JP2007084847A - METHOD AND DEVICE FOR PRODUCING Ti - Google Patents

METHOD AND DEVICE FOR PRODUCING Ti Download PDF

Info

Publication number
JP2007084847A
JP2007084847A JP2005271995A JP2005271995A JP2007084847A JP 2007084847 A JP2007084847 A JP 2007084847A JP 2005271995 A JP2005271995 A JP 2005271995A JP 2005271995 A JP2005271995 A JP 2005271995A JP 2007084847 A JP2007084847 A JP 2007084847A
Authority
JP
Japan
Prior art keywords
molten salt
concentration
electrolytic cell
molten
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005271995A
Other languages
Japanese (ja)
Inventor
Tadashi Ogasawara
忠司 小笠原
Makoto Yamaguchi
誠 山口
Toru Uenishi
徹 上西
Masahiko Hori
雅彦 堀
Kazuo Takemura
和夫 竹村
Katsunori Takeshita
勝則 岳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2005271995A priority Critical patent/JP2007084847A/en
Priority to EP06782859A priority patent/EP1944383A4/en
Priority to PCT/JP2006/316355 priority patent/WO2007034645A1/en
Priority to EA200800867A priority patent/EA200800867A1/en
Priority to CA002623212A priority patent/CA2623212A1/en
Priority to CNA2006800343147A priority patent/CN101268204A/en
Priority to US11/992,162 priority patent/US20100089204A1/en
Priority to AU2006293354A priority patent/AU2006293354A1/en
Publication of JP2007084847A publication Critical patent/JP2007084847A/en
Priority to NO20081519A priority patent/NO20081519L/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing Ti where the reduction reaction of TiCl<SB>4</SB>is efficiently performed, and a stable operation can be performed on an industrial scale; and to provide a production device used therefor. <P>SOLUTION: The method includes: a reduction stage where Ca in a CaCl<SB>2</SB>-containing molten salt in which Ca is dissolved is allowed to react with TiCl<SB>4</SB>to produce Ti grains in the molten salt; a separation stage where the produced Ti grains are separated from the molten salt; and an electrolysis stage where the molten salt in which Ca concentration is reduced is electrolyzed to increase the Ca concentration. The molten salt in which the Ca concentration is increased using the main electrolytic cell 5 in the electrolysis stage is introduced into a regulation tank 6 having a Ca feed source, and is brought into contact with the Ca feed source, so as to make the Ca concentration in the molten salt constant, and thereafter, it is used for the reduction of TiCl<SB>4</SB>in the reduction stage. When a molten Ca-Mg alloy is used as the Ca feed source, the replenishment of Ca can be easily performed. The method for producing Ti can be easily performed by the production device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、TiCl4をCaにより還元処理して金属Tiを製造するTiの製造方法、およびそれに用いる製造装置に関する。 The present invention relates to a Ti production method for producing Ti by reducing TiCl 4 with Ca, and a production apparatus used therefor.

金属Tiの工業的な製法としては、TiCl4をMgにより還元するクロール法が一般的である。このクロール法では、還元工程−真空分離工程を経て金属Tiが製造される。還元工程では、反応容器内で上方から供給される液体状のTiCl4が溶融Mgにより還元され、粒子状の金属Tiが生成し、逐次下方へ沈降してスポンジ状の金属Tiが得られる。真空分離工程では、反応容器内のスポンジ状金属Tiから未反応のMgおよび副生物であるMgCl2が除去される。 As an industrial method for producing metal Ti, a crawl method in which TiCl 4 is reduced with Mg is generally used. In this crawl method, metal Ti is produced through a reduction process-vacuum separation process. In the reduction step, liquid TiCl 4 supplied from above in the reaction vessel is reduced by molten Mg to form particulate metal Ti, which is successively settled downward to obtain sponge-like metal Ti. In the vacuum separation step, unreacted Mg and by-product MgCl 2 are removed from the spongy metal Ti in the reaction vessel.

クロール法による金属Tiの製造では、高純度の製品を製造することが可能である。しかし、バッチ式であるために製造コストが嵩み、製品価格が非常に高くなる。製造コストが嵩む原因の一つは、TiCl4の供給速度を上げることが困難なことである。 In the production of metal Ti by the crawl method, it is possible to produce a high-purity product. However, since it is a batch type, the manufacturing cost increases and the product price becomes very high. One of the causes of increased manufacturing cost is that it is difficult to increase the supply rate of TiCl 4 .

その理由としては幾つか考えられるが、一つは、TiCl4の供給速度を大きくしすぎると、沈降せず液面に残っているMgCl2に上方からTiCl4が供給されるようになるため、供給したTiCl4が未反応のTiCl4ガスや還元が不十分なTiCl3ガスなどとして反応容器外へ排出され、TiCl4の利用効率が低下することである。 There are several possible reasons for this, but one is that if the supply rate of TiCl 4 is increased too much, TiCl 4 is supplied from above to MgCl 2 that does not settle and remains on the liquid surface. The supplied TiCl 4 is discharged out of the reaction vessel as unreacted TiCl 4 gas or TiCl 3 gas with insufficient reduction, and the utilization efficiency of TiCl 4 is lowered.

また、クロール法では、反応容器内の溶融Mg液の液面近傍だけで反応が行われるため、発熱エリアが狭い。そのため、高速でTiCl4を供給すると冷却が間に合わなくなることも、TiCl4の供給速度が制限される大きな理由である。 In the crawl method, the reaction is performed only in the vicinity of the liquid level of the molten Mg liquid in the reaction vessel, so that the heat generation area is narrow. For this reason, if TiCl 4 is supplied at a high speed, cooling cannot be performed in time, which is a major reason that the supply speed of TiCl 4 is limited.

更に、溶融Mgの濡れ性(粘着性)のため、生成したTi粉が凝集した状態で沈降し、沈降中にも高温の溶融液が有している熱により焼結して粒成長し、反応容器外へ回収することが困難である。このため、金属Tiの製造を連続的に行うことができず、生産性が阻害される。   Furthermore, due to the wettability (adhesiveness) of the molten Mg, the Ti powder that has been formed settles in a coherent state, and during the sedimentation, particles are grown by sintering with the heat of the high-temperature melt. It is difficult to recover outside the container. For this reason, manufacture of metal Ti cannot be performed continuously but productivity is inhibited.

クロール法以外のTi製造方法に関しては、特許文献1に、TiCl4の還元剤としてMg以外に例えばCaの使用が可能なことが記載されている。そして、Caによる還元反応を用いたTiの製造方法としては、特許文献2に、反応容器内にCaCl2の溶融塩を保持し、その溶融塩中に上方から金属Ca粉末を供給して、溶融塩中にCaを溶け込ませると共に、下方からTiCl4ガスを供給して、CaCl2の溶融塩中で溶解CaとTiCl4を反応させる方法が記載されている。 Regarding Ti production methods other than the crawl method, Patent Document 1 describes that, for example, Ca can be used as a reducing agent for TiCl 4 in addition to Mg. And as a manufacturing method of Ti using the reduction reaction by Ca, in Patent Document 2, a molten salt of CaCl 2 is held in a reaction vessel, and metallic Ca powder is supplied into the molten salt from above to melt A method is described in which Ca is dissolved in a salt and TiCl 4 gas is supplied from below to react the dissolved Ca and TiCl 4 in a molten salt of CaCl 2 .

しかしながら、特許文献2に記載された方法は、還元剤として使用する金属Caの粉末が極めて高価で、これを購入して使用すると、製造コストはクロール法よりも高価となるので、工業的なTi製造法としては成立し得ない。加えて、反応性が強いCaは取り扱いが非常に難しく、このことも、Ca還元によるTi製造方法の工業化を阻害する大きな要因になっている。   However, in the method described in Patent Document 2, the metal Ca powder used as a reducing agent is extremely expensive, and if this is purchased and used, the manufacturing cost is higher than that of the crawl method. It cannot be established as a manufacturing method. In addition, highly reactive Ca is very difficult to handle, and this is also a major factor that hinders industrialization of the Ti production method by Ca reduction.

更に別のTi製造方法としては、特許文献3に、TiCl4を経由せず、TiO2をCaにより直接還元するオルソンの方法が記載されている。この方法は、酸化物直接還元法の一種である。しかし、この方法では高価な高純度のTiO2を使用しなければならない。 As another Ti production method, Patent Document 3 describes Olson's method in which TiO 2 is directly reduced by Ca without passing through TiCl 4 . This method is a kind of direct oxide reduction method. However, this method must use expensive high-purity TiO 2 .

一方、本発明者らは、Ca還元によるTi製造方法を工業的に確立するためには、TiCl4のCaによる還元が不可欠であり、還元反応で消費される溶融塩中のCaを経済的に補充する必要があると考え、溶融CaCl2の電気分解により生成するCaを利用すると共に、このCaを循環使用する方法、即ち「OYIK法(オーイック法)」を提案した(特許文献4、特許文献5参照)。特許文献4では、電気分解によりCaが生成、補充され、Caリッチとなった溶融CaCl2を反応容器に導入し、Ca還元によるTi粒の生成に使用する方法が記載され、特許文献5では、更に、陰極として合金電極(例えば、Mg−Ca合金電極)を用いることにより、電解に伴うバックリアクションを効果的に抑制する方法が示されている。 On the other hand, in order to industrially establish a Ti production method by Ca reduction, the present inventors must reduce TiCl 4 with Ca, and economically reduce Ca in molten salt consumed in the reduction reaction. In consideration of the necessity of replenishment, a method of using Ca generated by electrolysis of molten CaCl 2 and circulating this Ca, that is, “OYIK method (Oic method)” was proposed (Patent Document 4, Patent Document) 5). Patent Document 4 describes a method in which Ca is generated and replenished by electrolysis and Ca-rich molten CaCl 2 is introduced into a reaction vessel and used to generate Ti particles by Ca reduction. Furthermore, a method of effectively suppressing back reaction accompanying electrolysis by using an alloy electrode (for example, Mg—Ca alloy electrode) as a cathode is shown.

米国特許第2205854号明細書US Pat. No. 2,205,854 米国特許第4820339号明細書U.S. Pat. No. 4,820,339 米国特許第2845386号明細書U.S. Pat. No. 2,845,386 特開2005−133195号公報JP 2005-133195 A 特開2005−133196号公報JP 2005-133196 A

前述のとおり、クロール法以外のTi製造方法について、従来多くの研究開発が行われてきた。特に本発明者らが提案した前記「OYIK法(オーイック法)」では、TiCl4の還元反応に伴い溶融塩中のCaが消費されるが、その溶融塩を電気分解すれば溶融塩中にCaが生成し、こうして得られたCaを還元反応に再使用すれば、外部からのCa補充が不要になり、しかも、Caを単独で取り出す必要がないので、経済性が向上する。 As described above, many researches and developments have been made on Ti production methods other than the crawl method. In particular, in the “OYIK method (Oic method)” proposed by the present inventors, Ca in the molten salt is consumed along with the reduction reaction of TiCl 4 , but if the molten salt is electrolyzed, the Ca is contained in the molten salt. If Ca thus obtained is reused in the reduction reaction, it is not necessary to replenish Ca from the outside, and it is not necessary to take out Ca alone, thereby improving the economic efficiency.

そこで、本発明者らは、基本的な構成はこのOYIK法に立脚し、更に、効率よく、安定した操業を行い得る金属Ti製造プロセスの開発を企図して、製造工程全般に亘り検討を加えることとした。OYIK法をさらに進化させた本発明のTiまたはTi合金の製造方法は、その着想から開発、完成に深く関与した4名「小笠原、山口、市橋、金澤」のイニシャルをとり、「OYIK−II法(オーイック−II法)」と命名する。   Therefore, the inventors of the present invention are based on this OYIK method, and further develop a metal Ti manufacturing process capable of performing an efficient and stable operation, and examine the entire manufacturing process. It was decided. The manufacturing method of Ti or Ti alloy of the present invention, which is an evolution of the OYIK method, was the initials of four people “Ogasawara, Yamaguchi, Ichihashi, Kanazawa” who were deeply involved in the development and completion of the idea. (Oic-II method) ".

本発明の目的は、溶融CaCl2の電気分解により生成するCaによりTiCl4を還元するCa還元による金属Tiの製造に際し、TiCl4の還元反応を効率よく行わせ、且つ工業的規模で、安定した操業が可能なTiの製造方法、およびそれに用いられる製造装置を提供することにある。 The object of the present invention is to make TiCl 4 reduction reaction efficient and stable on an industrial scale in the production of metallic Ti by Ca reduction in which TiCl 4 is reduced by Ca generated by electrolysis of molten CaCl 2 . An object is to provide a Ti production method capable of operation and a production apparatus used therefor.

