JP2008308738A - METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY - Google Patents

METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY Download PDF

Info

Publication number
JP2008308738A
JP2008308738A JP2007158575A JP2007158575A JP2008308738A JP 2008308738 A JP2008308738 A JP 2008308738A JP 2007158575 A JP2007158575 A JP 2007158575A JP 2007158575 A JP2007158575 A JP 2007158575A JP 2008308738 A JP2008308738 A JP 2008308738A
Authority
JP
Japan
Prior art keywords
molten salt
alloy
concentration
grains
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007158575A
Other languages
Japanese (ja)
Inventor
Tadashi Ogasawara
忠司 小笠原
Makoto Yamaguchi
誠 山口
Masahiko Hori
雅彦 堀
Toru Uenishi
徹 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2007158575A priority Critical patent/JP2008308738A/en
Publication of JP2008308738A publication Critical patent/JP2008308738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing metal Ti or Ti alloy, by which Ca concentration in molten salt adhering to Ti grains or Ti-alloy grains formed in a reduction step can be decreased and the amount of Ca taken into a melting furnace can be consequently reduced. <P>SOLUTION: A mixture of the Ti grains or Ti-alloy grains formed in the reduction step and Ca-containing molten salt is cleaned with molten salt before melting to decrease Ca concentration in the Ca-containing molten salt and reduce the amount of Ca taken into the melting furnace. It is particularly desirable that a part of molten CaCl<SB>2</SB>from which Ca is removed by a Ca removal and concentration apparatus 5 attached to manufacturing equipment used for the execution of the method is stored in a molten CaCl<SB>2</SB>tank 15 for cleaning; and this molten CaCl<SB>2</SB>is used as the molten salt (e.g. molten CaCl<SB>2</SB>) for cleaning. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、TiCl4のCa還元により生成させ、溶融塩から分離した後のTi粒又はTi合金粒を連続的に溶解して金属Ti又はTi合金のインゴットとする工程を含むCa還元による金属Ti又はTi合金の製造方法に関し、特に、溶解炉へ持ち込まれるCa量を低減することができる金属Ti又はTi合金の製造方法に関する。 The present invention relates to a metal Ti formed by Ca reduction, which includes a step of continuously dissolving Ti grains or Ti alloy grains formed by Ca reduction of TiCl 4 and separated from a molten salt to form metal Ti or Ti alloy ingots. Alternatively, the present invention relates to a Ti alloy manufacturing method, and more particularly, to a metal Ti or Ti alloy manufacturing method capable of reducing the amount of Ca brought into the melting furnace.

金属Tiの工業的な製法としては、TiCl4をMgにより還元するクロール法が一般的であるが、この方法はバッチ式であるために製品価格が非常に高くなるという問題がある。これに対し、TiCl4をCaで還元して金属Tiを製造する技術が提案されている。 As an industrial method for producing metal Ti, a crawl method in which TiCl 4 is reduced with Mg is generally used. However, since this method is a batch type, there is a problem that the product price becomes very high. On the other hand, a technique for producing Ti by reducing TiCl 4 with Ca has been proposed.

本発明者らは、このCa還元による金属Tiの製造方法を工業的に確立するためには、還元反応で消費される溶融塩中のCaを経済的に補充する必要があると考え、溶融CaCl2の電気分解により生成するCaを利用すると共に、このCaを循環使用する方法、即ち「OYIK法(オーイック法)」を提案した。 The present inventors consider that it is necessary to economically replenish Ca in the molten salt consumed in the reduction reaction in order to industrially establish the production method of metallic Ti by this Ca reduction. In addition to utilizing the Ca generated by electrolysis of No. 2, a method of circulating this Ca, that is, the “OYIK method (Oic method)” was proposed.

この方法は、例えば、特許文献1に記載されるように、Caが溶解した溶融CaCl2中のCaにTiCl4を反応させてTi粒を生成させる還元工程および生成したTi粒を分離する工程と、Ti粒の生成に伴ってCa濃度が低下した溶融CaCl2を電解することにより溶融CaCl2中のCa濃度を高める電解工程を含み、電解工程で生成したCaを還元工程でTiCl4の還元に用いる金属Tiの製造方法であって、電解工程で生成したCaを還元剤として循環使用し、操業を連続的に行うことができる。 This method, for example, as described in Patent Document 1, a step of separating the Ti particles Ca is reacted with TiCl 4 to Ca in the molten CaCl 2 was dissolved to produce a Ti grains reduction step and generates includes electrolytic process to increase the Ca concentration in the molten CaCl 2 by the Ca concentration electrolytic molten CaCl 2 was decreased with the generation of the Ti particles, the reduction of TiCl 4 with Ca generated in the electrolytic process in the reduction step It is a manufacturing method of metal Ti to be used, and can be operated continuously by circulating and using Ca generated in the electrolysis step as a reducing agent.

さらに、本発明者らは、このCa還元による金属Tiの製造方法において、特許文献2に記載されるように、電解工程で、溶融塩(例えば、溶融CaCl2)を保持する一方向に長い電解槽容器と、電解槽容器の長手方向に沿って配置されたアノードおよびカソードを有し、前記電解槽容器の長手方向の一方の端部に溶融塩供給口が設けられ、他方の端部に溶融塩の電気分解により生成するCa濃度が高められた溶融塩を電解槽外へ抜き出す溶融塩抜き出し口が設けられた電解槽を使用する金属Tiの製造方法を提案した。この方法によれば、大量の溶融塩を連続電解して生成するCaを還元工程へ供給できるので、金属Tiを効率よく製造することが可能である。 Furthermore, in the method for producing metal Ti by this Ca reduction, the present inventors have conducted electrolysis that is long in one direction to hold a molten salt (for example, molten CaCl 2 ) in an electrolysis step as described in Patent Document 2. It has a tank container, an anode and a cathode arranged along the longitudinal direction of the electrolytic cell container, and is provided with a molten salt supply port at one end in the longitudinal direction of the electrolytic cell container and melted at the other end. A method for producing metal Ti using an electrolytic cell provided with a molten salt outlet for extracting molten salt with increased Ca concentration generated by electrolysis of salt out of the electrolytic cell was proposed. According to this method, since Ca produced by continuously electrolyzing a large amount of molten salt can be supplied to the reduction step, it is possible to efficiently produce metal Ti.

このCa還元による金属Tiの製造方法では、TiCl4の還元により生成したTi粒は溶融CaCl2から分離された後、溶解工程へ移送され、加熱溶解されてTiインゴットとなる。 In this method of producing metal Ti by reduction of Ca, Ti particles generated by reduction of TiCl 4 are separated from molten CaCl 2 and then transferred to a melting step where they are heated and dissolved to form a Ti ingot.

しかしながら、分離工程で溶融CaCl2が完全に除かれるわけではなく、分離されたTi粒には溶融CaCl2が付着しており、この付着している溶融CaCl2には微量のCaが含まれている。そのため、溶解工程で、このCaに起因するトラブルが生じ易く、連続操業の妨げとなる。すなわち、Caは揮発性で、ガス状となり易いため、溶解工程の入り側で、Ti粒と微量のCaが含まれる溶融CaCl2との混合物を同時に溶解する際、Caが蒸発して溶解炉の内壁や排気管等の配管の内面に付着し、配管の閉塞に至る場合も起こる。また、Caは活性な金属で、しかも蒸発後は微細な粒子となるので、雰囲気条件によっては酸化燃焼するおそれもある。 However, the molten CaCl 2 is not completely removed in the separation step, and molten CaCl 2 is adhered to the separated Ti particles, and the adhered molten CaCl 2 contains a trace amount of Ca. Yes. Therefore, trouble caused by this Ca is likely to occur in the melting step, which hinders continuous operation. That is, since Ca is volatile and is likely to be gaseous, when the mixture of Ti grains and molten CaCl 2 containing a small amount of Ca is simultaneously dissolved at the entrance of the melting step, Ca evaporates and the melting furnace There are also cases where it adheres to the inner surface of an inner wall or an exhaust pipe or the like, resulting in blockage of the pipe. In addition, Ca is an active metal and becomes fine particles after evaporation, so there is a risk of oxidizing and burning depending on the atmospheric conditions.

