JPH03115592A - Molten salt electrolytic cell - Google Patents

Molten salt electrolytic cell

Info

Publication number
JPH03115592A
JPH03115592A JP25277289A JP25277289A JPH03115592A JP H03115592 A JPH03115592 A JP H03115592A JP 25277289 A JP25277289 A JP 25277289A JP 25277289 A JP25277289 A JP 25277289A JP H03115592 A JPH03115592 A JP H03115592A
Authority
JP
Japan
Prior art keywords
bath
cathode
diaphragm
anode
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25277289A
Other languages
Japanese (ja)
Inventor
Tadashi Ogasawara
忠司 小笠原
Yoshitake Natsume
義丈 夏目
Kenji Fujita
健治 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP25277289A priority Critical patent/JPH03115592A/en
Publication of JPH03115592A publication Critical patent/JPH03115592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To easily and power-savingly remove the impurity ions in a molten salt bath and to purify the bath when the bath contains impurity ions of different valencies by charging the bath into the cathode chamber of an electrolytic cell provided with a ceramic diaphragm having pores and applying a current. CONSTITUTION:The molten salt bath 5 for electrolytically refining Mg consisting essentailly of MgCl2 and contg. Fe ion as the metallic impurity is charged into the anode chamber 8 and cathode chamber 9 of the electrolytic cell having an Fe cathode 4 and a graphite anode 3 and provided with a ceramic diaphragm 6 of sintered alumina having many pores <200mum in diameter or a quartz diaphragm 6 having pores <500mum in diameter, and a DC current is applied. The Fe ion in the bath in the cathode chamber 9 is reduced, deposited on the cathode 4 and removed, and the Fe ion in the bath in the anode chamber 8 is not passed through the diaphragm 6 and left. Consequently, the Fe ion is not moved between the cathode and anode by the presence of the diaphragm 6 or repeatedly reduced and oxidized, hence power is not wasted, and a high- purity bath having a low content of impurities is obtained in the cathode chamber 9 as the material for electrolytic Mg. Since the Fe is left in the bath 5 in the anode chamber 8, the bath can be purified in the cathode chamber 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶融塩中に含まれる異なるイオン価を有する
金属イオンを電解析出させる場合、特に、塩化物含有浴
塩中に含まれる不純物金属を電解析出させることにより
除去する場合に用いる溶融塩電解槽に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is particularly useful when electrolytically depositing metal ions having different ionic valences contained in a molten salt, in particular to remove impurities contained in a chloride-containing bath salt. The present invention relates to a molten salt electrolytic cell used for removing metals by electrolytic deposition.

(従来の技術) 溶融塩電解において、例えば鉄イオン(Fe”。(Conventional technology) In molten salt electrolysis, for example, iron ions (Fe'').

Fe”)のように、異なるイオン価を有する金属イオン
を含む浴温を電解すると、陰極で還元された金属イオン
(Fe”″)が浴温中を移動して陽極でより高いイオン
価を有する金属イオン(Fe”)に酸化され、この酸化
された金属イオンは再度陰極側へ移動して低いイオン価
を有する金属イオン(Fe”″)に還元される。このよ
うな還元、酸化を繰り返すので、電気エネルギーは有効
に利用されず、電流効率は低下する。
When electrolyzing a bath temperature containing metal ions with different ionic valences, such as Fe''), the metal ions (Fe'') reduced at the cathode move through the bath temperature and have a higher ionic valence at the anode. It is oxidized to metal ions (Fe''), and these oxidized metal ions move to the cathode side again and are reduced to metal ions (Fe'') having a low ionic valence. Since such reduction and oxidation are repeated, electrical energy is not used effectively and current efficiency decreases.

このような問題に対し、水溶液系の場合には、イオン交
換膜の選択透過性を利用して、上記のような金属イオン
の移動を防ぐ方法が広く一般に用いられているが、溶融
塩系ではそのような適切な材料が無(、従来は隔膜材と
して素焼板のようなセラミックス類や石綿加工品などが
使用されてきた。
To deal with this problem, in the case of an aqueous solution system, the method of preventing the movement of metal ions as described above by utilizing the permselectivity of the ion exchange membrane is widely used, but in the case of a molten salt system, this method is widely used. In the absence of such suitable materials, ceramics such as terracotta plates and asbestos-processed products have traditionally been used as diaphragm materials.