上記の課題、即ち、TiCl4の還元反応を効率よく行わせ、且つ、安定した操業を可能とするためには、TiCl4を還元する還元槽に投入するCaCl2含有溶融塩中のCaの高濃度化と、濃度の変動抑制が重要であり、工業的規模でのTiの製造を可能とするためには、還元槽へのCaの供給速度の増大(換言すれば、電解工程における大量のCaCl2含有溶融塩の連続処理)が必要である。 In order to perform the above-described problem, that is, to efficiently perform the reduction reaction of TiCl 4 and to enable stable operation, the high content of Ca in the CaCl 2 -containing molten salt charged into the reduction tank for reducing TiCl 4 is high. Concentration and suppression of fluctuations in concentration are important, and in order to enable production of Ti on an industrial scale, an increase in the supply rate of Ca to the reduction tank (in other words, a large amount of CaCl in the electrolysis process). 2 continuous treatment of molten salt containing).

還元槽に投入する溶融塩のCa濃度が低すぎる場合は、未反応のTiCl4ガスが槽外へ排出される。更に、TiCl3、TiCl2等の低級塩化チタンのガスが生成して溶融塩に溶け込み、この溶融塩がCaCl2を電気分解してCaを生成させる電解槽へ戻されたときに、生成するCaと低級塩化チタンとの反応によりTiが生成し、このTiがカソード表面に析出して、電解槽の形状如何によっては電極間の短絡や槽内での閉塞を引き起こすおそれがある。また、TiのC汚染の原因となるTiCの発生なども危惧される。 When the Ca concentration of the molten salt charged into the reduction tank is too low, unreacted TiCl 4 gas is discharged out of the tank. Furthermore, a gas of lower titanium chloride such as TiCl 3 and TiCl 2 is generated and dissolved in the molten salt, and when this molten salt is returned to the electrolytic cell for electrolyzing CaCl 2 to generate Ca, the generated Ca Ti reacts with lower titanium chloride and Ti is deposited on the cathode surface, which may cause a short circuit between the electrodes or clogging in the cell depending on the shape of the electrolytic cell. In addition, the occurrence of TiC that causes C contamination of Ti is also a concern.

一方、溶融塩のCa濃度が高すぎる場合は、還元槽から抜き出される溶融塩中に多量のCaが含まれ、分離工程で溶融塩から分離されたTiにもCaが含まれた溶融塩が一部付着残留することとなる。この残留した溶融塩は、分離回収されたTiの溶解時に完全に除去されるが、Caは蒸発し、損失となる他、溶解炉の内壁に付着するので大掛かりな清掃除去が必要になる。   On the other hand, when the Ca concentration of the molten salt is too high, a large amount of Ca is contained in the molten salt withdrawn from the reduction tank, and there is also a molten salt containing Ca in Ti separated from the molten salt in the separation step. Part of it will remain attached. The remaining molten salt is completely removed when the separated and recovered Ti is melted. However, Ca is evaporated and lost, and it adheres to the inner wall of the melting furnace, so that extensive cleaning and removal is required.

加えて、分離工程でTiが分離された後の溶融塩中のCa濃度も高いので、電解槽へ戻したときに、このCaと電解で生成した塩素との反応(バックリアクション)が起こり、電流効率が低下する。また、その際の反応熱により電解槽内の溶融塩(浴塩)の温度の均一性が乱され、浴塩の温度制御に支障を来すおそれもある。   In addition, since the Ca concentration in the molten salt after Ti is separated in the separation step is also high, when returned to the electrolytic cell, a reaction (back reaction) between this Ca and chlorine generated by electrolysis occurs, and the current Efficiency is reduced. In addition, the uniformity of the temperature of the molten salt (bath salt) in the electrolytic cell is disturbed by the reaction heat at that time, which may hinder the temperature control of the bath salt.

従って、還元槽に投入される溶融塩のCa濃度は変動せず常に一定であり、しかも、還元反応を効率よく進行させるためには、高濃度であることが望ましい。しかし、例えば、電解槽から抜き出される溶融塩中のCa濃度をリアルタイムで測定しながらCa濃度を一定に制御することは非常に難しく、電解槽での電解条件の若干の変動に伴うCa濃度の変動は避けられない。そのため、電解槽でCa濃度を高めた溶融塩を直接還元槽に投入する手法を採る限り、Ca濃度を常に一定に維持することは困難である。   Therefore, the Ca concentration of the molten salt charged into the reduction tank does not change and is always constant, and it is desirable that the concentration be high in order to allow the reduction reaction to proceed efficiently. However, for example, it is very difficult to control the Ca concentration constant while measuring the Ca concentration in the molten salt extracted from the electrolytic cell in real time, and the Ca concentration accompanying the slight variation in the electrolysis conditions in the electrolytic cell. Variation is inevitable. Therefore, it is difficult to keep the Ca concentration constant at all times as long as a technique is adopted in which molten salt with an increased Ca concentration in the electrolytic cell is directly introduced into the reduction tank.

そこで、本発明者らは、還元槽に投入する溶融塩のCa濃度の変動を抑制し、且つ高濃度に維持するために種々検討を重ねた。その結果、電解槽(以下、「主電解槽」という)と還元槽の間にCa供給源を備える調整槽を設置し、主電解槽でCa濃度を高めた溶融塩を調整槽に導入してCa濃度を一定とした後、還元に用いることが効果的であることを知見した。Ca供給源としては、溶融Ca−Mg合金が好適であることも判明した。   Therefore, the present inventors have made various studies in order to suppress the fluctuation of the Ca concentration of the molten salt charged into the reduction tank and maintain it at a high concentration. As a result, an adjustment tank equipped with a Ca supply source was installed between the electrolytic cell (hereinafter referred to as “main electrolytic cell”) and the reduction tank, and molten salt with an increased Ca concentration in the main electrolytic cell was introduced into the adjustment tank. It was found that it was effective to use for reduction after making Ca concentration constant. It has also been found that a molten Ca—Mg alloy is suitable as the Ca supply source.

更に、主電解槽の電解槽容器の形状、電極形状、電解条件、極間距離等について詳細な検討を行った結果、溶融塩をカソード表面近傍で一方向に流しつつ電気分解して主電解槽の出側でCa濃度が高まった溶融塩を回収することにより、バックリアクションを抑制して高電流効率を維持すると共に、Caが濃化した溶融塩のみを効果的に取り出すことができ、しかも、大量のCaCl2含有溶融塩の連続処理が可能であることを知見した。 Furthermore, as a result of detailed investigations on the shape of the electrolytic cell vessel of the main electrolytic cell, electrode shape, electrolysis conditions, distance between electrodes, etc., the main electrolytic cell was electrolyzed while flowing the molten salt in one direction near the cathode surface. By recovering the molten salt having an increased Ca concentration on the outlet side, the back reaction is suppressed and high current efficiency is maintained, and only the molten salt in which Ca is concentrated can be effectively taken out, It was found that a large amount of molten salt containing CaCl 2 can be continuously processed.

本発明はこれらの知見に基づいてなされたもので、その要旨は、下記(1)のTiの製造方法、および(2)の製造装置にある。   The present invention has been made based on these findings, and the gist of the present invention is the following (1) Ti production method and (2) production apparatus.

(1)CaCl2を含み且つCaが溶解した溶融塩中のCaにTiCl4を反応させて前記溶融塩中にTi粒を生成させる還元工程と、前記溶融塩中に生成されたTi粒を前記溶融塩から分離する分離工程と、Ti粒の生成に伴ってCa濃度が低下した溶融塩を電解することによりCa濃度を高める電解工程とを含み、前記電解工程で主電解槽を用いてCa濃度を高めた溶融塩を、Ca供給源を有する調整槽に導入して該Ca供給源に接触させることにより前記溶融塩のCa濃度を一定とした後、還元工程でTiCl4の還元に用いるTiの製造方法。 (1) A reduction step of causing TiCl 4 to react with Ca in a molten salt containing CaCl 2 and dissolving Ca to produce Ti particles in the molten salt; and Ti particles generated in the molten salt A separation step for separating from the molten salt, and an electrolysis step for increasing the Ca concentration by electrolyzing the molten salt having a reduced Ca concentration with the formation of Ti grains, and using the main electrolytic cell in the electrolysis step, the Ca concentration After introducing the molten salt with increased Ca into a regulating tank having a Ca supply source and bringing it into contact with the Ca supply source, the Ca concentration of the molten salt is made constant, and then the Ti salt used for the reduction of TiCl 4 in the reduction step Production method.

なお、ここで、「CaCl2を含有する溶融塩」とは、溶融CaCl2のみ、または、溶融CaCl2に、融点の低下、粘性等の調整のためにKCl、CaF2等を加えた溶融塩である。以下、単に「溶融塩」ともいう。 Here, “a molten salt containing CaCl 2 ” means a molten salt containing only molten CaCl 2 or a molten salt obtained by adding KCl, CaF 2 or the like to molten CaCl 2 in order to lower the melting point or adjust viscosity. It is. Hereinafter, it is also simply referred to as “molten salt”.

このTiの製造方法において、Ca供給源が溶融Ca−Mg合金であれば(この実施形態を、第1実施形態と記す)、この溶融Ca−Mg合金のCaを容易に補充できるので、望ましい。   In this Ti manufacturing method, if the Ca supply source is a molten Ca—Mg alloy (this embodiment is referred to as the first embodiment), it is desirable because Ca of this molten Ca—Mg alloy can be easily replenished.

この第1実施形態において、溶融Ca−Mg合金中のCa濃度を、CaCl2を含む溶融塩を合金用電解槽で電解することにより高め、Caを補充することとすれば(第2実施形態)、Caの補充を操業に影響を及ぼすことなく容易に行うことができる。 In the first embodiment, if the Ca concentration in the molten Ca—Mg alloy is increased by electrolyzing a molten salt containing CaCl 2 in an electrolytic cell for an alloy and supplemented with Ca (second embodiment). , Ca can be easily replenished without affecting the operation.

このTiの製造方法において、分離工程でTi粒が分離された後の溶融塩を一旦合金用電解槽へ投入し、溶融塩のCa濃度を低減させてから主電解槽へ投入することとすれば(第3実施形態)、分離工程から電解工程へ戻される溶融塩中の残留Caが除去されるとともにこの残留Caを有効に利用することができるので、望ましい。   In this Ti manufacturing method, if the molten salt after the Ti grains are separated in the separation step is once charged into the alloy electrolytic cell, and the Ca concentration of the molten salt is reduced, then the molten salt is charged into the main electrolytic cell. (Third embodiment) This is desirable because the residual Ca in the molten salt returned from the separation step to the electrolysis step is removed and the residual Ca can be used effectively.

また、前記(1)に記載の方法で用いる調整槽が冷却機能を備えるものであれば(第4実施形態)、後工程の還元槽で発熱反応に基づく槽内温度の上昇を緩和でき、また、還元槽に投入される溶融塩のCa濃度を常に一定、且つ高濃度に保つことができ、還元反応を効率よく行わせ、安定操業に寄与できる。   Moreover, if the adjustment tank used with the method as described in said (1) is provided with a cooling function (4th Embodiment), the increase in the tank internal temperature based on an exothermic reaction can be relieved in the reduction tank of a post process, The Ca concentration of the molten salt charged into the reduction tank can always be kept constant and high, allowing the reduction reaction to be performed efficiently and contributing to stable operation.

(2)CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を前記Caと反応させてTi粒を生成させるための還元槽と、前記溶融塩中に生成されたTi粒を溶融塩から分離するための分離手段と、前記Ti粒が分離された後の溶融塩を保持し、アノードとカソードを備え、該溶融塩中で電気分解を行って陰極側にCaを生成させるための主電解槽と、Ca供給源を備え、前記主電解槽内の溶融塩を導入してCa供給源と接触させることにより該溶融塩のCa濃度を一定とした後、その溶融塩を前記還元槽へ投入するための調整槽とを有するTiの製造装置。 (2) A reducing tank for holding a molten salt containing CaCl 2 and dissolving Ca, reacting TiCl 4 supplied in the molten salt with Ca to generate Ti particles, and in the molten salt Separating means for separating the Ti particles produced from the molten salt, and holding the molten salt after the Ti particles are separated, provided with an anode and a cathode, and performing electrolysis in the molten salt to form a cathode After having a main electrolytic cell for generating Ca on the side and a Ca supply source, and introducing the molten salt in the main electrolytic cell and bringing it into contact with the Ca supply source, the Ca concentration of the molten salt is made constant An apparatus for producing Ti having an adjustment tank for charging the molten salt into the reduction tank.

