WO2007034645A1 - PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR - Google Patents

PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR Download PDF

Info

Publication number
WO2007034645A1
WO2007034645A1 PCT/JP2006/316355 JP2006316355W WO2007034645A1 WO 2007034645 A1 WO2007034645 A1 WO 2007034645A1 JP 2006316355 W JP2006316355 W JP 2006316355W WO 2007034645 A1 WO2007034645 A1 WO 2007034645A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
concentration
electrolytic cell
molten
alloy
Prior art date
Application number
PCT/JP2006/316355
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Ogasawara
Makoto Yamaguchi
Toru Uenishi
Masahiko Hori
Kazuo Takemura
Katsunori Dakeshita
Original Assignee
Osaka Titanium Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co., Ltd. filed Critical Osaka Titanium Technologies Co., Ltd.
Priority to CA002623212A priority Critical patent/CA2623212A1/en
Priority to US11/992,162 priority patent/US20100089204A1/en
Priority to EA200800867A priority patent/EA200800867A1/en
Priority to AU2006293354A priority patent/AU2006293354A1/en
Priority to EP06782859A priority patent/EP1944383A4/en
Publication of WO2007034645A1 publication Critical patent/WO2007034645A1/en
Priority to NO20081519A priority patent/NO20081519L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the present invention relates to a Ti production method for producing metal Ti by reducing TiCl with Ca, and
  • metal Ti is manufactured through a reduction process and a vacuum separation process.
  • the reduction process liquid TiCl supplied from above in the reaction vessel is melted by molten Mg.
  • Reduced, particulate metal Ti is generated, and then sinks downward to obtain sponge-like metal Ti.
  • sponge metal T unreacted Mg and by-product MgCl in the reaction vessel are removed.
  • the supplied TiCl reacts as unreacted TiCl gas or insufficiently reduced TiCl gas.
  • the reaction is performed only in the vicinity of the surface of the molten Mg liquid in the reaction vessel, so that the heat generation area is narrow. Therefore, if TiCl is supplied at high speed, the cooling will not be in time.
  • the upper force also supplies metallic Ca powder to dissolve Ca in the molten salt, and TiCl gas is supplied from below to react the dissolved Ca and TiCl in the molten CaCl salt.
  • the metal Ca powder used as the reducing agent is extremely expensive, and when purchased and used, the production cost is higher than that of the crawl method. Therefore, it cannot be established as an industrial Ti manufacturing method. It is difficult to handle Ca, which is highly reactive, and this is also a major factor that hinders the industrial process of Ti production by Ca reduction.
  • This method is a kind of direct oxide reduction method.
  • this method requires the use of expensive high-purity TiO.
  • JP-A-2005-133195 (hereinafter referred to as “Reference 3”) and JP-A-2005-133196 (hereinafter referred to as “Reference 4”),
  • the present inventors based on this OYIK method as a basic configuration, and further developed a metal Ti manufacturing process that can perform stable and efficient operation, and the entire manufacturing process. It was decided to add a study.
  • the OY or Ti alloy manufacturing method of the present invention which is a further evolution of the OYIK method, took the initials of four people who were deeply involved in the development and completion of the idea, “Ogasawara, Yamaguchi, Takahashi, Kanazawa”. The name of the law (Ouitsuku II method).
  • An object of the present invention is to reduce TiCl with Ca generated by electrolysis of molten CaCl.
  • TiCl reduction reaction In the production of Ti metal by Ca reduction, TiCl reduction reaction can be performed efficiently and industrial
  • the purpose is to provide a Ti manufacturing method capable of stable operation and a manufacturing equipment used therefor.
  • This molten salt was returned to the electrolytic cell that electrolyzes CaCl to produce Ca.
  • Ti is formed by the reaction between the generated Ca and lower salt titanium, and this Ti precipitates on the surface of the force sword, and depending on the shape of the electrolytic cell, the short circuit between the electrodes may occur in the cell. May cause blockage. There is also concern about the occurrence of TiC, which causes Ti contamination of C.
  • the Ca concentration of the molten salt charged into the reduction tank does not change and is always constant, and it is desirable that the concentration be high in order to allow the reduction reaction to proceed efficiently.
  • the present inventors have made various studies in order to suppress the fluctuation of the Ca concentration of the molten salt charged into the reduction tank and maintain it at a high concentration.
  • an adjustment tank equipped with a Ca supply source was installed between the electrolytic cell (hereinafter referred to as the “main electrolytic cell”) and the reduction tank, and molten salt with an increased Ca concentration was introduced into the adjustment cell in the main electrolytic cell. It was found that it is effective to use it for reduction after keeping the Ca concentration constant. It was also found that a molten Ca-Mg alloy is suitable as a Ca supply source.
  • the present invention has been made based on these findings, and the gist of the present invention is the following (1) Ti production method and (2) Ti production apparatus.
  • a reduction step of generating Ti grains in the salt, and melting the Ti grains generated in the molten salt A separation process for separating the salt force, and an electrolysis process for increasing the Ca concentration by electrolyzing the molten salt whose Ca concentration has decreased due to the formation of Ti grains.
  • the Ca concentration is increased using the main electrolytic cell.
  • the molten salt thus introduced is introduced into a regulating tank having a Ca supply source and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then TiCl is reduced in the reduction step.
  • molten salt containing CaCl means only molten CaCl or molten CaC.
  • 1 is a molten salt containing KC1, CaF, etc. to adjust the melting point and viscosity. Less than
  • the Ca supply source is a molten Ca-Mg alloy
  • the Ca concentration in the molten Ca-Mg alloy is the same as that of the molten CaCl-containing alloy.
  • the molten salt from which the Ti grains have been separated in the separation step is once charged into the electrolytic cell for alloying, and the Ca concentration of the molten salt is reduced. If it is put into the main electrolytic cell, it is desirable because the residual Ca in the molten salt returned to the electrolysis process from the separation process can be removed and this residual Ca can be used effectively (hereinafter referred to as the first). 3).
  • the adjustment tank used in the production method of the present invention has a cooling function, an increase in the temperature in the tank based on an exothermic reaction can be mitigated in a later reduction tank, and the addition to the reduction tank Therefore, the Ca concentration of the molten salt can be kept constant at a constant and high concentration, and the reduction reaction can be performed efficiently, contributing to stable operation (hereinafter referred to as the fourth embodiment).
  • a reduction tank for reacting TiCl with the Ca to produce Ti grains and
  • an adjusting tank for introducing the molten salt into the reduction tank comprising an anode and a power sword, and performing electrolysis in the molten salt to form a cathode
  • the Ca supply source is a molten Ca-Mg alloy and includes an alloy electrolytic cell for increasing the Ca concentration of the molten Ca-Mg alloy
  • the first and It can be suitably used for implementing the Ti manufacturing method according to the second embodiment.
  • an electrolytic cell for an alloy is installed between the high-temperature decanter and the main electrolytic cell in the separation step, and the molten salt having a high Ca concentration in the alloy electrolytic cell can be introduced into the adjustment tank.
  • V is suitable for carrying out the Ti manufacturing method according to the third embodiment.
  • the molten salt with the Ca concentration increased in the main electrolytic cell is introduced into the adjustment tank equipped with the Ca supply source and the Ca concentration is made constant, and then used for the reduction of TiCl. Throw
  • Ti can be produced on an industrial scale by increasing the feed rate. This manufacturing method can be easily and suitably performed by the manufacturing apparatus of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration example of the Ti manufacturing apparatus of the present invention.
  • FIG. 2 is a diagram showing another schematic configuration example of the Ti manufacturing apparatus of the present invention.
  • Fig. 3 is an explanatory diagram of the replenishment of Ca to the molten Ca-Mg alloy in the alloy electrolytic cell.
  • FIG. 4 is a diagram showing a schematic configuration example of the Ti manufacturing apparatus of the present invention in which an alloy electrolytic cell is incorporated.
  • FIG. 5 is a diagram showing a schematic configuration example of the Ti production apparatus of the present invention in which an alloy electrolytic cell is incorporated in the molten salt path returned from the separation step to the main electrolytic cell.
  • FIG. 6 is a longitudinal sectional view showing a configuration example of a main part of an electrolytic cell used when performing the molten salt electrolysis method used in the present invention.
  • Fig. 7 shows the hollow-force sword used in carrying out the molten salt electrolysis method used in the present invention. It is a figure which shows typically the structural example of a part of used electrolytic vessel.
  • FIG. 1 is a diagram showing a schematic configuration example of the Ti manufacturing apparatus of the present invention. As shown in FIG. 1, this apparatus holds a molten salt containing CaCl and dissolved in Ca and supplying the molten salt to the molten salt.
  • Separation means for separating the Ti grains formed in the salt from the molten salt, and the molten salt after the Ti grains are separated are held, and the anode 2 and the force sword 3 are provided.
  • a decanter type centrifugal sedimentator (high temperature decanter) 7 and a separation tank 8 are used as the separation means.
  • TiCl is added to Ca in a molten salt containing CaCl and dissolving Ca.
  • a reduction step of reacting to produce Ti particles in the molten salt a separation step of separating the Ti particles produced in the molten salt from the molten salt, and a Ca concentration accompanying the production of Ti particles.
  • the molten salt is made constant by bringing the molten salt into contact with the Ca supply source and then used for the reduction of TiCl in the reduction step.
  • the apparatus shown in FIG. 1 is used.
  • a molten salt in which Ca supplied from the adjustment tank 6 is dissolved at a constant concentration is reduced. Retained in tank 1 and reacted with TiCl supplied from TiCl supply port 9 to Ca in the molten salt,
  • Ti grains are formed in the molten salt.
  • the molten salt is not held in a stationary state in the reducing tank 1, but is held while gradually flowing down from above the reducing tank 1, while TiCl is added to the Ca in the molten salt. In Reduced to produce Ti grains.
  • Ti particles generated in the reduction step are separated from the molten salt in the "separation step".
  • Ti particles are first separated and recovered from the molten salt in a high-temperature decanter 7 and then separated in a separation tank 8.
  • the molten salt adhering to the Ti grains is removed.
  • the decanter type centrifugal settling machine is a type of centrifugal separator that spins down suspended matter by rotating a rotating cylinder at high speed. It can process at high speed and has high dehydration performance. Used in various processing plants. A type capable of high temperature treatment has also been developed and can be applied as a high temperature decanter 7 in this separation process.
  • the flow rate of the adhering molten salt is very small compared to the flow rate of the molten salt introduced into the reduction tank 1 after the Ca concentration is made constant in the adjustment tank 6, so that the flow from the adjustment tank 6 to the reduction tank 1 Variations in the Ca concentration of the molten salt introduced are negligible.
  • the molten salt having a reduced Ca concentration separated by the high-temperature decanter 7 is returned to the “electrolysis step”, and is introduced and held between the force sword 3 and the diaphragm 4 in the main electrolytic cell 5.
  • the configuration and operation of the main electrolytic cell 5 used in this step will be described in detail later.
  • the molten salt is not held in the main electrolytic cell 5 in a stationary state, but the main electrolytic cell 5 It is held while gradually flowing down from above, and is electrolyzed during that time, increasing the molten salt Ca concentration.
  • the molten salt in which the Ca concentration is increased using the main electrolytic cell 5 in the electrolysis step is introduced into the adjustment tank 6 having a Ca supply source, and the Ca supply source is introduced. After making the Ca concentration of the molten salt constant by bringing it into contact, it is used for the reduction of TiCl in the reduction step.
  • molten metal Ca or molten Ca—Mg alloy can be used as the Ca supply source.
  • molten metal Ca or molten Ca—Mg alloy is allowed to float on the molten salt with increased Ca concentration, and these Ca supply source and molten salt are brought into contact with each other.
  • the Ca supply source Ca can be supplied to the molten salt, and the Ca concentration can be maintained at a concentration close to the saturation solubility.
  • the Ca concentration of the metal is the saturation solubility, and precipitated metal Ca is also present, the metal Ca floats and separates due to the difference in specific gravity in the adjustment tank 6, and the Ca concentration is maintained at a concentration close to the saturation solubility. be able to. Furthermore, if the temperature of the molten salt at the time of extraction from the adjustment tank 6 is controlled to be constant, the Ca concentration can be controlled to a constant concentration near the saturation solubility at that temperature.
  • the adjusting tank 6 is installed, and the molten salt with an increased Ca concentration is introduced into the main electrolytic tank 5.
  • molten salt with a constant Ca concentration near its saturation solubility was charged into the reduction tank 1, and TiCl
  • the reduction reaction of 4 can be carried out efficiently and stable operation can be achieved.
  • FIG. 2 is a diagram showing another schematic configuration example of the manufacturing apparatus of the present invention used when the Ti manufacturing method is carried out, similarly to the manufacturing apparatus shown in FIG.
  • the difference from the apparatus configuration shown in FIG. 1 is that a sedimentation separation tank (thickener) 13 using gravity is used instead of a high temperature decanter as a separation means, which is wider than the case where a high temperature decanter is used.
  • a sedimentation separation tank (thickener) 13 using gravity is used instead of a high temperature decanter as a separation means, which is wider than the case where a high temperature decanter is used.
  • the first embodiment of the production method of the present invention is a method in which the Ca supply source is a molten Ca-Mg alloy.
  • the Ca supply source is a molten Ca-Mg alloy
  • the molten Ca-Mg alloy power is also dissolved into the molten salt and it becomes necessary to replenish Ca in the alloy, it is easily replenished as described below. It is desirable because it can.
  • a second embodiment of the present invention is a method of increasing the Ca concentration in a molten Ca-Mg alloy by electrolyzing a molten salt containing CaCl in an alloy electrolytic cell in the first embodiment.
  • FIG. 3 is an explanatory diagram of the replenishment of Ca to the molten Ca—Mg alloy by the alloy electrolytic cell.
  • the electrolytic cell 14 for alloy hinders the movement of molten salt (molten CaCl).
  • the partition 15 is divided into an anode side and a force sword side by a partition 15 having an opening on the lower side.
  • An anode 2 is attached to the anode side, and the force sword side has a lower specific gravity than molten CaCl.
  • the molten Ca-Mg alloy 16 constitutes a power sword.
  • An electrode rod 17 is inserted into the molten Ca—Mg alloy 16.
  • a molten salt whose Ca concentration has been increased in the electrolysis process is introduced into the adjustment tank 6, and a molten Ca—Mg alloy 16 serving as a Ca supply source is held thereon.
  • the anode 2 has chlorine gas.
  • Ca is generated at the interface between molten Ca—Mg alloy 16 and molten CaCl, which is a force sword.
  • the Ca concentration of the Ca-Mg alloy 16 increases.
  • the molten Ca—Mg alloy 16 having an increased Ca concentration is transferred to the upper part of the molten Ca—Mg alloy 16 in the adjustment tank 6 (indicated as “MgZCa” in FIG. 3), and is moved to the lower part.
  • the existing Ca is supplied to the molten salt (ie, melted out), and the molten Ca—Mg alloy 16 having a reduced Ca concentration is returned to the molten Ca—Mg alloy 16 in the alloy electrolytic cell 14 (in FIG. 3, “Mg”).
  • the Ca generated by the electrolysis of the molten CaCl described above is molten Ca.
  • the replenishment of Ca to the molten Ca—Mg alloy used as the Ca supply source can be easily performed without affecting the Ca production process. Can be done.
  • FIG. 4 is a diagram showing a schematic configuration example of a manufacturing apparatus in which the alloy electrolytic cell shown in FIG. 3 is incorporated in order to carry out the manufacturing method of the present invention. If the first and second embodiments of the present invention are applied using this apparatus, Ca can be easily replenished to the molten Ca—Mg alloy used as the Ca supply source without affecting the operation. it can.
  • the molten salt after the Ti grains are separated in the separation step is once charged into the alloy electrolytic cell.
