytically deposited at a current density of 1.70 to 4.00 A / dm 2. If an aluminum plate is used as the cathode, the deposited zinc must be peeled off. The solution after zinc electrolysis can be circulated and used as an eluent for a cation resin adsorbing zinc ions.
樹脂吸着法以外にヨウ素イオンと亜鉛イオンとを分離する方法としては硫酸銅を添加して難溶性のヨウ化銅CuI (溶解度積logKsp = −12.03 )として分離することも可能である。分離したヨウ化銅は硫酸酸性で酸化剤二酸化マンガンMnO2、或いは3価酸化鉄Fe2O3を用いてヨウ素として分離する。この場合はヨウ素を回収した後、硫酸マンガンおよび硫酸鉄を廃棄する必要が生じる。 As a method for separating iodine ions and zinc ions other than the resin adsorption method, it is also possible to add copper sulfate and separate it as sparingly soluble copper iodide CuI (solubility product logKsp = -12.03). The separated copper iodide is acidic with sulfuric acid and is separated as iodine using the oxidizing agent manganese dioxide MnO 2 or trivalent iron oxide Fe 2 O 3 . In this case, it is necessary to discard manganese sulfate and iron sulfate after recovering iodine.
金メッキされた電子基盤廃材には重量比でほぼ1/100〜1/1000の金が存在する。この廃材を30〜40度に加温したヨウ化カリとヨウ素を含む剥離剤に浸積し、剥離液が金の表面に付着した状態で空気中の酸素と接触するように振動すると金は剥離される。金の剥離を終わった廃材は水洗槽に移し、向流3段で水洗する。剥離槽には新たな廃材を浸積して同様に金の剥離を継続する。剥離液中の溶解する金の濃度が高まると溶解速度が低下する。この場合は酸化剤としてヨウ素酸ナトリウム溶液あるいはヨウ素酸ナトリウムと3%過酸化水素水を添加すると金の剥離は進行する。 Gold-plated electronic board waste contains approximately 1/100 to 1/1000 gold by weight. When this waste material is immersed in a release agent containing potassium iodide and iodine heated to 30 to 40 degrees and vibrated to come into contact with oxygen in the air while the peeling solution is attached to the gold surface, the gold is peeled off. Is done. Waste material after the peeling of gold is transferred to a washing tank and washed in three counter-currents. A new waste material is immersed in the peeling tank and the peeling of the gold is continued in the same manner. As the concentration of dissolved gold in the stripping solution increases, the dissolution rate decreases. In this case, when the sodium iodate solution or sodium iodate and 3% hydrogen peroxide solution are added as oxidizing agents, the peeling of gold proceeds.
酸化剤の添加しても剥離が進行し難い場合は剥離液を交換する。ヨウ素25gとヨウ化カリ20gを含む2(L)の水溶液に平衡状態で溶解した金の量は55gで理論量59.1gのほぼ93.1%である。 If peeling does not proceed easily even when an oxidizing agent is added, the stripping solution is replaced. The amount of gold dissolved in an equilibrium state in an aqueous solution of 2 (L) containing 25 g of iodine and 20 g of potassium iodide is 55 g, almost 93.1% of the theoretical amount of 59.1 g.
剥離した溶液に水酸化ナトリウム80gを添加、これに亜鉛粉末15gを添加して攪拌する。黒色の亜鉛粉末は徐々に白色となり、溶液は懸濁状態となる。沈殿は熟成のため、一夜放置し、濾過・水洗する。沈殿を別の容器に移し王水溶解する。以後、溶媒抽出を導入した金の精製工程へ移し、金の精製を行う。 80 g of sodium hydroxide is added to the peeled solution, and 15 g of zinc powder is added thereto and stirred. The black zinc powder gradually turns white and the solution becomes suspended. The precipitate is matured, so it is left overnight, filtered and washed with water. Transfer the precipitate to another container and dissolve it in aqua regia. Thereafter, the process proceeds to a gold purification step in which solvent extraction is introduced, and gold is purified.
亜鉛還元した沈殿を濾過水洗した水溶液は貯留タンク1に移し、希硫酸でpH4に調整する。調整した溶液は陰イオン交換樹脂70gを充填した樹脂塔の下部から溶液100ml/30分の流速で注入し、ヨウ素イオンを吸着する。吸着したヨウ素イオンは0.1モルの塩化ナトリウム溶液を溶離液として溶離する。溶離したヨウ素溶液は500〜600mVに成るように過酸化水素水の希釈液で酸化するとヨウ素は析出する。析出したヨウ素を水洗し、金の剥離液として再利用する。ヨウ素の析出量は約98%である。 The aqueous solution obtained by washing the zinc-reduced precipitate with filtered water is transferred to the storage tank 1 and adjusted to pH 4 with dilute sulfuric acid. The prepared solution is injected at a flow rate of 100 ml / 30 minutes from the bottom of the resin tower packed with 70 g of anion exchange resin to adsorb iodine ions. The adsorbed iodine ions are eluted using 0.1 molar sodium chloride solution as an eluent. When the eluted iodine solution is oxidized with a dilute solution of hydrogen peroxide so as to become 500 to 600 mV, iodine is precipitated. The precipitated iodine is washed with water and reused as a gold stripping solution. The amount of iodine deposited is about 98%.