したがって、Ca還元による金属Tiの製造を長期にわたり連続して行うには、付着している溶融CaCl2のCa濃度を操業の妨げにならない程度に低下させたTi粒を溶解炉へ入れることが必要になる。 Therefore, in order to continuously produce metal Ti by Ca reduction over a long period of time, it is necessary to put Ti particles in which the Ca concentration of adhering molten CaCl 2 is lowered to an extent that does not hinder the operation, into the melting furnace. become.

特開2005−133195号公報JP 2005-133195 A 特開2007−63585号公報JP 2007-63585 A

本発明は、このような状況に鑑みなされたもので、その目的は、本発明者らが提案したOYIK法に立脚した製造プロセスによりTi又はTi合金を製造するに際し、還元工程で生成したTi粒又はTi合金粒に付着している溶融塩のCa濃度を低下させて、溶解炉へ持ち込まれるCa量を、連続操業の妨げにならない程度にまで低減することができる金属Ti又はTi合金の製造方法に関する。   The present invention has been made in view of such circumstances, and its purpose is to produce Ti particles produced in the reduction step when manufacturing Ti or Ti alloy by a manufacturing process based on the OYIK method proposed by the present inventors. Or the manufacturing method of metal Ti or Ti alloy which can reduce the Ca density | concentration of molten salt adhering to Ti alloy grain, and can reduce the amount of Ca brought into a melting furnace to such an extent that it does not interfere with a continuous operation. About.

本発明者らは、上記の目的を達成するために、特に、経済性を重視し、比較的容易に実施できる技術の開発を目指して検討を重ねた。   In order to achieve the above-mentioned object, the present inventors have made extensive efforts to develop a technique that can be carried out relatively easily, particularly focusing on economic efficiency.

Ti粒又はTi合金粒に付随して溶解炉へ持ち込まれるCa量を低減するには、Ca含有溶融塩が付着しているTi粒又はTi合金粒を溶解して液相とし、上層の溶融塩(例えば、溶融CaCl2)を除去する溶解分離等の方法が有効である。しかし、そのためには多量のエネルギーを要し、製造コストの上昇は避けられない。また、水洗を長時間続けてCaCl2を除去することにより、CaCl2に含まれるCaを同時に除去する方法も考えられるが、生産能率が著しく低下し、製造コストが上昇する。 In order to reduce the amount of Ca brought into the melting furnace accompanying the Ti grains or Ti alloy grains, the Ti grains or Ti alloy grains to which the Ca-containing molten salt is adhered are dissolved to form a liquid phase, and the upper layer molten salt A method such as dissolution separation for removing (for example, molten CaCl 2 ) is effective. However, this requires a large amount of energy, and an increase in manufacturing cost is inevitable. Further, by removing the CaCl 2 any prolonged washing is considered a method of removing Ca contained in CaCl 2 simultaneously, the production efficiency is significantly reduced, manufacturing cost is increased.

そこで、本発明者らは、Ti粒又はTi合金粒とCa含有溶融塩(溶融CaCl2)との混合物を、溶解炉へ装入する前に他の溶融CaCl2により洗浄する方法を試みた。洗浄することによって、前記混合物中のCaを含有する溶融CaCl2が他の溶融CaCl2で置き換えられるので、Ca濃度が前記混合物中の溶融CaCl2のCa濃度より低い溶融CaCl2を使用して洗浄すれば、混合物中の溶融CaCl2は、それに溶解しているCaを伴って洗浄に用いた溶融CaCl2で置き換えられ、混合物中に含まれる全Ca量は減少する。 Therefore, the present inventors tried a method of washing a mixture of Ti grains or Ti alloy grains and Ca-containing molten salt (molten CaCl 2 ) with another molten CaCl 2 before charging the melting furnace. By washing, the so molten CaCl 2 containing Ca in the mixture is replaced by other melt CaCl 2, using a low melt CaCl 2 than Ca concentration in the molten CaCl 2 in Ca concentration the mixture washed In this case, the molten CaCl 2 in the mixture is replaced by the molten CaCl 2 used for cleaning with the Ca dissolved therein, and the total amount of Ca contained in the mixture is reduced.

洗浄に用いる溶融CaCl2としては、例えば、製造プロセスにおいて各工程間を循環させている溶融CaCl2のうちCa濃度の低いものを使用することができるので、経済的にも有利である。 As the molten CaCl 2 used for cleaning, for example, one having a low Ca concentration among molten CaCl 2 circulated between the steps in the production process can be used, which is economically advantageous.

本発明はこのような発想のもとになされたもので、その要旨は、下記の金属Ti又はTi合金の製造方法にある。   The present invention has been made based on such an idea, and the gist thereof lies in the following method for producing metal Ti or Ti alloy.

すなわち、CaCl2を含み且つCaが溶解した溶融塩中にTiCl4を含む金属塩化物を連続的に供給して溶融塩中にTi粒又はTi合金粒を生成させる還元工程と、生成したTi粒又はTi合金粒を溶融塩から分離する分離工程と、分離後のTi粒又はTi合金粒を連続的に溶解して金属Ti又はTi合金のインゴットとする溶解工程と、Ti粒又はTi合金粒の生成に伴ってCa濃度が低下した溶融塩を電解することによりCa濃度を高める電解工程を含み、電解工程で生成されたCa濃度が高まった溶融塩を還元工程でTiCl4の還元に用いる金属Ti又はTi合金の製造方法において、還元工程で生成したTi粒又はTi合金粒とCa含有溶融塩との混合物を、溶解前に溶融塩で洗浄することにより前記Ca含有溶融塩のCa濃度を低下させて、溶解炉へ持ち込まれるCa量を低減することを特徴とする金属Ti又はTi合金の製造方法である。 That is, a reduction step of continuously supplying a metal chloride containing TiCl 4 into a molten salt containing CaCl 2 and dissolving Ca to produce Ti grains or Ti alloy grains in the molten salt, and the produced Ti grains Alternatively, a separation step of separating the Ti alloy particles from the molten salt, a melting step of continuously dissolving the separated Ti particles or Ti alloy particles to form an ingot of metal Ti or Ti alloy, and Ti particles or Ti alloy particles A metal Ti that includes an electrolysis step of increasing the Ca concentration by electrolyzing a molten salt having a reduced Ca concentration along with the formation, and using the molten salt having an increased Ca concentration generated in the electrolysis step to reduce TiCl 4 in the reduction step. Alternatively, in the Ti alloy production method, the Ca concentration of the Ca-containing molten salt is obtained by washing the Ti particles produced in the reduction step or a mixture of the Ti alloy particles and the Ca-containing molten salt with the molten salt before melting. It is lowered, a method for producing a metallic Ti or a Ti alloy, characterized in that to reduce the amount of Ca to be introduced into the melting furnace.

前記の「CaCl2を含む溶融塩」とは、溶融CaCl2のみ、又は、溶融CaCl2に、融点の低下、粘性等の調整のためにKCl、CaF2等を加えた溶融塩をいう。 The “molten salt containing CaCl 2 ” refers to a molten salt containing only molten CaCl 2 or KCl, CaF 2 or the like added to molten CaCl 2 to adjust the melting point, viscosity, etc.

「TiCl4を含む金属塩化物」とは、TiCl4を必須の塩化物として含む金属塩化物で、TiCl4のみ、又は、TiCl4と、V、Al、Cr等、Tiの合金成分となる金属の塩化物とを含む金属塩化物である。TiCl4の還元と同時に、これらTiの合金成分となる金属の塩化物もCaにより還元されるので、TiCl4を含む金属塩化物を用いることによって、金属Tiの他、Ti合金を得ることもできる。 “Metal chloride containing TiCl 4 ” is a metal chloride containing TiCl 4 as an essential chloride, and TiCl 4 alone or TiCl 4 and a metal that becomes an alloy component of Ti, such as V, Al, Cr, etc. And metal chlorides. Simultaneously with the reduction of TiCl 4, the metal chloride as the Ti alloy component is also reduced by Ca. By using a metal chloride containing TiCl 4 , it is possible to obtain a Ti alloy in addition to metal Ti. .