(発明が解決しようとする課題) しかし、前記のような隔膜材を使用しても、上記の金属
イオンの移動を完全に抑えることはできず、電流効率の
著しい低下を招くことが往々にしてあった。
(Problem to be Solved by the Invention) However, even if the above-mentioned diaphragm material is used, it is not possible to completely suppress the movement of the above-mentioned metal ions, which often results in a significant decrease in current efficiency. there were.

本発明は、溶融塩電解において、上記のような金属イオ
ンの移動を防止し、高い電流効率で電解可能な電解槽を
提供することを目的とする。
An object of the present invention is to provide an electrolytic cell that prevents the movement of metal ions as described above and enables electrolysis with high current efficiency in molten salt electrolysis.

(課題を解決するための手段) 本発明者等は、上記目的を達成するため電解槽の隔膜に
ついて検討を重ねた結果、隔膜の材質及び細孔の直径を
適当に選ぶことにより金属イオンの隔膜を通しての移動
を防止できることを知った。
(Means for Solving the Problem) In order to achieve the above object, the present inventors have repeatedly studied the diaphragm of an electrolytic cell, and as a result, the present inventors have devised a diaphragm for metal ions by appropriately selecting the material of the diaphragm and the diameter of the pores. I learned that it is possible to prevent movement through.

本発明は、上記知見に基づくものであって、下記i)お
よびii)の溶融塩電解槽を要旨とする。
The present invention is based on the above findings, and its gist is the following molten salt electrolytic cells i) and ii).

i)陽極と陰極の間に直径200μ翔以下の細孔を有す
るセラミックス製隔膜を設けたことを特徴とする溶融塩
電解槽。
i) A molten salt electrolytic cell characterized in that a ceramic diaphragm having pores with a diameter of 200 μm or less is provided between an anode and a cathode.

ii)陽極と陰極の間に直径500μm以下の細孔を有
する石英製隔膜を設けたことを特徴とする溶融塩電解槽
ii) A molten salt electrolytic cell characterized in that a quartz diaphragm having pores with a diameter of 500 μm or less is provided between an anode and a cathode.

前記のセラミックスとしてはアルミナ焼結晶が好適であ
るが、他にムライト製、コーディエライト製あるいはジ
ルコニア製等のセラミックスや、炭化けい素、グラファ
イト、窒化けい素等の非酸化物系のセラミックスなど、
電解対象溶融塩の侵食に耐え、直径が本発明の範囲にあ
る細孔を有するセラミックスはいずれも使用可能である
Alumina sintered crystal is suitable as the ceramic, but other ceramics such as mullite, cordierite, or zirconia, non-oxide ceramics such as silicon carbide, graphite, and silicon nitride, etc.
Any ceramic that can withstand attack by the molten salt to be electrolyzed and has pores with a diameter within the range of the present invention can be used.

また、前記の石英は、石英粒子を焼結し板状としたもの
が好適であるが、細孔の直径が本発明の範囲にある細孔
を有する石英板であれば焼結体に限らず使用可能である
In addition, the above-mentioned quartz is preferably made into a plate shape by sintering quartz particles, but is not limited to a sintered body as long as it is a quartz plate having pores with a pore diameter within the range of the present invention. Available for use.