ヨウ素イオンを吸着した漏出液は貯留槽2に移し、陽イオン交換樹脂70gを充填した樹脂塔の下部から溶液100ml/30分の流速で注入し、亜鉛イオンを吸着する。吸着した亜鉛イオンは0.1モルの希硫酸で溶離する。溶離液は陽極に鉛板、陰極に亜鉛板を有する電解槽に導入し、電流密度2A/dm2で電解する。電解液は電解槽と貯留槽とを循環し、電解槽中の亜鉛濃度を調整する。 The leaked liquid adsorbed with iodine ions is transferred to the storage tank 2 and injected at a flow rate of 100 ml / 30 minutes from the bottom of the resin tower packed with 70 g of cation exchange resin to adsorb zinc ions. The adsorbed zinc ions are eluted with 0.1 molar dilute sulfuric acid. Eluent is introduced into the electrolytic bath having the lead plate to the anode, a zinc plate as a cathode, electrolysis at a current density of 2A / dm 2. The electrolytic solution circulates between the electrolytic cell and the storage cell, and adjusts the zinc concentration in the electrolytic cell.
ヨウ素イオン溶液による金の剥離は実施例1と同様に操作し、剥離した溶液に直接金属亜鉛粉末を添加して金の還元を行った。金の析出量は56gで理論量59.1gのほぼ94.7%であった。ヨウ素および亜鉛の回収操作は実施例1と同じように行った。 Gold peeling with an iodine ion solution was performed in the same manner as in Example 1, and metal zinc powder was directly added to the peeled solution to reduce the gold. The amount of gold deposited was 56 g, almost 94.7% of the theoretical amount of 59.1 g. The operation for recovering iodine and zinc was performed in the same manner as in Example 1.
金メッキされた電子回路基板の廃材等から金を回収する際、従来から用いられている剥離液中のシアンイオンに代えてヨウ素イオンを用いることにより、環境への負荷を低減することができ、また処理に用いたヨウ素を処理廃液中から分離し、循環して使用することにより高価なヨウ素の材料コストが低減される。 When recovering gold from gold-plated electronic circuit board waste, etc., it is possible to reduce the burden on the environment by using iodine ions instead of cyan ions in the conventionally used stripping solution. By separating the iodine used in the treatment from the treatment waste liquid and circulating it, the material cost of expensive iodine is reduced.
Claims (2)
前記剥離した金を含むヨウ素溶液を亜鉛によって還元処理して金を析出させる金析出工程と、
析出した金を濾過・洗浄し、王水によって塩化金酸として溶解・抽出し、次いで水酸化ナトリウムによる逆抽出によって酸化金とし、これを還元して金を精製回収する金精製工程とを有するヨウ素イオンを循環使用する金剥離液による金の回収方法。 A gold stripping process in which gold plating waste material is treated with an aqueous solution for stripping gold containing iodine and iodine ions to separate gold as gold iodide;
A gold precipitation step of depositing gold by reducing the iodine solution containing the separated gold with zinc;
Iodine having a gold refining step of filtering and washing the deposited gold, dissolving and extracting as chloroauric acid with aqua regia, then converting to gold oxide by back extraction with sodium hydroxide, and reducing and purifying the gold A method for recovering gold using a gold remover that circulates ions.