また、「還元工程で生成したTi粒又はTi合金粒とCa含有溶融塩との混合物」とは、還元槽から抜き出された混合物で、還元工程で生成したTi粒又はTi合金粒と、反応に用いられずに残存したCaが溶解しているCa含有溶融塩との混合物をいう。Ti粒又はTi合金粒とCa含有溶融塩とは還元槽から混合物として同時に抜き出されるので、ここでは、Ca含有溶融塩についても、「還元工程で生成した」という表現を用いている。なお、Ti粒又はTi合金粒とCa含有溶融塩との分離が進行し、例えば、分離工程の最終段階で大半のCa含有溶融塩が除去された後の、Ca含有溶融塩が付着した状態のTi粒又はTi合金粒も、Ti粒又はTi合金粒とCa含有溶融塩との混合物である。   The “mixture of Ti grains or Ti alloy grains produced in the reduction process and Ca-containing molten salt” is a mixture extracted from the reduction tank, and reacts with Ti grains or Ti alloy grains produced in the reduction process. It is a mixture with a Ca-containing molten salt in which residual Ca that is not used is dissolved. Since the Ti grains or Ti alloy grains and the Ca-containing molten salt are simultaneously extracted from the reduction tank as a mixture, the expression “generated in the reduction process” is also used for the Ca-containing molten salt. In addition, separation of Ti grains or Ti alloy grains and Ca-containing molten salt proceeds, for example, in a state where the Ca-containing molten salt is adhered after most of the Ca-containing molten salt is removed in the final stage of the separation process. Ti grains or Ti alloy grains are also a mixture of Ti grains or Ti alloy grains and a Ca-containing molten salt.

洗浄に使用する「溶融塩」とは、主として製造プロセスにおいて各工程間を循環させている溶融塩をいうが、製造プロセスへの浴塩の補充等の目的で新たに調製した溶融塩も含む。前記「溶融塩」は、Ti粒又はTi合金粒とCa含有溶融塩との混合物を洗浄してCa濃度を低下させるために用いるので、実質的には、Ca濃度が還元工程で生成したCa含有溶融塩より低い溶融塩を意味する。   The “molten salt” used for washing mainly refers to a molten salt that is circulated between each step in the manufacturing process, but also includes a newly prepared molten salt for the purpose of supplementing the manufacturing process with a bath salt. Since the “molten salt” is used to reduce the Ca concentration by washing a mixture of Ti grains or Ti alloy grains and a Ca-containing molten salt, the Ca concentration substantially includes the Ca content generated in the reduction step. It means a molten salt lower than the molten salt.

本発明の金属Ti又はTi合金の製造方法において、洗浄用の溶融塩として、還元工程で生成した前記Ca含有溶融塩よりCa濃度が低い溶融塩を使用することを実施形態の一つとしてあげているが、前記の実質的に定まるCa濃度についての条件を、具体的に示したものである。   In the method for producing metal Ti or Ti alloy according to the present invention, as an embodiment of the present invention, a molten salt having a lower Ca concentration than the Ca-containing molten salt produced in the reduction step is used as a molten salt for cleaning. However, the conditions regarding the Ca concentration that is substantially determined are specifically shown.

本発明の金属Ti又はTi合金の製造方法が、さらに、前記分離工程で分離された溶融塩を保持するCa除去領域内の溶融塩側の電極板が、この領域と隔てられたCa濃縮領域内の溶融塩側の電極板に対して+極となるようにCaCl2の分解電圧未満の電圧を印加することにより、Caの濃度が低下したCa除去領域内の溶融塩を電解工程へ送り、Caが高濃度化されたCa濃縮領域内の溶融塩を還元工程へ送るCa除去濃縮工程を含むものであって、洗浄用の溶融塩として、前記Ca除去濃縮工程でCa濃度が低下した溶融塩を使用することとすれば、溶解炉へ持ち込まれるCa量を著しく低減することができる。本発明の望ましい実施形態である。 In the method for producing metal Ti or Ti alloy according to the present invention, the molten salt-side electrode plate in the Ca removal region that holds the molten salt separated in the separation step further includes a Ca concentration region separated from this region. By applying a voltage lower than the decomposition voltage of CaCl 2 so as to be a positive electrode with respect to the electrode plate on the molten salt side of the molten salt, the molten salt in the Ca removal region where the concentration of Ca is lowered is sent to the electrolysis process, Including a Ca removal concentration step of sending the molten salt in the Ca concentration region whose concentration is increased to the reduction step, and as a molten salt for cleaning, a molten salt having a reduced Ca concentration in the Ca removal concentration step If used, the amount of Ca brought into the melting furnace can be significantly reduced. 1 is a preferred embodiment of the present invention.

本発明の金属Ti又はTi合金の製造方法において、前記Ti粒又はTi合金粒とCa含有溶融塩との混合物の洗浄を分離工程で行うこととすれば、洗浄による溶解炉持ち込みCa量の低減を効率よく行えるので望ましい。   In the method for producing metal Ti or Ti alloy of the present invention, if cleaning of the mixture of Ti grains or Ti alloy grains and Ca-containing molten salt is performed in the separation step, the amount of Ca brought into the melting furnace by washing can be reduced. It is desirable because it can be performed efficiently.

また、本発明の金属Ti又はTi合金の製造方法において、前記溶融塩として溶融CaCl2を使用する実施形態を採ることができる。本発明の代表的な実施の態様である。 In the method for producing metallic Ti or Ti alloy of the present invention can take an embodiment using a molten CaCl 2 as the molten salt. 1 is a representative embodiment of the present invention.

本発明の金属Ti又はTi合金の製造方法によれば、比較的容易且つ安価な手段により、還元工程で生成したTi粒又はTi合金粒とCa含有溶融塩との混合物を、溶解前に溶融塩で洗浄して前記Ca含有溶融塩のCa濃度を低下させ、溶解炉へ持ち込まれるCa量を、操業の妨げにならない程度にまで低減することが可能となる。その結果、溶解工程において、Caの蒸発に起因して生じる溶解炉の内壁、配管の内面等におけるCaの付着や、配管の閉塞等の問題を回避し、Ca還元による金属Tiの製造を長期にわたり連続して行うことができる。   According to the method for producing metal Ti or Ti alloy of the present invention, a mixture of Ti grains or Ti alloy grains generated in the reduction step and Ca-containing molten salt is dissolved before melting by a relatively easy and inexpensive means. The amount of Ca brought into the melting furnace can be reduced to such an extent that it does not hinder the operation. As a result, in the melting process, problems such as adhesion of Ca on the inner wall of the melting furnace and the inner surface of the piping caused by the evaporation of Ca, blockage of the piping, etc. are avoided, and production of metal Ti by Ca reduction is performed for a long time Can be done continuously.

本発明の金属Ti又はTi合金の製造方法は、前記のとおりで、溶融塩中でのCa還元による金属Ti又はTi合金の製造方法において、還元工程で生成したTi粒又はTi合金粒とCa含有溶融塩との混合物を、溶解前に溶融塩で洗浄することにより前記Ca含有溶融塩のCa濃度を低下させて、溶解炉へ持ち込まれるCa量を低減することを特徴とする方法である。   The method for producing metal Ti or Ti alloy of the present invention is as described above, and in the method for producing metal Ti or Ti alloy by Ca reduction in a molten salt, Ti particles or Ti alloy particles produced in the reduction step and containing Ca The method is characterized in that the amount of Ca brought into the melting furnace is reduced by washing the mixture with the molten salt with the molten salt before melting to reduce the Ca concentration of the Ca-containing molten salt.