  • the Ca concentration of the molten salt is reduced and charged to the main electrolytic cell, and concerns such as a decrease in current efficiency due to the knock reaction can be eliminated.
  • FIG. 5 is a diagram showing a schematic configuration example of a manufacturing apparatus in which an alloy electrolytic cell is incorporated in the molten salt path returned from the separation step to the main electrolytic cell in the schematic configuration example shown in FIG.
  • an electrolytic cell 14 for the alloy is installed between the high-temperature decanter 7 and the main electrolytic cell 5 used in the separation process, and the molten salt after the Ti grains are separated and recovered is temporarily separated from this alloy.
  • the electrolytic cell 14 for use.
  • FIG. 5 shows a force illustrating an example in which an alloy electrolytic cell 14 is installed between the high-temperature decanter 7 and the main electrolytic cell 5.
  • the thickener 13 and the main electrolytic cell 5 An electrolytic cell 14 for alloy may be installed between them.
  • the fourth embodiment of the present invention is characterized in that the adjustment tank used in the production method of the present invention has a cooling function.
  • the following two effects can be expected. One is to adjust the Ca concentration of the molten salt in the adjustment tank 6 and then use the TiCl Ca in the next reduction step.
  • the force that causes the reduction reaction by 4 The rise in the temperature in the reduction tank due to the heat generated by this reaction can be moderated to some extent by removing heat from the molten salt supplied to the reduction tank 1 in advance.
  • the saturated Ca solubility of the molten salt can be lowered by lowering the temperature of the molten salt in the adjusting tank 6.
  • the saturation solubility can be reached by lowering the temperature in the adjustment tank 6.
  • Ca precipitates due to cooling it floats and becomes a source of Ca.
  • the production apparatus of the present invention is a production apparatus used when the Ti production method described above is carried out, holds a molten salt containing CaCl and dissolved in Ca, and is supplied into the molten salt.
  • Separation means for separating the Ti grains generated from the molten salt, and the molten salt after the Ti grains are separated are retained, and an anode and a force sword are provided, and electrolysis is performed in the molten salt.
  • a main electrolytic cell for generating Ca on the cathode side and a Ca supply source are provided, and the molten salt in the main electrolytic cell is introduced and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant.
  • a regulating tank for charging the molten salt into the reducing tank are provided.
  • FIGS. 1 and 2 The apparatus configuration illustrated in FIGS. 1 and 2 is an embodiment of the manufacturing apparatus of the present invention.
  • the production method of the present invention can be suitably implemented using this production apparatus.
  • the apparatus configuration shown in FIG. 4 is another schematic configuration example of the manufacturing apparatus of the present invention.
  • the molten Ca—Mg alloy 16 is formed between the adjustment tank 6 and the alloy electrolytic tank 14. It is suitable for carrying out the Ti manufacturing method according to the first and second embodiments in which the molten Ca—Mg alloy used as a Ca supply source is replenished with Ca.
  • the apparatus configuration shown in FIG. 5 is still another schematic configuration example of the production apparatus of the present invention, and the alloy electrolytic cell 14 is interposed between the high-temperature decanter 7 and the main electrolytic cell 5 used in the separation process. In this way, the molten salt having a reduced Ca concentration in the alloy electrolytic cell 14 can be introduced into the main electrolytic cell 5.
  • the Ti manufacturing method according to the third embodiment can be easily performed.
  • reaction can be performed efficiently and stable operation can be performed.
  • the molten salt is electrolyzed while gradually flowing down from the upper side of the main electrolytic cell, so that a large amount of molten salt can be continuously processed.
  • the supply rate of Ca to the reduction tank is increased and Ti can be produced on an industrial scale.
  • FIG. 6 is a longitudinal sectional view showing a configuration example of a main part of an electrolytic cell used when the molten salt electrolysis method used in the present invention is carried out.
  • This electrolytic cell 5 has a pipe (cylindrical) shape that is long in one direction and holds a molten salt containing CaCl.
  • a molten salt supply port 20 is provided at one end (bottom plate 18) in the longitudinal direction of 5a, and a molten salt discharge port 21 is provided at the other end (upper cover 19).
  • the anode surface and the force sword surface are opposed to each other in a substantially vertical direction, and further, between the anode 2 and the force sword 3, the molten salt A diaphragm 4 is provided to suppress the passage of the Ca generated by the electrolysis of.
  • a cooler 22 is attached to the outer surface of the anode 2.
  • This electrolytic cell 5 is used as a main electrolytic cell in the production method of the present invention.
  • a molten salt containing a metal fog forming metal chloride is continuously or intermittently supplied between the one-end force anode and the force sword of the electrolytic cell.
  • the flow rate in one direction is given to the molten salt near the surface of the force sword, and the molten salt is electrolyzed while flowing in one direction near the surface of the force sword, thereby increasing the metal fog forming metal concentration of the molten salt.
  • metal fog forming metal has a property that the metal itself dissolves in a metal salt salt such as Ca, Li, Na, A1, etc. (ie, Ca is CaCl And again Li
  • molten salt containing a metal fog forming metal (Ca) chloride refers to molten CaCl alone or to molten CaCl to adjust the melting point, viscosity, etc.
  • molten salt electrolysis method first, a molten salt containing CaCl is added to the electrolytic cell 5.
  • One-end force is also supplied between the anode 2 and the force sword 3 continuously or intermittently.
  • the electrolytic cell 5 Since the electrolytic cell 5 is long in one direction and has a shape (in the example shown in the figure, it is elongated in the vertical direction! / Pipe (cylindrical) shape), the molten salt is applied to one end force of the electrolytic cell 5 Anode
  • the molten salt is applied to one end force of the electrolytic cell 5 Anode
  • the entire molten salt between the anode 2 and the force sword 3 may flow in one direction.
  • the term “near the force sword surface” refers to a region adjacent to the force sword surface where Ca generated on the force sword surface is present.
  • the supply of the molten salt is usually performed continuously, the supply of the molten salt may be continued intermittently, that is, even if the supply of the molten salt is temporarily stopped in relation to the post-process or the like. Temporary stop of molten salt supply When stopped, the flow of the molten salt near the surface of the force sword is also stopped. Therefore, strictly speaking, the “flow velocity” when “giving a one-way flow velocity to the molten salt near the surface of the force sword” includes a state where the flow velocity is zero without any flow.
  • the molten salt is electrolyzed.
  • the force electrolysis cell 5 in which molten salt is electrolyzed while flowing in the vicinity of the surface of the force sword to generate Ca on the surface of the force sword has a long shape in one direction.
  • the distance between the anode 2 and the force sword 3 is made relatively small in order to keep the electrolysis voltage low, so the Ca concentration is low and the molten salt near the molten salt supply port 20 is electrolyzed with the molten salt. Mixing with the molten salt in the vicinity of the molten salt extraction port 21 having an increased concentration can be prevented, and only the molten salt enriched with Ca can be effectively extracted.
  • the document 2 describes a technique of "forming a molten salt flow in the vicinity of a force sword in the production of Ti by Ca reduction in a molten salt".
  • the anode and the force sword are placed facing each other along the longitudinal direction in the electrolytic cell, it is formed near the force sword surface or between the force sword surface and the diaphragm when a diaphragm is provided.
  • a unidirectional molten salt flow is formed along the surface of the force sword, and the molten salt with increased Ca concentration is recovered on the outlet side of the electrolytic cell by electrolysis in that state.
  • N / A and the description that suggests it is not shown! /.
  • the anode surface and the force sword surface face each other and are arranged in a substantially vertical direction, and a partition wall configured to allow a part of the diaphragm or the molten salt to flow between the anode and the force sword. If the electrolytic cell provided is used, it will be generated on the anode side. It is easy to collect the chlorine gas. Also, Ca and chlorine generated by electrolysis react with CaCl
  • substantially vertical direction means “substantially” and “substantially”, and “substantially vertical direction” means the vertical direction or its directional force also in the horizontal direction. A slightly inclined direction.
  • the molten salt electrolysis method using the electrolytic cell in which both electrodes are arranged opposite to each other in a substantially vertical direction can be preferably carried out by using the electrolytic cell illustrated in FIG.
  • the electrolytic cell illustrated in Fig. 6 CaCl is supplied into the lower force tank 5 of the electrolytic cell 5 and extracted from above.
  • the anode surface and the force sword surface are arranged in a substantially vertical direction, and the unidirectional flow rate is also applied to the molten salt near the force sword surface. Therefore, the flow direction of the molten salt is vertical, and the chlorine gas generated on the anode side floats easily, so it can be easily recovered.
  • Examples of the diaphragm provided between the anode and the force sword include, for example, many containing yttria (Y 2 O 3).
  • a porous ceramic body can be used.
  • a porous ceramic body made by firing yttria has a selective permeability that allows Ca and chlorine ions to pass through but does not allow metal Ca to pass through. It also reduces by Ca, which has strong reducing power. It has an excellent resistance to calcium reduction that is not possible, and is suitable as a diaphragm in the molten salt electrolysis method used in the present invention.
  • Electrolysis can be carried out with high current efficiency at which knock reaction is unlikely to occur.
  • a partition configured to allow a part of the molten salt to flow therethrough may be used.
  • the partition wall does not allow molten salts such as Ca and chlorine ions as well as metallic Ca, but by providing slits or holes through which molten salt can pass in a part of the partition wall, electrolysis can be achieved, while metal Ca It is possible to limit knock reaction by restricting the passage to some extent.
  • the force sword is hollow, has a gap or a hole through which the molten salt can flow from the surface of the force sword to the inside of the force sword, and the Ca concentrated molten salt flowing into the force sword is removed.
  • An electrolytic cell with a force sword that can be pulled out of the electrolytic cell shall be used. If so, knock reaction can be effectively suppressed.
  • FIG. 7 is a diagram schematically showing a configuration example of a part of an electrolytic cell using a hollow force sword.
  • the anode 2 and the hollow force sword 3a face each other in the substantially vertical direction along the longitudinal direction in the electrolytic cell 5, and between the anode 2 and the force sword 3a.
  • the force sword 3a is provided with a gap or a hole through which the molten salt can flow into the cathode as well as the force sword surface force.
  • the electrolytic cell constructed in this way is used, the molten salt is extracted from above the hollow portion of the force sword 3a, so that the inner side of the force sword from the outer side as shown by the white arrow in the figure. A molten salt flow to the (hollow part) is formed, and Ca generated on the outer surface of the force sword 3a is immediately taken into the force sword 3a without diffusing and moving to the anode side. Thereby, back reaction can be effectively suppressed. Since the electrolytic cell illustrated in FIG. 7 has the diaphragm 4, the knock reaction suppressing effect is further increased as compared with the case without the diaphragm.
  • controlling the Ca concentration to be less than the saturation solubility means “electrolysis under conditions where the Ca concentration is close to the saturation solubility and does not precipitate”.
  • the shape of the electrolytic cell container and the electric power are set so that the "condition where the Ca concentration is close to the saturation solubility and does not precipitate" is satisfied at the site where the Ca concentration is highest in the electrolytic cell.
  • the optimum electrolysis conditions according to the pole shape, the distance between the poles, and the amount of molten salt extracted per unit time will be determined empirically.
  • the Ca concentration near the molten salt outlet on the force sword side is the highest, so the Ca concentration in this part is controlled to be less than the saturation solubility.
  • electrolytic operation becomes possible.
  • the molten salt with the increased Ca concentration in the electrolysis step is adjusted to have a Ca supply source.
  • the molten salt is introduced into a tank and brought into contact with the Ca supply source, and the Ca concentration of the molten salt is kept high and constant.
  • the optimum electrolysis conditions, the amount of molten salt withdrawn, etc. are determined empirically. Even so, a certain degree of control is possible.
  • the molten salt electrolysis method used in the present invention When the molten salt electrolysis method used in the present invention is carried out, a large heat of reaction is generated in the electrolytic cell, so it is desirable to effectively remove the heat. Specifically, it is desirable to install a cooler at the center of the force sword to remove the reaction heat from the internal force of the force sword, regardless of whether or not the hollow force sword is used.
  • a cooler for example, a tubular heat exchanger is suitable.
  • cooler heat exchanger
  • the energized surface area needs to be increased in order to increase the energization amount and increase the amount of Ca generation.
  • a groove process for forming a groove on the electrode surface can be applied.
  • molten salt electrolysis method it is possible to relatively stably obtain a molten salt in which Ca is concentrated to near the saturation solubility while suppressing adverse effects such as clogging inside the electrolytic cell. Can be manufactured efficiently.
  • the molten salt is electrolyzed while flowing in one direction near the surface of the force sword, a large amount of molten salt can be processed continuously.
  • the electrolytic cell used for carrying out this molten salt electrolysis method retains a molten salt containing CaCl.
  • the electrolytic cell container has an anode and a force sword disposed along the longitudinal direction of the electrolytic cell container, and is melted at one end in the longitudinal direction of the electrolytic cell container.
  • a salt supply port is provided so that the molten salt can be supplied between the anode and the power sword, and the molten salt having an increased Ca concentration generated by electrolysis of the molten salt at the other end is provided outside the electrolytic cell.
  • the electrolytic cell illustrated in Fig. 6 is an embodiment thereof, and the anode surface and the cathode surface are arranged to face each other in a substantially vertical direction, and a diaphragm is provided between the anode and the force sword. It has an electrolytic cell. Instead of the diaphragm, a partition wall configured to allow a part of the molten salt to flow therethrough may be provided.
  • the molten salt whose Ca concentration has been increased in the electrolysis step is introduced into an adjustment tank equipped with a Ca supply source to make the Ca concentration constant, and then used for the reduction of TiCl.
  • Reduction tank equipped with a Ca supply source to make the Ca concentration constant, and then used for the reduction of TiCl.
  • the reduction reaction of 4 can be performed efficiently, stable operation is possible, and Ti can be manufactured on an industrial scale. Therefore, the production method of the present invention and the production apparatus of the present invention capable of easily and suitably carrying out this method can be effectively used for the production of Ti by Ca reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A process for producing Ti, comprising the reduction step of providing a molten salt containing CaCl2 and having Ca dissolved therein and reacting TiCl4 with the Ca to thereby form Ti particles, the separation step of separating the Ti particles formed in the molten salt from the molten salt and the electrolysis step of electrolyzing the molten salt so as to increase the concentration of Ca, wherein the molten salt having the concentration of Ca increased in the electrolysis step is introduced in a regulation vessel to thereby render the Ca concentration of the molten salt constant and thereafter is used in the reduction ofTiCl4 in the reduction step. In this process, not only can any fluctuation of Ca concentration of molten salt charged in a reduction vessel be suppressed but also a high concentration thereof can be maintained. Further, continuous processing of a large volume of molten salt becomes feasible. Therefore, the reduction reaction of TiCl4 can be efficiently performed, and as a process for realization of Ti production on an industrial scale, the process can be effectively utilized in the production of Ti by Ca reduction.