このTiの製造装置において、Ca供給源が溶融Ca−Mg合金であり、この溶融Ca−Mg合金のCa濃度を高めるための合金用電解槽を備えるものであれば、前記第1、第2実施形態に係るTiの製造方法の実施に好適に使用できる。   In this Ti manufacturing apparatus, if the Ca supply source is a molten Ca—Mg alloy and includes an electrolytic cell for an alloy for increasing the Ca concentration of the molten Ca—Mg alloy, the first and second embodiments are used. It can use suitably for implementation of the manufacturing method of Ti which concerns on a form.

また、分離工程の高温デカンターと主電解槽の間に合金用電解槽が設置され、合金用電解槽でCa濃度が高められた溶融塩を調整槽に導入できるように構成されていれば、前記第3実施形態に係るTiの製造方法の実施に好適である。   In addition, if an electrolytic cell for an alloy is installed between the high-temperature decanter and the main electrolytic cell in the separation step, and the molten salt with an increased Ca concentration in the electrolytic cell for the alloy can be introduced into the adjustment tank, It is suitable for carrying out the Ti manufacturing method according to the third embodiment.

本発明のTiの製造方法では、主電解槽でCa濃度を高めた溶融塩をCa供給源を備える調整槽に導入してCa濃度を一定とした後、TiCl4の還元に用いるので、還元槽に投入する溶融塩のCa濃度の変動を抑制し、且つ高濃度に維持することができる。これにより、TiCl4の還元反応を効率よく行わせ、安定した操業が可能である。また、電解工程における大量のCaCl2含有溶融塩の連続処理が可能であり、還元槽へのCa供給速度を増大させて工業的規模でTiを製造することができる。 In the Ti production method of the present invention, the molten salt with the Ca concentration increased in the main electrolytic cell is introduced into a regulating tank equipped with a Ca supply source and the Ca concentration is made constant, and then used for the reduction of TiCl 4. Fluctuations in the Ca concentration of the molten salt introduced into the can be suppressed and maintained at a high concentration. Thereby, the reduction reaction of TiCl 4 can be performed efficiently, and stable operation is possible. Moreover, continuous treatment of a large amount of CaCl 2 -containing molten salt in the electrolysis process is possible, and Ti can be produced on an industrial scale by increasing the Ca supply rate to the reduction tank.

この方法は、本発明のTiの製造装置により容易に且つ好適に実施できる。   This method can be easily and suitably performed by the Ti production apparatus of the present invention.

以下に、前記(1)Tiの製造方法、および(2)の製造装置を、図面を参照して具体的に説明する。   The (1) Ti production method and (2) production apparatus will be specifically described below with reference to the drawings.

図1は、(1)に記載のTiの製造方法を実施する際に用いられる装置で、前記(2)に記載の本発明のTiの製造装置の概略構成例を示す図である。   FIG. 1 is a diagram showing a schematic configuration example of the Ti production apparatus of the present invention described in (2) above, which is an apparatus used when the Ti production method described in (1) is performed.

図1に示すように、この装置は、CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を前記Caと反応させてTi粒を生成させるための還元槽1と、前記溶融塩中に生成されたTi粒を溶融塩から分離するための分離手段と、前記Ti粒が分離された後の溶融塩を保持し、アノード2とカソード3を備え、該溶融塩の電気分解を行って陰極側にCaを生成させるための主電解槽5と、Ca供給源を備え、前記主電解槽5内の溶融塩を導入して該溶融塩のCa濃度を一定とした後、その溶融塩を前記還元槽1へ投入するための調整槽6とを有している。更に、この例では、主電解槽5のアノード2とカソード3の間に隔膜4が設けられている。 As shown in FIG. 1, this apparatus holds a molten salt containing CaCl 2 and dissolved in Ca, and reacts TiCl 4 supplied in the molten salt with the Ca to generate Ti grains. A reduction tank 1; separation means for separating Ti particles generated in the molten salt from the molten salt; holding the molten salt after the Ti particles are separated; and an anode 2 and a cathode 3; A main electrolytic cell 5 for electrolyzing the molten salt to generate Ca on the cathode side and a Ca supply source are provided, and the molten salt in the main electrolytic cell 5 is introduced to reduce the Ca concentration of the molten salt. After making it constant, it has an adjustment tank 6 for introducing the molten salt into the reduction tank 1. Further, in this example, a diaphragm 4 is provided between the anode 2 and the cathode 3 of the main electrolytic cell 5.

また、前記の分離手段として、図1に示した装置では、デカンター型遠心沈降機(高温デカンター)7および分離槽8が用いられている。   Further, as the separation means, in the apparatus shown in FIG. 1, a decanter type centrifugal sedimentator (high temperature decanter) 7 and a separation tank 8 are used.

前記(1)に記載の本発明のTiの製造方法は、『CaCl2を含み且つCaが溶解した溶融塩中のCaにTiCl4を反応させて前記溶融塩中にTi粒を生成させる還元工程と、前記溶融塩中に生成されたTi粒を前記溶融塩から分離する分離工程と、Ti粒の生成に伴ってCa濃度が低下した溶融塩を電解することによりCa濃度を高める電解工程とを含み、前記電解工程で主電解槽を用いてCa濃度を高めた溶融塩を、Ca供給源を有する調整槽に導入して該Ca供給源に接触させることにより前記溶融塩のCa濃度を一定とした後、還元工程でTiCl4の還元に用いる』方法である。 The method for producing Ti according to the present invention described in (1) described above is “a reduction step of causing TiCl 4 to react with Ca in a molten salt containing CaCl 2 and dissolving Ca to produce Ti particles in the molten salt. And a separation step of separating the Ti particles generated in the molten salt from the molten salt, and an electrolysis step of increasing the Ca concentration by electrolyzing the molten salt in which the Ca concentration is reduced as the Ti particles are generated. Including the molten salt whose Ca concentration is increased using the main electrolytic cell in the electrolysis step into a regulating tank having a Ca supply source and contacting the Ca supply source, the Ca concentration of the molten salt is kept constant. And then used for the reduction of TiCl 4 in the reduction step ”.

即ち、このTiの製造方法においては、例えば前記図1に示した装置を使用し、先ず、調整槽6から供給されるCaが一定濃度で溶解した溶融塩を、還元槽1内に保持し、その溶融塩中のCaに、TiCl4供給口9から供給したTiCl4を反応させ、前記溶融塩中にTi粒を生成させる。即ち、「還元工程」である。 That is, in this Ti manufacturing method, for example, using the apparatus shown in FIG. 1, first, the molten salt in which Ca supplied from the adjustment tank 6 is dissolved at a constant concentration is held in the reduction tank 1, its Ca in the molten salt, by reacting TiCl 4 was supplied from the TiCl 4 feed port 9 to produce a Ti particles in the molten salt. That is, the “reduction process”.

この場合、溶融塩は還元槽1内に静止した状態で保持されるのではなく、還元槽1の上方から下方へ徐々に流下しつつ保持され、その間に、TiCl4が溶融塩中のCaにより還元されてTi粒が生成する。 In this case, the molten salt is not held in the reducing tank 1 in a stationary state, but is held while gradually flowing down from the upper side of the reducing tank 1, while TiCl 4 is retained by Ca in the molten salt. Reduced to produce Ti grains.

前記還元工程で生成したTi粒は、「分離工程」で溶融塩から分離される。   Ti particles generated in the reduction step are separated from the molten salt in a “separation step”.

分離工程では、最初、高温デカンター7でTi粒が溶融塩から分離回収され、次いで分離槽8でTi粒に付着している溶融塩が除去される。   In the separation step, first, Ti particles are separated and recovered from the molten salt by the high-temperature decanter 7, and then the molten salt adhering to the Ti particles is removed by the separation tank 8.

デカンター型遠心沈降機は回転円筒を高速回転させることにより懸濁物質を遠心沈降させるタイプの遠心分離機で、高速処理が可能で、かつ高い脱水性能を有しており、化学工場における各種処理プラント等で使用されている。高温処理が可能なタイプのものも開発されており、この分離工程で高温デカンター7として適用することが可能である。   The decanter type centrifugal settling machine is a type of centrifugal separator that spins suspended solids by rotating a rotating cylinder at high speed. It is capable of high-speed processing and has high dehydration performance. Etc. are used. A type capable of high-temperature treatment has also been developed, and can be applied as a high-temperature decanter 7 in this separation step.

高温デカンター7から抜き出されたTi粒は、分離槽8でプラズマトーチ10から照射されるプラズマにより加熱溶融され、鋳型11に流し込まれ、Tiインゴット12となる。一方、Ti粒から分離された付着溶融塩には、Tiの微粒子が混入している恐れがある。そのため、この付着溶融塩を電解工程へ戻すと問題が生じる可能性があるので、図1に示すように、還元槽1内へ戻すのが望ましい。加えて、付着溶融塩にはCaがある程度残存しているため、Caの有効活用の面からも還元槽1内へ戻すことが合理的である。なお、調整槽6でCa濃度を一定にされた後に還元槽1へ導入される溶融塩の流量と比較して、付着溶融塩の流量は極僅かであるため、調整槽6から還元槽1へ導入される溶融塩のCa濃度の変動は無視できる。   Ti particles extracted from the high-temperature decanter 7 are heated and melted by the plasma irradiated from the plasma torch 10 in the separation tank 8, poured into the mold 11, and become a Ti ingot 12. On the other hand, fine particles of Ti may be mixed in the adhered molten salt separated from the Ti particles. For this reason, there is a possibility that a problem may occur when the adhering molten salt is returned to the electrolysis step. Therefore, as shown in FIG. In addition, since Ca remains in the adhered molten salt to some extent, it is reasonable to return it to the reduction tank 1 from the viewpoint of effective utilization of Ca. In addition, since the flow rate of the adhering molten salt is very small compared with the flow rate of the molten salt introduced into the reduction tank 1 after the Ca concentration is made constant in the adjustment tank 6, the flow from the adjustment tank 6 to the reduction tank 1. Variations in the Ca concentration of the molten salt introduced can be ignored.

前記高温デカンター7で分離されたCa濃度の低下した溶融塩は、「電解工程」へ戻され、主電解槽5のカソード3と隔膜4の間に投入され、保持される。この工程で用いられる主電解槽5の構成、作用等については後に詳述するが、この場合も、溶融塩は主電解槽5内に静止した状態で保持されるのではなく、主電解槽5の上方から下方へ徐々に流下しつつ保持され、その間に電気分解され、溶融塩Ca濃度が高められる。   The molten salt having a reduced Ca concentration separated by the high-temperature decanter 7 is returned to the “electrolysis step”, and is introduced and held between the cathode 3 and the diaphragm 4 of the main electrolytic cell 5. Although the configuration, action, and the like of the main electrolytic cell 5 used in this step will be described in detail later, in this case as well, the molten salt is not held in a stationary state in the main electrolytic cell 5, but the main electrolytic cell 5 It is held while gradually flowing down from above, electrolyzed during that time, and the molten salt Ca concentration is increased.

しかし、主電解槽5での電解条件の若干の変動に伴うCa濃度の変動は避けられない。そのため、主電解槽5で電解処理を施した溶融塩を直接還元槽1に投入すると、Ca濃度が必ずしも常時一定には維持されないので、前述したように、低級塩化チタンの生成、バックリアクションによる電流効率の低下などが生じることがあり、TiCl4の還元反応の効率を低下させ、安定した操業ができにくくなる場合がある。 However, fluctuations in Ca concentration due to slight fluctuations in the electrolysis conditions in the main electrolytic cell 5 are inevitable. Therefore, when the molten salt subjected to the electrolytic treatment in the main electrolytic cell 5 is directly charged into the reducing cell 1, the Ca concentration is not always maintained constant. As described above, the generation of lower titanium chloride, the current due to the back reaction, The efficiency may decrease, and the efficiency of the TiCl 4 reduction reaction may be reduced, making it difficult to perform stable operation.

そこで、本発明のTiの製造方法では、前記電解工程で主電解槽5を用いてCa濃度を高めた溶融塩を、Ca供給源を有する調整槽6に導入して該Ca供給源に接触させることにより前記溶融塩のCa濃度を一定とした後、還元工程でTiCl4の還元に用いる。 Therefore, in the Ti production method of the present invention, the molten salt whose Ca concentration is increased using the main electrolytic cell 5 in the electrolysis step is introduced into the adjustment tank 6 having a Ca supply source and brought into contact with the Ca supply source. Thus, after the Ca concentration of the molten salt is made constant, it is used for the reduction of TiCl 4 in the reduction step.