この製造方法は、CaCl2を含み且つCaが溶解した溶融塩中にTiCl4を含む金属塩化物を連続的に供給して溶融塩中にTi粒又はTi合金粒を生成させる還元工程と、生成したTi粒又はTi合金粒を溶融塩から分離する分離工程と、分離後のTi粒又はTi合金粒を連続的に溶解して金属Ti又はTi合金のインゴットとする溶解工程と、Ti粒又はTi合金粒の生成に伴ってCa濃度が低下した溶融塩を電解することによりCa濃度を高める電解工程を含み、電解工程で生成されたCa濃度が高まった溶融塩を還元工程でTiCl4の還元に用いる、すなわち、溶融CaCl2の電気分解により生成するCaをTiCl4の還元に利用すると共に、このCaを循環使用して、金属Ti又はTi合金の製造を連続して行う金属Ti又はTi合金の製造方法(すなわち、OYIK法)を前提としている。これは、本発明の金属Ti又はTi合金の製造方法が、OYIK法又はそれに立脚した製造プロセスにおいて、連続操業の妨げになる溶解炉への持ち込みCa量を低減することを目的としているからである。 This production method includes a reduction step in which a metal chloride containing TiCl 4 is continuously supplied into a molten salt containing CaCl 2 and dissolved in Ca to produce Ti grains or Ti alloy grains in the molten salt, A separation step for separating the Ti particles or Ti alloy particles from the molten salt, a melting step for continuously dissolving the separated Ti particles or Ti alloy particles to form an ingot of metal Ti or Ti alloy, and Ti particles or Ti It includes an electrolysis process in which the Ca concentration is increased by electrolyzing the molten salt in which the Ca concentration has decreased along with the formation of alloy grains, and the molten salt generated in the electrolysis process in which the Ca concentration has been increased is reduced to TiCl 4 in the reduction process. In other words, the metal Ti or the Ti alloy produced by electrolysis of molten CaCl 2 is used for the reduction of TiCl 4 and the production of metal Ti or Ti alloy is continuously performed using this Ca. The premise is a Ti alloy manufacturing method (that is, OYIK method). This is because the metal Ti or Ti alloy production method of the present invention aims to reduce the amount of Ca brought into the melting furnace that hinders continuous operation in the OYIK method or a production process based on it. .

本発明の金属Ti又はTi合金の製造方法において、溶解炉へ持ち込まれるCa量を低減するのは、前述のように、溶解工程でCa含有溶融塩が付着しているTi粒又はTi合金粒を溶解する際に、溶融塩に溶解しているCaの蒸発及び溶解炉の内壁や配管内面への付着を防止し、酸化燃焼のおそれをなくすためである。そのために、本発明の方法では、還元工程で生成したTi粒又はTi合金粒とCa含有溶融塩との混合物を溶融塩で洗浄して、Ca含有溶融塩のCa濃度を低下させる。   In the method for producing metal Ti or Ti alloy according to the present invention, the amount of Ca brought into the melting furnace is reduced, as described above, by the Ti grains or Ti alloy grains to which the Ca-containing molten salt is adhered in the melting step. This is to prevent evaporation of Ca dissolved in the molten salt and adhesion to the inner wall of the melting furnace and the inner surface of the pipe when dissolving, and to eliminate the risk of oxidative combustion. Therefore, in the method of the present invention, the mixture of the Ti grains or Ti alloy grains generated in the reduction step and the Ca-containing molten salt is washed with the molten salt to reduce the Ca concentration of the Ca-containing molten salt.

洗浄に使用する溶融塩としては、製造プロセスにおいて各工程間を循環させている溶融塩の一部を用いるのが、経済的に有利である。その場合、実際には、Ca濃度が前記付着溶融塩のCa濃度より低い溶融塩を使用することになる。例えば、後述する図1の金属Ti又はTi合金の製造プロセスにおけるCa除去濃縮装置5のCa除去領域7ではCa濃度の低い溶融CaCl2が得られるが、この溶融塩を使用することが可能である。 As the molten salt used for washing, it is economically advantageous to use a part of the molten salt circulated between the steps in the production process. In that case, actually, a molten salt having a Ca concentration lower than the Ca concentration of the attached molten salt is used. For example, molten CaCl 2 having a low Ca concentration is obtained in the Ca removal region 7 of the Ca removal and concentration device 5 in the manufacturing process of the metal Ti or Ti alloy shown in FIG. 1 to be described later, but this molten salt can be used. .

また、製造プロセスへの溶融塩の補充等の目的で新たに溶融塩を調製する場合があるが、その際に、Caを含有(溶解)させる前の溶融塩を使用すれば、Caが含まれていないので、洗浄によるCa低減効果が大きい。   In addition, there is a case where a molten salt is newly prepared for the purpose of supplementing the molten salt to the manufacturing process, and in this case, if a molten salt before containing (dissolving) Ca is used, Ca is included. Therefore, the Ca reduction effect by washing is great.

洗浄に用いる溶融塩のCa濃度は、Ti粒に付着しているCa含有溶融塩のCa濃度に対して、1/5未満の濃度であれば、洗浄によるCa濃度の低減効果が大きく、溶解炉へ持ち込まれるCa量を、連続操業の妨げにならない程度にまで低減可能とし得るので、望ましい。   If the Ca concentration of the molten salt used for cleaning is less than 1/5 of the Ca concentration of the Ca-containing molten salt adhering to the Ti grains, the effect of reducing the Ca concentration by cleaning is large, and the melting furnace This is desirable because the amount of Ca brought into can be reduced to a level that does not hinder continuous operation.

溶解炉への持ち込みCaの限界量については、ある程度の操業実績を積み重ねた上で判断せざるを得ないが、洗浄に用いる溶融塩のCa濃度がTi粒に付着しているCa含有溶融塩のCa濃度に対して例えば1/5未満の濃度であれば、溶解炉への持ち込みCa量は、洗浄により付着溶融塩の全量が洗浄用の溶融塩で置き換えられたとして1/5未満になるので、溶解炉への持ち込みCa量を大幅に低減することができる。したがって、洗浄に用いる溶融塩のCa濃度の規定如何により、連続操業の阻害要因にならない程度にまで前記Ca量を低減することも可能であると言える。なお、実質的には、Ca濃度は0.1質量%以下で用いられることが多く、この程度であれば、溶解炉へ持ち込まれても、操業上の大きな支障にはなりにくい。   The limit amount of Ca brought into the melting furnace must be determined after accumulating a certain amount of operation results, but the Ca concentration of the molten salt used for cleaning is that of the Ca-containing molten salt adhering to the Ti grains. For example, if the concentration is less than 1/5 of the Ca concentration, the amount of Ca brought into the melting furnace will be less than 1/5 assuming that the entire amount of the adhering molten salt is replaced by the molten salt for cleaning. The amount of Ca brought into the melting furnace can be greatly reduced. Therefore, it can be said that the amount of Ca can be reduced to such an extent that it does not become a hindrance to continuous operation depending on the regulation of the Ca concentration of the molten salt used for cleaning. In practice, the Ca concentration is often used at 0.1% by mass or less, and if it is about this level, even if it is brought into the melting furnace, it is unlikely that it will cause a significant operational problem.

Ti粒又はTi合金粒とCa含有溶融塩との混合物の溶融塩による洗浄は、溶解工程で溶解炉に装入する前であればどの段階で行ってもよい。しかし、分離工程で行うこととすれば、Ca含有溶融塩の分離が進行しており、特に同工程の最終段階では、Ca含有溶融塩はTi粒又はTi合金粒に付着しているだけとなっていて、少量の洗浄用溶融塩で洗浄効果を高めることができるので、溶解炉に持ち込まれるCa量を効率よく低減することができ、望ましい。   Washing with a molten salt of a mixture of Ti grains or Ti alloy grains and a Ca-containing molten salt may be performed at any stage before charging into the melting furnace in the melting step. However, if it is performed in the separation step, the separation of the Ca-containing molten salt proceeds, and in particular, at the final stage of the same step, the Ca-containing molten salt is only attached to the Ti grains or Ti alloy grains. In addition, since the cleaning effect can be enhanced with a small amount of the molten salt for cleaning, the amount of Ca brought into the melting furnace can be efficiently reduced, which is desirable.

分離工程では、Ti粒又はTi合金粒とCa含有溶融塩との混合物のTi濃度(前記混合物中におけるTiの含有比率)を10質量%以上とすることが望ましい。より望ましくは、20質量%以上である。溶解工程では、Ti粒又はTi合金粒とCa含有溶融塩との混合物の全量を溶融してCa含有溶融塩を浮上分離するので、Tiの含有比率が高く、Ca含有溶融塩の比率が低いほどエネルギー効率は高くなり、また、溶解炉に装入されるCa量を低く抑えることができる。前記の10質量%は、現時点で許容できるエネルギー効率の下限である。   In the separation step, it is desirable that the Ti concentration (Ti content ratio in the mixture) of the mixture of Ti grains or Ti alloy grains and the Ca-containing molten salt is 10% by mass or more. More desirably, it is 20% by mass or more. In the melting step, the entire amount of the mixture of Ti grains or Ti alloy grains and the Ca-containing molten salt is melted to float and separate the Ca-containing molten salt, so that the Ti content ratio is high and the Ca-containing molten salt ratio is low. Energy efficiency becomes high and the amount of Ca charged into the melting furnace can be kept low. Said 10% by mass is the lower limit of the energy efficiency that is currently acceptable.