Description

Tiの製造方法および製造装置  Ti manufacturing method and manufacturing apparatus
技術分野  Technical field
[0001] 本発明は、 TiClを Caにより還元処理して金属 Tiを製造する Tiの製造方法、およ  [0001] The present invention relates to a Ti production method for producing metal Ti by reducing TiCl with Ca, and
4  Four
びそれに用いる製造装置に関する。  And a manufacturing apparatus used therefor.
背景技術  Background art
[0002] 金属 Tiの工業的な製法としては、 TiClを Mgにより還元するクロール法が一般的で  [0002] As an industrial production method of metal Ti, a crawl method in which TiCl is reduced with Mg is common.
4  Four
ある。このクロール法では、還元工程一真空分離工程を経て金属 Tiが製造される。 還元工程では、反応容器内で上方から供給される液体状の TiClが溶融 Mgにより  is there. In this crawl method, metal Ti is manufactured through a reduction process and a vacuum separation process. In the reduction process, liquid TiCl supplied from above in the reaction vessel is melted by molten Mg.
4  Four
還元され、粒子状の金属 Tiが生成し、逐次下方へ沈降してスポンジ状の金属 Tiが得 られる。真空分離工程では、反応容器内のスポンジ状金属 T 未反応の Mgおよ び副生物である MgClが除去される。  Reduced, particulate metal Ti is generated, and then sinks downward to obtain sponge-like metal Ti. In the vacuum separation process, sponge metal T unreacted Mg and by-product MgCl in the reaction vessel are removed.
2  2
[0003] クロール法による金属 Tiの製造では、高純度の製品を製造することが可能である。  [0003] In the production of metal Ti by the crawl method, it is possible to produce a high-purity product.
しかし、ノツチ式であるために製造コストが嵩み、製品価格が非常に高くなる。製造コ ストが嵩む原因の一つは、 TiClの供給速度を上げることが困難なことである。  However, since it is a Notch type, the manufacturing cost increases and the product price becomes very high. One reason for the increased manufacturing cost is that it is difficult to increase the supply rate of TiCl.
4  Four
[0004] その理由としては幾つか考えられる力 一つは、 TiClの供給速度を大きくしすぎる  [0004] There are several possible reasons for this. One is to increase the supply rate of TiCl too much
4  Four
と、沈降せず液面に残っている MgClに上方から TiClが供給されるようになるため、  Then, TiCl will be supplied from above to MgCl remaining on the liquid surface without settling,
2 4  twenty four
供給した TiClが未反応の TiClガスや還元が不十分な TiClガスなどとして反応容  The supplied TiCl reacts as unreacted TiCl gas or insufficiently reduced TiCl gas.
4 4 3 器外へ排出され、 TiClの利用効率が低下することである。  4 4 3 It is discharged to the outside of the vessel, and the utilization efficiency of TiCl decreases.
4  Four
[0005] また、クロール法では、反応容器内の溶融 Mg液の液面近傍だけで反応が行われ るため、発熱エリアが狭い。そのため、高速で TiClを供給すると冷却が間に合わなく  [0005] In the crawl method, the reaction is performed only in the vicinity of the surface of the molten Mg liquid in the reaction vessel, so that the heat generation area is narrow. Therefore, if TiCl is supplied at high speed, the cooling will not be in time.
4  Four
なることも、 TiClの供給速度が制限される大きな理由である。  This is also a major reason that the TiCl supply rate is limited.
4  Four
[0006] 更に、溶融 Mgの濡れ性 (粘着性)のため、生成した Ti粉が凝集した状態で沈降し、 沈降中にも高温の溶融液が有している熱により焼結して粒成長し、反応容器外へ回 収することが困難である。このため、金属 Tiの製造を連続的に行うことができず、生産 性が阻害される。  [0006] Further, due to the wettability (adhesiveness) of molten Mg, the generated Ti powder settles in an aggregated state, and during the sedimentation, it is sintered by the heat of the high-temperature melt and grows. However, it is difficult to recover outside the reaction vessel. For this reason, metal Ti cannot be manufactured continuously, and productivity is hindered.
[0007] クロール法以外の Ti製造方法に関しては、米国特許第 2205854号明細書に、 Ti CIの還元剤として Mg以外に例えば Caの使用が可能なことが記載されている。そし[0007] Regarding a Ti manufacturing method other than the crawl method, US Pat. No. 2,205,854 discloses Ti It is described that it is possible to use, for example, Ca in addition to Mg as a reducing agent for CI. And
4 Four
て、 Caによる還元反応を用いた Tiの製造方法としては、米国特許第 4820339号明 細書 (以下、「文献 1」という)に、反応容器内に CaClの溶融塩を保持し、その溶融塩  As a method for producing Ti using a reduction reaction with Ca, US Pat. No. 4,820,339 (hereinafter referred to as “Literature 1”) holds a molten salt of CaCl in a reaction vessel and the molten salt.
2  2
中に上方力も金属 Ca粉末を供給して、溶融塩中に Caを溶け込ませると共に、下方 から TiClガスを供給して、 CaClの溶融塩中で溶解 Caと TiClを反応させる方法が  The upper force also supplies metallic Ca powder to dissolve Ca in the molten salt, and TiCl gas is supplied from below to react the dissolved Ca and TiCl in the molten CaCl salt.
4 2 4  4 2 4
記載されている。  Are listed.
[0008] し力しながら、上記文献 1に記載された方法は、還元剤として使用する金属 Caの粉 末が極めて高価で、これを購入して使用すると、製造コストはクロール法よりも高価と なるので、工業的な Ti製造法としては成立し得ない。カロえて、反応性が強い Caは取 り扱いが非常に難しぐこのことも、 Ca還元による Ti製造方法の工業ィ匕を阻害する大 きな要因になっている。  [0008] However, in the method described in the above-mentioned document 1, the metal Ca powder used as the reducing agent is extremely expensive, and when purchased and used, the production cost is higher than that of the crawl method. Therefore, it cannot be established as an industrial Ti manufacturing method. It is difficult to handle Ca, which is highly reactive, and this is also a major factor that hinders the industrial process of Ti production by Ca reduction.
[0009] 更に別の Ti製造方法としては、米国特許第 2845386号明細書 (以下、「文献 2」と いう)に、 TiClを経由せず、 TiOを Caにより直接還元するオルソンの方法が記載さ  [0009] As yet another Ti production method, US Pat. No. 2,845,386 (hereinafter referred to as “Reference 2”) describes Olson's method in which TiO is directly reduced by Ca without passing through TiCl.
4 2  4 2
れている。この方法は、酸化物直接還元法の一種である。しかし、この方法では高価 な高純度の TiOを使用しなければならない。  It is. This method is a kind of direct oxide reduction method. However, this method requires the use of expensive high-purity TiO.
2  2
[0010] 一方、本発明者らは、 Ca還元による Ti製造方法を工業的に確立するためには、 Ti C1の Caによる還元が不可欠であり、還元反応で消費される溶融塩中の Caを経済的 [0010] On the other hand, in order to industrially establish a Ti production method by Ca reduction, the present inventors need to reduce Ti C1 with Ca, and the Ca in the molten salt consumed in the reduction reaction is reduced. Economic
4 Four
に補充する必要があると考え、特開 2005— 133195号公報(以下、「文献 3」という) および特開 2005— 133196号公報(以下、「文献 4」という)において、溶融 CaClの  In JP-A-2005-133195 (hereinafter referred to as “Reference 3”) and JP-A-2005-133196 (hereinafter referred to as “Reference 4”),
2 電気分解により生成する Caを利用すると共に、この Caを循環使用する方法、すなわ ち、「OYIK法 (ォーイツク法)」を提案した。上記文献 3では、電気分解により Caが生 成、補充され、 Caリッチとなった溶融 CaClを反応容器に導入し、 Ca還元による Ti粒  2 In addition to using Ca produced by electrolysis, we proposed a method of circulating this Ca, that is, the “OYIK method”. In Reference 3 above, Ca is generated and replenished by electrolysis, Ca-rich molten CaCl is introduced into the reaction vessel, and Ti particles are reduced by Ca reduction.
2  2
の生成に使用する方法が記載され、上記文献 4では、更に、陰極として合金電極 (例 えば、 Mg— Ca合金電極)を用いることにより、電解に伴うバックリアクションを効果的 に抑制する方法が示されて 、る。  The method used for the production of the above is described, and the above-mentioned document 4 further shows a method for effectively suppressing the back reaction accompanying electrolysis by using an alloy electrode (for example, Mg—Ca alloy electrode) as the cathode. It has been.
発明の開示  Disclosure of the invention
[0011] 前述のとおり、クロール法以外の Ti製造方法について、従来多くの研究開発が行 われてきた。特に本発明者らが提案した前記「OYIK法 (ォーイツク法)」では、 TiCl の還元反応に伴 、溶融塩中の Caが消費される力 その溶融塩を電気分解すれば溶 融塩中に Caが生成し、こうして得られた Caを還元反応に再使用すれば、外部からの Ca補充が不要になり、し力も、 Caを単独で取り出す必要がないので、経済性が向上 する。 [0011] As described above, much research and development has been conducted on Ti production methods other than the crawl method. In particular, in the “OYIK method” proposed by the present inventors, TiCl The power to consume Ca in the molten salt during the reduction reaction of the metal If the molten salt is electrolyzed, Ca is generated in the molten salt, and the Ca thus obtained is reused in the reduction reaction from the outside. This eliminates the need to replenish Ca, and there is no need to remove Ca alone, improving economic efficiency.
[0012] そこで、本発明者らは、基本的な構成はこの OYIK法に立脚し、更に、効率よぐ安 定した操業を行い得る金属 Ti製造プロセスの開発を企図して、製造工程全般に亘り 検討を加えることとした。 OYIK法をさらに進化させた本発明の Ήまたは Ti合金の製 造方法は、その着想力 開発、完成に深く関与した 4名「小笠原、山口、巿橋、金澤」 のイニシャルをとり、 ΓΟΥΙΚ— Π法(ォーイツクー II法)」と命名する。  [0012] Therefore, the present inventors based on this OYIK method as a basic configuration, and further developed a metal Ti manufacturing process that can perform stable and efficient operation, and the entire manufacturing process. It was decided to add a study. The OY or Ti alloy manufacturing method of the present invention, which is a further evolution of the OYIK method, took the initials of four people who were deeply involved in the development and completion of the idea, “Ogasawara, Yamaguchi, Takahashi, Kanazawa”. The name of the law (Ouitsuku II method).
[0013] 本発明の目的は、溶融 CaClの電気分解により生成する Caにより TiClを還元する  [0013] An object of the present invention is to reduce TiCl with Ca generated by electrolysis of molten CaCl.
2 4  twenty four
Ca還元による金属 Tiの製造に際し、 TiClの還元反応を効率よく行わせ、且つ工業  In the production of Ti metal by Ca reduction, TiCl reduction reaction can be performed efficiently and industrial
4  Four
的規模で、安定した操業が可能な Tiの製造方法、およびそれに用いられる製造装置 を提供することにある。  The purpose is to provide a Ti manufacturing method capable of stable operation and a manufacturing equipment used therefor.
[0014] 上記の課題、すなわち、 TiClの還元反応を効率よく行わせ、且つ、安定した操業  [0014] The above-mentioned problem, that is, the reduction reaction of TiCl is efficiently performed and the operation is stable.
4  Four
を可能とするためには、 TiClを還元する還元槽に投入する CaCl含有溶融塩中の  In order to make it possible, the CaCl-containing molten salt introduced into the reduction tank that reduces TiCl
4 2  4 2
Caの高濃度化と、濃度の変動抑制が重要であり、工業的規模での Tiの製造を可能 とするためには、還元槽への Caの供給速度の増大 (換言すれば、電解工程における 大量の CaCl含有溶融塩の連続処理)が必要である。  Increasing the Ca concentration and suppressing fluctuations in concentration are important, and in order to enable the production of Ti on an industrial scale, the rate of Ca supply to the reduction tank is increased (in other words, in the electrolysis process). Continuous treatment of a large amount of molten salt containing CaCl is required.
2  2
[0015] 還元槽に投入する溶融塩の Ca濃度が低すぎる場合は、未反応の TiClガスが槽  [0015] When the Ca concentration of the molten salt charged into the reduction tank is too low, unreacted TiCl gas is added to the tank.
4 外へ排出される。更に、 TiCl、 TiCl等の低級塩ィ匕チタンのガスが生成して溶融塩  4 It is discharged outside. In addition, a low salt-titanium gas such as TiCl or TiCl is generated to produce molten salt.
3 2  3 2
に溶け込み、この溶融塩が CaClを電気分解して Caを生成させる電解槽へ戻された  This molten salt was returned to the electrolytic cell that electrolyzes CaCl to produce Ca.
2  2
ときに、生成する Caと低級塩ィ匕チタンとの反応により Tiが生成し、この Tiが力ソード表 面に析出して、電解槽の形状如何によつては電極間の短絡ゃ槽内での閉塞を引き 起こすおそれがある。また、 Tiの C汚染の原因となる TiCの発生なども危惧される。  Occasionally, Ti is formed by the reaction between the generated Ca and lower salt titanium, and this Ti precipitates on the surface of the force sword, and depending on the shape of the electrolytic cell, the short circuit between the electrodes may occur in the cell. May cause blockage. There is also concern about the occurrence of TiC, which causes Ti contamination of C.
[0016] 一方、溶融塩の Ca濃度が高すぎる場合は、還元槽カも抜き出される溶融塩中に多 量の Caが含まれ、分離工程で溶融塩力 分離された Tiにも Caが含まれた溶融塩が 一部付着残留することとなる。この残留した溶融塩は、分離回収された Tiの溶解時に 完全に除去されるが、 Caは蒸発し、損失となる他、溶解炉の内壁に付着するので大 掛カりな清掃除去が必要になる。 [0016] On the other hand, when the Ca concentration of the molten salt is too high, a large amount of Ca is contained in the molten salt extracted from the reducing tank, and Ti is also contained in Ti separated by the molten salt force in the separation process. Some of the molten salt will remain attached. This residual molten salt is completely removed when the separated and recovered Ti is melted, but the Ca is evaporated and lost, and it adheres to the inner wall of the melting furnace. It is necessary to remove a large amount of cleaning.
[0017] カロえて、分離工程で Tiが分離された後の溶融塩中の Ca濃度も高いので、電解槽 へ戻したときに、この Caと電解で生成した塩素との反応 (バックリアクション)が起こり、 電流効率が低下する。また、その際の反応熱により電解槽内の溶融塩 (浴塩)の温度 の均一性が乱され、浴塩の温度制御に支障を来すおそれもある。  [0017] Since the Ca concentration in the molten salt after Ti is separated in the separation process is also high, the reaction (back reaction) between this Ca and the chlorine generated by the electrolysis occurs when returning to the electrolytic cell. Occurs and current efficiency decreases. In addition, the reaction heat at that time may disturb the temperature uniformity of the molten salt (bath salt) in the electrolytic cell, which may hinder the temperature control of the bath salt.
[0018] 従って、還元槽に投入される溶融塩の Ca濃度は変動せず常に一定であり、し力も 、還元反応を効率よく進行させるためには、高濃度であることが望ましい。しかし、例 えば、電解槽力 抜き出される溶融塩中の Ca濃度をリアルタイムで測定しながら Ca 濃度を一定に制御することは非常に難しぐ電解槽での電解条件の若干の変動に伴 う Ca濃度の変動は避けられない。そのため、電解槽で Ca濃度を高めた溶融塩を直 接還元槽に投入する手法を採る限り、 Ca濃度を常に一定に維持することは困難であ る。  [0018] Therefore, the Ca concentration of the molten salt charged into the reduction tank does not change and is always constant, and it is desirable that the concentration be high in order to allow the reduction reaction to proceed efficiently. However, for example, it is very difficult to control the Ca concentration constantly while measuring the Ca concentration in the molten salt extracted from the electrolytic cell force in real time. Variations in concentration are inevitable. Therefore, it is difficult to keep the Ca concentration constant at all times as long as the molten salt with the Ca concentration increased in the electrolytic cell is directly put into the reduction tank.
[0019] そこで、本発明者らは、還元槽に投入する溶融塩の Ca濃度の変動を抑制し、且つ 高濃度に維持するために種々検討を重ねた。その結果、電解槽 (以下、「主電解槽」 という)と還元槽の間に Ca供給源を備える調整槽を設置し、主電解槽で Ca濃度を高 めた溶融塩を調整槽に導入して Ca濃度を一定とした後、還元に用いることが効果的 であることを知見した。 Ca供給源としては、溶融 Ca— Mg合金が好適であることも判 明した。  [0019] Therefore, the present inventors have made various studies in order to suppress the fluctuation of the Ca concentration of the molten salt charged into the reduction tank and maintain it at a high concentration. As a result, an adjustment tank equipped with a Ca supply source was installed between the electrolytic cell (hereinafter referred to as the “main electrolytic cell”) and the reduction tank, and molten salt with an increased Ca concentration was introduced into the adjustment cell in the main electrolytic cell. It was found that it is effective to use it for reduction after keeping the Ca concentration constant. It was also found that a molten Ca-Mg alloy is suitable as a Ca supply source.
[0020] 更に、主電解槽の電解槽容器の形状、電極形状、電解条件、極間距離等につ!、 て詳細な検討を行った結果、溶融塩を力ソード表面近傍で一方向に流しつつ電気分 解して主電解槽の出側で Ca濃度が高まった溶融塩を回収することにより、ノックリア クシヨンを抑制して高電流効率を維持すると共に、 Caが濃化した溶融塩のみを効果 的に取り出すことができ、し力も、大量の CaCl含有溶融塩の連続処理が可能である  [0020] Further, as a result of detailed investigations on the shape of the electrolytic cell vessel of the main electrolytic cell, the electrode shape, the electrolysis conditions, the distance between the electrodes, etc., the molten salt flowed in one direction near the surface of the force sword. While recovering molten salt with increased Ca concentration on the outlet side of the main electrolyzer while maintaining electric current while maintaining high current efficiency by controlling the non-clearance, only the molten salt enriched with Ca is effective. It is possible to take out a large amount of CaCl-containing molten salt continuously.
2  2
ことを知見した。  I found out.
[0021] 本発明はこれらの知見に基づいてなされたもので、その要旨は、下記(1)の Tiの製 造方法、および(2)の Tiの製造装置にある。  [0021] The present invention has been made based on these findings, and the gist of the present invention is the following (1) Ti production method and (2) Ti production apparatus.