第1図は本発明の溶融塩電解槽の一例を示す概略断面図
で、塩化マグネシウムを電解してマグネシウムを製造す
るに際し、塩化マグネシウムを主成分とする浴温中に不
純物として含まれているFeやMnを除去するための電
解浴塩純化槽である。同図において、lは電解槽の外枠
、2は蓋、3は陽極、4は陰極、5は塩化マグネシウム
を主成分とする浴場、6は細孔を有する隔膜、7は電解
槽ライニングである。陽極3には通常グラファイトを用
い、陰極4には鉄を用いる。また、隔膜6を境にして陽
極3を取り付けた部分は陽極室8、陰極4を取り付けた
部分は陰極室9である。なお、陰極4は通常は浴場5の
上には出さず、電解槽の側方からライニング7を貫通し
て浴場5中に挿入される。
FIG. 1 is a schematic cross-sectional view showing an example of a molten salt electrolytic cell according to the present invention. This is an electrolytic bath salt purification tank for removing Mn and Mn. In the figure, l is the outer frame of the electrolytic cell, 2 is the lid, 3 is the anode, 4 is the cathode, 5 is the bath whose main component is magnesium chloride, 6 is the diaphragm having pores, and 7 is the electrolytic cell lining. . Graphite is usually used for the anode 3, and iron is used for the cathode 4. Further, the part where the anode 3 is attached with the diaphragm 6 as a boundary is an anode chamber 8, and the part where the cathode 4 is attached is a cathode chamber 9. Note that the cathode 4 is usually not exposed above the bath 5, but is inserted into the bath 5 by penetrating the lining 7 from the side of the electrolytic cell.

(作用) 上記第1図に示した電解槽を用いて浴温中の不純物であ
るFeやMnを除去するには、電解槽に浴場を導入し、
陽極、陰極間に所定の電圧を印加して電解すればよい、
 Fe、 Mnは陰極に析出し、浴場から除去される。
(Function) In order to remove impurities such as Fe and Mn in the bath temperature using the electrolytic cell shown in Fig. 1 above, a bath is introduced into the electrolytic cell,
Electrolysis can be carried out by applying a predetermined voltage between the anode and cathode.
Fe and Mn are deposited on the cathode and removed from the bath.

具体的な例について述べると、第1図において、電解槽
に不純物としてPeを含有する混合浴塩5(MgCl 
t : 20%、CaCj! x : 30%、NaC
Q:50%)を入れ、陽極3、陰極4間に塩化マグネシ
ウムの分解電圧より低い2.0〜2.4vの電圧を印加
する。reは浴温中でFe1あるいはFe”のFeイオ
ンとして存在しているが、陰極室9内の浴場5中に含ま
れるFeイオンは電解によりFe3°−* p e” 
’″→Fe’(金属Fe)と還元されて、陰極4上に析
出する。この間、Fe”、 Fe’+は隔膜6の細孔を
通過することができないので、Pe”が陽極室8へ移動
して酸化されることもなく、陽極室8のFeイオンが陰
極室9に流入することもない、従って、陰極室9中のF
eイオンは除去され、浴場は浄化されると共に、画電極
3.4間に流れる電流は減少する。浄化された浴場は陰
極室9から取り出され、マグネシウム製造用の電解槽に
送給される。なお、陽極室8の浴場はそのままであるが
、必要に応じ陰極室9へ移され、上記のように浄化され
る。
To describe a specific example, in FIG. 1, a mixed bath salt 5 (MgCl
t: 20%, CaCj! x: 30%, NaC
Q: 50%), and a voltage of 2.0 to 2.4 V, which is lower than the decomposition voltage of magnesium chloride, is applied between the anode 3 and the cathode 4. re exists as Fe1 or Fe'' Fe ions at the bath temperature, but the Fe ions contained in the bath 5 in the cathode chamber 9 are converted to Fe3°-* p e'' by electrolysis.
''' → Fe' (metallic Fe) is reduced and deposited on the cathode 4. During this time, since Fe'' and Fe'+ cannot pass through the pores of the diaphragm 6, Pe'' enters the anode chamber 8. The Fe ions in the anode chamber 8 do not move and become oxidized, and the Fe ions in the anode chamber 8 do not flow into the cathode chamber 9. Therefore, the Fe ions in the cathode chamber 9
The e-ions are removed, the bath is purified, and the current flowing between the picture electrodes 3.4 is reduced. The purified bath is removed from the cathode chamber 9 and fed to an electrolytic cell for producing magnesium. The bath in the anode chamber 8 remains as it is, but is moved to the cathode chamber 9 if necessary and purified as described above.