Ti粒又はTi合金粒とCa含有溶融塩との混合物を溶融塩で洗浄する方法については、特に定めない。洗浄を行う段階、混合物の状態等に応じて適切な方法を採るのがよい。例えば、混合物中におけるCa含有溶融塩の量が比較的多い段階で洗浄する場合は、所定の効果を得るために、混合物に洗浄用の溶融塩を加え抜き出す操作を複数回行うことが必要になる。また、分離工程の最終段階で洗浄する場合は、Ca含有溶融塩がTi粒又はTi合金粒に付着しているだけであり、混合物に洗浄用の溶融塩を1回ゆっくりと通すだけで洗浄効果が得られる。   A method for washing a mixture of Ti grains or Ti alloy grains and a Ca-containing molten salt with the molten salt is not particularly defined. An appropriate method should be taken according to the stage of washing, the state of the mixture, and the like. For example, when washing is performed at a stage where the amount of Ca-containing molten salt in the mixture is relatively large, it is necessary to perform a plurality of operations of adding and removing the molten salt for washing to the mixture in order to obtain a predetermined effect. . In the case of washing at the final stage of the separation process, the Ca-containing molten salt is only adhered to the Ti grains or Ti alloy grains, and the washing effect can be obtained by passing the washing molten salt slowly once through the mixture. Is obtained.

本発明の金属Ti又はTi合金の製造方法においては、TiCl4の還元反応を進行させる溶融塩、すなわちCaCl2を含み且つCaが溶解した溶融塩として、特に、Caが溶解した溶融CaCl2のみを使用する実施形態を採ることが望ましい。溶融塩(浴塩)の組成が単純なので、溶解Ca濃度、温度等、浴塩の管理が容易であり、操業をより円滑に行うことができる。 In the method for producing metal Ti or Ti alloy according to the present invention, as a molten salt for proceeding the reduction reaction of TiCl 4 , that is, a molten salt containing CaCl 2 and dissolved in Ca, in particular, only molten CaCl 2 in which Ca is dissolved. It is desirable to take the embodiment used. Since the composition of the molten salt (bath salt) is simple, management of the bath salt such as dissolved Ca concentration and temperature is easy, and the operation can be performed more smoothly.

本発明の金属Ti又はTi合金の製造方法において、前提となる製造プロセスが、さらに、Ca除去濃縮工程を含むものであれば、次に述べるように、洗浄用の溶融塩として、製造プロセス内の、しかもCa濃度が著しく低下した溶融塩を使用することができる。   In the manufacturing method of the metal Ti or Ti alloy of the present invention, if the manufacturing process as a premise further includes a Ca removal concentration step, as described below, as a molten salt for cleaning, Moreover, a molten salt having a significantly reduced Ca concentration can be used.

この実施の形態は、本発明の金属Ti又はTi合金の製造方法における特に望ましい実施形態である。Ti粒又はTi合金粒とCa含有溶融塩との混合物の洗浄に使用する溶融塩として、製造プロセス内の循環溶融塩の一部で、しかもCa濃度の極めて低い溶融塩を用いるので、洗浄によるCa低減効果が大きく、比較的容易に実施することができ、経済的にも有利である。以下に、この実施形態を、図面を参照して説明する。   This embodiment is a particularly desirable embodiment in the method for producing metal Ti or Ti alloy of the present invention. As a molten salt used for cleaning a mixture of Ti grains or Ti alloy grains and a Ca-containing molten salt, a molten salt having a very low Ca concentration and a part of the circulating molten salt in the production process is used. The reduction effect is large, it can be carried out relatively easily, and is economically advantageous. Hereinafter, this embodiment will be described with reference to the drawings.

図1は、本発明の金属Ti又はTi合金の製造方法の実施に用いられる、Ca除去濃縮工程を含む装置の概略構成例を示す図である。   FIG. 1 is a diagram showing a schematic configuration example of an apparatus including a Ca removal and concentration step used in the implementation of the method for producing metal Ti or Ti alloy of the present invention.

図1に示すように、この装置は、CaCl2を含み且つCaが溶解した溶融塩(例えば、Caが溶解した溶融CaCl2)を保持し、この溶融CaCl2中にTiCl4を含む金属塩化物(ここでは、TiCl4のみとする)を連続的に供給して溶融CaCl2中にTi粒を生成させるための還元槽1と、生成したTi粒を溶融CaCl2から分離する分離手段2と、分離後のTi粒を連続的に溶解して金属Tiのインゴット20とする溶解手段3と、Ti粒の生成に伴ってCa濃度が低下した溶融CaCl2を電解することによりCa濃度を高める電解槽4を有している。 As shown in FIG. 1, this apparatus holds a molten salt containing CaCl 2 and dissolved in Ca (for example, molten CaCl 2 dissolved in Ca), and a metal chloride containing TiCl 4 in the molten CaCl 2 . (here, the only TiCl 4) and reduction vessel 1 for generating the Ti particles was continuously fed into the molten CaCl 2, and separating means 2 for separating the generated Ti particles from the molten CaCl 2, Dissolving means 3 for continuously dissolving the separated Ti particles to form a metal Ti ingot 20 and an electrolytic cell for increasing the Ca concentration by electrolyzing molten CaCl 2 in which the Ca concentration is reduced as the Ti particles are generated. 4.

さらに、この装置は、本発明者らが新たに開発したCa除去濃縮装置5及び調整槽6を備え(例えば、特願2006−65838)、分離手段2として、液体サイクロン13と、金網を使用した濾過分離器14が用いられている(特願2006−271787)。   Furthermore, this apparatus is equipped with the Ca removal concentration apparatus 5 and the adjustment tank 6 newly developed by the present inventors (for example, Japanese Patent Application No. 2006-65838), and the liquid cyclone 13 and a wire mesh are used as the separation means 2. A filter separator 14 is used (Japanese Patent Application No. 2006-271787).

Ca除去濃縮装置5は、Ca除去領域7と、隔壁9によってこの領域7と隔てられたCa濃縮領域8、並びに前記Ca除去領域7及びCa濃縮領域8内の溶融CaCl2と接触してCa含有合金(例えば、溶融Mg−Ca合金)を保持する溶融合金保持領域を備えており、Ca除去領域7内の溶融CaCl2に溶解しているCaを除去し、Ca濃縮領域8内の溶融CaCl2のCaを濃化する機能を有している。すなわち、Ca除去領域7側の電極板がCa濃縮領域8側の電極板に対して+極となるようにCaCl2の分解電圧未満の電圧を印加することによって、Ca除去領域7内の溶融CaCl2に溶解しているCaが溶融Mg−Ca合金電極10側へ移行してCa除去領域7内の溶解Caの濃度が低下し、一方、溶融Mg−Ca合金電極10のCaがCa濃縮領域8内の溶融CaCl2側へ移行してCa濃縮領域8内の溶解Caの濃度が増大する。 The Ca removal concentration device 5 is in contact with the Ca removal region 7, the Ca concentration region 8 separated from the region 7 by the partition wall 9, and the molten CaCl 2 in the Ca removal region 7 and the Ca concentration region 8. alloys (e.g., molten Mg-Ca alloy) has a molten alloy holding area for holding, removing the Ca dissolved in the molten CaCl 2 in Ca removal area 7, melting CaCl 2 in Ca concentration region 8 It has a function of concentrating Ca. That is, by applying a voltage lower than the decomposition voltage of CaCl 2 so that the electrode plate on the Ca removal region 7 side becomes a positive electrode with respect to the electrode plate on the Ca concentration region 8 side, the molten CaCl in the Ca removal region 7 is applied. The Ca dissolved in 2 moves to the molten Mg—Ca alloy electrode 10 side and the concentration of dissolved Ca in the Ca removal region 7 decreases, while the Ca in the molten Mg—Ca alloy electrode 10 decreases to the Ca concentrated region 8. The concentration of dissolved Ca in the Ca concentration region 8 increases by moving to the molten CaCl 2 side.