[0022] (l) CaClを含み且つ Caが溶解した溶融塩中の Caに TiClを反応させて前記溶融 [0022] (l) The above-mentioned molten TiCl is reacted with Ca in a molten salt containing CaCl and dissolved in Ca.
2 4  twenty four
塩中に Ti粒を生成させる還元工程と、前記溶融塩中に生成された Ti粒を前記溶融 塩力 分離する分離工程と、 Ti粒の生成に伴って Ca濃度が低下した溶融塩を電解 することにより Ca濃度を高める電解工程とを含み、前記電解工程で主電解槽を用い て Ca濃度を高めた溶融塩を、 Ca供給源を有する調整槽に導入して当該 Ca供給源 に接触させることにより前記溶融塩の Ca濃度を一定とした後、還元工程で TiClの還 A reduction step of generating Ti grains in the salt, and melting the Ti grains generated in the molten salt A separation process for separating the salt force, and an electrolysis process for increasing the Ca concentration by electrolyzing the molten salt whose Ca concentration has decreased due to the formation of Ti grains. In the electrolysis process, the Ca concentration is increased using the main electrolytic cell. The molten salt thus introduced is introduced into a regulating tank having a Ca supply source and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then TiCl is reduced in the reduction step.
4 元に用いる Tiの製造方法。  4 Original Ti manufacturing method.
[0023] なお、ここで、「CaClを含有する溶融塩」とは、溶融 CaClのみ、または、溶融 CaC  [0023] Here, the "molten salt containing CaCl" means only molten CaCl or molten CaC.
2 2  twenty two
1に、融点の低下、粘性等の調整のために KC1、 CaF等をカ卩えた溶融塩である。以 1 is a molten salt containing KC1, CaF, etc. to adjust the melting point and viscosity. Less than
2 2 twenty two
下、単に「溶融塩」ともいう。  Hereinafter, it is also simply referred to as “molten salt”.
[0024] 本発明の製造方法において、 Ca供給源が溶融 Ca— Mg合金であれば、この溶融 Ca— Mg合金の Caを容易に補充できるので、望ましい(以下、第 1実施形態と記す)  [0024] In the production method of the present invention, if the Ca supply source is a molten Ca-Mg alloy, it is desirable because Ca of the molten Ca-Mg alloy can be easily supplemented (hereinafter referred to as the first embodiment).
[0025] この第 1実施形態において、溶融 Ca— Mg合金中の Ca濃度を、 CaClを含む溶融 [0025] In the first embodiment, the Ca concentration in the molten Ca-Mg alloy is the same as that of the molten CaCl-containing alloy.
2 塩を合金用電解槽で電解することにより高め、 Caを補充することとすれば、 Caの補 充を操業に影響を及ぼすことなく容易に行うことができる (以下、第 2実施形態と記す 2 If the salt is increased by electrolysis in an alloy electrolytic cell and Ca is replenished, Ca can be easily replenished without affecting the operation (hereinafter referred to as the second embodiment).
) o ) o
[0026] 本発明の製造方法にお!、て、分離工程で Ti粒が分離された後の溶融塩を一旦合 金用電解槽へ投入し、溶融塩の Ca濃度を低減させて力ゝら主電解槽へ投入することと すれば、分離工程カゝら電解工程へ戻される溶融塩中の残留 Caが除去されるとともに この残留 Caを有効に利用することができるので、望ましい (以下、第 3実施形態と記 す)。  [0026] In the production method of the present invention, the molten salt from which the Ti grains have been separated in the separation step is once charged into the electrolytic cell for alloying, and the Ca concentration of the molten salt is reduced. If it is put into the main electrolytic cell, it is desirable because the residual Ca in the molten salt returned to the electrolysis process from the separation process can be removed and this residual Ca can be used effectively (hereinafter referred to as the first). 3).
[0027] また、本発明の製造方法で用いる調整槽が冷却機能を備えるものであれば、後ェ 程の還元槽で発熱反応に基づく槽内温度の上昇を緩和でき、また、還元槽に投入さ れる溶融塩の Ca濃度を常に一定、且つ高濃度に保つことができ、還元反応を効率よ く行わせ、安定操業に寄与できる (以下、第 4実施形態と記す)。  [0027] Further, if the adjustment tank used in the production method of the present invention has a cooling function, an increase in the temperature in the tank based on an exothermic reaction can be mitigated in a later reduction tank, and the addition to the reduction tank Therefore, the Ca concentration of the molten salt can be kept constant at a constant and high concentration, and the reduction reaction can be performed efficiently, contributing to stable operation (hereinafter referred to as the fourth embodiment).
[0028] (2) CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に供給される  [0028] (2) A molten salt containing CaCl and dissolved in Ca is retained and supplied into the molten salt.
2  2
TiClを前記 Caと反応させて Ti粒を生成させるための還元槽と、前記溶融塩中に生 A reduction tank for reacting TiCl with the Ca to produce Ti grains, and
4 Four
成された Ti粒を溶融塩から分離するための分離手段と、前記 Ti粒が分離された後の 溶融塩を保持し、アノードと力ソードを備え、当該溶融塩中で電気分解を行って陰極 側に Caを生成させるための主電解槽と、 Ca供給源を備え、前記主電解槽内の溶融 塩を導入して Ca供給源と接触させることにより当該溶融塩の Ca濃度を一定とした後 、その溶融塩を前記還元槽へ投入するための調整槽とを有する Tiの製造装置。 Separating means for separating the formed Ti grains from the molten salt, and holding the molten salt after the Ti grains are separated, comprising an anode and a power sword, and performing electrolysis in the molten salt to form a cathode A main electrolytic cell for generating Ca on the side and a Ca supply source; after introducing the molten salt in the main electrolytic cell and bringing it into contact with the Ca supply source, the Ca concentration of the molten salt is made constant And an adjusting tank for introducing the molten salt into the reduction tank.
[0029] 本発明の製造装置において、 Ca供給源が溶融 Ca— Mg合金であり、この溶融 Ca —Mg合金の Ca濃度を高めるための合金用電解槽を備えるものであれば、前記第 1 および第 2実施形態に係る Tiの製造方法の実施に好適に使用できる。  [0029] In the production apparatus of the present invention, if the Ca supply source is a molten Ca-Mg alloy and includes an alloy electrolytic cell for increasing the Ca concentration of the molten Ca-Mg alloy, the first and It can be suitably used for implementing the Ti manufacturing method according to the second embodiment.
[0030] また、分離工程の高温デカンターと主電解槽の間に合金用電解槽が設置され、合 金用電解槽で Ca濃度が高められた溶融塩を調整槽に導入できるように構成されて V、れば、前記第 3実施形態に係る Tiの製造方法の実施に好適である。  [0030] In addition, an electrolytic cell for an alloy is installed between the high-temperature decanter and the main electrolytic cell in the separation step, and the molten salt having a high Ca concentration in the alloy electrolytic cell can be introduced into the adjustment tank. V is suitable for carrying out the Ti manufacturing method according to the third embodiment.
[0031] 本発明の製造方法では、主電解槽で Ca濃度を高めた溶融塩を Ca供給源を備える 調整槽に導入して Ca濃度を一定とした後、 TiClの還元に用いるので、還元槽に投  [0031] In the production method of the present invention, the molten salt with the Ca concentration increased in the main electrolytic cell is introduced into the adjustment tank equipped with the Ca supply source and the Ca concentration is made constant, and then used for the reduction of TiCl. Throw
4  Four
入する溶融塩の Ca濃度の変動を抑制し、且つ高濃度に維持することができる。これ により、 TiClの還元反応を効率よく行わせ、安定した操業が可能である。また、電解  The fluctuation of the Ca concentration of the molten salt entering can be suppressed and maintained at a high concentration. As a result, the reduction reaction of TiCl can be performed efficiently and stable operation is possible. Electrolysis
4  Four
工程における大量の CaCl含有溶融塩の連続処理が可能であり、還元槽への Ca供  It is possible to continuously process a large amount of molten salt containing CaCl in the process and supply Ca to the reduction tank.
2  2
給速度を増大させて工業的規模で Tiを製造することができる。この製造方法は、本 発明の製造装置により容易に且つ好適に実施できる。  Ti can be produced on an industrial scale by increasing the feed rate. This manufacturing method can be easily and suitably performed by the manufacturing apparatus of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0032] 図 1は、本発明の Tiの製造装置の概略構成例を示す図である。  FIG. 1 is a diagram showing a schematic configuration example of the Ti manufacturing apparatus of the present invention.
図 2は、本発明の Tiの製造装置の他の概略構成例を示す図である。  FIG. 2 is a diagram showing another schematic configuration example of the Ti manufacturing apparatus of the present invention.
図 3は、合金用電解槽による溶融 Ca— Mg合金に対する Caの補充についての説 明図である。  Fig. 3 is an explanatory diagram of the replenishment of Ca to the molten Ca-Mg alloy in the alloy electrolytic cell.
図 4は、合金用電解槽を組み込んだ本発明の Tiの製造装置の概略構成例を示す 図である。  FIG. 4 is a diagram showing a schematic configuration example of the Ti manufacturing apparatus of the present invention in which an alloy electrolytic cell is incorporated.
図 5は、分離工程から主電解槽へ戻す溶融塩の経路に、合金用電解槽を組み込 んだ本発明の Tiの製造装置の概略構成例を示す図である。  FIG. 5 is a diagram showing a schematic configuration example of the Ti production apparatus of the present invention in which an alloy electrolytic cell is incorporated in the molten salt path returned from the separation step to the main electrolytic cell.
図 6は、本発明で用いる溶融塩電解方法を実施する際に使用される電解槽の要部 の構成例を示す縦断面図である。  FIG. 6 is a longitudinal sectional view showing a configuration example of a main part of an electrolytic cell used when performing the molten salt electrolysis method used in the present invention.
図 7は、本発明で用いる溶融塩電解方法を実施する際に使用される中空力ソードを 用いた電解槽の一部の構成例を模式的に示す図である。 Fig. 7 shows the hollow-force sword used in carrying out the molten salt electrolysis method used in the present invention. It is a figure which shows typically the structural example of a part of used electrolytic vessel.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 以下に、本発明の製造方法および製造装置を、図面を参照して具体的に説明する  Hereinafter, the production method and production apparatus of the present invention will be specifically described with reference to the drawings.
[0034] 図 1は、本発明の Tiの製造装置の概略構成例を示す図である。図 1に示すように、 この装置は、 CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に供 FIG. 1 is a diagram showing a schematic configuration example of the Ti manufacturing apparatus of the present invention. As shown in FIG. 1, this apparatus holds a molten salt containing CaCl and dissolved in Ca and supplying the molten salt to the molten salt.
2  2
給される TiClを前記 Caと反応させて Ti粒を生成させるための還元槽 1と、前記溶融  The reduction tank 1 for generating Ti grains by reacting the supplied TiCl with the Ca, and the melting
4  Four
塩中に生成された Ti粒を溶融塩から分離するための分離手段と、前記 Ti粒が分離さ れた後の溶融塩を保持し、アノード 2と力ソード 3を備え、当該溶融塩の電気分解を行 つて陰極側に Caを生成させるための主電解槽 5と、 Ca供給源を備え、前記主電解槽 5内の溶融塩を導入して当該溶融塩の Ca濃度を一定とした後、その溶融塩を前記 還元槽 1へ投入するための調整槽 6とを有している。更に、この例では、主電解槽 5の アノード 2と力ソード 3の間に隔膜 4が設けられている。  Separation means for separating the Ti grains formed in the salt from the molten salt, and the molten salt after the Ti grains are separated are held, and the anode 2 and the force sword 3 are provided. A main electrolytic cell 5 for decomposing and generating Ca on the cathode side; and a Ca supply source. After introducing the molten salt in the main electrolytic cell 5 to make the Ca concentration of the molten salt constant, And an adjustment tank 6 for introducing the molten salt into the reduction tank 1. Further, in this example, a diaphragm 4 is provided between the anode 2 and the force sword 3 of the main electrolytic cell 5.
[0035] また、図 1に示した製造装置では、前記の分離手段として、デカンター型遠心沈降 機 (高温デカンター) 7および分離槽 8が用いられて ヽる。  In the manufacturing apparatus shown in FIG. 1, a decanter type centrifugal sedimentator (high temperature decanter) 7 and a separation tank 8 are used as the separation means.
[0036] 本発明の製造方法は、 CaClを含み且つ Caが溶解した溶融塩中の Caに TiClを  [0036] In the production method of the present invention, TiCl is added to Ca in a molten salt containing CaCl and dissolving Ca.
2 4 反応させて前記溶融塩中に Ti粒を生成させる還元工程と、前記溶融塩中に生成さ れた Ti粒を前記溶融塩から分離する分離工程と、 Ti粒の生成に伴って Ca濃度が低 下した溶融塩を電解することにより Ca濃度を高める電解工程とを含み、前記電解ェ 程で主電解槽を用いて Ca濃度を高めた溶融塩を、 Ca供給源を有する調整槽に導 入して当該 Ca供給源に接触させることにより前記溶融塩の Ca濃度を一定とした後、 還元工程で TiClの還元に用いることを特徴として 、る。  2 4 A reduction step of reacting to produce Ti particles in the molten salt, a separation step of separating the Ti particles produced in the molten salt from the molten salt, and a Ca concentration accompanying the production of Ti particles. An electrolytic process for increasing the Ca concentration by electrolyzing the molten salt having a reduced concentration, and introducing the molten salt having the Ca concentration increased using the main electrolytic cell in the electrolysis process to the adjustment tank having the Ca supply source. The molten salt is made constant by bringing the molten salt into contact with the Ca supply source and then used for the reduction of TiCl in the reduction step.
4  Four
[0037] すなわち、本発明の製造方法の「還元工程」では、例えば前記図 1に示した装置を 使用し、先ず、調整槽 6から供給される Caが一定濃度で溶解した溶融塩を、還元槽 1内に保持し、その溶融塩中の Caに、 TiCl供給口 9から供給した TiClを反応させ、  That is, in the “reduction step” of the production method of the present invention, for example, the apparatus shown in FIG. 1 is used. First, a molten salt in which Ca supplied from the adjustment tank 6 is dissolved at a constant concentration is reduced. Retained in tank 1 and reacted with TiCl supplied from TiCl supply port 9 to Ca in the molten salt,
4 4  4 4
前記溶融塩中に Ti粒を生成させる。  Ti grains are formed in the molten salt.
[0038] この場合、溶融塩は還元槽 1内に静止した状態で保持されるのではなぐ還元槽 1 の上方から下方へ徐々に流下しつつ保持され、その間に、 TiClが溶融塩中の Caに より還元されて Ti粒が生成する。 [0038] In this case, the molten salt is not held in a stationary state in the reducing tank 1, but is held while gradually flowing down from above the reducing tank 1, while TiCl is added to the Ca in the molten salt. In Reduced to produce Ti grains.
[0039] 前記還元工程で生成した Ti粒は、「分離工程」で溶融塩カゝら分離される。分離工程 では、最初、高温デカンター 7で Ti粒が溶融塩から分離回収され、次いで分離槽 8で[0039] The Ti particles generated in the reduction step are separated from the molten salt in the "separation step". In the separation process, Ti particles are first separated and recovered from the molten salt in a high-temperature decanter 7 and then separated in a separation tank 8.
Ti粒に付着して 、る溶融塩が除去される。 The molten salt adhering to the Ti grains is removed.
[0040] デカンター型遠心沈降機は回転円筒を高速回転させることにより懸濁物質を遠心 沈降させるタイプの遠心分離機で、高速処理が可能で、かつ高い脱水性能を有して おり、化学工場における各種処理プラント等で使用されている。高温処理が可能なタ イブのものも開発されており、この分離工程で高温デカンター 7として適用することが 可能である。 [0040] The decanter type centrifugal settling machine is a type of centrifugal separator that spins down suspended matter by rotating a rotating cylinder at high speed. It can process at high speed and has high dehydration performance. Used in various processing plants. A type capable of high temperature treatment has also been developed and can be applied as a high temperature decanter 7 in this separation process.
[0041] 高温デカンター 7から抜き出された Ti粒は、分離槽 8でプラズマトーチ 10から照射さ れるプラズマにより加熱溶融され、铸型 11に流し込まれ、 Tiインゴット 12となる。一方 、 Ti粒力 分離された付着溶融塩には、 Tiの微粒子が混入している恐れがある。そ のため、この付着溶融塩を電解工程へ戻すと問題が生じる可能性があるので、図 1 に示すように、還元槽 1内へ戻すのが望ましい。力!]えて、付着溶融塩には Caがある 程度残存して 、るため、 Caの有効活用の面からも還元槽 1内へ戻すことが合理的で ある。なお、調整槽 6で Ca濃度を一定にされた後に還元槽 1へ導入される溶融塩の 流量と比較して、付着溶融塩の流量は極僅かであるため、調整槽 6から還元槽 1へ 導入される溶融塩の Ca濃度の変動は無視できる。  [0041] The Ti grains extracted from the high-temperature decanter 7 are heated and melted by the plasma irradiated from the plasma torch 10 in the separation tank 8, and are poured into the vertical mold 11 to become a Ti ingot 12. On the other hand, there is a possibility that Ti fine particles are mixed in the adhered molten salt separated by Ti grain force. For this reason, there is a possibility that a problem may occur if this adhered molten salt is returned to the electrolysis process, so it is desirable to return it to the reducing tank 1 as shown in FIG. Power! In addition, since there is a certain amount of Ca remaining in the adhering molten salt, it is reasonable to return it to the reduction tank 1 from the viewpoint of effective utilization of Ca. Note that the flow rate of the adhering molten salt is very small compared to the flow rate of the molten salt introduced into the reduction tank 1 after the Ca concentration is made constant in the adjustment tank 6, so that the flow from the adjustment tank 6 to the reduction tank 1 Variations in the Ca concentration of the molten salt introduced are negligible.