Feイオンが上記の隔膜の細孔を通過できないのは、F
eイオンが単独で存在しているのではなく、いくつかの
Clイオン<cp、−>と弱く結合し、そのイオン半径
が大きくなっているためと考えられる。
The reason why Fe ions cannot pass through the pores of the diaphragm is that
This is considered to be because e ions do not exist alone, but are weakly bonded to several Cl ions <cp, ->, resulting in a large ionic radius.

後述の実施例から判断して、細孔の直径がセラミックス
製の隔膜の場合は200μm以下、石英製の隔膜の場合
は500μm以下であると、Feイオンの通過は阻止さ
れる。材質によりFeイオンの通過が阻止される細孔の
直径(上限)が異なる理由は明らかではないが、電圧の
印加により生じる隔膜表面の静電気が関与していること
が推測される。
Judging from the examples described later, when the diameter of the pores is 200 μm or less in the case of a ceramic diaphragm and 500 μm or less in the case of a quartz diaphragm, passage of Fe ions is blocked. Although it is not clear why the diameter (upper limit) of the pores that prevent the passage of Fe ions differs depending on the material, it is presumed that static electricity on the surface of the diaphragm caused by the application of voltage is involved.

なお、細孔の直径の下限は特に定めないが、画電極3.
4間に電圧を加えたとき電流が流れること、すなわち、
イオンが隔膜を通過して一方の電極から他方の電極へ移
動することが必要で、上記の塩化物系の混合浴塩の電解
においては、Cj2−がその役割を果たしていると考え
られ、従って、細孔は少なくともC1−が通過できる程
度の大きさを有していることが必要である。
Note that there is no particular lower limit to the diameter of the pores, but the diameter of the picture electrode 3.
When a voltage is applied between 4, a current flows, that is,
It is necessary for ions to pass through the diaphragm and move from one electrode to the other, and in the electrolysis of the above-mentioned chloride-based mixed bath salt, Cj2- is thought to play this role, and therefore, It is necessary that the pores have a size that allows at least C1- to pass through.

細孔の数については、極端に少ないとイオンの隔膜の通
過に遅れが生じ、抵抗が増大して通電困難となるので、
抵抗の著しい増大が生じない程度の孔数は必要である。
Regarding the number of pores, if the number of pores is extremely small, there will be a delay in the passage of ions through the diaphragm, increasing resistance and making it difficult to conduct electricity.
The number of holes must be large enough to not cause a significant increase in resistance.

焼結体であれば、通常、必要な孔数は十分確保される。In the case of a sintered body, the required number of holes is usually sufficient.

(実施例1) 隔膜として孔の直径が200μmの石英粒子焼結板(1
00an+X100mm、厚さ51 なお、以下の実施
例および比較例において、隔膜の寸法はいずれも前記寸
法に同じである)を使用し、第1図に示した構成を有す
る石英製の電解槽(縦100s+ai、横100+m、
高さ150mm)を作成した。この電解槽の陽極室及び
陰極室9に、合わせて1.2kgの溶融塩(MgCl 
z : 20%、CaC1z:30%、NaCl :5
0%)を入れ、更に各電極室8.9に不純物としてFe
Cff1sおよびMnCl tを加え、電解槽の外側か
ら電気ヒーター(図示せず)で加熱して浴場の温度を7
00°Cに保持した。陽極室8ではRe濃度およびMn
濃度はそれぞれ0.90%、0.72%であり、陰極室
9ではそれぞれ0.80%、0.39%であった。
(Example 1) A quartz particle sintered plate (1
00an + , width 100+m,
A height of 150 mm) was created. A total of 1.2 kg of molten salt (MgCl
z: 20%, CaClz: 30%, NaCl: 5
0%), and further Fe as an impurity in each electrode chamber 8.9.
Cff1s and MnCl t were added, and the temperature of the bath was brought to 7 by heating with an electric heater (not shown) from the outside of the electrolytic cell.
The temperature was maintained at 00°C. In the anode chamber 8, Re concentration and Mn
The concentrations were 0.90% and 0.72%, respectively, and in the cathode chamber 9 they were 0.80% and 0.39%, respectively.