調整槽6は、槽6内に導入される溶融CaCl211の上層に溶融金属Caや溶融Mg−Ca合金のようなCa供給源12を浮遊させた槽で、溶融CaCl211のCa濃度がその飽和溶解度未満であれば、Ca供給源12からCaが溶融CaCl211へ供給されて、Ca濃度を飽和溶解度近傍の濃度に維持することができ、また、溶融CaCl211のCa濃度がその飽和溶解度を超え、析出した金属Caも混在している場合は、金属Caが浮上分離し、Ca濃度が飽和溶解度近傍の濃度に保たれる。これにより、還元槽6に供給される溶融CaCl211のCa濃度を一定に維持することができ、TiCl4の還元反応効率の低下を抑え、安定した操業を行うことができる。 The adjustment tank 6 is a tank in which a Ca supply source 12 such as molten metal Ca or molten Mg—Ca alloy is floated on the upper layer of the molten CaCl 2 11 introduced into the tank 6, and the Ca concentration of the molten CaCl 2 11 is increased. If it is less than the saturation solubility, Ca can be supplied from the Ca supply source 12 to the molten CaCl 2 11 to maintain the Ca concentration at a concentration near the saturation solubility, and the Ca concentration of the molten CaCl 2 11 When the saturation solubility is exceeded and the precipitated metallic Ca is also present, the metallic Ca floats and is separated, and the Ca concentration is maintained at a concentration near the saturation solubility. As a result, the Ca concentration of the molten CaCl 2 11 supplied to the reduction tank 6 can be kept constant, the reduction in the reduction reaction efficiency of TiCl 4 can be suppressed, and stable operation can be performed.

また、分離手段2として、液体サイクロン13を使用することにより、還元工程で溶融CaCl2中に生成した微細なTi粒の造粒が進行し、同時に溶融CaCl2の一部が上方へ分離され、濃縮される。造粒後のTi粒は液体サイクロン13の下方から残りの溶融CaCl2と共に排出され、濾過分離器14で溶融CaCl2が除去され、濃縮、分離される。 Further, by using the liquid cyclone 13 as the separation means 2, granulation of fine Ti particles generated in the molten CaCl 2 in the reduction process proceeds, and at the same time, a part of the molten CaCl 2 is separated upward, Concentrated. The granulated Ti particles are discharged together with the remaining molten CaCl 2 from below the hydrocyclone 13, and the molten CaCl 2 is removed by the filtration separator 14, and concentrated and separated.

そして、この装置には、Ca除去濃縮装置5のCa除去領域7内に保持され、溶解Caの濃度が低下した溶融CaCl2の一部を貯留するための洗浄用溶融CaCl2槽15が設けられている。 The apparatus is provided with a cleaning molten CaCl 2 tank 15 for storing a part of the molten CaCl 2 held in the Ca removal region 7 of the Ca removal and concentration apparatus 5 and having a reduced concentration of dissolved Ca. ing.

この図1に示した装置を使用して行う本発明の金属Ti又はTi合金の製造方法について、溶融塩として溶融CaCl2を用いる場合を例にとって説明する。 The method for producing the metal Ti or Ti alloy of the present invention using the apparatus shown in FIG. 1 will be described by taking as an example the case of using molten CaCl 2 as the molten salt.

先ず、電解槽4から調整槽6を介して連続的に供給される溶融CaCl2を、還元槽1内に保持し、その溶融塩中のCaに、TiCl4供給口16から供給したTiCl4(ここでは、金属塩化物としてTiCl4を用いる)を反応させ、前記溶融塩中にTi粒を生成させる(還元工程)。 First, molten CaCl 2 continuously supplied from the electrolytic cell 4 through the adjusting tank 6 is held in the reduction tank 1, and TiCl 4 (from the TiCl 4 supply port 16 is supplied to Ca in the molten salt. Here, TiCl 4 is used as a metal chloride) to react, and Ti particles are generated in the molten salt (reduction step).

前記還元工程で溶融CaCl2中に生成した微細なTi粒は、分離工程で液体サイクロン13により造粒されると共に、分離、濃縮される。造粒後のTi粒は液体サイクロン13の下方から残りの溶融CaCl2とともに排出される。排出されたTi粒は、濾過分離器14で溶融CaCl2が除去され、濃縮、分離される。 The fine Ti particles generated in the molten CaCl 2 in the reduction step are granulated by the liquid cyclone 13 in the separation step, and separated and concentrated. The granulated Ti particles are discharged together with the remaining molten CaCl 2 from below the hydrocyclone 13. The discharged Ti particles are concentrated and separated by removing the molten CaCl 2 by the filter separator 14.

分離後のTi粒は、溶解炉の分離槽17内でプラズマトーチ18から照射されるプラズマにより連続的に加熱溶融され、鋳型19に流し込まれ、Tiインゴット20となる。   The Ti particles after separation are continuously heated and melted by the plasma irradiated from the plasma torch 18 in the separation tank 17 of the melting furnace, and poured into the mold 19 to become a Ti ingot 20.

分離工程において、液体サイクロン13で分離された溶融CaCl2、濾過分離器14で除去された溶融CaCl2、及びプラズマトーチ18による加熱溶融により分離槽17内で上層として分離された溶融CaCl2は、それぞれ経路La、Lb、Lcを経てCa濃縮除去装置5のCa除去領域7へ送られる。なお、経路Ldは、経路La、Lbを通過する溶融CaCl2が経路Lcを通過する溶融CaCl2に比べて圧倒的に多いので、Ca除去領域7内の溶融CaCl2とCa濃縮領域8内の溶融CaCl2の量的バランスをとって、Ca除去濃縮装置5でCaの除去及び濃縮処理を連続的に行うための経路である。 In the separation process, the molten CaCl 2 separated by the hydrocyclone 13, filtration separator 14 molten CaCl 2 was removed in, and molten CaCl 2 separated as an upper layer in the separating tank 17 by heat melting by plasma torch 18, They are sent to the Ca removal area 7 of the Ca concentration removal device 5 through the paths La, Lb, and Lc, respectively. Incidentally, path Ld, the route La, since the molten CaCl 2 passing through the Lb is overwhelmingly larger than that of the molten CaCl 2 passing through the path Lc, in Ca removal area 7 of the molten CaCl 2 and Ca concentration region 8 This is a path for continuously performing the Ca removal and concentration process in the Ca removal and concentration apparatus 5 while taking a quantitative balance of the molten CaCl 2 .

Ca除去濃縮装置5で電気分解に悪影響を及ぼす(陽極で生成する塩素とバックリアクションを引き起こす)Caが除去されたCa除去領域7内の溶融CaCl2は電解工程へ送られ、電気分解されてCa濃度が高められる。なお、電解槽4は、前掲の特許文献2に記載されている電解槽と同様に、溶融塩を保持する円筒状の電解槽容器21と、同じく円筒状の陽極22及び円柱状の陰極23を、隔膜24を隔てて有しており、電解槽4の下端から陽極22と陰極23の間に連続的に供給された溶融CaCl2を電気分解して、Caが濃化した溶融CaCl2を抜き出すことができるように構成されている。 The molten CaCl 2 in the Ca removal region 7 from which Ca has been removed (causing chlorine and back reaction generated at the anode) which adversely affects electrolysis in the Ca removal and concentration device 5 is sent to the electrolysis process and electrolyzed to form Ca. Concentration is increased. The electrolytic cell 4 includes a cylindrical electrolytic cell container 21 that holds a molten salt, a cylindrical anode 22 and a columnar cathode 23, similarly to the electrolytic cell described in Patent Document 2 described above. The molten CaCl 2 that is continuously supplied between the anode 22 and the cathode 23 from the lower end of the electrolytic cell 4 is electrolyzed to extract the molten CaCl 2 enriched in Ca. It is configured to be able to.

電解工程で電気分解により生成されたCaは、溶融塩とともに、Ca供給源を有する調整槽6へ導入され、溶融塩のCa濃度が一定とされた後、前記還元槽1へ投入され、金属Tiの製造が連続的に行われる。   Ca generated by electrolysis in the electrolysis step is introduced into the adjustment tank 6 having a Ca supply source together with the molten salt, and after the Ca concentration of the molten salt is made constant, the Ca is introduced into the reduction tank 1 and the metal Ti. Are continuously manufactured.