[0042] 前記高温デカンター 7で分離された Ca濃度の低下した溶融塩は、「電解工程」へ戻 され、主電解槽 5の力ソード 3と隔膜 4の間に投入され、保持される。この工程で用い られる主電解槽 5の構成、作用等については後に詳述するが、この場合も、溶融塩 は主電解槽 5内に静止した状態で保持されるのではなく、主電解槽 5の上方から下 方へ徐々に流下しつつ保持され、その間に電気分解され、溶融塩 Ca濃度が高めら れる。  The molten salt having a reduced Ca concentration separated by the high-temperature decanter 7 is returned to the “electrolysis step”, and is introduced and held between the force sword 3 and the diaphragm 4 in the main electrolytic cell 5. The configuration and operation of the main electrolytic cell 5 used in this step will be described in detail later. In this case, the molten salt is not held in the main electrolytic cell 5 in a stationary state, but the main electrolytic cell 5 It is held while gradually flowing down from above, and is electrolyzed during that time, increasing the molten salt Ca concentration.
[0043] しかし、主電解槽 5での電解条件の若干の変動に伴う Ca濃度の変動は避けられな い。そのため、主電解槽 5で電解処理を施した溶融塩を直接還元槽 1に投入すると、 Ca濃度が必ずしも常時一定には維持されないので、前述したように、低級塩化チタ ンの生成、ノ ックリアクションによる電流効率の低下などが生じることがあり、 TiClの 還元反応の効率を低下させ、安定した操業が難しくなる場合がある。 [0043] However, a change in Ca concentration due to a slight change in electrolysis conditions in the main electrolytic cell 5 is inevitable. For this reason, when the molten salt that has been subjected to the electrolytic treatment in the main electrolytic cell 5 is directly charged into the reducing cell 1, the Ca concentration is not always maintained constant. The current efficiency may decrease due to the action. The efficiency of the reduction reaction may be reduced, and stable operation may be difficult.
[0044] そこで、本発明の製造方法では、前記電解工程で主電解槽 5を用いて Ca濃度を高 めた溶融塩を、 Ca供給源を有する調整槽 6に導入して当該 Ca供給源に接触させる ことにより前記溶融塩の Ca濃度を一定とした後、還元工程で TiClの還元に用いる。  [0044] Therefore, in the production method of the present invention, the molten salt in which the Ca concentration is increased using the main electrolytic cell 5 in the electrolysis step is introduced into the adjustment tank 6 having a Ca supply source, and the Ca supply source is introduced. After making the Ca concentration of the molten salt constant by bringing it into contact, it is used for the reduction of TiCl in the reduction step.
4  Four
[0045] Ca供給源としては、溶融金属 Caや溶融 Ca— Mg合金を使用することができる。す なわち、前記 Ca濃度を高めた溶融塩の上に溶融金属 Caや溶融 Ca— Mg合金を浮 遊させ、これら Ca供給源と溶融塩とを接触させておく。これにより、溶融塩の Ca濃度 がその飽和溶解度未満であれば、 Ca供給源力 Caが溶融塩へ供給されて、 Ca濃 度を飽和溶解度近傍の濃度に維持することができ、また、溶融塩の Ca濃度がその飽 和溶解度であって、析出した金属 Caも混在している場合は、調整槽 6で比重差によ り金属 Caが浮上分離し、 Ca濃度を飽和溶解度近傍の濃度に保つことができる。更に 、調整槽 6から抜き出す際の溶融塩の温度を一定に制御すれば、 Ca濃度をその温 度における飽和溶解度近傍の一定濃度に制御することが可能となる。  As the Ca supply source, molten metal Ca or molten Ca—Mg alloy can be used. In other words, molten metal Ca or molten Ca—Mg alloy is allowed to float on the molten salt with increased Ca concentration, and these Ca supply source and molten salt are brought into contact with each other. As a result, when the Ca concentration of the molten salt is less than its saturation solubility, the Ca supply source Ca can be supplied to the molten salt, and the Ca concentration can be maintained at a concentration close to the saturation solubility. If the Ca concentration of the metal is the saturation solubility, and precipitated metal Ca is also present, the metal Ca floats and separates due to the difference in specific gravity in the adjustment tank 6, and the Ca concentration is maintained at a concentration close to the saturation solubility. be able to. Furthermore, if the temperature of the molten salt at the time of extraction from the adjustment tank 6 is controlled to be constant, the Ca concentration can be controlled to a constant concentration near the saturation solubility at that temperature.
[0046] 従って、溶融塩の Ca濃度が飽和溶解度である力、それ未満であるかを問わず、調 整槽 6を設置し、それに主電解槽 5で Ca濃度を高めた溶融塩を導入することにより、 Ca濃度をその飽和溶解度近傍の一定濃度とした溶融塩を還元槽 1に投入し、 TiCl  Therefore, regardless of whether the Ca concentration of the molten salt is the saturation solubility or less, the adjusting tank 6 is installed, and the molten salt with an increased Ca concentration is introduced into the main electrolytic tank 5. As a result, molten salt with a constant Ca concentration near its saturation solubility was charged into the reduction tank 1, and TiCl
4 の還元反応を効率よく行わせ、安定した操業をすることができる。  The reduction reaction of 4 can be carried out efficiently and stable operation can be achieved.
[0047] 但し、主電解槽 5で Ca濃度が飽和溶解度を超えるまで電解すると、主電解槽 5の内 部で金属 Caが析出し、前述した電解槽の閉塞などのトラブルの原因となるおそれが ある。従って、主電解槽 5で Ca濃度を高める際には、飽和溶解度を超えず、その直 前まで Ca濃度を高めるように制御しつつ電解し、 Caが高濃度ではあるが飽和溶解 度未満の溶融塩を調整槽 6に導入して Ca供給源に接触させ、 Ca濃度を飽和溶解度 近傍の一定濃度とすることが望まし 、。 [0047] However, if electrolysis is performed in the main electrolytic cell 5 until the Ca concentration exceeds the saturation solubility, metallic Ca precipitates inside the main electrolytic cell 5, which may cause troubles such as the clogging of the electrolytic cell described above. is there. Therefore, when increasing the Ca concentration in the main electrolytic cell 5, electrolysis is performed while controlling the Ca concentration so that it does not exceed the saturation solubility. It is desirable to introduce salt into the adjustment tank 6 and bring it into contact with the Ca supply source so that the Ca concentration is a constant concentration in the vicinity of the saturation solubility.
[0048] 図 2は、前記図 1に示した製造装置と同様に、 Tiの製造方法を実施する際に用いら れる、本発明の製造装置の他の概略構成例を示す図である。前記図 1に示した装置 構成との違いは、分離手段として、高温デカンターの代わりに重力を利用した沈降分 離槽 (シックナー) 13を用いる点であり、高温デカンターを用いる場合に比べて、広い 設置面積が必要であるが、動力費が少なくて済むという利点がある。 [0049] 本発明の製造方法における第 1実施形態は、 Ca供給源を溶融 Ca— Mg合金とす る方法である。 Ca供給源を溶融 Ca— Mg合金とすれば、溶融 Ca— Mg合金力も溶 融塩へ Caが溶け出し、前記合金の Caを補充する必要が生じた場合、次に述べるよう に、容易に補充できるので、望ましい。 [0048] FIG. 2 is a diagram showing another schematic configuration example of the manufacturing apparatus of the present invention used when the Ti manufacturing method is carried out, similarly to the manufacturing apparatus shown in FIG. The difference from the apparatus configuration shown in FIG. 1 is that a sedimentation separation tank (thickener) 13 using gravity is used instead of a high temperature decanter as a separation means, which is wider than the case where a high temperature decanter is used. Although an installation area is required, there is an advantage that the power cost is small. [0049] The first embodiment of the production method of the present invention is a method in which the Ca supply source is a molten Ca-Mg alloy. If the Ca supply source is a molten Ca-Mg alloy, when the molten Ca-Mg alloy power is also dissolved into the molten salt and it becomes necessary to replenish Ca in the alloy, it is easily replenished as described below. It is desirable because it can.
[0050] 本発明の第 2実施形態は、前記第 1実施形態において、溶融 Ca— Mg合金中の C a濃度を、 CaClを含む溶融塩を合金用電解槽で電解することにより高める方法であ  [0050] A second embodiment of the present invention is a method of increasing the Ca concentration in a molten Ca-Mg alloy by electrolyzing a molten salt containing CaCl in an alloy electrolytic cell in the first embodiment.
2  2
る。  The
[0051] 図 3は、合金用電解槽による溶融 Ca— Mg合金に対する Caの補充についての説 明図である。図 3において、合金用電解槽 14は、溶融塩 (溶融 CaCl )の移動が妨げ  [0051] FIG. 3 is an explanatory diagram of the replenishment of Ca to the molten Ca—Mg alloy by the alloy electrolytic cell. In Fig. 3, the electrolytic cell 14 for alloy hinders the movement of molten salt (molten CaCl).
2  2
られないように、下方が開口をなしている隔壁 15でアノード側と力ソード側に分けられ 、アノード側にはアノード 2が取り付けられ、力ソード側では、溶融 CaClより比重の小  In order to prevent damage, the partition 15 is divided into an anode side and a force sword side by a partition 15 having an opening on the lower side. An anode 2 is attached to the anode side, and the force sword side has a lower specific gravity than molten CaCl.
2  2
さい溶融 Ca— Mg合金 16が力ソードを構成している。なお、溶融 Ca— Mg合金 16に は電極棒 17が挿入されている。一方、調整槽 6には、電解工程で Ca濃度が高められ た溶融塩が導入されており、その上に Ca供給源としての溶融 Ca— Mg合金 16が保 持されている。  The molten Ca-Mg alloy 16 constitutes a power sword. An electrode rod 17 is inserted into the molten Ca—Mg alloy 16. On the other hand, a molten salt whose Ca concentration has been increased in the electrolysis process is introduced into the adjustment tank 6, and a molten Ca—Mg alloy 16 serving as a Ca supply source is held thereon.
[0052] この合金用電解槽 14を用いて溶融 CaClを電気分解すると、アノード 2では塩素ガ  [0052] When the molten CaCl is electrolyzed using this electrolytic cell 14 for alloy, the anode 2 has chlorine gas.
2  2
スが発生し、力ソードである溶融 Ca— Mg合金 16と溶融 CaClの界面では Caが生成  Ca is generated at the interface between molten Ca—Mg alloy 16 and molten CaCl, which is a force sword.
2  2
する。溶融 Ca— Mg合金 16と電解槽の間には電圧が力かっている(電位差が生じて いる)ため、前記生成した Caは、溶融 CaClには溶け込まず、溶融 Ca— Mg合金 16  To do. Since a voltage is applied between the molten Ca-Mg alloy 16 and the electrolytic cell (a potential difference is generated), the generated Ca does not dissolve in the molten CaCl, and the molten Ca-Mg alloy 16
2  2
に吸収され、 Ca— Mg合金 16の Ca濃度が高まる。  The Ca concentration of the Ca-Mg alloy 16 increases.
[0053] そこで、この Ca濃度が高まった溶融 Ca— Mg合金 16を調整槽 6内の溶融 Ca— Mg 合金 16の上方部へ移送し(図 3では、「MgZCa」と表示)、下方部に存在する、 Ca が溶融塩へ供給されて (すなわち、溶け出して) Ca濃度が低下した溶融 Ca— Mg合 金 16を合金用電解槽 14の溶融 Ca - Mg合金 16へ戻す(図 3では、「Mg」と表示)。 合金用電解槽 14では、前述した溶融 CaClの電気分解により生成する Caが溶融 Ca [0053] Therefore, the molten Ca—Mg alloy 16 having an increased Ca concentration is transferred to the upper part of the molten Ca—Mg alloy 16 in the adjustment tank 6 (indicated as “MgZCa” in FIG. 3), and is moved to the lower part. The existing Ca is supplied to the molten salt (ie, melted out), and the molten Ca—Mg alloy 16 having a reduced Ca concentration is returned to the molten Ca—Mg alloy 16 in the alloy electrolytic cell 14 (in FIG. 3, “Mg”). In the electrolytic cell 14 for alloy, the Ca generated by the electrolysis of the molten CaCl described above is molten Ca.
2  2
— Mg合金 16に吸収され、 Ca濃度が上昇する。  — Absorption by Mg alloy 16 increases Ca concentration.
[0054] このように、本発明の第 2実施形態を適用すれば、 Ca供給源として用いた溶融 Ca — Mg合金に対する Caの補充を、 Caの製造工程に何ら影響を与えることなぐ容易 に行うことができる。 As described above, if the second embodiment of the present invention is applied, the replenishment of Ca to the molten Ca—Mg alloy used as the Ca supply source can be easily performed without affecting the Ca production process. Can be done.
[0055] 図 4は、本発明の製造方法を実施するために、前記図 3に示した合金用電解槽が 組み込まれた製造装置の概略構成例を示す図である。この装置を用いて本発明の 第 1および第 2実施形態を適用すれば、 Ca供給源として用いた溶融 Ca— Mg合金へ の Caの補充を、操業に影響を及ぼすことなく容易に行うことができる。  FIG. 4 is a diagram showing a schematic configuration example of a manufacturing apparatus in which the alloy electrolytic cell shown in FIG. 3 is incorporated in order to carry out the manufacturing method of the present invention. If the first and second embodiments of the present invention are applied using this apparatus, Ca can be easily replenished to the molten Ca—Mg alloy used as the Ca supply source without affecting the operation. it can.
[0056] 本発明の製造方法を実施するに際し、溶融塩の Ca濃度が低すぎ、還元槽で Caが TiClの還元に完全に消費されるような還元条件で操業を行うと、前述のように、 TiCl [0056] In carrying out the production method of the present invention, if the molten salt is operated under reducing conditions such that the Ca concentration of the molten salt is too low and Ca is completely consumed in the reduction of TiCl, as described above, , TiCl
4 Four
4が未反応ガスとして槽外へ排出され、また、低級塩化チタンが発生する。従って、微 量の Caが残留するように、 TiClおよび Caの供給量を調整することが望ましい。しか  4 is discharged out of the tank as unreacted gas, and lower titanium chloride is generated. Therefore, it is desirable to adjust the supply amount of TiCl and Ca so that a minute amount of Ca remains. Only
4  Four
し、微量といえども Caが残留したままの溶融塩を主電解槽へ投入すると、主電解槽 で、この残留 Caと電解により生成した塩素とのバックリアクションによる電流効率の低 下などが懸念される。  However, if molten salt with a small amount of Ca remaining is introduced into the main electrolytic cell, there is a concern that current efficiency may decrease due to back reaction between the residual Ca and chlorine generated by electrolysis in the main electrolytic cell. The
[0057] 本発明の第 3実施形態は、前記第 2実施形態で使用する合金用電解槽を用いて、 分離工程で Ti粒が分離された後の溶融塩を一旦合金用電解槽へ投入し、溶融塩の Ca濃度を低減させて力 主電解槽へ投入する方法であり、前記のノ ックリアクション による電流効率の低下などの懸念を払拭することができる。  [0057] In the third embodiment of the present invention, using the alloy electrolytic cell used in the second embodiment, the molten salt after the Ti grains are separated in the separation step is once charged into the alloy electrolytic cell. In this method, the Ca concentration of the molten salt is reduced and charged to the main electrolytic cell, and concerns such as a decrease in current efficiency due to the knock reaction can be eliminated.
[0058] 図 5は、前記図 1に示した概略構成例における分離工程から主電解槽へ戻す溶融 塩の経路に、合金用電解槽を組み込んだ製造装置の概略構成例を示す図である。 図 5に示すように、分離工程で使用される高温デカンター 7と主電解槽 5の間に合金 用電解槽 14が設置されており、 Ti粒が分離回収された後の溶融塩を一旦この合金 用電解槽 14へ投入する。合金用電解槽 14の溶融 Ca— Mg合金 16と電解槽の間に は電圧が力かっているので、溶融塩中に残留する Caは電気泳動によって溶融 Ca— Mg合金 16に吸収され、溶融塩中の Caは除去される。この Ca濃度が低減した溶融 塩を主電解槽 5へ投入するのである。  FIG. 5 is a diagram showing a schematic configuration example of a manufacturing apparatus in which an alloy electrolytic cell is incorporated in the molten salt path returned from the separation step to the main electrolytic cell in the schematic configuration example shown in FIG. As shown in Fig. 5, an electrolytic cell 14 for the alloy is installed between the high-temperature decanter 7 and the main electrolytic cell 5 used in the separation process, and the molten salt after the Ti grains are separated and recovered is temporarily separated from this alloy. Into the electrolytic cell 14 for use. Since a voltage is applied between the molten Ca-Mg alloy 16 in the electrolytic cell 14 for the alloy and the electrolytic cell, the Ca remaining in the molten salt is absorbed by the molten Ca-Mg alloy 16 by electrophoresis and is contained in the molten salt. Ca is removed. This molten salt with reduced Ca concentration is put into the main electrolytic cell 5.
[0059] 図 5では、高温デカンター 7と主電解槽 5の間に合金用電解槽 14を設置する例が 示されている力 前記図 2に示した装置において、シックナー 13と主電解槽 5の間に 合金用電解槽 14を設置してもよい。  [0059] FIG. 5 shows a force illustrating an example in which an alloy electrolytic cell 14 is installed between the high-temperature decanter 7 and the main electrolytic cell 5. In the apparatus shown in FIG. 2, the thickener 13 and the main electrolytic cell 5 An electrolytic cell 14 for alloy may be installed between them.
[0060] 本発明の製造方法を実施するに際し、この第 3実施形態を採用すれば、前記の主 電解槽 5におけるバックリアクションによる電流効率の低下などを抑制するとともに、 溶融塩から除去された Caは溶融 Ca— Mg合金 16に吸収されて調整槽 6で再度 TiCl の還元に使用されるので、溶融塩中に残留する Caを有効に利用することができる。[0060] When the third embodiment is employed in carrying out the manufacturing method of the present invention, the above-described main feature is achieved. In addition to suppressing the reduction in current efficiency due to back reaction in the electrolytic cell 5, Ca removed from the molten salt is absorbed by the molten Ca-Mg alloy 16 and used again in the adjustment tank 6 for TiCl reduction. Ca remaining in the salt can be used effectively.
4 Four
[0061] 本発明の第 4実施形態は、本発明の製造方法で用いる調整槽が冷却機能を備え ることを特徴としている。この実施形態を採ることにより、次の二つの効果が期待でき る。一つは、調整槽 6で溶融塩の Ca濃度を調整した後、次の還元工程で TiClの Ca  [0061] The fourth embodiment of the present invention is characterized in that the adjustment tank used in the production method of the present invention has a cooling function. By adopting this embodiment, the following two effects can be expected. One is to adjust the Ca concentration of the molten salt in the adjustment tank 6 and then use the TiCl Ca in the next reduction step.