Ca供給源としては、溶融金属Caや溶融Ca−Mg合金を使用することができる。即ち、前記Ca濃度を高めた溶融塩の上に溶融金属Caや溶融Ca−Mg合金を浮遊させ、これらCa供給源と溶融塩とを接触させておく。これにより、溶融塩のCa濃度がその飽和溶解度未満であれば、Ca供給源からCaが溶融塩へ供給されて、Ca濃度を飽和溶解度近傍の濃度に維持することができ、また、溶融塩のCa濃度がその飽和溶解度であって、析出した金属Caも混在している場合は、調整槽6で比重差により金属Caが浮上分離し、Ca濃度を飽和溶解度近傍の濃度に保つことができる。更に、調整槽6から抜き出す際の溶融塩の温度を一定に制御すれば、Ca濃度をその温度における飽和溶解度近傍の一定濃度に制御することが可能となる。   As the Ca supply source, molten metal Ca or molten Ca—Mg alloy can be used. That is, molten metal Ca or molten Ca—Mg alloy is floated on the molten salt with increased Ca concentration, and these Ca supply source and molten salt are kept in contact with each other. Thereby, if the Ca concentration of the molten salt is less than its saturation solubility, Ca can be supplied from the Ca supply source to the molten salt, and the Ca concentration can be maintained at a concentration close to the saturation solubility. When the Ca concentration is the saturation solubility and the precipitated metal Ca is also present, the metal Ca floats and separates due to the difference in specific gravity in the adjustment tank 6, and the Ca concentration can be maintained at a concentration near the saturation solubility. Furthermore, if the temperature of the molten salt extracted from the adjustment tank 6 is controlled to be constant, the Ca concentration can be controlled to a constant concentration in the vicinity of the saturation solubility at that temperature.

従って、溶融塩のCa濃度が飽和溶解度であるか、それ未満であるかを問わず、調整槽6を設置し、それに主電解槽5でCa濃度を高めた溶融塩を導入することにより、Ca濃度をその飽和溶解度近傍の一定濃度とした溶融塩を還元槽1に投入し、TiCl4の還元反応を効率よく行わせ、安定した操業をすることができる。 Therefore, regardless of whether the Ca concentration of the molten salt is saturated solubility or less, by installing the adjustment tank 6 and introducing the molten salt with the Ca concentration increased in the main electrolytic tank 5 to the Ca, A molten salt having a constant concentration in the vicinity of its saturation solubility is introduced into the reduction tank 1 to allow the TiCl 4 reduction reaction to be performed efficiently, thereby allowing stable operation.

但し、主電解槽5でCa濃度が飽和溶解度を超えるまで電解すると、主電解槽5の内部で金属Caが析出し、前述した電解槽の閉塞などのトラブルの原因となるおそれがある。従って、主電解槽5でCa濃度を高める際には、飽和溶解度を超えず、その直前までCa濃度を高めるように制御しつつ電解し、Caが高濃度ではあるが飽和溶解度未満の溶融塩を調整槽6に導入してCa供給源に接触させ、Ca濃度を飽和溶解度近傍の一定濃度とすることが望ましい。   However, if electrolysis is performed in the main electrolytic cell 5 until the Ca concentration exceeds the saturation solubility, metallic Ca is deposited inside the main electrolytic cell 5 and may cause troubles such as the clogging of the electrolytic cell described above. Therefore, when increasing the Ca concentration in the main electrolytic cell 5, electrolysis is performed while controlling so as to increase the Ca concentration until just before the saturation solubility, and molten salt having a high Ca concentration but less than the saturation solubility is obtained. It is desirable to introduce it into the adjustment tank 6 and bring it into contact with a Ca supply source so that the Ca concentration is a constant concentration in the vicinity of the saturation solubility.

図2は、前記図1に示した装置と同様に、(1)に記載のTiの製造方法を実施する際に用いられる装置で、前記(2)に記載の本発明のTiの製造装置の他の概略構成例を示す図である。図1に示した装置との違いは、分離手段として、高温デカンターの代わりに重力を利用した沈降分離槽(シックナー)13を用いる点であり、高温デカンターを用いる場合に比べて、広い設置面積が必要であるが、動力費が少なくて済むという利点がある。   FIG. 2 is an apparatus used when the Ti manufacturing method according to (1) is carried out in the same manner as the apparatus shown in FIG. 1. The Ti manufacturing apparatus according to the present invention described in (2) is shown in FIG. It is a figure which shows the other schematic structural example. The difference from the apparatus shown in FIG. 1 is that a sedimentation separation tank (thickener) 13 using gravity is used instead of a high-temperature decanter as a separation means, and a larger installation area is required compared to the case where a high-temperature decanter is used. Although necessary, there is an advantage that the power cost is small.

本発明の第1実施形態は、前述した本発明のTiの製造方法において、『Ca供給源を溶融Ca−Mg合金とする』方法である。   The first embodiment of the present invention is a method of “using a Ca supply source as a molten Ca—Mg alloy” in the Ti manufacturing method of the present invention described above.

Ca供給源を溶融Ca−Mg合金とすれば、溶融Ca−Mg合金から溶融塩へCaが溶け出し、前記合金のCaを補充する必要が生じた場合、次に述べるように、容易に補充できるので、望ましい。   When the Ca supply source is a molten Ca—Mg alloy, when Ca is dissolved from the molten Ca—Mg alloy into the molten salt and it becomes necessary to replenish Ca of the alloy, it can be easily replenished as described below. So desirable.

本発明の第2実施形態は、前記第1実施形態において、『溶融Ca−Mg合金中のCa濃度を、CaCl2を含む溶融塩を合金用電解槽で電解することにより高める』方法である。 The second embodiment of the present invention is a method of “increasing the Ca concentration in the molten Ca—Mg alloy by electrolyzing a molten salt containing CaCl 2 in an alloy electrolytic cell” in the first embodiment.

図3は、合金用電解槽による溶融Ca−Mg合金に対するCaの補充についての説明図である。   FIG. 3 is an explanatory diagram for replenishing Ca to the molten Ca—Mg alloy by the alloy electrolytic cell.

図3において、合金用電解槽14は、溶融塩(溶融CaCl2)の移動が妨げられないように、下方が開口をなしている隔壁15でアノード側とカソード側に分けられ、アノード側にはアノード2が取り付けられ、カソード側では、溶融CaCl2より比重の小さい溶融Ca−Mg合金16がカソードを構成している。なお、溶融Ca−Mg合金16には電極棒17が挿入されている。一方、調整槽6には、電解工程でCa濃度が高められた溶融塩が導入されており、その上にCa供給源としての溶融Ca−Mg合金16が保持されされている。 In FIG. 3, the alloy electrolytic cell 14 is divided into an anode side and a cathode side by a partition wall 15 having an opening on the lower side so that movement of the molten salt (molten CaCl 2 ) is not hindered. An anode 2 is attached, and on the cathode side, a molten Ca—Mg alloy 16 having a specific gravity smaller than that of molten CaCl 2 constitutes the cathode. An electrode rod 17 is inserted into the molten Ca—Mg alloy 16. On the other hand, molten salt whose Ca concentration has been increased in the electrolysis process is introduced into the adjustment tank 6, and a molten Ca—Mg alloy 16 serving as a Ca supply source is held thereon.

この合金用電解槽14を用いて溶融CaCl2を電気分解すると、アノード2では塩素ガスが発生し、カソードである溶融Ca−Mg合金16と溶融CaCl2の界面ではCaが生成する。溶融Ca−Mg合金16と電解槽の間には電圧がかかっている(電位差が生じている)ため、前記生成したCaは、溶融CaCl2には溶け込まず、溶融Ca−Mg合金16に吸収され、Ca−Mg合金16のCa濃度が高まる。 When molten CaCl 2 is electrolyzed using this alloy electrolytic cell 14, chlorine gas is generated at the anode 2, and Ca is generated at the interface between the molten Ca—Mg alloy 16 serving as the cathode and the molten CaCl 2 . Since a voltage is applied between the molten Ca—Mg alloy 16 and the electrolytic cell (a potential difference is generated), the generated Ca is not dissolved in the molten CaCl 2 but is absorbed by the molten Ca—Mg alloy 16. The Ca concentration of the Ca—Mg alloy 16 increases.

そこで、このCa濃度が高まった溶融Ca−Mg合金16を調整槽6内の溶融Ca−Mg合金16の上方部へ移送し(図3では、「Mg/Ca」と表示)、下方部に存在する、Caが溶融塩へ供給されて(即ち、溶け出して)Ca濃度が低下した溶融Ca−Mg合金16を合金用電解槽14の溶融Ca−Mg合金16へ戻す(「Mg」と表示)。合金用電解槽14では、前述した溶融CaCl2の電気分解により生成するCaが溶融Ca−Mg合金16に吸収され、Ca濃度が上昇する。 Therefore, the molten Ca—Mg alloy 16 having an increased Ca concentration is transferred to the upper part of the molten Ca—Mg alloy 16 in the adjustment tank 6 (indicated as “Mg / Ca” in FIG. 3), and is present in the lower part. When Ca is supplied to the molten salt (that is, melted), the molten Ca—Mg alloy 16 having a reduced Ca concentration is returned to the molten Ca—Mg alloy 16 in the alloy electrolytic cell 14 (indicated as “Mg”). . In the electrolytic cell 14 for alloy, Ca generated by the electrolysis of molten CaCl 2 described above is absorbed by the molten Ca—Mg alloy 16 and the Ca concentration increases.

このように、本発明の第2実施形態を適用すれば、Ca供給源として用いた溶融Ca−Mg合金に対するCaの補充を、Caの製造工程に何ら影響を与えることなく、容易に行うことができる。   As described above, by applying the second embodiment of the present invention, it is possible to easily replenish Ca to the molten Ca—Mg alloy used as the Ca supply source without affecting the Ca production process. it can.

図4は、前記図3に示した合金用電解槽を本発明のTiの製造方法を実施する際に用いられる装置に組み込んだ場合の装置の概略構成例を示す図である。   FIG. 4 is a diagram showing a schematic configuration example of an apparatus when the alloy electrolytic cell shown in FIG. 3 is incorporated in an apparatus used when the Ti manufacturing method of the present invention is carried out.

この装置を用いて本発明の第1、第2実施形態を適用すれば、Ca供給源として用いた溶融Ca−Mg合金へのCaの補充を、操業に影響を及ぼすことなく容易に行うことができる。   If the first and second embodiments of the present invention are applied using this apparatus, Ca can be easily replenished to the molten Ca—Mg alloy used as the Ca supply source without affecting the operation. it can.

本発明の方法を実施するに際し、溶融塩のCa濃度が低すぎ、還元槽でCaがTiCl4の還元に完全に消費されるような還元条件で操業を行うと、前述のように、TiCl4が未反応ガスとして槽外へ排出され、また、低級塩化チタンが発生する。従って、微量のCaが残留するように、TiCl4およびCaの供給量を調整することが望ましい。しかし、微量といえどもCaが残留したままの溶融塩を主電解槽へ投入すると、主電解槽で、この残留Caと電解により生成した塩素とのバックリアクションによる電流効率の低下などが懸念される。 In carrying out the method of the present invention, if the molten salt is operated at a reducing condition such that the Ca concentration of the molten salt is too low and Ca is completely consumed for the reduction of TiCl 4 in the reducing tank, as described above, TiCl 4 Is discharged out of the tank as unreacted gas, and lower titanium chloride is generated. Therefore, it is desirable to adjust the supply amounts of TiCl 4 and Ca so that a trace amount of Ca remains. However, if molten salt with Ca remaining, even in a trace amount, is charged into the main electrolytic cell, there is a concern that current efficiency may decrease due to back reaction between the residual Ca and chlorine generated by electrolysis in the main electrolytic cell. .

本発明の第3実施形態は、前記第2実施形態で使用する合金用電解槽を用いて、『分離工程でTi粒が分離された後の溶融塩を一旦合金用電解槽へ投入し、溶融塩のCa濃度を低減させてから主電解槽へ投入する』方法で、前記のバックリアクションによる電流効率の低下などの懸念を払拭することができる。   The third embodiment of the present invention uses the alloy electrolyzer used in the second embodiment, and “puts the molten salt after the Ti grains are separated in the separation step into the alloy electrolyzer and melts it once. By reducing the Ca concentration of the salt and then throwing it into the main electrolytic cell, it is possible to eliminate concerns such as a decrease in current efficiency due to the back reaction.

図5は、図1に示したTiの製造装置の概略構成例における分離工程から主電解槽へ戻す溶融塩の経路に、合金用電解槽を組み込んだ装置の概略構成例を示す図である。   FIG. 5 is a diagram showing a schematic configuration example of an apparatus in which an alloy electrolytic cell is incorporated in the molten salt path returned from the separation step to the main electrolytic cell in the schematic configuration example of the Ti production apparatus shown in FIG. 1.