前記ヨウ素イオンを前記金剥離用の水溶液の形態として金剥離工程に循環させるヨウ素循環工程とをさらに含む請求項1記載のヨウ素イオンを循環使用する金剥離液による金の回収方法。
An iodine ion separation step of adsorbing and separating iodine ions by treating an aqueous solution containing iodine ions after the reduction and precipitation of gold in the gold precipitation step with an anion exchange resin;
The method for recovering gold with a gold stripping solution that circulates and uses iodine ions according to claim 1, further comprising an iodine circulation step of circulating the iodine ions in the form of the aqueous solution for stripping gold into the gold stripping step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005196903A JP2007016259A (en) | 2005-07-05 | 2005-07-05 | System for collecting gold while recycling iodine ion in gold-removing liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005196903A JP2007016259A (en) | 2005-07-05 | 2005-07-05 | System for collecting gold while recycling iodine ion in gold-removing liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007016259A true JP2007016259A (en) | 2007-01-25 |
Family
ID=37753676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005196903A Pending JP2007016259A (en) | 2005-07-05 | 2005-07-05 | System for collecting gold while recycling iodine ion in gold-removing liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007016259A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100447264C (en) * | 2007-04-13 | 2008-12-31 | 浙江理工大学 | Method for recovering gold from waste of gold plating procedure |
KR100968727B1 (en) | 2008-05-27 | 2010-07-08 | 한국지질자원연구원 | Refining method of High purity gold from gold bonding wire scrap |
JP2011190520A (en) * | 2010-03-17 | 2011-09-29 | Jx Nippon Mining & Metals Corp | Method for leaching copper sulfide ore |
CN102586617A (en) * | 2012-02-14 | 2012-07-18 | 中国航天科技集团公司第九研究院第七七一研究所 | Method for recovering gold from iodine-potassium iodide leachate |
JP2015151582A (en) * | 2014-02-14 | 2015-08-24 | 田中貴金属工業株式会社 | Method for recovering gold or silver from gold or silver-containing cyanogen-based waste fluid |
CN115710641A (en) * | 2022-12-02 | 2023-02-24 | 成都泰美克晶体技术有限公司 | Method for recovering noble metal gold in gold film wet etching liquid |
JP7569048B2 (en) | 2020-10-21 | 2024-10-17 | 三菱マテリアル株式会社 | How to recover precious metals |
-
2005
- 2005-07-05 JP JP2005196903A patent/JP2007016259A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100447264C (en) * | 2007-04-13 | 2008-12-31 | 浙江理工大学 | Method for recovering gold from waste of gold plating procedure |
KR100968727B1 (en) | 2008-05-27 | 2010-07-08 | 한국지질자원연구원 | Refining method of High purity gold from gold bonding wire scrap |
JP2011190520A (en) * | 2010-03-17 | 2011-09-29 | Jx Nippon Mining & Metals Corp | Method for leaching copper sulfide ore |
CN102586617A (en) * | 2012-02-14 | 2012-07-18 | 中国航天科技集团公司第九研究院第七七一研究所 | Method for recovering gold from iodine-potassium iodide leachate |
JP2015151582A (en) * | 2014-02-14 | 2015-08-24 | 田中貴金属工業株式会社 | Method for recovering gold or silver from gold or silver-containing cyanogen-based waste fluid |
JP7569048B2 (en) | 2020-10-21 | 2024-10-17 | 三菱マテリアル株式会社 | How to recover precious metals |
CN115710641A (en) * | 2022-12-02 | 2023-02-24 | 成都泰美克晶体技术有限公司 | Method for recovering noble metal gold in gold film wet etching liquid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3616314B2 (en) | Method for treating copper electrolytic deposits | |
JP4999108B2 (en) | Gold leaching method | |
US9114445B2 (en) | Burning-free and non-cyanide method for recycling waste printed circuit board | |
JP3474526B2 (en) | How to recover silver | |
JP2007016259A (en) | System for collecting gold while recycling iodine ion in gold-removing liquid | |
JP2008106347A (en) | Method for leaching gold | |
JP5439997B2 (en) | Method for recovering copper from copper-containing iron | |
JP4207959B2 (en) | Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same | |
JP4406688B2 (en) | Method for purifying electrolyte in monovalent copper electrowinning process | |
TW201217542A (en) | Valuable metal recovery method from lead-free waste solder | |
JP5403224B2 (en) | How to recover bismuth | |
Kulandaisamy et al. | The aqueous recovery of gold from electronic scrap | |
JP2012246198A (en) | Method for purifying selenium by wet process | |
JP5200588B2 (en) | Method for producing high purity silver | |
JP2010202457A (en) | Method for removing chlorine in acidic liquid | |
KR100415448B1 (en) | Method of recovering silver | |
JP2007231397A (en) | Method for refining silver chloride | |
JP2003105456A (en) | Method for manufacturing silver | |
JP2005054249A (en) | Method for removing copper from anode slime after copper electrolysis | |
JPS5952696B2 (en) | Method for recovering copper and selenium from copper electrolysis anode slime | |
JP2008127604A (en) | Method of recovering noble metal element | |
JP3407600B2 (en) | Silver extraction and recovery method | |
JP4403259B2 (en) | Method for recovering platinum group elements | |
JP5573763B2 (en) | High purity silver production waste liquid treatment method | |
JP2021025070A (en) | Method of treating seleno sulfate solution |