4 による還元反応を行わせる力 この反応に伴 、発生する熱による還元槽内温度の上 昇を、還元槽 1に供給する溶融塩の事前の抜熱によってある程度緩和できることであ る。  The force that causes the reduction reaction by 4 The rise in the temperature in the reduction tank due to the heat generated by this reaction can be moderated to some extent by removing heat from the molten salt supplied to the reduction tank 1 in advance.
[0062] もう一つは、調整槽 6内の溶融塩の温度を下げることにより、溶融塩の Ca飽和溶解 度を低下させ得ることである。この作用により、主電解槽 5から調整槽 6へ導入される 溶融塩の Ca濃度がその飽和溶解度に達していなくても、調整槽 6で温度を下げるこ とにより飽和溶解度に至らしめることができる。冷却により Caが析出しても、浮上して Caの供給源となる。  [0062] The other is that the saturated Ca solubility of the molten salt can be lowered by lowering the temperature of the molten salt in the adjusting tank 6. By this action, even if the Ca concentration of the molten salt introduced from the main electrolytic cell 5 to the adjustment tank 6 does not reach its saturation solubility, the saturation solubility can be reached by lowering the temperature in the adjustment tank 6. . Even if Ca precipitates due to cooling, it floats and becomes a source of Ca.
[0063] すなわち、調整槽 6から供給される溶融塩を冷却してその温度が一定になるように 制御すれば、還元槽 1に投入される溶融塩の Ca濃度を常に一定に、し力も高濃度に 保つことができ、 TiClの還元反応を効率よく行わせ、且つ、安定した操業が可能と  [0063] That is, if the molten salt supplied from the adjustment tank 6 is cooled and controlled so that its temperature is constant, the Ca concentration of the molten salt charged into the reducing tank 1 is always kept constant and the force is high. The concentration can be maintained, the TiCl reduction reaction can be performed efficiently, and stable operation is possible.
4  Four
なる。  Become.
[0064] 本発明の製造装置は、前述した Tiの製造方法を実施する際に用いられる製造装 置であり、 CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に供給さ  [0064] The production apparatus of the present invention is a production apparatus used when the Ti production method described above is carried out, holds a molten salt containing CaCl and dissolved in Ca, and is supplied into the molten salt.
2  2
れる TiClを前記 Caと反応させて Ti粒を生成させるための還元槽と、前記溶融塩中  A reduction tank for reacting TiCl with Ca to produce Ti grains, and in the molten salt
4  Four
に生成された Ti粒を溶融塩から分離するための分離手段と、前記 Ti粒が分離された 後の溶融塩を保持し、アノードと力ソードを備え、当該溶融塩中で電気分解を行って 陰極側に Caを生成させるための主電解槽と、 Ca供給源を備え、前記主電解槽内の 溶融塩を導入して Ca供給源と接触させることにより当該溶融塩の Ca濃度を一定とし た後、その溶融塩を前記還元槽へ投入するための調整槽とを有することを特徴として いる。  Separation means for separating the Ti grains generated from the molten salt, and the molten salt after the Ti grains are separated are retained, and an anode and a force sword are provided, and electrolysis is performed in the molten salt. A main electrolytic cell for generating Ca on the cathode side and a Ca supply source are provided, and the molten salt in the main electrolytic cell is introduced and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant. And a regulating tank for charging the molten salt into the reducing tank.
[0065] 前記図 1および図 2に例示した装置構成は、本発明の製造装置の一実施形態であ り、前述したように、この製造装置を用いて本発明の製造方法を好適に実施すること ができる。 The apparatus configuration illustrated in FIGS. 1 and 2 is an embodiment of the manufacturing apparatus of the present invention. Thus, as described above, the production method of the present invention can be suitably implemented using this production apparatus.
[0066] 前記図 4に示した装置構成は、本発明の製造装置の他の概略構成例であり、前述 のとおり、調整槽 6と合金用電解槽 14の間で溶融 Ca— Mg合金 16を移送させ、 Ca 供給源として用いた溶融 Ca— Mg合金の Caの補充を行う前記第 1および第 2実施形 態に係る Tiの製造方法の実施に好適である。  The apparatus configuration shown in FIG. 4 is another schematic configuration example of the manufacturing apparatus of the present invention. As described above, the molten Ca—Mg alloy 16 is formed between the adjustment tank 6 and the alloy electrolytic tank 14. It is suitable for carrying out the Ti manufacturing method according to the first and second embodiments in which the molten Ca—Mg alloy used as a Ca supply source is replenished with Ca.
[0067] 前記図 5に示した装置構成は、本発明の製造装置の更に他の概略構成例であり、 分離工程で使用される高温デカンター 7と主電解槽 5の間に合金用電解槽 14が設 置され、合金用電解槽 14で Ca濃度が低減した溶融塩を主電解槽 5に投入できるよう に構成されている。この装置を用いれば、前述したように、前記第 3実施形態に係る T iの製造方法を容易に実施することができる。  The apparatus configuration shown in FIG. 5 is still another schematic configuration example of the production apparatus of the present invention, and the alloy electrolytic cell 14 is interposed between the high-temperature decanter 7 and the main electrolytic cell 5 used in the separation process. In this way, the molten salt having a reduced Ca concentration in the alloy electrolytic cell 14 can be introduced into the main electrolytic cell 5. By using this apparatus, as described above, the Ti manufacturing method according to the third embodiment can be easily performed.
[0068] 以上説明した本発明の製造方法および製造装置によれば、還元槽に投入する Ca C1含有溶融塩中の Caの高濃度化と、濃度の変動抑制が可能であり、 TiClの還元 [0068] According to the production method and production apparatus of the present invention described above, it is possible to increase the concentration of Ca in the CaC1-containing molten salt to be introduced into the reduction tank and to suppress fluctuations in concentration.
2 4 反応を効率よく行わせ、且つ、安定した操業を行うことができる。 2 4 The reaction can be performed efficiently and stable operation can be performed.
[0069] 更に、本発明の製造方法では、電解工程で、溶融塩を主電解槽の上方から下方へ 徐々に流下させながらその溶融塩の電解を行うので、大量の溶融塩の連続処理が 可能であり、それによつて還元槽への Caの供給速度を増大させ、工業的規模での Ti の製造が可能になる。 [0069] Further, in the production method of the present invention, in the electrolysis step, the molten salt is electrolyzed while gradually flowing down from the upper side of the main electrolytic cell, so that a large amount of molten salt can be continuously processed. As a result, the supply rate of Ca to the reduction tank is increased and Ti can be produced on an industrial scale.
[0070] そこで、このような工業的規模での Tiの製造を可能とする溶融塩電解方法およびそ れに用いる電解槽にっ 、て詳述する。  [0070] Therefore, a molten salt electrolysis method capable of producing Ti on an industrial scale and an electrolytic cell used therefor will be described in detail.
[0071] 図 6は、本発明で用いる溶融塩電解方法を実施する際に使用される電解槽の要部 の構成例を示す縦断面図である。 FIG. 6 is a longitudinal sectional view showing a configuration example of a main part of an electrolytic cell used when the molten salt electrolysis method used in the present invention is carried out.
[0072] この電解槽 5は、 CaClを含有する溶融塩を保持する一方向に長い配管(円筒)形 [0072] This electrolytic cell 5 has a pipe (cylindrical) shape that is long in one direction and holds a molten salt containing CaCl.
2  2
状の電解槽容器 5aと、前記電解槽容器 5aの長手方向に沿って当該容器 5a内に配 置された同じく円筒形状のアノード 2、および円柱状の力ソード 3を有し、前記電解槽 容器 5aの長手方向の一方の端部 (底盤 18)に溶融塩供給口 20が設けられ、他方の 端部(上蓋 19)には溶融塩抜き出し口 21が設けられている。アノード表面と力ソード 表面が対向して略垂直方向に配置され、更に、アノード 2と力ソード 3の間に、溶融塩 の電解で生成した Caの通過を抑制するための隔膜 4が設けられている。また、ァノー ド 2の外面には冷却器 22が取り付けられている。 An electrolytic cell container 5a, a cylindrically shaped anode 2 and a cylindrical force sword 3 arranged in the container 5a along the longitudinal direction of the electrolytic cell container 5a, and the electrolytic cell container A molten salt supply port 20 is provided at one end (bottom plate 18) in the longitudinal direction of 5a, and a molten salt discharge port 21 is provided at the other end (upper cover 19). The anode surface and the force sword surface are opposed to each other in a substantially vertical direction, and further, between the anode 2 and the force sword 3, the molten salt A diaphragm 4 is provided to suppress the passage of the Ca generated by the electrolysis of. In addition, a cooler 22 is attached to the outer surface of the anode 2.
[0073] この電解槽 5は、本発明の製造方法で、主電解槽として使用される。この電解槽を 用いて行う溶融塩電解方法は、メタルフォグ形成金属の塩化物を含有する溶融塩を 電解槽の一端力 アノードと力ソードの間に連続的または断続的に供給することによ り、力ソード表面近傍の溶融塩に一方向の流速を与え、溶融塩を力ソード表面近傍 で一方向に流しつつ電気分解することにより溶融塩のメタルフォグ形成金属濃度を 高めるものである。 [0073] This electrolytic cell 5 is used as a main electrolytic cell in the production method of the present invention. In the molten salt electrolysis method performed using this electrolytic cell, a molten salt containing a metal fog forming metal chloride is continuously or intermittently supplied between the one-end force anode and the force sword of the electrolytic cell. In addition, the flow rate in one direction is given to the molten salt near the surface of the force sword, and the molten salt is electrolyzed while flowing in one direction near the surface of the force sword, thereby increasing the metal fog forming metal concentration of the molten salt.
[0074] 前記の「メタルフォグ形成金属」とは、例えば、 Ca、 Li、 Na、 A1等のように、金属の 塩ィ匕物にその金属自身が溶解する性質を備え (すなわち、 Caは CaClに、また Liは  [0074] The above-mentioned "metal fog forming metal" has a property that the metal itself dissolves in a metal salt salt such as Ca, Li, Na, A1, etc. (ie, Ca is CaCl And again Li
2  2
LiClに溶解する)、かつ TiClを還元する金属である。これらの金属は、 TiClを還元  It is a metal that dissolves in LiCl) and reduces TiCl. These metals reduce TiCl
4 4 して Tiを生成させるに際しいずれも同様に作用するので、以下、メタルフォグ形成金 属が Caの場合にっ 、て説明する。  Since all of these work in the same way when Ti is produced, the following explanation will be given only when the metal fog forming metal is Ca.
[0075] また、「メタルフォグ形成金属(Ca)の塩化物を含有する溶融塩」とは、前述のように 、溶融 CaClのみ、または、溶融 CaClに、融点の低下、粘性等の調整のために KC1 [0075] In addition, as described above, the "molten salt containing a metal fog forming metal (Ca) chloride" refers to molten CaCl alone or to molten CaCl to adjust the melting point, viscosity, etc. To KC1
2 2  twenty two
、 CaF等を加えた溶融塩である。  It is a molten salt with CaF added.
2  2
[0076] 前記の溶融塩電解方法にお!、ては、先ず、 CaClを含有する溶融塩を電解槽 5の  [0076] In the molten salt electrolysis method, first, a molten salt containing CaCl is added to the electrolytic cell 5.
2  2
一端力もアノード 2と力ソード 3の間に連続的または断続的に供給する。  One-end force is also supplied between the anode 2 and the force sword 3 continuously or intermittently.
[0077] 電解槽 5は一方向に長 、形状(図示した例では、垂直方向に細長!/、配管(円筒)形 状)を有しているので、溶融塩を電解槽 5の一端力 アノード 2と力ソード 3の間に連続 的または断続的に供給することにより、力ソード 3表面近傍の溶融塩に一方向の流速 を与え、溶融塩を力ソード表面近傍で一方向に流すことが可能となる。この場合、少 なくとも力ソード 3表面近傍の溶融塩が一方向に流れる状態が現出されればよぐァノ ード 2と力ソード 3間の溶融塩全体が一方向に流れてもよい。なお、前記の「力ソード 表面近傍」とは、力ソード表面で生成した Caが存在している力ソード表面に隣接する 領域をいう。 [0077] Since the electrolytic cell 5 is long in one direction and has a shape (in the example shown in the figure, it is elongated in the vertical direction! / Pipe (cylindrical) shape), the molten salt is applied to one end force of the electrolytic cell 5 Anode By supplying continuously or intermittently between 2 and force sword 3, it is possible to give a flow rate in one direction to the molten salt near the surface of force sword 3, and to allow the molten salt to flow in one direction near the surface of force sword. It becomes. In this case, it is sufficient that the molten salt near the surface of the force sword 3 flows in one direction. The entire molten salt between the anode 2 and the force sword 3 may flow in one direction. . The term “near the force sword surface” refers to a region adjacent to the force sword surface where Ca generated on the force sword surface is present.
[0078] 溶融塩の供給は、通常は連続的に行うが、後工程等との関係で、断続的に、つまり 溶融塩の供給を一次停止しても、再度供給を続けてもよい。溶融塩の供給を一次停 止した場合は、力ソード表面近傍における溶融塩の流れも停止する。従って、前記の 「力ソード表面近傍の溶融塩に一方向の流速を与える」際の「流速」には、厳密に言 えば、流れのない流速 0の状態も含まれる。 [0078] Although the supply of the molten salt is usually performed continuously, the supply of the molten salt may be continued intermittently, that is, even if the supply of the molten salt is temporarily stopped in relation to the post-process or the like. Temporary stop of molten salt supply When stopped, the flow of the molten salt near the surface of the force sword is also stopped. Therefore, strictly speaking, the “flow velocity” when “giving a one-way flow velocity to the molten salt near the surface of the force sword” includes a state where the flow velocity is zero without any flow.
[0079] 続ヽて、溶融塩を電気分解する。すなわち、溶融塩を力ソード表面近傍で一方向 に流しつつ電気分解して力ソード表面で Caを生成させるのである力 電解槽 5は一 方向に長い形状を有しており、更に、図 6に示した例では、電解電圧を低く抑えるた めにアノード 2と力ソード 3間の距離を比較的狭くして 、るので、 Ca濃度が低 、溶融 塩供給口 20付近の溶融塩と電解により Ca濃度が高まった溶融塩抜き出し口 21付近 の溶融塩との混合を防止して、 Caが濃化した溶融塩のみを効果的に抜き出すことが できる。 [0079] Subsequently, the molten salt is electrolyzed. In other words, the force electrolysis cell 5 in which molten salt is electrolyzed while flowing in the vicinity of the surface of the force sword to generate Ca on the surface of the force sword has a long shape in one direction. In the example shown, the distance between the anode 2 and the force sword 3 is made relatively small in order to keep the electrolysis voltage low, so the Ca concentration is low and the molten salt near the molten salt supply port 20 is electrolyzed with the molten salt. Mixing with the molten salt in the vicinity of the molten salt extraction port 21 having an increased concentration can be prevented, and only the molten salt enriched with Ca can be effectively extracted.
[0080] 前記文献 2に記載の技術は、還元に Caを使用する力 TiClではなぐ TiOを直接  [0080] The technique described in Document 2 described above is based on the ability to use Ca for reduction.
4 2 4 2
Caで還元して Tiとする直接還元法であり、本発明で用いる溶融塩電解方法とは異な るものである。更に、前記文献 2に記載の直接還元法では、アノードである炭素電極 力 SCOとなって消耗するほか、溶融塩中に炭化チタン (TiC)が生成するため、得られThis is a direct reduction method that reduces with Ca to Ti, and is different from the molten salt electrolysis method used in the present invention. Furthermore, the direct reduction method described in the above-mentioned document 2 is obtained because it is consumed as the carbon electrode force SCO as the anode and titanium carbide (TiC) is generated in the molten salt.
2 2
る Tiには C汚染が生じた Tiが混入し、加工性が劣化するので、この Tiを展伸材として 用いる際に問題となる。  Since Ti contaminated with Ti is mixed into Ti and the workability deteriorates, it becomes a problem when this Ti is used as a wrought material.
[0081] また、前記文献 2には、「溶融塩中での Ca還元による Tiの生成において、力ソード 付近に溶融塩の流れを形成する」技術が記載されている。しかし、アノードと力ソード を電解槽内の長手方向に沿って対向させて配置し、力ソード表面近傍において、ま たは隔膜等が設けられている場合には力ソード表面と隔膜の間に形成される力ソード 室において、力ソード表面に沿った一方向の溶融塩の流れを形成させ、その状態で 電解することにより電解槽の出側で Ca濃度が高まった溶融塩を回収するという技術 思想な!/、しはそれを示唆する記述は示されては!、な!/、。  [0081] Further, the document 2 describes a technique of "forming a molten salt flow in the vicinity of a force sword in the production of Ti by Ca reduction in a molten salt". However, when the anode and the force sword are placed facing each other along the longitudinal direction in the electrolytic cell, it is formed near the force sword surface or between the force sword surface and the diaphragm when a diaphragm is provided. In the force sword chamber, a unidirectional molten salt flow is formed along the surface of the force sword, and the molten salt with increased Ca concentration is recovered on the outlet side of the electrolytic cell by electrolysis in that state. N / A, and the description that suggests it is not shown! /.
[0082] 従って、電解槽内で溶融塩に一方向の流れを形成させる点では共通しても、本発 明で用いる溶融塩電解方法と前記文献 2に記載される技術は全く相違して 、る。  [0082] Therefore, even though it is common in that the molten salt forms a unidirectional flow in the electrolytic cell, the molten salt electrolysis method used in the present invention and the technique described in the document 2 are completely different from each other. The
[0083] この溶融塩電解方法において、アノード表面および力ソード表面が対向して略垂直 方向に配置され、アノードと力ソードの間に隔膜または溶融塩の一部が流通可能に 構成された隔壁が設けられている電解槽を用いることとすれば、アノード側で発生す る塩素ガスを回収しやすい。また、電解により生成した Caと塩素とが反応して CaCl [0083] In this molten salt electrolysis method, the anode surface and the force sword surface face each other and are arranged in a substantially vertical direction, and a partition wall configured to allow a part of the diaphragm or the molten salt to flow between the anode and the force sword. If the electrolytic cell provided is used, it will be generated on the anode side. It is easy to collect the chlorine gas. Also, Ca and chlorine generated by electrolysis react with CaCl