図5に示すように、分離工程で使用される高温デカンター7と主電解槽5の間に合金用電解槽14が設置されており、Ti粒が分離回収された後の溶融塩を一旦この合金用電解槽14へ投入する。合金用電解槽14の溶融Ca−Mg合金16と電解槽の間には電圧がかかっているので、溶融塩中に残留するCaは電気泳動によって溶融Ca−Mg合金16に吸収され、溶融塩中のCaは除去される。このCa濃度が低減した溶融塩を主電解槽5へ投入するのである。   As shown in FIG. 5, an alloy electrolytic cell 14 is installed between the high-temperature decanter 7 used in the separation step and the main electrolytic cell 5, and the molten salt after the Ti particles are separated and recovered is temporarily used for this alloy. To the electrolytic cell 14. Since a voltage is applied between the molten Ca—Mg alloy 16 and the electrolytic cell of the electrolytic cell 14 for alloy, Ca remaining in the molten salt is absorbed by the molten Ca—Mg alloy 16 by electrophoresis and is contained in the molten salt. Ca is removed. The molten salt with reduced Ca concentration is charged into the main electrolytic cell 5.

図5では、高温デカンター7と主電解槽5の間に合金用電解槽14を設置する例が示されているが、前記図2に示した装置において、シックナー13と主電解槽5の間に合金用電解槽14を設置してもよい。   FIG. 5 shows an example in which an alloy electrolytic cell 14 is installed between the high-temperature decanter 7 and the main electrolytic cell 5, but in the apparatus shown in FIG. 2, between the thickener 13 and the main electrolytic cell 5. An alloy electrolytic cell 14 may be installed.

本発明の方法を実施するに際し、この第3実施形態を採用すれば、前記の主電解槽5におけるバックリアクションによる電流効率の低下などを抑制するとともに、溶融塩から除去されたCaは溶融Ca−Mg合金16に吸収されて調整槽6で再度TiCl4の還元に使用されるので、溶融塩中に残留するCaを有効に利用することができる。 When this third embodiment is adopted in carrying out the method of the present invention, the decrease in current efficiency due to the back reaction in the main electrolytic cell 5 is suppressed, and the Ca removed from the molten salt is molten Ca- Since it is absorbed by the Mg alloy 16 and used again in the adjustment tank 6 for the reduction of TiCl 4 , Ca remaining in the molten salt can be effectively used.

本発明の第4実施形態は、『前記(1)に記載の方法で用いる調整槽が冷却機能を備えるもの』であるTiの製造方法である。   4th Embodiment of this invention is a manufacturing method of Ti which is "the adjustment tank used with the method as described in said (1) is provided with a cooling function."

この実施形態を採ることにより、次の二つの効果が期待できる。一つは、調整槽6で溶融塩のCa濃度を調整した後、次の還元工程でTiCl4のCaによる還元反応を行わせるが、この反応に伴い発生する熱による還元槽内温度の上昇を、還元槽1に供給する溶融塩の事前の抜熱によってある程度緩和できることである。 By adopting this embodiment, the following two effects can be expected. One is to adjust the Ca concentration of the molten salt in the adjustment tank 6 and then perform a reduction reaction of TiCl 4 with Ca in the next reduction step. The heat removal from the molten salt supplied to the reduction tank 1 can be relaxed to some extent.

もう一つは、調整槽6内の溶融塩の温度を下げることにより、溶融塩のCa飽和溶解度を低下させ得ることである。この作用により、主電解槽5から調整槽6へ導入される溶融塩のCa濃度がその飽和溶解度に達していなくても、調整槽6で温度を下げることにより飽和溶解度に至らしめることができる。冷却によりCaが析出しても、浮上してCaの供給源となる。   The other is that the saturated Ca solubility of the molten salt can be reduced by lowering the temperature of the molten salt in the adjustment tank 6. By this action, even if the Ca concentration of the molten salt introduced from the main electrolytic cell 5 to the adjustment tank 6 does not reach its saturation solubility, the saturation solubility can be reached by lowering the temperature in the adjustment tank 6. Even if Ca is precipitated by cooling, it floats and becomes a supply source of Ca.

即ち、調整槽6から供給される溶融塩を冷却してその温度が一定になるように制御すれば、還元槽1に投入される溶融塩のCa濃度を常に一定に、しかも高濃度に保つことができ、TiCl4の還元反応を効率よく行わせ、且つ、安定した操業が可能となる。 That is, if the molten salt supplied from the adjustment tank 6 is cooled and controlled so as to have a constant temperature, the Ca concentration of the molten salt charged into the reducing tank 1 is always kept constant and high. Therefore, the reduction reaction of TiCl 4 can be performed efficiently and stable operation can be achieved.

前記(2)に記載のTiの製造装置は、前述したTiの製造方法を実施する際に用いられる装置で、『CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を前記Caと反応させてTi粒を生成させるための還元槽と、前記溶融塩中に生成されたTi粒を溶融塩から分離するための分離手段と、前記Ti粒が分離された後の溶融塩を保持し、アノードとカソードを備え、該溶融塩中で電気分解を行って陰極側にCaを生成させるための主電解槽と、Ca供給源を備え、前記主電解槽内の溶融塩を導入してCa供給源と接触させることにより該溶融塩のCa濃度を一定とした後、その溶融塩を前記還元槽へ投入するための調整槽とを有するTiの製造装置』である。 The Ti production apparatus described in (2) above is an apparatus used when the Ti production method described above is carried out. “The molten salt containing CaCl 2 and dissolved in Ca is retained, and the molten salt is contained in the molten salt. A reduction tank for reacting the supplied TiCl 4 with the Ca to generate Ti particles, a separation means for separating the Ti particles generated in the molten salt from the molten salt, and the Ti particles are separated. A main electrolytic cell for holding the molten salt after being formed, comprising an anode and a cathode, electrolyzing the molten salt to produce Ca on the cathode side, and a Ca supply source, wherein the main electrolytic cell An apparatus for producing Ti having an adjustment tank for introducing the molten salt into the reduction tank after introducing the molten salt therein and bringing it into contact with a Ca supply source to make the Ca concentration of the molten salt constant. It is.

前記図1、図2に例示した装置は、この本発明の装置の一実施形態であり、前述したように、この装置を用いて本発明のTiの製造方法を好適に実施することができる。   The apparatus illustrated in FIGS. 1 and 2 is an embodiment of the apparatus of the present invention, and as described above, the Ti manufacturing method of the present invention can be suitably implemented using this apparatus.

前記図4に示した装置は、この装置の他の実施形態で、前述のとおり、調整槽6と合金用電解槽14の間で溶融Ca−Mg合金16を移送させ、Ca供給源として用いた溶融Ca−Mg合金のCaの補充を行う前記第1、第2実施形態に係るTiの製造方法の実施に好適である。   The apparatus shown in FIG. 4 is another embodiment of the apparatus, and as described above, the molten Ca—Mg alloy 16 is transferred between the adjustment tank 6 and the alloy electrolytic tank 14 and used as a Ca supply source. It is suitable for carrying out the Ti manufacturing method according to the first and second embodiments for replenishing Ca in a molten Ca—Mg alloy.

前記図5に示した装置は、この装置の更に他の実施形態で、分離工程で使用される高温デカンター7と主電解槽5の間に合金用電解槽14が設置され、合金用電解槽14でCa濃度が低減した溶融塩を主電解槽5に投入できるように構成されている。この装置を用いれば、前述したように、前記第3実施形態に係るTiの製造方法を容易に実施することができる。   The apparatus shown in FIG. 5 is another embodiment of the apparatus, and an alloy electrolytic cell 14 is installed between the high-temperature decanter 7 used in the separation step and the main electrolytic cell 5, and the alloy electrolytic cell 14. The molten salt having a reduced Ca concentration can be charged into the main electrolytic cell 5. If this apparatus is used, as described above, the Ti manufacturing method according to the third embodiment can be easily implemented.

以上説明した本発明のTiの製造方法および装置によれば、還元槽に投入するCaCl2含有溶融塩中のCaの高濃度化と、濃度の変動抑制が可能であり、TiCl4の還元反応を効率よく行わせ、且つ、安定した操業を行うことができる。 According to the Ti production method and apparatus of the present invention described above, it is possible to increase the concentration of Ca in the CaCl 2 -containing molten salt charged into the reduction tank and to suppress fluctuations in concentration, and to reduce the TiCl 4 reduction reaction. Efficient and stable operation can be performed.

更に、本発明のTiの製造方法では、電解工程で、溶融塩を主電解槽の上方から下方へ徐々に流下させながらその溶融塩の電解を行うので、大量の溶融塩の連続処理が可能であり、それによって還元槽へのCaの供給速度を増大させ、工業的規模でのTiの製造が可能になる。   Furthermore, in the Ti production method of the present invention, in the electrolysis step, the molten salt is electrolyzed while gradually flowing down the molten salt from the upper side to the lower side of the main electrolytic cell, so that a large amount of molten salt can be continuously processed. Yes, thereby increasing the supply rate of Ca to the reduction tank and making it possible to produce Ti on an industrial scale.

そこで、このような工業的規模でのTiの製造を可能とする溶融塩電解方法およびそれに用いる電解槽について詳述する。   Therefore, a molten salt electrolysis method that enables production of Ti on such an industrial scale and an electrolytic cell used therefor will be described in detail.

図6は、本発明で用いる溶融塩電解方法を実施する際に使用される電解槽の要部の構成例を示す縦断面図である。   FIG. 6 is a longitudinal sectional view showing a configuration example of a main part of an electrolytic cell used when carrying out the molten salt electrolysis method used in the present invention.

この電解槽5は、CaCl2を含有する溶融塩を保持する一方向に長い配管(円筒)形状の電解槽容器5aと、前記電解槽容器5aの長手方向に沿って当該容器5a内に配置された同じく円筒形状のアノード2、および円柱状のカソード3を有し、前記電解槽容器5aの長手方向の一方の端部(底盤18)に溶融塩供給口20が設けられ、他方の端部(上蓋19)には溶融塩抜き出し口21が設けられている。アノード表面とカソード表面が対向して略垂直方向に配置され、更に、アノード2とカソード3の間に、溶融塩の電解で生成したCaの通過を抑制するための隔膜4が設けられている。また、アノード2の外面には冷却器22が取り付けられている。 The electrolytic cell 5 is disposed in the vessel 5a along the longitudinal direction of the electrolytic cell vessel 5a, which is a pipe (cylindrical) shape that is long in one direction and holds the molten salt containing CaCl 2. Furthermore, it has a cylindrical anode 2 and a columnar cathode 3, and a molten salt supply port 20 is provided at one end (bottom plate 18) in the longitudinal direction of the electrolytic cell container 5 a, and the other end ( The upper lid 19) is provided with a molten salt outlet 21. The anode surface and the cathode surface face each other and are arranged in a substantially vertical direction, and a diaphragm 4 is provided between the anode 2 and the cathode 3 to suppress the passage of Ca generated by electrolysis of the molten salt. A cooler 22 is attached to the outer surface of the anode 2.

この電解槽5は、本発明のTiの製造方法で、主電解槽として使用される。   This electrolytic cell 5 is used as a main electrolytic cell in the Ti production method of the present invention.

この電解槽を用いて行う溶融塩電解方法は、次のとおりである。即ち、メタルフォグ形成金属の塩化物を含有する溶融塩を電解槽の一端からアノードとカソードの間に連続的または断続的に供給することにより、カソード表面近傍の溶融塩に一方向の流速を与え、溶融塩をカソード表面近傍で一方向に流しつつ電気分解することにより溶融塩のメタルフォグ形成金属濃度を高める溶融塩電解方法である。   The molten salt electrolysis method performed using this electrolytic cell is as follows. That is, a molten salt containing a metal fog forming metal chloride is continuously or intermittently supplied from one end of the electrolytic cell between the anode and the cathode, thereby giving a one-way flow rate to the molten salt near the cathode surface. In this molten salt electrolysis method, the molten salt is electrolyzed while flowing in one direction near the cathode surface to increase the metal fog forming metal concentration of the molten salt.

前記の「メタルフォグ形成金属」とは、例えば、Ca、Li、Na、Al等のように、金属の塩化物にその金属自身が溶解する性質を備え(即ち、CaはCaCl2に、またLiはLiClに溶解する)、かつTiCl4を還元する金属である。これらの金属は、TiCl4を還元してTiを生成させるに際しいずれも同様に作用するので、以下、メタルフォグ形成金属がCaの場合について説明する。 The above-mentioned “metal fog forming metal” has a property that the metal itself dissolves in a metal chloride such as Ca, Li, Na, Al, etc. (that is, Ca is dissolved in CaCl 2 and Li Is a metal that dissolves in LiCl) and reduces TiCl 4 . Since these metals all act in the same manner when TiCl 4 is reduced to produce Ti, the case where the metal fog forming metal is Ca will be described below.