次いで、陽極3と陰極4との間に、塩化マグネシウムの
分解電圧より低い2.5■の電圧をかけ、一定時間毎に
浴場をサンプリングしながら3.5時間電解を続けた。
Next, a voltage of 2.5 μ, which is lower than the decomposition voltage of magnesium chloride, was applied between the anode 3 and the cathode 4, and electrolysis was continued for 3.5 hours while sampling the bath at regular intervals.

その間、陰極4では金属(FeおよびMn)が析出し、
陽極3では塩素が発生した。
Meanwhile, metals (Fe and Mn) are precipitated at the cathode 4,
Chlorine was generated at anode 3.

浴温中のFelJ度およびMn濃度の測定結果を第2図
に示す、同図から、Fe濃度およびMnlJ度は陰極室
9でいずれも0.004%に低下し、浴場は透明で、電
解処理により不純物が除去されていることがわかる。な
お、陽極室8ではFe濃度、Mn濃度は若干減少しただ
けで、浴場も赤茶色を呈し電解前の状態と大差なかった
The measurement results of FeJ degree and Mn concentration in the bath temperature are shown in Figure 2.From the same figure, the Fe concentration and MnlJ degree both decreased to 0.004% in the cathode chamber 9, the bath was transparent, and the electrolytic treatment It can be seen that impurities are removed. In addition, in the anode chamber 8, the Fe concentration and Mn concentration were only slightly decreased, and the bath also exhibited a reddish-brown color, which was not much different from the state before electrolysis.

(実施例2) 隔膜として孔の直径が500μ餓の石英焼結体を使用し
、実施例1と同じ装置および浴場を用い、同じ条件で電
解処理を行った。不純物として添加したPaおよびMn
の濃度は、陽極室ではそれぞれ0.018%、0.01
9%、陰極室ではそれぞれ0.021%、0.019%
であった。
(Example 2) A quartz sintered body with a pore diameter of 500 μm was used as a diaphragm, and electrolytic treatment was performed using the same equipment and bath as in Example 1 under the same conditions. Pa and Mn added as impurities
The concentrations in the anode chamber are 0.018% and 0.01%, respectively.
9%, 0.021% and 0.019% in the cathode chamber, respectively.
Met.

3時間電解後の浴温中のFelfi度およびMn濃度の
測定結果を第3図に示す、 Fe濃度および■口濃度は
陰極室ではそれぞれo、oos%、0.002%に減少
した。
The measurement results of the Felfi degree and Mn concentration in the bath temperature after 3 hours of electrolysis are shown in FIG. 3. The Fe concentration and the ■ concentration decreased to o, oos%, and 0.002%, respectively, in the cathode chamber.

なお、陽極室ではFe濃度、Mn濃度のいずれも電解の
前後で差はなかった。
In addition, in the anode chamber, there was no difference in either the Fe concentration or the Mn concentration before and after electrolysis.

(実施例3) 隔膜として孔の直径が200 p m以下のアルミナ焼
結晶を使用し、実施例1と同じ装置および浴場を用い、
同じ条件で電解処理を行った。不純物として添加したP
eおよびMllの濃度は、陽極室ではそれぞれ0.02
1%、0.014%、陰極室ではそれぞれ0.019%
、0.015%であった。
(Example 3) Using an alumina sintered crystal with a pore diameter of 200 pm or less as a diaphragm, and using the same equipment and bath as in Example 1,
Electrolytic treatment was performed under the same conditions. P added as an impurity
The concentrations of e and Mll are each 0.02 in the anode chamber.
1%, 0.014%, and 0.019% in the cathode chamber, respectively.
, 0.015%.

3時間電解後の浴温中のFe濃度およびMnfi度の測
定結果を第4図に示す、Fe1度およびMn11度は陰
極室ではそれぞれ0.004%、0.001%に減少し
た。
The measurement results of Fe concentration and Mnfi degree in the bath temperature after 3 hours of electrolysis are shown in FIG. 4. Fe1 degree and Mn11 degree decreased to 0.004% and 0.001%, respectively, in the cathode chamber.