2 に戻るノックリアクションを抑制することができるので、望ましい。なお、前記の「略垂 直方向」の「略」とは、「ほぼ」、「概ね」という意味であり、「略垂直方向」とは、垂直方 向、またはその方向力も水平方向へ向けて若干傾いた方向をいう。  This is desirable because it can suppress the knock reaction returning to 2. Note that “substantially” in the “substantially vertical direction” means “substantially” and “substantially”, and “substantially vertical direction” means the vertical direction or its directional force also in the horizontal direction. A slightly inclined direction.
[0084] この両極が略垂直方向に対向配置された電解槽を用いる溶融塩電解方法は、前 記図 6に例示した電解槽を用いることにより好適に実施できる。なお、図 6に例示した 電解槽では、 CaClを電解槽 5の下方力 槽 5内に供給し、上方から抜き出す方式を [0084] The molten salt electrolysis method using the electrolytic cell in which both electrodes are arranged opposite to each other in a substantially vertical direction can be preferably carried out by using the electrolytic cell illustrated in FIG. In the electrolytic cell illustrated in Fig. 6, CaCl is supplied into the lower force tank 5 of the electrolytic cell 5 and extracted from above.
2  2
採っているが、逆に、電解槽 5の上方力も供給し、下方から抜き出す方式を採用する ことも可能である。  However, on the contrary, it is also possible to supply the upper force of the electrolytic cell 5 and extract it from below.
[0085] 上記溶融塩電解方法に用いる電解槽では、アノード表面および力ソード表面が対 向して略垂直方向に配置されており、し力も、力ソード表面近傍の溶融塩には一方向 の流速が与えられているので、その溶融塩の流れ方向は縦方向であり、アノード側で 発生する塩素ガスは容易に浮上するので回収しやす 、。  [0085] In the electrolytic cell used in the molten salt electrolysis method, the anode surface and the force sword surface are arranged in a substantially vertical direction, and the unidirectional flow rate is also applied to the molten salt near the force sword surface. Therefore, the flow direction of the molten salt is vertical, and the chlorine gas generated on the anode side floats easily, so it can be easily recovered.
[0086] アノードと力ソードの間に設ける隔膜としては、例えば、イットリア (Y O )を含む多  [0086] Examples of the diaphragm provided between the anode and the force sword include, for example, many containing yttria (Y 2 O 3).
2 3  twenty three
孔質セラミックス体を使用することができる。イットリアを焼成して多孔質セラミックス体 としたものは、 Caや塩素のイオンは通すが金属 Caを通過させな 、と 、う選択透過性 を備え、また、強力な還元力をもつ Caによっても還元されない優れた耐カルシウム還 元性を有しており、本発明で用いる溶融塩電解方法における隔膜として好適である。  A porous ceramic body can be used. A porous ceramic body made by firing yttria has a selective permeability that allows Ca and chlorine ions to pass through but does not allow metal Ca to pass through. It also reduces by Ca, which has strong reducing power. It has an excellent resistance to calcium reduction that is not possible, and is suitable as a diaphragm in the molten salt electrolysis method used in the present invention.
[0087] このような隔膜がアノードと力ソードの間に設けられた電解槽を用いれば、力ソード 側に生成する Caがアノード(黒鉛)側に生成する塩素とすぐに反応して CaClに戻る [0087] If an electrolytic cell in which such a diaphragm is provided between the anode and the force sword is used, Ca produced on the force sword side reacts immediately with chlorine produced on the anode (graphite) side and returns to CaCl.
2 ノ ックリアクションが起こり難ぐ高い電流効率で電解することができる。  2 Electrolysis can be carried out with high current efficiency at which knock reaction is unlikely to occur.
[0088] 隔膜の代わりに溶融塩の一部が流通可能に構成された隔壁を用いてもよい。隔壁 は金属 Caはもとより Caや塩素のイオンなど溶融塩も通さないが、隔壁の一部に溶融 塩が通過できるスリットや穴などを設けておくことにより、電解を可能とし、一方、金属 Caの通過をある程度制限して、ノ ックリアクションを抑制することが可能となる。 [0088] Instead of the diaphragm, a partition configured to allow a part of the molten salt to flow therethrough may be used. The partition wall does not allow molten salts such as Ca and chlorine ions as well as metallic Ca, but by providing slits or holes through which molten salt can pass in a part of the partition wall, electrolysis can be achieved, while metal Ca It is possible to limit knock reaction by restricting the passage to some extent.
[0089] この溶融塩電解方法において、力ソードが中空であり、力ソード表面から力ソード内 部に溶融塩が流入できる隙間または穴を有し、力ソード内部に流入した Ca濃化溶融 塩を電解槽外へ抜き出すことができるような力ソードを有する電解槽を用いることとす れば、ノ ックリアクションを効果的に抑制することができる。 [0089] In this molten salt electrolysis method, the force sword is hollow, has a gap or a hole through which the molten salt can flow from the surface of the force sword to the inside of the force sword, and the Ca concentrated molten salt flowing into the force sword is removed. An electrolytic cell with a force sword that can be pulled out of the electrolytic cell shall be used. If so, knock reaction can be effectively suppressed.
[0090] 図 7は、中空力ソードを用いた電解槽の一部の構成例を模式的に示す図である。図 7に示すように、この電解槽では、電解槽 5内の長手方向に沿ってアノード 2と中空力 ソード 3aが対向して略垂直方向に配置されており、アノード 2と力ソード 3aの間には 隔膜 4が設けられている。図示していないが、力ソード 3aには、力ソード表面力もカソ ード内部に溶融塩が流入できる隙間または穴が設けられている。  FIG. 7 is a diagram schematically showing a configuration example of a part of an electrolytic cell using a hollow force sword. As shown in FIG. 7, in this electrolytic cell, the anode 2 and the hollow force sword 3a face each other in the substantially vertical direction along the longitudinal direction in the electrolytic cell 5, and between the anode 2 and the force sword 3a. Is provided with a diaphragm 4. Although not shown, the force sword 3a is provided with a gap or a hole through which the molten salt can flow into the cathode as well as the force sword surface force.
[0091] このように構成された電解槽を用いれば、溶融塩を力ソード 3aの中空部上方から抜 き出すことにより、同図中に白抜き矢印で示すように、力ソード外面側から内部(中空 部)への溶融塩流が形成され、力ソード 3aの外表面で生成した Caはアノード側へ拡 散移動することなぐ直ちに力ソード 3aの内部へ取り込まれる。これにより、バックリア クシヨンを効果的に抑制することができる。前記図 7に例示した電解槽は隔膜 4を有し ているので、隔膜がない場合に比べて、ノックリアクション抑制効果はより一層大きく なる。  [0091] If the electrolytic cell constructed in this way is used, the molten salt is extracted from above the hollow portion of the force sword 3a, so that the inner side of the force sword from the outer side as shown by the white arrow in the figure. A molten salt flow to the (hollow part) is formed, and Ca generated on the outer surface of the force sword 3a is immediately taken into the force sword 3a without diffusing and moving to the anode side. Thereby, back reaction can be effectively suppressed. Since the electrolytic cell illustrated in FIG. 7 has the diaphragm 4, the knock reaction suppressing effect is further increased as compared with the case without the diaphragm.
[0092] 中空力ソードに設ける隙間や穴の大きさ、位置等は特に限定しない。アノード面 (隔 膜が設けられている場合には、隔膜表面)と力ソード外面との距離、溶融塩の抜き出 し量 (溶融塩の供給量)等を勘案し、効果的な力ソード内面側への溶融塩流が形成さ れるように適宜定めるのがよい。  [0092] There are no particular limitations on the size and position of the gaps and holes provided in the hollow force sword. Considering the distance between the anode surface (diaphragm surface if a diaphragm is provided) and the outer surface of the force sword, the amount of molten salt extracted (the amount of molten salt supplied), etc. It is advisable to determine appropriately so that a molten salt flow to the side is formed.
[0093] また、この溶融塩電解方法にお!、て、電解槽内の溶融塩の Ca濃度がその飽和溶 解度未満となるように制御することとすれば、 Ca濃度を高めて TiClの  [0093] Also, in this molten salt electrolysis method, if the molten salt in the electrolytic cell is controlled so that the Ca concentration is less than its saturation solubility, the Ca concentration is increased and TiCl
4 生成速度を増 大させるとともに、電解槽内部の閉塞などの弊害を抑制することができる。なお、前記 の「Ca濃度が飽和溶解度未満となるように制御する」とは、「Ca濃度が飽和溶解度に 近ぐ且つ析出しない条件で」電解することを意味する。  4 The production rate can be increased and adverse effects such as clogging inside the electrolytic cell can be suppressed. The above-mentioned “controlling the Ca concentration to be less than the saturation solubility” means “electrolysis under conditions where the Ca concentration is close to the saturation solubility and does not precipitate”.
[0094] 具体的には、電解槽内の Ca濃度が最も高くなつている部位において「Ca濃度が飽 和溶解度に近ぐ且つ析出しない条件」が満たされるように、電解槽容器の形状、電 極形状、極間距離等に応じた最適の電解条件、溶融塩の単位時間当たりの抜き出し 量等を経験的に定めることになる。特に、アノードと力ソード間に隔膜や隔壁を用いる 場合は、力ソード側の溶融塩抜き出し口近傍の Ca濃度が最も高くなるので、この部 分の Ca濃度が飽和溶解度未満となるように制御することにより、電解槽のどの部位に お!ヽても金属 Caを析出させな 、電解操業が可能となる。 [0094] Specifically, the shape of the electrolytic cell container and the electric power are set so that the "condition where the Ca concentration is close to the saturation solubility and does not precipitate" is satisfied at the site where the Ca concentration is highest in the electrolytic cell. The optimum electrolysis conditions according to the pole shape, the distance between the poles, and the amount of molten salt extracted per unit time will be determined empirically. In particular, when a diaphragm or partition wall is used between the anode and the force sword, the Ca concentration near the molten salt outlet on the force sword side is the highest, so the Ca concentration in this part is controlled to be less than the saturation solubility. To which part of the electrolytic cell Even if it does not cause metal Ca to be deposited, electrolytic operation becomes possible.
[0095] この「Ca濃度が飽和溶解度に近ぐ且つ析出しない条件」が満たされるように、本発 明の製造方法では、電解工程で Ca濃度を高めた溶融塩を、 Ca供給源を有する調整 槽に導入して当該 Ca供給源に接触させ、前記溶融塩の Ca濃度を高濃度、且つ一 定とするが、前記のように、最適の電解条件、溶融塩抜き出し量等を経験的に定める ことによつても、ある程度の制御は可能である。  [0095] In order to satisfy this "condition in which the Ca concentration is close to the saturation solubility and does not precipitate", in the manufacturing method of the present invention, the molten salt with the increased Ca concentration in the electrolysis step is adjusted to have a Ca supply source. The molten salt is introduced into a tank and brought into contact with the Ca supply source, and the Ca concentration of the molten salt is kept high and constant. As described above, the optimum electrolysis conditions, the amount of molten salt withdrawn, etc. are determined empirically. Even so, a certain degree of control is possible.
[0096] 本発明で用いる溶融塩電解方法の実施に際し、電解槽では大きな反応熱が発生 するので、抜熱を効果的に行うことが望ましい。具体的には、前述の中空力ソードを 用いない場合でも、用いる場合でも、力ソードの中心部に冷却器を設置して、反応熱 を力ソード内部力も抜熱することが望ましい。冷却器としては、例えばチューブ状の熱 交換器が好適である。  [0096] When the molten salt electrolysis method used in the present invention is carried out, a large heat of reaction is generated in the electrolytic cell, so it is desirable to effectively remove the heat. Specifically, it is desirable to install a cooler at the center of the force sword to remove the reaction heat from the internal force of the force sword, regardless of whether or not the hollow force sword is used. As the cooler, for example, a tubular heat exchanger is suitable.
[0097] アノード側にも冷却器 (熱交換器)を設置すると抜熱効率は更に高くなる。前記図 6 に示した、アノード 2を取り巻くように設置した冷却器 22はこの例である。  [0097] If a cooler (heat exchanger) is also installed on the anode side, the heat removal efficiency is further increased. The cooler 22 installed so as to surround the anode 2 shown in FIG. 6 is an example of this.
[0098] 電解に際し、通電量を高めて Ca生成量の増大を図るには、通電表面積を大きくす る必要がある。アノード 2の内面、すなわち、前記図 6に例示した電解槽において、力 ソード表面と対向する面にっ 、ては、大き 、通電表面積を確保するために内面に微 細な凹凸を設けることが望ましい。そのための方法としては、例えば、電極表面に溝 を形成するみぞ加工などが適用できる。  [0098] During electrolysis, the energized surface area needs to be increased in order to increase the energization amount and increase the amount of Ca generation. In the electrolytic cell illustrated in FIG. 6 above, it is desirable to provide fine irregularities on the inner surface in order to ensure a large and energized surface area in the electrolytic cell illustrated in FIG. . As a method for that purpose, for example, a groove process for forming a groove on the electrode surface can be applied.
[0099] 上述した溶融塩電解方法によれば、電解槽内部の閉塞などの弊害を抑制しつつ、 Caが飽和溶解度近くまで濃化した溶融塩を比較的安定して得ることができ、金属 Ti を効率よく製造することができる。また、溶融塩を力ソード表面近傍で一方向に流しつ つ電気分解するので、大量の溶融塩を連続して処理することが可能である。  [0099] According to the above-described molten salt electrolysis method, it is possible to relatively stably obtain a molten salt in which Ca is concentrated to near the saturation solubility while suppressing adverse effects such as clogging inside the electrolytic cell. Can be manufactured efficiently. In addition, since the molten salt is electrolyzed while flowing in one direction near the surface of the force sword, a large amount of molten salt can be processed continuously.
[0100] この溶融塩電解方法の実施に用いられる電解槽は、 CaClを含有する溶融塩を保  [0100] The electrolytic cell used for carrying out this molten salt electrolysis method retains a molten salt containing CaCl.
2  2
持する一方向に長!ヽ電解槽容器と、前記電解槽容器の長手方向に沿って配置され たアノードおよび力ソードを有し、前記電解槽容器の長手方向の一方の端部に、溶 融塩供給口が前記アノードと力ソードの間に溶融塩を供給できるように設けられ、他 方の端部に前記溶融塩の電気分解により生成する Ca濃度が高められた溶融塩を電 解槽外へ抜き出す溶融塩抜き出し口が設けられて 、る。 [0101] 前記図 6に例示した電解槽は、その一実施形態であり、アノード表面およびカソー ド表面が対向して略垂直方向に配置され、アノードと力ソードの間に隔膜が設けられ ている電解槽を備えている。隔膜の代わりに、溶融塩の一部が流通可能に構成され た隔壁が設けられたものであってもよ 、。 The electrolytic cell container has an anode and a force sword disposed along the longitudinal direction of the electrolytic cell container, and is melted at one end in the longitudinal direction of the electrolytic cell container. A salt supply port is provided so that the molten salt can be supplied between the anode and the power sword, and the molten salt having an increased Ca concentration generated by electrolysis of the molten salt at the other end is provided outside the electrolytic cell. There is an outlet for extracting molten salt. [0101] The electrolytic cell illustrated in Fig. 6 is an embodiment thereof, and the anode surface and the cathode surface are arranged to face each other in a substantially vertical direction, and a diaphragm is provided between the anode and the force sword. It has an electrolytic cell. Instead of the diaphragm, a partition wall configured to allow a part of the molten salt to flow therethrough may be provided.
[0102] 前記図 6に示した電解槽を用いれば、前述したように、本発明で用いる溶融塩電解 方法を好適に実施することができる。  [0102] If the electrolytic cell shown in Fig. 6 is used, as described above, the molten salt electrolysis method used in the present invention can be suitably carried out.
産業上の利用の可能性  Industrial applicability
[0103] 本発明の製造方法によれば、電解工程で Ca濃度を高めた溶融塩を Ca供給源を備 える調整槽に導入して Ca濃度を一定とした後、 TiClの還元に用いるので、還元槽 [0103] According to the production method of the present invention, the molten salt whose Ca concentration has been increased in the electrolysis step is introduced into an adjustment tank equipped with a Ca supply source to make the Ca concentration constant, and then used for the reduction of TiCl. Reduction tank
4  Four
に投入する溶融塩の Ca濃度の変動を抑制し、且つ高濃度に維持することができる。 また、電解工程では、溶融塩を力ソード表面近傍で一方向に流しつつ電気分解する ので、大量の溶融塩を連続して処理することが可能である。これにより、 TiCl  It is possible to suppress the fluctuation of the Ca concentration of the molten salt introduced into the tank and maintain it at a high concentration. In the electrolysis process, since the molten salt is electrolyzed while flowing in one direction near the surface of the force sword, it is possible to continuously process a large amount of the molten salt. This allows TiCl
4の還元 反応を効率よく行わせ、安定した操業が可能であり、更に、工業的規模での Tiの製 造が可能となる。従って、本発明の製造方法、およびこの方法を容易に且つ好適に 実施することができる本発明の製造装置は、 Ca還元による Tiの製造に有効に利用 することができる。  The reduction reaction of 4 can be performed efficiently, stable operation is possible, and Ti can be manufactured on an industrial scale. Therefore, the production method of the present invention and the production apparatus of the present invention capable of easily and suitably carrying out this method can be effectively used for the production of Ti by Ca reduction.