また、「メタルフォグ形成金属(Ca)の塩化物を含有する溶融塩」とは、前述のように、溶融CaCl2のみ、または、溶融CaCl2に、融点の低下、粘性等の調整のためにKCl、CaF2等を加えた溶融塩である。 Also, the "molten salts containing chloride of metal-fog forming metal (Ca)", as described above, only the molten CaCl 2, or, in the molten CaCl 2, lowering the melting point, in order to adjust the viscosity or the like It is a molten salt to which KCl, CaF 2 and the like are added.

前記の溶融塩電解方法においては、先ず、CaCl2を含有する溶融塩を電解槽5の一端からアノード2とカソード3の間に連続的または断続的に供給する。 In the molten salt electrolysis method, first, a molten salt containing CaCl 2 is continuously or intermittently supplied from one end of the electrolytic cell 5 between the anode 2 and the cathode 3.

電解槽5は一方向に長い形状(図示した例では、垂直方向に細長い配管(円筒)形状)を有しているので、溶融塩を電解槽5の一端からアノード2とカソード3の間に連続的または断続的に供給することにより、カソード3表面近傍の溶融塩に一方向の流速を与え、溶融塩をカソード表面近傍で一方向に流すことが可能となる。この場合、少なくともカソード3表面近傍の溶融塩が一方向に流れる状態が現出されればよく、アノード2とカソード3間の溶融塩全体が一方向に流れてもよい。なお、前記の「カソード表面近傍」とは、カソード表面で生成したCaが存在しているカソード表面に隣接する領域をいう。   Since the electrolytic cell 5 has a shape that is long in one direction (in the illustrated example, a vertically long pipe (cylindrical shape)), the molten salt is continuously supplied from one end of the electrolytic cell 5 between the anode 2 and the cathode 3. By supplying periodically or intermittently, a flow rate in one direction is given to the molten salt near the surface of the cathode 3, and the molten salt can flow in one direction near the cathode surface. In this case, it is sufficient that at least the molten salt near the surface of the cathode 3 flows in one direction, and the entire molten salt between the anode 2 and the cathode 3 may flow in one direction. The term “near the cathode surface” refers to a region adjacent to the cathode surface where Ca generated on the cathode surface is present.

溶融塩の供給は、通常は連続的に行うが、後工程等との関係で、断続的に、つまり溶融塩の供給を一次停止したり、再度続けたりしてもよい。溶融塩の供給を一次停止した場合は、カソード表面近傍における溶融塩の流れも停止する。従って、前記の「カソード表面近傍の溶融塩に一方向の流速を与える」際の「流速」には、厳密に言えば、流れのない流速0の状態も含まれる。   Although the supply of the molten salt is normally performed continuously, the supply of the molten salt may be intermittently stopped, that is, the supply of the molten salt may be temporarily stopped or continued again. When the supply of molten salt is temporarily stopped, the flow of molten salt near the cathode surface is also stopped. Therefore, strictly speaking, the “flow velocity” at the time of “giving a flow rate in one direction to the molten salt in the vicinity of the cathode surface” includes a state of zero flow velocity.

続いて、溶融塩を電気分解する。   Subsequently, the molten salt is electrolyzed.

即ち、溶融塩をカソード表面近傍で一方向に流しつつ電気分解してカソード表面でCaを生成させるのであるが、電解槽5は一方向に長い形状を有しており、更に、図6に示した例では、電解電圧を低く抑えるためにアノード2とカソード3間の距離を比較的狭くしているので、Ca濃度が低い溶融塩供給口20付近の溶融塩と電解によりCa濃度が高まった溶融塩抜き出し口21付近の溶融塩との混合を防止して、Caが濃化した溶融塩のみを効果的に抜き出すことができる。   That is, the molten salt is electrolyzed while flowing in one direction near the cathode surface to generate Ca on the cathode surface, but the electrolytic cell 5 has a long shape in one direction, and is further shown in FIG. In this example, since the distance between the anode 2 and the cathode 3 is made relatively small in order to keep the electrolysis voltage low, the molten salt in the vicinity of the molten salt supply port 20 having a low Ca concentration and the molten Ca concentration increased by electrolysis. Mixing with the molten salt near the salt extraction port 21 can be prevented, and only the molten salt enriched with Ca can be effectively extracted.

前掲の特許文献3に記載の技術は、還元にCaを使用するが、TiCl4ではなく、TiO2を直接Caで還元してTiとする直接還元法であり、本発明で用いる溶融塩電解方法とは異なるものである。更に、当該文献に記載の直接還元法では、アノードである炭素電極がCO2となって消耗するほか、溶融塩中に炭化チタン(TiC)が生成するため、得られるTiにはC汚染が生じたTiが混入し、加工性が劣化するので、このTiを展伸材として用いる際に問題となる。 The technique described in Patent Document 3 described above uses Ca for reduction, but is a direct reduction method in which TiO 2 is not directly TiCl 4 but reduced directly with Ca to Ti, and the molten salt electrolysis method used in the present invention is used. Is different. Furthermore, in the direct reduction method described in this document, the carbon electrode as the anode is consumed as CO 2 and titanium carbide (TiC) is generated in the molten salt, so that the resulting Ti is contaminated with C. Since Ti is mixed and workability deteriorates, it becomes a problem when this Ti is used as a wrought material.

また、当該文献には、「溶融塩中でのCa還元によるTiの生成において、カソード付近に溶融塩の流れを形成する」技術が記載されている。しかし、アノードとカソードを電解槽内の長手方向に沿って対向させて配置し、カソード表面近傍において、または隔膜等が設けられている場合にはカソード表面と隔膜の間に形成されるカソード室において、カソード表面に沿った一方向の溶融塩の流れを形成させ、その状態で電解することにより電解槽の出側でCa濃度が高まった溶融塩を回収するという技術思想ないしはそれを示唆する記述は示されてはいない。   Further, this document describes a technique of “forming a molten salt flow near the cathode in the production of Ti by Ca reduction in a molten salt”. However, the anode and the cathode are arranged to face each other in the longitudinal direction in the electrolytic cell, and in the cathode chamber formed near the cathode surface or between the cathode surface and the diaphragm when a diaphragm is provided. The technical idea of suggesting or recovering molten salt with increased Ca concentration on the outlet side of the electrolytic cell by forming a flow of molten salt in one direction along the cathode surface and performing electrolysis in that state Not shown.

従って、電解槽内で溶融塩に一方向の流れを形成させる点では共通しても、本発明で用いる溶融塩電解方法と特許文献3に記載される技術は全く相違している。   Accordingly, the molten salt electrolysis method used in the present invention and the technique described in Patent Document 3 are completely different from each other even though they are common in that a one-way flow is formed in the molten salt in the electrolytic cell.

この溶融塩電解方法において、アノード表面およびカソード表面が対向して略垂直方向に配置され、アノードとカソードの間に隔膜または溶融塩の一部が流通可能に構成された隔壁が設けられている電解槽を用いることとすれば、アノード側で発生する塩素ガスを回収しやすい。また、電解により生成したCaと塩素とが反応してCaCl2に戻るバックリアクションを抑制することができ、望ましい。なお、前記の「略垂直方向」の「略」とは、「ほぼ」、「概ね」という意味で、「略垂直方向」とは、垂直方向、またはその方向から水平方向へ向けて若干傾いた方向をいう。 In this molten salt electrolysis method, an anode surface and a cathode surface are arranged to face each other in a substantially vertical direction, and a partition wall is provided between the anode and the cathode so that a diaphragm or a part of the molten salt can flow therethrough. If a tank is used, it is easy to recover chlorine gas generated on the anode side. Further, it is possible to the Ca and chlorine generated by electrolysis can be inhibited back reaction back to CaCl 2 reacts desirable. In addition, “substantially” in the “substantially vertical direction” means “substantially” and “substantially”, and “substantially vertical direction” is slightly inclined from the vertical direction or from that direction toward the horizontal direction. The direction.

この両極が略垂直方向に対向配置された電解槽を用いる溶融塩電解方法は、前記図6に例示した電解槽を用いることにより好適に実施できる。なお、図6に例示した電解槽では、CaCl2を電解槽5の下方から槽5内に供給し、上方から抜き出す方式を採っているが、逆に、電解槽5の上方から供給し、下方から抜き出す方式を採用することも可能である。 The molten salt electrolysis method using the electrolytic cell in which both the electrodes are arranged opposite to each other in a substantially vertical direction can be suitably carried out by using the electrolytic cell illustrated in FIG. In addition, in the electrolytic cell illustrated in FIG. 6, CaCl 2 is supplied from below the electrolytic cell 5 into the electrolytic cell 5 and extracted from above, but conversely, it is supplied from above the electrolytic cell 5 and below. It is also possible to adopt a method of extracting from the.

この方法で用いる電解槽では、アノード表面およびカソード表面が対向して略垂直方向に配置されており、一方、カソード表面近傍の溶融塩には一方向の流速が与えられているので、その溶融塩の流れ方向は縦方向であり、アノード側で発生する塩素ガスは容易に浮上するので回収しやすい。   In the electrolytic cell used in this method, the anode surface and the cathode surface are opposed to each other in a substantially vertical direction. On the other hand, the molten salt in the vicinity of the cathode surface is given a flow rate in one direction. The flow direction is vertical, and the chlorine gas generated on the anode side floats easily and is easy to recover.

アノードとカソードの間に設ける隔膜としては、例えば、イットリア(Y23)を含む多孔質セラミックス体を使用することができる。イットリアを焼成して多孔質セラミックス体としたものは、Caや塩素のイオンは通すが金属Caを通過させないという選択透過性を備え、また、強力な還元力をもつCaによっても還元されない優れた耐カルシウム還元性を有しており、本発明で用いる溶融塩電解方法における隔膜として好適である。 As the diaphragm provided between the anode and the cathode, for example, a porous ceramic body containing yttria (Y 2 O 3 ) can be used. A porous ceramic body obtained by firing yttria has selective permeability of allowing Ca and chlorine ions to pass through but not allowing metal Ca to pass through, and has excellent resistance to being reduced by Ca having a strong reducing power. It has calcium reducibility and is suitable as a diaphragm in the molten salt electrolysis method used in the present invention.

このような隔膜がアノードとカソードの間に設けられた電解槽を用いれば、カソード側に生成するCaがアノード(黒鉛)側に生成する塩素とすぐに反応してCaCl2に戻るバックリアクションが起こり難く、高い電流効率で電解することができる。 If an electrolytic cell in which such a diaphragm is provided between the anode and the cathode is used, back reaction occurs in which Ca produced on the cathode side immediately reacts with chlorine produced on the anode (graphite) side and returns to CaCl 2. It is difficult to perform electrolysis with high current efficiency.

隔膜の代わりに溶融塩の一部が流通可能に構成された隔壁を用いてもよい。隔壁は金属CaはもとよりCaや塩素のイオンなど溶融塩も通さないが、隔壁の一部に溶融塩が通過できるスリットや穴などを設けておくことにより、電解を可能とし、一方、金属Caの通過をある程度制限して、バックリアクションを抑制することが可能となる。   Instead of the diaphragm, a partition configured to allow a part of the molten salt to flow may be used. The partition does not allow molten salt such as Ca and chlorine ions as well as metal Ca, but by providing a slit or a hole through which molten salt can pass in a part of the partition, electrolysis is possible. It is possible to limit the passage to some extent and suppress back reaction.

この溶融塩電解方法において、カソードが中空であり、カソード表面からカソード内部に溶融塩が流入できる隙間または穴を有し、カソード内部に流入したCa濃化溶融塩を電解槽外へ抜き出すことができるようなカソードを有する電解槽を用いることとすれば、バックリアクションを効果的に抑制することができる。   In this molten salt electrolysis method, the cathode is hollow, has a gap or a hole through which molten salt can flow into the cathode from the cathode surface, and the Ca-concentrated molten salt flowing into the cathode can be extracted out of the electrolytic cell. If an electrolytic cell having such a cathode is used, back reaction can be effectively suppressed.