なお、陽極室ではFefi度は若干低下したが、Mnl
d度は電解の前後で差はなかった。
In addition, although the Fefi degree decreased slightly in the anode chamber, Mnl
There was no difference in d degree before and after electrolysis.

(比較例1) 隔膜として孔の直径が1mmの石英板を使用し、実施例
1と同じ装置および浴場を用い、同じ条件で電解処理を
行った。
(Comparative Example 1) A quartz plate with a pore diameter of 1 mm was used as a diaphragm, and electrolytic treatment was performed using the same equipment and bath as in Example 1 under the same conditions.

3時間電解後の浴温中のFe1度およびMn濃度の測定
結果を第5図に示す、陰極室のFefA度およびMn濃
度はいずれも0.005%以下には下がらず、電流効率
は実施例1における電流効率の16.0%にすぎなかっ
た。
Figure 5 shows the measurement results of the Fe1 degree and Mn concentration in the bath temperature after 3 hours of electrolysis.The Fe1 degree and Mn concentration in the cathode chamber did not fall below 0.005%, and the current efficiency was as low as that of the example. The current efficiency was only 16.0% of that in No. 1.

(比較例2) 隔膜として孔の直径が1mmのセラミックフィルター(
アルミナ系)を使用し、実施例1と同じ装置および浴場
を用い、同じ条件で電解処理を行った。
(Comparative Example 2) A ceramic filter with a pore diameter of 1 mm was used as a diaphragm (
Electrolytic treatment was performed using the same equipment and bath as in Example 1 under the same conditions.

4時間電解後の浴温中のFefi度およびMnlJ度の
測定結果を第6図に示す、陰極室のFeIA度およびM
nfi度はいずれも0.005%以下には下がらず、電
流効率は実施例1における電流効率の15.5%であっ
た。
The measurement results of Fefi degree and MnlJ degree in the bath temperature after 4 hours of electrolysis are shown in Figure 6.
The nfi degree did not fall below 0.005% in any case, and the current efficiency was 15.5% of the current efficiency in Example 1.

(比較例3) 隔膜として孔の直径がll1mのジルコニア質のセラミ
ックフィルターを使用し、実施例1と同し装置および浴
場を用い、同じ条件で電解処理を行った。
(Comparative Example 3) A zirconia ceramic filter with a pore diameter of 11 m was used as a diaphragm, and electrolytic treatment was performed using the same apparatus and bath as in Example 1 under the same conditions.

3時間電解後の浴温中のFe濃度およびMn濃度の測定
結果を第7図に示す、陰極室のFefi度およびMn濃
度はいずれも0.015%程度、電流効率は実施例1に
おける電流効率の12.0%であった。
Figure 7 shows the measurement results of the Fe concentration and Mn concentration in the bath temperature after 3 hours of electrolysis. It was 12.0% of the total.

(比較例4) 隔膜として孔の直径がIonのジルコニア−ムライト質
のセラミックフィルターを使用し、実施例1と同じ装置
および浴場を用い、同じ条件で電解処理を行った。
(Comparative Example 4) A zirconia-mullite ceramic filter with a pore diameter of Ion was used as a diaphragm, and electrolytic treatment was performed using the same equipment and bath as in Example 1 under the same conditions.

3時間電解後の浴温中のFelJ度およびMn濃度の測
定結果を第8図に示す。陰極室のFe4度およびMnf
A度は0.015%、0.006%と高く、電流効率は
実施例1における電流効率の27.0%であった。
FIG. 8 shows the measurement results of FelJ degree and Mn concentration in the bath temperature after 3 hours of electrolysis. Fe4 degree and Mnf in cathode chamber
The A degree was high at 0.015% and 0.006%, and the current efficiency was 27.0% of the current efficiency in Example 1.

(比較例5) 隔膜として孔の直径が500μ輪の炭化けい素−ムライ
ト質のセラミックフィルターを使用し、実施例1と同じ
装置および浴場を用い、同じ条件で電解処理を行った。
(Comparative Example 5) A silicon carbide-mullite ceramic filter with a pore diameter of 500 μm was used as a diaphragm, and electrolytic treatment was performed using the same equipment and bath as in Example 1 under the same conditions.