Claims

請求の範囲 The scope of the claims
[1] CaClを含み且つ Caが溶解した溶融塩中の Caに TiClを反応させて前記溶融塩  [1] By reacting TiCl with Ca in a molten salt containing CaCl and dissolving Ca, the molten salt
2 4  twenty four
中に Ti粒を生成させる還元工程と、  A reduction process to produce Ti grains inside,
前記溶融塩中に生成された Ti粒を前記溶融塩から分離する分離工程と、 A separation step of separating Ti particles produced in the molten salt from the molten salt;
Ti粒の生成に伴って Ca濃度が低下した溶融塩を電解することにより Ca濃度を高め る電解工程とを含み、前記電解工程で主電解槽を用いて Ca濃度を高めた溶融塩を 、Ca供給源を有する調整槽に導入して当該 Ca供給源に接触させることにより前記溶 融塩の Ca濃度を一定とした後、還元工程で TiClの還元に用いることを特徴とする T An electrolysis step of increasing the Ca concentration by electrolyzing a molten salt having a Ca concentration decreased with the formation of Ti grains, and using the main electrolytic cell in the electrolysis step, The molten salt is introduced into a regulating tank having a supply source and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then used for the reduction of TiCl in the reduction step.
4  Four
iの製造方法。  i manufacturing method.
[2] 前記 Ca供給源が溶融 Ca— Mg合金であることを特徴とする請求項 1に記載の Tiの 製造方法。  2. The method for producing Ti according to claim 1, wherein the Ca supply source is a molten Ca—Mg alloy.
[3] 前記溶融 Ca— Mg合金中の Ca濃度を、 CaClを含む溶融塩を合金用電解槽で電  [3] The Ca concentration in the molten Ca—Mg alloy was measured using a molten salt containing CaCl in an electrolytic cell for the alloy.
2  2
解することにより高めることを特徴とする請求項 2に記載の Tiの製造方法。  3. The method for producing Ti according to claim 2, wherein the Ti is increased by understanding.
[4] 分離工程で Ti粒が分離された後の溶融塩を一旦合金用電解槽へ投入し、溶融塩 の Ca濃度を低減させてから主電解槽へ投入することを特徴とする請求項 3に記載の Tiの製造方法。 [4] The molten salt after the Ti grains are separated in the separation step is once charged into the alloy electrolytic cell, and the Ca concentration of the molten salt is reduced and then charged into the main electrolytic cell. The manufacturing method of Ti described in 2.
[5] 請求項 1に記載の方法で用いる調整槽が冷却機能を備えることを特徴とする Tiの 製造方法。  [5] A method for producing Ti, wherein the adjustment tank used in the method according to claim 1 has a cooling function.
[6] CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に供給される TiC  [6] TiC containing CaCl and holding molten salt in which Ca is dissolved and supplied to the molten salt
2  2
1を前記 Caと反応させて Ti粒を生成させるための還元槽と、  A reduction tank for reacting 1 with the Ca to produce Ti grains;
4  Four
前記溶融塩中に生成された Ti粒を溶融塩力 分離するための分離手段と、 前記 Ti粒が分離された後の溶融塩を保持し、アノードと力ソードを備え、当該溶融 塩中で電気分解を行って陰極側に Caを生成させるための主電解槽と、  Separation means for separating molten salt force of Ti particles generated in the molten salt, holding the molten salt after the Ti particles are separated, provided with an anode and a force sword, and having electricity in the molten salt A main electrolytic cell for decomposing and generating Ca on the cathode side;
Ca供給源を備え、前記主電解槽内の溶融塩を導入して Ca供給源と接触させること により当該溶融塩の Ca濃度を一定とした後、その溶融塩を前記還元槽へ投入するた めの調整槽とを有することを特徴とする Tiの製造装置。  A Ca supply source is provided, and the molten salt in the main electrolytic cell is introduced and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then the molten salt is charged into the reduction tank. An apparatus for producing Ti, comprising:
[7] 前記 Ca供給源が溶融 Ca— Mg合金であることを特徴とする請求項 6に記載の Tiの 製造装置。 前記溶融 Ca— Mg合金の Ca濃度を高めるための合金用電解槽を備えることを特 徴とする請求項 7に記載の Tiの製造装置。 7. The Ti manufacturing apparatus according to claim 6, wherein the Ca supply source is a molten Ca—Mg alloy. 8. The Ti manufacturing apparatus according to claim 7, further comprising an alloy electrolytic cell for increasing the Ca concentration of the molten Ca—Mg alloy.
前記調整槽が冷却機能を備えることを特徴とする請求項 6に記載の Tiの製造装置  7. The Ti manufacturing apparatus according to claim 6, wherein the adjustment tank has a cooling function.
PCT/JP2006/316355 2005-09-20 2006-08-22 PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR WO2007034645A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002623212A CA2623212A1 (en) 2005-09-20 2006-08-22 Process for producing ti and apparatus therefor
US11/992,162 US20100089204A1 (en) 2005-09-20 2006-08-22 Process for Producing Ti and Apparatus Therefor
EA200800867A EA200800867A1 (en) 2005-09-20 2006-08-22 METHOD OF PREPARING Ti AND DEVICE FOR IT
AU2006293354A AU2006293354A1 (en) 2005-09-20 2006-08-22 Process for producing Ti and apparatus therefor
EP06782859A EP1944383A4 (en) 2005-09-20 2006-08-22 PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
NO20081519A NO20081519L (en) 2005-09-20 2008-03-28 Process and apparatus for the preparation of Ti

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-271995 2005-09-20
JP2005271995A JP2007084847A (en) 2005-09-20 2005-09-20 METHOD AND DEVICE FOR PRODUCING Ti

Publications (1)

Publication Number Publication Date
WO2007034645A1 true WO2007034645A1 (en) 2007-03-29

Family

ID=37888699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316355 WO2007034645A1 (en) 2005-09-20 2006-08-22 PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR

Country Status (9)

Country Link
US (1) US20100089204A1 (en)
EP (1) EP1944383A4 (en)
JP (1) JP2007084847A (en)
CN (1) CN101268204A (en)
AU (1) AU2006293354A1 (en)
CA (1) CA2623212A1 (en)
EA (1) EA200800867A1 (en)
NO (1) NO20081519L (en)
WO (1) WO2007034645A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011190A1 (en) * 2007-07-13 2009-01-22 Osaka Titanium Technologies Co., Ltd. Process for producing metal and apparatus for producing metal
JP2013170290A (en) * 2012-02-20 2013-09-02 Toshiba Corp Molten salt electrolysis apparatus and molten salt electrolysis method
CN101925427B (en) * 2008-01-23 2014-06-18 特拉迪姆有限公司 Phlegmatized metal powder or alloy powder and method and reaction vessel for production thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898555A (en) * 2012-12-25 2014-07-02 攀钢集团攀枝花钢铁研究院有限公司 Metal titanium production method
CN103290433B (en) * 2013-06-26 2016-01-20 石嘴山市天和铁合金有限公司 Device and the technique thereof of pure titanium are prepared in a kind of pair of electrolyzer fused salt electrolysis
JP6997617B2 (en) * 2017-12-27 2022-02-04 東邦チタニウム株式会社 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192748A (en) * 2000-01-07 2001-07-17 Nkk Corp Method and device for manufacturing metallic titanium
JP2003306789A (en) * 2002-04-19 2003-10-31 Sumitomo Titanium Corp Method and apparatus for manufacturing sponge titanium
JP2003306725A (en) * 2002-04-18 2003-10-31 Foundation For The Promotion Of Industrial Science Method for producing titanium, method for producing pure metal and apparatus for producing pure metal
WO2005035806A1 (en) * 2003-10-10 2005-04-21 Sumitomo Titanium Corporation METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP2005133196A (en) * 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
JP2005248200A (en) * 2004-03-01 2005-09-15 Sumitomo Titanium Corp METHOD FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) * 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2845386A (en) * 1954-03-16 1958-07-29 Du Pont Production of metals
JPH0611008B2 (en) * 1983-11-16 1994-02-09 株式会社東芝 Dust core
JP4395386B2 (en) * 2003-10-10 2010-01-06 株式会社大阪チタニウムテクノロジーズ Method for producing Ti or Ti alloy by circulating Ca source
WO2007105616A1 (en) * 2006-03-10 2007-09-20 Osaka Titanium Technologies Co., Ltd. METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192748A (en) * 2000-01-07 2001-07-17 Nkk Corp Method and device for manufacturing metallic titanium
JP2003306725A (en) * 2002-04-18 2003-10-31 Foundation For The Promotion Of Industrial Science Method for producing titanium, method for producing pure metal and apparatus for producing pure metal
JP2003306789A (en) * 2002-04-19 2003-10-31 Sumitomo Titanium Corp Method and apparatus for manufacturing sponge titanium
WO2005035806A1 (en) * 2003-10-10 2005-04-21 Sumitomo Titanium Corporation METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP2005133196A (en) * 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
JP2005248200A (en) * 2004-03-01 2005-09-15 Sumitomo Titanium Corp METHOD FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1944383A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011190A1 (en) * 2007-07-13 2009-01-22 Osaka Titanium Technologies Co., Ltd. Process for producing metal and apparatus for producing metal
CN101925427B (en) * 2008-01-23 2014-06-18 特拉迪姆有限公司 Phlegmatized metal powder or alloy powder and method and reaction vessel for production thereof
JP2013170290A (en) * 2012-02-20 2013-09-02 Toshiba Corp Molten salt electrolysis apparatus and molten salt electrolysis method

Also Published As

Publication number Publication date
AU2006293354A1 (en) 2007-03-29
CA2623212A1 (en) 2007-03-29
NO20081519L (en) 2008-04-02
JP2007084847A (en) 2007-04-05
EA200800867A1 (en) 2008-10-30
US20100089204A1 (en) 2010-04-15
EP1944383A4 (en) 2009-12-02
CN101268204A (en) 2008-09-17
EP1944383A1 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
WO2007026565A1 (en) METHOD FOR ELECTROLYSIS OF MOLTEN SALT, ELECTROLYTIC CELL, AND PROCESS FOR PRODUCING Ti USING SAID METHOD
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
WO2005080642A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
WO2005080643A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION
JP4510769B2 (en) Manufacturing method and apparatus for Ti or Ti alloy
US2864749A (en) Process for the production of titanium metal
JP4395386B2 (en) Method for producing Ti or Ti alloy by circulating Ca source
JP2009019250A (en) Method and apparatus for producing metal
WO2007105616A1 (en) METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
JPH10176296A (en) Electrolytic formation of neodymium without being companied with perfluorocarbon compound in waste gas
JP2008308738A (en) METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY
WO2009150961A2 (en) Metal manufacturing method
JP2012172194A (en) Electrolytic apparatus and electrowinning method using the same
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP3552512B2 (en) Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper
JPH03115592A (en) Molten salt electrolytic cell
JP4249685B2 (en) Method for producing Ti by Ca reduction
JP5829843B2 (en) Polycrystalline silicon manufacturing method and reduction / electrolysis furnace used in polycrystalline silicon manufacturing method
JP4227113B2 (en) Pull-up electrolysis method
JP2007239073A (en) Method for removing and concentrating metal-fog-forming metal in molten salt, and apparatus therefor
JP2005133196A (en) METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
JP4521877B2 (en) Molten salt electrolysis apparatus for metal and method for producing metal using the apparatus
JP2008214156A (en) Method and apparatus for manufacturing polycrystalline silicon
JPWO2008038405A1 (en) Molten salt electrolytic cell for metal production and method for producing metal using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034314.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2623212

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006293354

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006782859

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006293354

Country of ref document: AU

Date of ref document: 20060822

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200800867

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 11992162

Country of ref document: US