図7は、中空カソードを用いた電解槽の一部の構成例を模式的に示す図である。図7に示すように、この電解槽では、電解槽5内の長手方向に沿ってアノード2と中空カソード3aが対向して略垂直方向に配置されており、アノード2とカソード3aの間には隔膜4が設けられている。図示していないが、カソード3aには、カソード表面からカソード内部に溶融塩が流入できる隙間または穴が設けられている。   FIG. 7 is a diagram schematically showing a configuration example of a part of an electrolytic cell using a hollow cathode. As shown in FIG. 7, in this electrolytic cell, the anode 2 and the hollow cathode 3a are arranged in a substantially vertical direction so as to face each other along the longitudinal direction in the electrolytic cell 5, and between the anode 2 and the cathode 3a. A diaphragm 4 is provided. Although not shown, the cathode 3a is provided with a gap or a hole through which molten salt can flow from the cathode surface into the cathode.

このように構成された電解槽を用いれば、溶融塩をカソード3aの中空部上方から抜き出すことにより、同図中に白抜き矢印で示すように、カソード外面側から内部(中空部)への溶融塩流が形成され、カソード3aの外表面で生成したCaはアノード側へ拡散移動することなく、直ちにカソード3aの内部へ取り込まれる。これにより、バックリアクションを効果的に抑制することができる。図7に例示した電解槽は隔膜4を有しているので、隔膜がない場合に比べて、バックリアクション抑制効果はより一層大きくなる。   If the electrolytic cell constructed in this way is used, the molten salt is extracted from above the hollow part of the cathode 3a, so that the melt from the cathode outer surface side to the inside (hollow part) as shown by the white arrow in the figure. A salt flow is formed, and Ca generated on the outer surface of the cathode 3a is immediately taken into the cathode 3a without diffusing and moving to the anode side. Thereby, a back reaction can be suppressed effectively. Since the electrolytic cell illustrated in FIG. 7 has the diaphragm 4, the back reaction suppressing effect is further increased as compared with the case without the diaphragm.

中空カソードに設ける隙間や穴の大きさ、位置等は特に限定しない。アノード面(隔膜が設けられている場合には、隔膜表面)とカソード外面との距離、溶融塩の抜き出し量(溶融塩の供給量)等を勘案し、効果的なカソード内面側への溶融塩流が形成されるように適宜定めるのがよい。   There are no particular limitations on the size, position, etc. of the gaps and holes provided in the hollow cathode. Considering the distance between the anode surface (diaphragm surface if a diaphragm is provided) and the outer surface of the cathode, the amount of molten salt extracted (the amount of molten salt supplied), etc., the effective molten salt on the inner surface of the cathode It is good to determine appropriately so that a flow may be formed.

また、この溶融塩電解方法において、電解槽内の溶融塩のCa濃度がその飽和溶解度未満となるように制御することとすれば、Ca濃度を高めてTiCl4の生成速度を増大させるとともに、電解槽内部の閉塞などの弊害を抑制することができる。なお、前記の「Ca濃度が飽和溶解度未満となるように制御する」とは、「Ca濃度が飽和溶解度に近く、且つ析出しない条件で」電解することを意味する。 Moreover, in this molten salt electrolysis method, if the Ca concentration of the molten salt in the electrolytic cell is controlled to be less than its saturation solubility, the Ca concentration is increased to increase the TiCl 4 generation rate, Defects such as blockage inside the tank can be suppressed. The above-mentioned “controlling the Ca concentration to be lower than the saturation solubility” means “electrolysis under the condition that the Ca concentration is close to the saturation solubility and does not precipitate”.

具体的には、電解槽内のCa濃度が最も高くなっている部位において「Ca濃度が飽和溶解度に近く、且つ析出しない条件」が満たされるように、電解槽容器の形状、電極形状、極間距離等に応じた最適の電解条件、溶融塩の単位時間当たりの抜き出し量等を経験的に定めることになる。特に、アノードとカソード間に隔膜や隔壁を用いる場合は、カソード側の溶融塩抜き出し口近傍のCa濃度が最も高くなるので、この部分のCa濃度が飽和溶解度未満となるように制御することにより、電解槽のどの部位においても金属Caを析出させない電解操業が可能となる。   Specifically, the shape of the electrolytic vessel container, the electrode shape, and the distance between the electrodes so that the “condition where the Ca concentration is close to the saturation solubility and does not precipitate” is satisfied at the site where the Ca concentration in the electrolytic cell is highest. The optimum electrolysis conditions according to the distance, the amount of molten salt extracted per unit time, etc. are determined empirically. In particular, when a diaphragm or partition is used between the anode and the cathode, the Ca concentration in the vicinity of the molten salt outlet on the cathode side is the highest, so by controlling the Ca concentration in this part to be less than the saturation solubility, Electrolytic operation that does not deposit metal Ca at any part of the electrolytic cell is possible.

この「Ca濃度が飽和溶解度に近く、且つ析出しない条件」が満たされるように、前記(1)に記載の本発明のTiの製造方法では、電解工程でCa濃度を高めた溶融塩を、Ca供給源を有する調整槽に導入して該Ca供給源に接触させ、前記溶融塩のCa濃度を高濃度でしかも一定とするのであるが、前記のように、最適の電解条件、溶融塩抜き出し量等を経験的に定めることによっても、ある程度の制御は可能である。   In the Ti production method of the present invention described in the above (1), the molten salt whose Ca concentration has been increased in the electrolysis step is obtained by satisfying this “condition for Ca concentration close to saturation solubility and not precipitating”. The molten salt is introduced into an adjustment tank having a supply source and brought into contact with the Ca supply source, and the Ca concentration of the molten salt is made high and constant. A certain degree of control is also possible by empirically determining the above.

本発明で用いる溶融塩電解方法の実施に際し、電解槽では大きな反応熱が発生するので、抜熱を効果的に行うことが望ましい。具体的には、前述の中空カソードを用いない場合でも、用いる場合でも、カソードの中心部に冷却器を設置して、反応熱をカソード内部から抜熱することが望ましい。冷却器としては、例えばチューブ状の熱交換器が好適である。   When carrying out the molten salt electrolysis method used in the present invention, large heat of reaction is generated in the electrolytic cell, so it is desirable to effectively remove the heat. Specifically, whether or not the hollow cathode described above is used, it is desirable to install a cooler at the center of the cathode and extract reaction heat from the inside of the cathode. As the cooler, for example, a tubular heat exchanger is suitable.

アノード側にも冷却器(熱交換器)を設置すると抜熱効率は更に高くなる。前記図6に示した、アノード2を取り巻くように設置した冷却器22はこの例である。   If a cooler (heat exchanger) is also installed on the anode side, the heat removal efficiency is further increased. The cooler 22 installed so as to surround the anode 2 shown in FIG. 6 is an example of this.

電解に際し、通電量を高めてCa生成量の増大を図るには、通電表面積を大きくする必要がある。アノード2の内面、即ち、図6に例示した電解槽において、カソード表面と対向する面については、大きい通電表面積を確保するために内面に微細な凹凸を設けることが望ましい。そのための方法としては、例えば、電極表面に溝を形成するみぞ加工などが適用できる。   In the electrolysis, in order to increase the amount of energization and increase the amount of Ca generation, it is necessary to increase the energization surface area. As for the inner surface of the anode 2, that is, the surface facing the cathode surface in the electrolytic cell illustrated in FIG. 6, it is desirable to provide fine irregularities on the inner surface in order to ensure a large current-carrying surface area. As a method therefor, for example, a groove process for forming a groove on the electrode surface can be applied.

以上述べた溶融塩電解方法によれば、電解槽内部の閉塞などの弊害を抑制しつつ、Caが飽和溶解度近くまで濃化した溶融塩を比較的安定して得ることができ、金属Tiを効率よく製造することができる。また、溶融塩をカソード表面近傍で一方向に流しつつ電気分解するので、大量の溶融塩を連続して処理することが可能である。   According to the molten salt electrolysis method described above, it is possible to relatively stably obtain a molten salt in which Ca is concentrated to close to the saturation solubility, while suppressing adverse effects such as clogging inside the electrolytic cell, so that metal Ti can be efficiently used. Can be manufactured well. Moreover, since the molten salt is electrolyzed while flowing in one direction near the cathode surface, a large amount of molten salt can be processed continuously.

この溶融塩電解方法の実施に用いられる電解槽は、CaCl2を含有する溶融塩を保持する一方向に長い電解槽容器と、前記電解槽容器の長手方向に沿って配置されたアノードおよびカソードを有し、前記電解槽容器の長手方向の一方の端部に、溶融塩供給口が前記アノードとカソードの間に溶融塩を供給できるように設けられ、他方の端部に前記溶融塩の電気分解により生成するCa濃度が高められた溶融塩を電解槽外へ抜き出す溶融塩抜き出し口が設けられている電解槽である。 An electrolytic cell used for carrying out this molten salt electrolysis method includes an electrolytic cell container that is long in one direction holding a molten salt containing CaCl 2 , and an anode and a cathode that are arranged along the longitudinal direction of the electrolytic cell container. A molten salt supply port is provided at one end in the longitudinal direction of the electrolytic cell container so as to supply molten salt between the anode and the cathode, and electrolysis of the molten salt is performed at the other end. This is an electrolytic cell provided with a molten salt extraction port for extracting the molten salt with increased Ca concentration produced by the above method.

前記図6に例示した電解槽は、その一実施形態で、アノード表面およびカソード表面が対向して略垂直方向に配置され、アノードとカソードの間に隔膜が設けられている電解槽を備えている。隔膜の代わりに、溶融塩の一部が流通可能に構成された隔壁が設けられたものであってもよい。   The electrolytic cell illustrated in FIG. 6 includes an electrolytic cell in which an anode surface and a cathode surface are opposed to each other in a substantially vertical direction and a diaphragm is provided between the anode and the cathode. . Instead of the diaphragm, a partition wall configured to allow a part of the molten salt to flow therethrough may be provided.

この図6に示した電解槽を用いれば、前述したように、本発明で用いる溶融塩電解方法を好適に実施することができる。   If the electrolytic cell shown in this FIG. 6 is used, as mentioned above, the molten salt electrolysis method used by this invention can be implemented suitably.

本発明のTiの製造方法によれば、電解工程でCa濃度を高めた溶融塩をCa供給源を備える調整槽に導入してCa濃度を一定とした後、TiCl4の還元に用いるので、還元槽に投入する溶融塩のCa濃度の変動を抑制し、且つ高濃度に維持することができる。また、電解工程では、溶融塩をカソード表面近傍で一方向に流しつつ電気分解するので、大量の溶融塩を連続して処理することが可能である。これにより、TiCl4の還元反応を効率よく行わせ、安定した操業が可能であり、更に、工業的規模でのTiの製造が可能となる。 According to the Ti production method of the present invention, the molten salt whose Ca concentration has been increased in the electrolysis step is introduced into a regulating tank equipped with a Ca supply source to make the Ca concentration constant, and then used for the reduction of TiCl 4. Variations in the Ca concentration of the molten salt charged into the tank can be suppressed and maintained at a high concentration. In the electrolysis process, since the molten salt is electrolyzed while flowing in one direction near the cathode surface, a large amount of molten salt can be continuously processed. As a result, the reduction reaction of TiCl 4 can be performed efficiently, stable operation is possible, and furthermore, Ti can be produced on an industrial scale.

従って、本発明のTiの製造方法、およびこの方法を容易に且つ好適に実施することができる本発明のTiの製造装置は、Ca還元によるTiの製造に有効に利用することができる。   Therefore, the Ti production method of the present invention and the Ti production apparatus of the present invention capable of easily and suitably carrying out this method can be effectively used for the production of Ti by Ca reduction.

本発明のTiの製造装置の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the manufacturing apparatus of Ti of this invention. 本発明のTiの製造装置の他の概略構成例を示す図である。It is a figure which shows the other schematic structural example of the manufacturing apparatus of Ti of this invention. 合金用電解槽による溶融Ca−Mg合金に対するCaの補充についての説明図である。It is explanatory drawing about replenishment of Ca with respect to the molten Ca-Mg alloy by the electrolytic bath for alloys. 合金用電解槽を組み込んだ本発明のTiの製造装置の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the manufacturing apparatus of Ti of this invention incorporating the electrolytic cell for alloys. 分離工程から主電解槽へ戻す溶融塩の経路に、合金用電解槽を組み込んだ本発明のTiの製造装置の概略構成例を示す図である。It is a figure which shows the schematic structural example of the manufacturing apparatus of Ti of this invention which incorporated the electrolytic cell for alloys in the path | route of the molten salt returned to a main electrolytic cell from a isolation | separation process. 本発明で用いる溶融塩電解方法を実施する際に使用される電解槽の要部の構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structural example of the principal part of the electrolytic vessel used when implementing the molten salt electrolysis method used by this invention. 本発明で用いる溶融塩電解方法を実施する際に使用される中空カソードを用いた電解槽の一部の構成例を模式的に示す図である。It is a figure which shows typically the structural example of a part of electrolytic vessel using the hollow cathode used when implementing the molten salt electrolysis method used by this invention.