本発明の金属Ti又はTi合金の製造方法では、電解工程へ送られるCa除去領域7内の溶融CaCl2の一部が洗浄用溶融CaCl2槽15内に貯留される。Ti粒とCaを含む溶融CaCl2との混合物は、液体サイクロン13を経て濾過分離器14で溶融CaCl2の大部分が除去されるが、このTi粒とCaを含む溶融CaCl2との混合物を、前記の洗浄用溶融CaCl2槽15に貯留された溶融CaCl2で洗浄する。この溶融CaCl2は、通常は濃度が0.01%程度にまでCaが除去されているので、洗浄によって前記混合物中のCaを含む溶融CaCl2のCa濃度を0.01%程度にまで低下させることが可能になる。 In the method for producing metal Ti or Ti alloy of the present invention, a part of the molten CaCl 2 in the Ca removal region 7 sent to the electrolysis process is stored in the cleaning molten CaCl 2 tank 15. A mixture of molten CaCl 2 containing Ti particles and Ca are most of the molten CaCl 2 filtration separator 14 through the hydrocyclone 13 is removed, a mixture of molten CaCl 2 containing the Ti particles and Ca , washed with pooled molten CaCl 2 in cleaning molten CaCl 2 tank 15 of the. Since the molten CaCl 2 is usually removed to a concentration of about 0.01%, the Ca concentration of the molten CaCl 2 containing Ca in the mixture is reduced to about 0.01% by washing. It becomes possible.

この例では、Ti粒とCa含有溶融塩との混合物の洗浄を分離工程のしかも最終段階(濾過分離器14)で行っている。濾過分離器14は、円筒状で、筒(管)の内壁にらせん状のひれが取り付けられ、更に、該内壁の内側近傍に目の細かい金網が張られており、出側が入側に対して若干上向きに傾斜し、筒の軸を中心に回転可能に構成されている。液体サイクロン13の下方から排出された混合物中のCa含有溶融塩の殆どは、濾過分離器14で処理される間に金網を通過して濾過分離器14の入側へ移行し、排出され、金網上のTi粒又はTi合金粒は濾過分離器14の回転に伴いらせん状のひれにより押し上げられ、出側から排出される。   In this example, washing of the mixture of Ti grains and Ca-containing molten salt is performed in the separation step and in the final stage (filter separator 14). The filter separator 14 has a cylindrical shape, and a helical fin is attached to the inner wall of the tube (tube). Further, a fine wire mesh is stretched near the inside of the inner wall. It is inclined slightly upward and is configured to be rotatable about the axis of the cylinder. Most of the Ca-containing molten salt in the mixture discharged from below the hydrocyclone 13 passes through the wire mesh while being processed by the filter separator 14, moves to the inlet side of the filter separator 14, is discharged, and is discharged. The upper Ti particles or Ti alloy particles are pushed up by the helical fins as the filter separator 14 rotates, and are discharged from the outlet side.

液体サイクロン13及び濾過分離器14で大部分の溶融CaCl2が除去されているので、洗浄に用いる溶融CaCl2槽15内の溶融CaCl2の量は最小限でよく、溶解炉に持ち込まれるCa量の低減を効率よく行うことができる。 Since the molten CaCl 2 most liquid cyclone 13 and filter separator 14 is removed, the amount of molten CaCl 2 of molten CaCl 2 bath 15 used for washing may be a minimum, Ca amount being brought into the melting furnace Can be efficiently reduced.

なお、分離手段として、前記図1に示した液体サイクロン13及び濾過分離器14を用いれば、前述の「Ti濃度10質量%以上」という望ましい条件は十分達成できる。   If the liquid cyclone 13 and the filter separator 14 shown in FIG. 1 are used as the separating means, the above-mentioned desirable condition of “Ti concentration of 10% by mass or more” can be sufficiently achieved.

また、前述の、洗浄に用いる溶融塩のCa濃度についての望ましい条件(Ti粒に付着しているCa含有溶融塩のCa濃度に対して、1/5未満の濃度)も、前記図1に示した装置を用いれば達成可能である。具体的に示すと、還元槽1からTi粒と共に排出される溶融塩のCa濃度は、0.05〜0.30%程度であり、一方、Ca除去領域7内でCaが除去された溶融CaCl2のCa濃度は、通常の操業条件の下で0.01%程度であり、前記の望ましい条件を満たすことは十分可能である。 In addition, the above-described desirable conditions for the Ca concentration of the molten salt used for cleaning (the concentration of less than 1/5 of the Ca concentration of the Ca-containing molten salt adhering to the Ti grains) are also shown in FIG. This is achievable with the use of an apparatus. Specifically, the Ca concentration of the molten salt discharged together with the Ti grains from the reduction tank 1 is about 0.05 to 0.30%, while the molten CaCl from which Ca has been removed in the Ca removal region 7. The Ca concentration of 2 is about 0.01% under normal operating conditions, and it is sufficiently possible to satisfy the desirable conditions described above.

以上説明したように、本発明の金属Ti又はTi合金の製造方法は、還元工程で生成したTi粒又はTi合金粒とCa含有溶融塩との混合物を、溶融塩、特に製造プロセスにお内で各工程間を循環させている溶融塩で洗浄することにより、前記Ca含有溶融塩のCa濃度を低下させて、溶解工程の溶解炉内へ持ち込まれるCa量を低減する方法である。この方法によれば、比較的容易且つ安価な手段により、溶解炉内への持ち込みCa量を、操業の妨げにならない程度にまで低減することが可能であり、Caの蒸発に起因して生じる溶解炉の内壁や配管の内面におけるCaの付着や、配管の閉塞等の問題を生じさせることなく、Ca還元による金属Ti又はTi合金の製造を長期にわたり連続して行うことができる。   As described above, the method for producing metal Ti or Ti alloy according to the present invention includes a mixture of Ti grains or Ti alloy grains produced in the reduction step and a Ca-containing molten salt in the molten salt, particularly in the production process. In this method, the amount of Ca brought into the melting furnace in the melting step is reduced by washing with molten salt circulating between the steps to lower the Ca concentration of the Ca-containing molten salt. According to this method, it is possible to reduce the amount of Ca brought into the melting furnace to a level that does not hinder the operation by relatively easy and inexpensive means, and the melting caused by the evaporation of Ca. The production of metal Ti or Ti alloy by Ca reduction can be continuously performed for a long time without causing problems such as adhesion of Ca on the inner wall of the furnace and the inner surface of the pipe, and blockage of the pipe.

本発明の金属Ti又はTi合金の製造方法によれば、溶解炉へ持ち込まれるCa量を低減して、溶解工程におけるCaの蒸発に起因して生じる溶解炉の内壁や配管の内面におけるCaの付着、配管の閉塞等の問題を比較的容易且つ安価な手段により回避して、Ca還元による金属Tiの製造を長期にわたり連続して行うことができる。   According to the method for producing metal Ti or Ti alloy of the present invention, the amount of Ca brought into the melting furnace is reduced, and Ca adheres to the inner wall of the melting furnace and the inner surface of the piping caused by the evaporation of Ca in the melting process. Further, problems such as blockage of piping can be avoided by relatively easy and inexpensive means, and the production of metal Ti by Ca reduction can be continuously performed over a long period of time.

したがって、本発明の金属Ti又はTi合金の製造方法は、Ca還元による金属Ti又はTi合金の製造を連続的に実施する方法として、有効に利用することができる。   Therefore, the method for producing metal Ti or Ti alloy of the present invention can be effectively used as a method for continuously producing metal Ti or Ti alloy by Ca reduction.

本発明の金属Ti又はTi合金の製造方法の実施に用いられる装置の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the apparatus used for implementation of the manufacturing method of the metal Ti or Ti alloy of this invention.