3時間電解後の浴温中のPelli度およびMn濃度の
測定結果を第9図に示す、陰極室のFe′a度およびM
n濃度はいずれも0.005%以下には下がらず、電流
効率は実施例1における電流効率の30.4%であつた
The measurement results of the Pelli degree and Mn concentration in the bath temperature after 3 hours of electrolysis are shown in Figure 9.
The n concentration did not fall below 0.005% in any case, and the current efficiency was 30.4% of the current efficiency in Example 1.

(比較例6) 隔膜として孔の直径が500μ槃のコージェライト質の
セラミックフィルターを使用し、実施例1と同じ装置お
よび浴場を用い、同じ条件で電解処理を行った。
(Comparative Example 6) A cordierite ceramic filter with a pore diameter of 500 μm was used as a diaphragm, and electrolytic treatment was performed using the same equipment and bath as in Example 1 under the same conditions.

3時間電解後の浴温中のFelli度およびMn1度の
測定結果を第10図に示す、陰極室のFe濃度および1
1+J1度はいずれも0.012%以下には下がらず、
電流効率は実施例1における電流効率の24.0%であ
った。
The measurement results of Felli degree and Mn1 degree in the bath temperature after 3 hours of electrolysis are shown in Figure 10.
1 + J1 degree does not fall below 0.012%,
The current efficiency was 24.0% of the current efficiency in Example 1.

(発明の効果) 本発明の溶融塩電解槽を用いると、浴温中に例えばFe
イオンやMnイオンのような金属イオンが含有されてい
てもそれらの金属イオンの隔膜を通しての移動は妨げら
れる。従って、陰極で還元された金属イオンが陽極で酸
化され、再度陰櫓で還元をうける、というような電気エ
ネルギーの無駄な消費がなく、高い電流効率を維持しつ
つ電解を行うことが可能で、浴場の精製純化、さらには
、金属の電解採取を効率よく行うことができる。
(Effect of the invention) When the molten salt electrolytic bath of the present invention is used, for example, Fe
Even if metal ions such as ions and Mn ions are contained, the movement of these metal ions through the diaphragm is hindered. Therefore, metal ions reduced at the cathode are oxidized at the anode and then reduced again at the cathode, which eliminates wasteful consumption of electrical energy, making it possible to perform electrolysis while maintaining high current efficiency. Purification and purification of baths, as well as electrowinning of metals, can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の溶融塩電解槽の一例を示す概略断面
図である。 第2図〜第10図は、浴温中に不純物としてFeおよび
Mnを含有する場合におけるFeおよびMnの濃度と電
解時間との関係を示すグラフで、第2図〜第4図は実施
例、第5図〜第1O図は比較例である。
FIG. 1 is a schematic cross-sectional view showing an example of a molten salt electrolytic cell of the present invention. FIG. 2 to FIG. 10 are graphs showing the relationship between Fe and Mn concentrations and electrolysis time when Fe and Mn are contained as impurities in the bath temperature, and FIGS. FIG. 5 to FIG. 1O are comparative examples.

Claims (2)

【特許請求の範囲】[Claims] (1)陽極と陰極の間に直径200μm以下の細孔を有
するセラミックス製隔膜を設けたことを特徴とする溶融
塩電解槽。
(1) A molten salt electrolytic cell characterized in that a ceramic diaphragm having pores with a diameter of 200 μm or less is provided between an anode and a cathode.
(2)陽極と陰極の間に直径500μm以下の細孔を有
する石英製隔膜を設けたことを特徴とする溶融塩電解槽
(2) A molten salt electrolytic cell characterized in that a quartz diaphragm having pores with a diameter of 500 μm or less is provided between an anode and a cathode.
JP25277289A 1989-09-28 1989-09-28 Molten salt electrolytic cell Pending JPH03115592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25277289A JPH03115592A (en) 1989-09-28 1989-09-28 Molten salt electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25277289A JPH03115592A (en) 1989-09-28 1989-09-28 Molten salt electrolytic cell

Publications (1)