符号の説明Explanation of symbols

1:還元槽
2:アノード
3、3a:カソード
4:隔膜
5:主電解槽、電解槽
5a:電解槽容器
6:調整槽
7:高温デカンター
8:分離槽
9:TiCl4供給口
10:プラズマトーチ
11:鋳型
12:Tiインゴット
13:シックナー
14:合金用電解槽
15:隔壁
16:溶融Ca−Mg合金
17:電極棒
18:底盤
19:上蓋
20:溶融塩供給口
21:溶融塩抜き出し口
22:冷却器
1: Reduction tank 2: Anode 3, 3a: Cathode 4: Diaphragm 5: Main electrolytic tank, electrolytic tank 5a: Electrolytic tank container 6: Adjustment tank 7: High temperature decanter 8: Separation tank 9: TiCl 4 supply port 10: Plasma torch 11: Mold 12: Ti ingot 13: Thickener 14: Electrolyzer for alloy 15: Partition 16: Molten Ca-Mg alloy 17: Electrode rod 18: Bottom plate 19: Upper lid 20: Molten salt supply port 21: Molten salt outlet 22: Cooler

Claims (9)

CaCl2を含み且つCaが溶解した溶融塩中のCaにTiCl4を反応させて前記溶融塩中にTi粒を生成させる還元工程と、前記溶融塩中に生成されたTi粒を前記溶融塩から分離する分離工程と、Ti粒の生成に伴ってCa濃度が低下した溶融塩を電解することによりCa濃度を高める電解工程とを含み、前記電解工程で主電解槽を用いてCa濃度を高めた溶融塩を、Ca供給源を有する調整槽に導入して該Ca供給源に接触させることにより前記溶融塩のCa濃度を一定とした後、還元工程でTiCl4の還元に用いることを特徴とするTiの製造方法。 A reduction step of causing TiCl 4 to react with Ca in the molten salt containing CaCl 2 and dissolving Ca to produce Ti particles in the molten salt; and Ti particles generated in the molten salt from the molten salt A separation step of separating, and an electrolysis step of increasing the Ca concentration by electrolyzing a molten salt having a Ca concentration decreased with the formation of Ti grains, and the Ca concentration was increased using the main electrolytic cell in the electrolysis step The molten salt is introduced into an adjustment tank having a Ca supply source and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then used for the reduction of TiCl 4 in the reduction step. A method for producing Ti. Ca供給源が溶融Ca−Mg合金であることを特徴とする請求項1に記載のTiの製造方法。   The method for producing Ti according to claim 1, wherein the Ca supply source is a molten Ca-Mg alloy. 溶融Ca−Mg合金中のCa濃度を、CaCl2を含む溶融塩を合金用電解槽で電解することにより高めることを特徴とする請求項2に記載のTiの製造方法。 The Ca concentration in the molten Ca-Mg alloy, a manufacturing method of Ti according to claim 2, the molten salt is characterized by enhanced by electrolysis of an alloy electrolyzer containing CaCl 2. 分離工程でTi粒が分離された後の溶融塩を一旦合金用電解槽へ投入し、溶融塩のCa濃度を低減させてから主電解槽へ投入することを特徴とする請求項3に記載のTiの製造方法。   The molten salt after the Ti grains are separated in the separation step is once charged into an alloy electrolytic cell, and the Ca concentration of the molten salt is reduced and then charged into the main electrolytic cell. A method for producing Ti. 請求項1に記載の方法で用いる調整槽が冷却機能を備えるものであることを特徴とするTiの製造方法。   The method for producing Ti, wherein the adjustment tank used in the method according to claim 1 has a cooling function. CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を前記Caと反応させてTi粒を生成させるための還元槽と、前記溶融塩中に生成されたTi粒を溶融塩から分離するための分離手段と、前記Ti粒が分離された後の溶融塩を保持し、アノードとカソードを備え、該溶融塩中で電気分解を行って陰極側にCaを生成させるための主電解槽と、Ca供給源を備え、前記主電解槽内の溶融塩を導入してCa供給源と接触させることにより該溶融塩のCa濃度を一定とした後、その溶融塩を前記還元槽へ投入するための調整槽とを有することを特徴とするTiの製造装置。 A reducing tank for holding a molten salt containing CaCl 2 and dissolving Ca, reacting TiCl 4 supplied in the molten salt with the Ca to generate Ti particles, and generated in the molten salt A separation means for separating the Ti particles from the molten salt, and the molten salt after the Ti particles are separated are held, and an anode and a cathode are provided. Electrolysis is performed in the molten salt, and Ca is provided on the cathode side. And a Ca supply source. The molten salt in the main electrolytic cell is introduced into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then melted. An apparatus for producing Ti, comprising an adjustment tank for introducing salt into the reduction tank. Ca供給源が溶融Ca−Mg合金であることを特徴とする請求項6に記載のTiの製造装置。   The Ti production apparatus according to claim 6, wherein the Ca supply source is a molten Ca—Mg alloy. 溶融Ca−Mg合金のCa濃度を高めるための合金用電解槽を備えることを特徴とする請求項7に記載のTiの製造装置。   The Ti production apparatus according to claim 7, further comprising an alloy electrolytic cell for increasing a Ca concentration of the molten Ca—Mg alloy. 調整槽が、更に冷却機能を備えることを特徴とする請求項6に記載のTiの製造装置。
The Ti manufacturing apparatus according to claim 6, wherein the adjustment tank further has a cooling function.
JP2005271995A 2005-09-20 2005-09-20 METHOD AND DEVICE FOR PRODUCING Ti Pending JP2007084847A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005271995A JP2007084847A (en) 2005-09-20 2005-09-20 METHOD AND DEVICE FOR PRODUCING Ti
EP06782859A EP1944383A4 (en) 2005-09-20 2006-08-22 PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
PCT/JP2006/316355 WO2007034645A1 (en) 2005-09-20 2006-08-22 PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
EA200800867A EA200800867A1 (en) 2005-09-20 2006-08-22 METHOD OF PREPARING Ti AND DEVICE FOR IT
CA002623212A CA2623212A1 (en) 2005-09-20 2006-08-22 Process for producing ti and apparatus therefor
CNA2006800343147A CN101268204A (en) 2005-09-20 2006-08-22 Process for producing Ti and apparatus therefor
US11/992,162 US20100089204A1 (en) 2005-09-20 2006-08-22 Process for Producing Ti and Apparatus Therefor
AU2006293354A AU2006293354A1 (en) 2005-09-20 2006-08-22 Process for producing Ti and apparatus therefor
NO20081519A NO20081519L (en) 2005-09-20 2008-03-28 Process and apparatus for the preparation of Ti

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271995A JP2007084847A (en) 2005-09-20 2005-09-20 METHOD AND DEVICE FOR PRODUCING Ti

Publications (1)

Publication Number Publication Date
JP2007084847A true JP2007084847A (en) 2007-04-05

Family

ID=37888699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271995A Pending JP2007084847A (en) 2005-09-20 2005-09-20 METHOD AND DEVICE FOR PRODUCING Ti

Country Status (9)

Country Link
US (1) US20100089204A1 (en)
EP (1) EP1944383A4 (en)
JP (1) JP2007084847A (en)
CN (1) CN101268204A (en)
AU (1) AU2006293354A1 (en)
CA (1) CA2623212A1 (en)
EA (1) EA200800867A1 (en)
NO (1) NO20081519L (en)
WO (1) WO2007034645A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116671A (en) * 2017-12-27 2019-07-18 東邦チタニウム株式会社 Fused salt electrolysis method, manufacturing method of fused metal, and fused salt electrolytic cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019250A (en) * 2007-07-13 2009-01-29 Osaka Titanium Technologies Co Ltd Method and apparatus for producing metal
DE102008005781A1 (en) * 2008-01-23 2009-07-30 Tradium Gmbh Phlegmatized metal powder or alloy powder and method or reaction vessel for the production thereof
JP5787785B2 (en) * 2012-02-20 2015-09-30 株式会社東芝 Molten salt electrolysis apparatus and molten salt electrolysis method
CN103898555A (en) * 2012-12-25 2014-07-02 攀钢集团攀枝花钢铁研究院有限公司 Metal titanium production method
CN103290433B (en) * 2013-06-26 2016-01-20 石嘴山市天和铁合金有限公司 Device and the technique thereof of pure titanium are prepared in a kind of pair of electrolyzer fused salt electrolysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306789A (en) * 2002-04-19 2003-10-31 Sumitomo Titanium Corp Method and apparatus for manufacturing sponge titanium
WO2005035806A1 (en) * 2003-10-10 2005-04-21 Sumitomo Titanium Corporation METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP2005133195A (en) * 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF Ca SOURCE
JP2005133196A (en) * 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
JP2005248200A (en) * 2004-03-01 2005-09-15 Sumitomo Titanium Corp METHOD FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) * 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2845386A (en) * 1954-03-16 1958-07-29 Du Pont Production of metals
JPH0611008B2 (en) * 1983-11-16 1994-02-09 株式会社東芝 Dust core
JP2001192748A (en) * 2000-01-07 2001-07-17 Nkk Corp Method and device for manufacturing metallic titanium
JP3718691B2 (en) * 2002-04-18 2005-11-24 財団法人生産技術研究奨励会 Titanium production method, pure metal production method, and pure metal production apparatus
EA200870343A1 (en) * 2006-03-10 2009-02-27 Осака Титаниум Текнолоджиз Ко., Лтд. METHOD OF REMOVAL / CONCENTRATION OF METAL FORMING METAL MIST IN A SALT MELAY, A DEVICE FOR ITS IMPLEMENTATION, AND A PROCESS AND DEVICE FOR THE PRODUCTION OF Ti OR Ti-GO ALLOY WITH THEIR APPLICATION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306789A (en) * 2002-04-19 2003-10-31 Sumitomo Titanium Corp Method and apparatus for manufacturing sponge titanium
WO2005035806A1 (en) * 2003-10-10 2005-04-21 Sumitomo Titanium Corporation METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP2005133195A (en) * 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF Ca SOURCE
JP2005133196A (en) * 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
JP2005248200A (en) * 2004-03-01 2005-09-15 Sumitomo Titanium Corp METHOD FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116671A (en) * 2017-12-27 2019-07-18 東邦チタニウム株式会社 Fused salt electrolysis method, manufacturing method of fused metal, and fused salt electrolytic cell
JP6997617B2 (en) 2017-12-27 2022-02-04 東邦チタニウム株式会社 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank

Also Published As

Publication number Publication date
CN101268204A (en) 2008-09-17
NO20081519L (en) 2008-04-02
EP1944383A4 (en) 2009-12-02
CA2623212A1 (en) 2007-03-29
EA200800867A1 (en) 2008-10-30
AU2006293354A1 (en) 2007-03-29
US20100089204A1 (en) 2010-04-15
EP1944383A1 (en) 2008-07-16
WO2007034645A1 (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
JP2007084847A (en) METHOD AND DEVICE FOR PRODUCING Ti
WO2005080643A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION
JP4510769B2 (en) Manufacturing method and apparatus for Ti or Ti alloy
JP7398395B2 (en) Improvements in copper electrorefining
JP4395386B2 (en) Method for producing Ti or Ti alloy by circulating Ca source
JP2005264320A (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
JP2009019250A (en) Method and apparatus for producing metal
EP1995353A1 (en) METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY BY USE OF THEM
RU2471893C2 (en) Method for electrolytic production of bismuth from alloy containing lead, tin and bismuth, and electrolysis cell for realising said method
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
JPH10176296A (en) Electrolytic formation of neodymium without being companied with perfluorocarbon compound in waste gas
JP2008308738A (en) METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY
WO2009150961A2 (en) Metal manufacturing method
WO2005035806A1 (en) METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP7129828B2 (en) Molten salt electrolysis method and metal magnesium production method
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP2005133196A (en) METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
JP7453109B2 (en) Passage section structure of melt feeding pipe and method for producing metal magnesium
JP2007239073A (en) Method for removing and concentrating metal-fog-forming metal in molten salt, and apparatus therefor
JP4227113B2 (en) Pull-up electrolysis method
JP2013006741A (en) Method for production of polycrystalline silicon
JP2005264181A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY USING MOLTEN Ca ALLOY AS Ca TRANSFERRING MEDIUM
JPWO2008038405A1 (en) Molten salt electrolytic cell for metal production and method for producing metal using the same
JP2006104555A (en) METHOD FOR MANUFACTURING Ti BY Ca REDUCTION

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315