符号の説明Explanation of symbols

1:還元槽
2:分離手段
3:溶解手段
4:電解槽
5:Ca除去濃縮装置
6:調整槽
7:Ca除去領域
8:Ca濃縮領域
9:隔壁
10:溶融Mg−Ca合金電極
11:溶融CaCl2
12:Ca供給源
13:液体サイクロン
14:濾過分離器
15:洗浄用溶融CaCl2
16:TiCl4供給口
17:分離槽
18:プラズマトーチ
19:鋳型
20:Tiインゴット
21:電解槽容器
22:陽極
23:陰極
24:隔膜
1: Reduction tank 2: Separation means 3: Dissolution means 4: Electrolysis tank 5: Ca removal concentration apparatus 6: Adjustment tank 7: Ca removal area 8: Ca concentration area 9: Partition 10: Molten Mg-Ca alloy electrode 11: Melting CaCl 2
12: Ca supply source 13: Hydrocyclone 14: Filtration separator 15: Melting CaCl 2 tank 16 for cleaning 16: TiCl 4 supply port 17: Separation tank 18: Plasma torch 19: Mold 20: Ti ingot 21: Electrolyzer container 22: Anode 23: Cathode 24: Diaphragm

Claims (5)

CaCl2を含み且つCaが溶解した溶融塩中にTiCl4を含む金属塩化物を連続的に供給して溶融塩中にTi粒又はTi合金粒を生成させる還元工程と、生成したTi粒又はTi合金粒を溶融塩から分離する分離工程と、分離後のTi粒又はTi合金粒を連続的に溶解して金属Ti又はTi合金のインゴットとする溶解工程と、前記Ti粒又はTi合金粒の生成に伴ってCa濃度が低下した溶融塩を電気分解することによりCa濃度を高める電解工程を含み、電解工程で生成されたCa濃度が高まった溶融塩を還元工程でTiCl4の還元に用いる金属Ti又はTi合金の製造方法において、
還元工程で生成したTi粒又はTi合金粒とCa含有溶融塩との混合物を、溶解前に溶融塩で洗浄することにより前記Ca含有溶融塩のCa濃度を低下させて、溶解炉へ持ち込まれるCa量を低減することを特徴とする金属Ti又はTi合金の製造方法。
A reduction step of continuously supplying a metal chloride containing TiCl 4 into a molten salt containing CaCl 2 and dissolving Ca to produce Ti grains or Ti alloy grains in the molten salt, and the produced Ti grains or Ti Separation process for separating the alloy grains from the molten salt, a melting process for continuously melting the separated Ti grains or Ti alloy grains to form an ingot of metal Ti or Ti alloy, and generation of the Ti grains or Ti alloy grains In addition, an electrolysis process for increasing the Ca concentration by electrolyzing the molten salt having a reduced Ca concentration is used, and the molten salt generated in the electrolysis process is used for the reduction of TiCl 4 in the reduction process. Or in the method for producing a Ti alloy,
A mixture of Ti grains or Ti alloy grains produced in the reduction step and a Ca-containing molten salt is washed with molten salt before melting, thereby reducing the Ca concentration of the Ca-containing molten salt and bringing the Ca into the melting furnace. A method for producing metal Ti or a Ti alloy, characterized in that the amount is reduced.
洗浄用の溶融塩として、還元工程で生成した前記Ca含有溶融塩よりCa濃度が低い溶融塩を使用することを特徴とする請求項1に記載の金属Ti又はTi合金の製造方法。   2. The method for producing metal Ti or Ti alloy according to claim 1, wherein a molten salt having a Ca concentration lower than that of the Ca-containing molten salt produced in the reduction step is used as the molten salt for cleaning. 請求項1に記載の金属Ti又はTi合金の製造方法が、さらに、前記分離工程で分離された溶融塩を保持するCa除去領域内の溶融塩側の電極板が、この領域と隔てられたCa濃縮領域内の溶融塩側の電極板に対して+極となるようにCaCl2の分解電圧未満の電圧を印加することにより、Caの濃度が低下したCa除去領域内の溶融塩を電解工程へ送り、Caが高濃度化されたCa濃縮領域内の溶融塩を還元工程へ送るCa除去濃縮工程を含むものであって、
前記洗浄用の溶融塩として、Ca除去濃縮工程でCa濃度が低下した溶融塩を使用することを特徴とする請求項1に記載の金属Ti又はTi合金の製造方法。
The method for producing metal Ti or Ti alloy according to claim 1, further comprising: a Ca plate in which a molten salt side electrode plate in a Ca removal region holding the molten salt separated in the separation step is separated from the region. By applying a voltage lower than the decomposition voltage of CaCl 2 so as to be a positive electrode with respect to the electrode plate on the molten salt side in the concentration region, the molten salt in the Ca removal region in which the Ca concentration is reduced is subjected to the electrolysis process. Including a Ca removal concentration step of sending the molten salt in the Ca concentration region where Ca is concentrated to the reduction step,
The method for producing metal Ti or Ti alloy according to claim 1, wherein a molten salt having a reduced Ca concentration in a Ca removal and concentration step is used as the cleaning molten salt.
前記Ti粒又はTi合金粒とCa含有溶融塩との混合物の洗浄を分離工程で行うことを特徴とする請求項1〜3のいずれかに記載の金属Ti又はTi合金の製造方法。   The method for producing metal Ti or Ti alloy according to any one of claims 1 to 3, wherein the mixture of the Ti grains or Ti alloy grains and the Ca-containing molten salt is washed in a separation step. 前記溶融塩が溶融CaCl2からなることを特徴とする請求項1〜4のいずれかに記載の金属Ti又はTi合金の製造方法。 Method for producing a metallic Ti or Ti alloy according to claim 1, wherein the molten salt is characterized by comprising the molten CaCl 2.
JP2007158575A 2007-06-15 2007-06-15 METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY Pending JP2008308738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158575A JP2008308738A (en) 2007-06-15 2007-06-15 METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158575A JP2008308738A (en) 2007-06-15 2007-06-15 METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY

Publications (1)

Publication Number Publication Date
JP2008308738A true JP2008308738A (en) 2008-12-25

Family

ID=40236594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158575A Pending JP2008308738A (en) 2007-06-15 2007-06-15 METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY

Country Status (1)

Country Link
JP (1) JP2008308738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198654A (en) * 2014-08-15 2014-12-10 攀钢集团攀枝花钢铁研究院有限公司 Method for determining fused salt components in production process of titanium tetrachloride by fused salt chlorination method
CN104736273A (en) * 2012-06-06 2015-06-24 Csir公司 Method for preparing crystalline titanium powder
CN115449855A (en) * 2022-10-24 2022-12-09 青岛国韬钛金属产业研究院有限公司 Preparation method of titanium alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104736273A (en) * 2012-06-06 2015-06-24 Csir公司 Method for preparing crystalline titanium powder
CN104198654A (en) * 2014-08-15 2014-12-10 攀钢集团攀枝花钢铁研究院有限公司 Method for determining fused salt components in production process of titanium tetrachloride by fused salt chlorination method
CN104198654B (en) * 2014-08-15 2015-09-16 攀钢集团攀枝花钢铁研究院有限公司 Fused salt chlorimation method produces the decision method of molten salt composition in titanium tetrachloride process
CN115449855A (en) * 2022-10-24 2022-12-09 青岛国韬钛金属产业研究院有限公司 Preparation method of titanium alloy

Similar Documents

Publication Publication Date Title
JP5183498B2 (en) Electrolytic production of silicon and scouring method
WO2005080642A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
JP2006111895A (en) Method for producing metal by molten salt electrolysis and production device therefor
WO2005080643A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
AU2006224012B2 (en) Method of high-melting-point metal separation and recovery
JP2008308738A (en) METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY
US20090211916A1 (en) Method and apparatus for producing metal by electrolysis of molton salt
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
JP4510769B2 (en) Manufacturing method and apparatus for Ti or Ti alloy
JP2005068539A (en) Method and apparatus for producing metal
JP2005133195A (en) METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF Ca SOURCE
JP2009019250A (en) Method and apparatus for producing metal
EP2662464A1 (en) Gold recovery
WO2007105616A1 (en) METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
WO2005035806A1 (en) METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP2004052037A (en) Method and apparatus for refining metallic titanium
JP2006063359A (en) Method and device for producing metal
JP4249685B2 (en) Method for producing Ti by Ca reduction
JP4708505B2 (en) Polycrystalline silicon manufacturing method and reactor used therefor
JP2005068540A (en) METHOD AND APPARATUS FOR PRODUCING METAL THROUGH REDUCTION BY Ca
JP4227113B2 (en) Pull-up electrolysis method
JP2006045669A (en) Method and apparatus for producing metal through molten salt electrolysis