Publication Number Publication Date
JPH03115592A true JPH03115592A (en) 1991-05-16

Family

ID=17242081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25277289A Pending JPH03115592A (en) 1989-09-28 1989-09-28 Molten salt electrolytic cell

Country Status (1)

Country Link
JP (1) JPH03115592A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520046A (en) * 2002-03-13 2005-07-07 ビーエイチピー ビリトン イノベーション プロプライアタリー リミテッド Minimizing carbon transfer in electrolytic cells
KR100520272B1 (en) * 2002-02-15 2005-10-11 주식회사 비에스텍 Omni-directional toy vehicle
WO2006003865A1 (en) * 2004-06-30 2006-01-12 Toho Titanium Co., Ltd. Method for producing metal by molten salt electrolysis
CN103911627A (en) * 2012-12-31 2014-07-09 北京有色金属研究总院 Molten salt electrolytic additive and method for preparing silicon composite material from the same
CN108585883A (en) * 2018-05-08 2018-09-28 南方科技大学 Micro-filtration ceramic membrane and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687685A (en) * 1979-11-24 1981-07-16 Kernforschungsanlage Juelich Separation of gas generated in molten salt electrolysis and apparatus therefore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687685A (en) * 1979-11-24 1981-07-16 Kernforschungsanlage Juelich Separation of gas generated in molten salt electrolysis and apparatus therefore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100520272B1 (en) * 2002-02-15 2005-10-11 주식회사 비에스텍 Omni-directional toy vehicle
JP2005520046A (en) * 2002-03-13 2005-07-07 ビーエイチピー ビリトン イノベーション プロプライアタリー リミテッド Minimizing carbon transfer in electrolytic cells
WO2006003865A1 (en) * 2004-06-30 2006-01-12 Toho Titanium Co., Ltd. Method for producing metal by molten salt electrolysis
CN103911627A (en) * 2012-12-31 2014-07-09 北京有色金属研究总院 Molten salt electrolytic additive and method for preparing silicon composite material from the same
CN108585883A (en) * 2018-05-08 2018-09-28 南方科技大学 Micro-filtration ceramic membrane and preparation method thereof

Similar Documents

Publication Publication Date Title
AU758931C (en) Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt
EP0958409B1 (en) Process for the electrolytic production of metals
JP4602986B2 (en) Method for producing metallic calcium by molten salt electrolysis
WO2005090640A1 (en) Electrochemical reduction of metal oxides
SA110310372B1 (en) Apparatus and Method for reduction of a solid feedstock
US20090152104A1 (en) Molten salt electrolyzer for reducing metal, method for electrolyzing the same, and process for producing refractory metal with use of reducing metal
AU2002349139A1 (en) Electrochemical processing of solid materials in fused salt
WO2007026565A1 (en) METHOD FOR ELECTROLYSIS OF MOLTEN SALT, ELECTROLYTIC CELL, AND PROCESS FOR PRODUCING Ti USING SAID METHOD
US2864749A (en) Process for the production of titanium metal
JPH03115592A (en) Molten salt electrolytic cell
CN116615578A (en) Method and apparatus for producing secondary aluminum, production system, secondary aluminum, and aluminum workpiece
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
JPH10176296A (en) Electrolytic formation of neodymium without being companied with perfluorocarbon compound in waste gas
US5948140A (en) Method and system for extracting and refining gold from ores
US4895626A (en) Process for refining and purifying gold
Ginatta Titanium electrowinning
JP3552512B2 (en) Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper
RU2796566C1 (en) Method for aluminium recycling by scrap melt electrolysis and a device for implementing this method
HU177164B (en) Method for cleaning aluminium alloys
WO2023210748A1 (en) Method for producing high-purity aluminum, production device, production system, and high-purity aluminum
JPH0653951B2 (en) Electrolytic bath salt purification method
US3003934A (en) Process for the electrolytic production of metals
JP2005105373A (en) Reduction method for metal oxide and reduction device for metal oxide
JPH0215187A (en) Production of iron and chlorine from aqueous solution containing iron chloride
JP6201915B2 (en) Cathode and method for producing metal hydroxide using the same