JP4510769B2 - Manufacturing method and apparatus for Ti or Ti alloy - Google Patents

Manufacturing method and apparatus for Ti or Ti alloy Download PDF

Info

Publication number
JP4510769B2
JP4510769B2 JP2006065838A JP2006065838A JP4510769B2 JP 4510769 B2 JP4510769 B2 JP 4510769B2 JP 2006065838 A JP2006065838 A JP 2006065838A JP 2006065838 A JP2006065838 A JP 2006065838A JP 4510769 B2 JP4510769 B2 JP 4510769B2
Authority
JP
Japan
Prior art keywords
molten salt
alloy
concentration
molten
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006065838A
Other languages
Japanese (ja)
Other versions
JP2007239065A (en
Inventor
忠司 小笠原
誠 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006065838A priority Critical patent/JP4510769B2/en
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to AU2007225815A priority patent/AU2007225815A1/en
Priority to PCT/JP2007/054633 priority patent/WO2007105616A1/en
Priority to US12/224,843 priority patent/US20090114546A1/en
Priority to CNA2007800085741A priority patent/CN101400829A/en
Priority to EA200870343A priority patent/EA200870343A1/en
Priority to CA002645103A priority patent/CA2645103A1/en
Priority to EP07738118A priority patent/EP1995353A1/en
Publication of JP2007239065A publication Critical patent/JP2007239065A/en
Priority to NO20083515A priority patent/NO20083515L/en
Application granted granted Critical
Publication of JP4510769B2 publication Critical patent/JP4510769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、TiCl4を含む金属塩化物をCaにより還元処理して金属Ti又はTi合金を製造するTi又はTi合金の製造方法、及びそれに用いる製造装置に関する。 The present invention relates to a Ti or Ti alloy manufacturing method for manufacturing metal Ti or a Ti alloy by reducing metal chloride containing TiCl 4 with Ca, and a manufacturing apparatus used therefor.

金属Tiの工業的な製法としては、TiCl4をMgにより還元するクロール法が一般的である。このクロール法では、還元工程−真空分離工程を経て金属Tiが製造される。還元工程では、反応容器内で上方から供給される液体状のTiCl4が溶融Mgにより還元され、粒子状の金属Tiが生成し、逐次下方へ沈降してスポンジ状の金属Tiが得られる。真空分離工程では、反応容器内のスポンジ状金属Tiから未反応のMg及び副生物であるMgCl2が除去される。 As an industrial method for producing metal Ti, a crawl method in which TiCl 4 is reduced with Mg is generally used. In this crawl method, metal Ti is produced through a reduction process-vacuum separation process. In the reduction step, liquid TiCl 4 supplied from above in the reaction vessel is reduced by molten Mg to form particulate metal Ti, which is successively settled downward to obtain sponge-like metal Ti. In the vacuum separation step, unreacted Mg and by-product MgCl 2 are removed from the spongy metal Ti in the reaction vessel.

クロール法による金属Tiの製造では、高純度の製品を製造することが可能である。しかし、バッチ式であるために製造コストが嵩み、製品価格が非常に高くなる。製造コストが嵩む原因の一つは、TiCl4の供給速度を上げることが困難なことである。 In the production of metal Ti by the crawl method, it is possible to produce a high-purity product. However, since it is a batch type, the manufacturing cost increases and the product price becomes very high. One of the causes of increased manufacturing cost is that it is difficult to increase the supply rate of TiCl 4 .

その理由としては幾つか考えられるが、一つは、TiCl4の供給速度を大きくしすぎると、沈降せず液面に残っているMgCl2に上方からTiCl4が供給されるようになるため、供給したTiCl4が未反応のTiCl4ガスや還元が不十分なTiCl3ガスなどとして反応容器外へ排出され、TiCl4の利用効率が低下することである。 There are several possible reasons for this, but one is that if the supply rate of TiCl 4 is increased too much, TiCl 4 is supplied from above to MgCl 2 that does not settle and remains on the liquid surface. The supplied TiCl 4 is discharged out of the reaction vessel as unreacted TiCl 4 gas or TiCl 3 gas with insufficient reduction, and the utilization efficiency of TiCl 4 is lowered.

また、クロール法では、反応容器内の溶融Mg液の液面近傍だけで反応が行われるため、発熱エリアが狭い。そのため、高速でTiCl4を供給すると冷却が間に合わなくなることも、TiCl4の供給速度が制限される大きな理由である。 In the crawl method, the reaction is performed only in the vicinity of the liquid level of the molten Mg liquid in the reaction vessel, so that the heat generation area is narrow. For this reason, if TiCl 4 is supplied at a high speed, cooling cannot be performed in time, which is a major reason that the supply speed of TiCl 4 is limited.

更に、溶融Mgの濡れ性(粘着性)のため、生成したTi粉が凝集した状態で沈降し、沈降中にも高温の溶融液が有している熱により焼結して粒成長し、反応容器外へ回収することが困難である。このため、金属Tiの製造を連続的に行うことができず、生産性が阻害される。   Furthermore, due to the wettability (adhesiveness) of the molten Mg, the Ti powder that has been formed settles in a coherent state, and during the sedimentation, particles are grown by sintering with the heat of the high-temperature melt. It is difficult to recover outside the container. For this reason, manufacture of metal Ti cannot be performed continuously but productivity is inhibited.

クロール法以外のTi製造方法に関しては、特許文献1に、TiCl4の還元剤としてMg以外に例えばCaの使用が可能なことが記載されている。そして、Caによる還元反応を用いたTiの製造方法としては、特許文献2に、反応容器内にCaCl2の溶融塩を保持し、その溶融塩中に上方から金属Ca粉末を供給して、溶融塩中にCaを溶け込ませると共に、下方からTiCl4ガスを供給して、CaCl2の溶融塩中で溶解CaとTiCl4を反応させる方法が記載されている。 Regarding Ti production methods other than the crawl method, Patent Document 1 describes that, for example, Ca can be used as a reducing agent for TiCl 4 in addition to Mg. And as a manufacturing method of Ti using the reduction reaction by Ca, in Patent Document 2, a molten salt of CaCl 2 is held in a reaction vessel, and metallic Ca powder is supplied into the molten salt from above to melt A method is described in which Ca is dissolved in a salt and TiCl 4 gas is supplied from below to react the dissolved Ca and TiCl 4 in a molten salt of CaCl 2 .

しかしながら、特許文献2に記載された方法は、還元剤として使用する金属Caの粉末が極めて高価で、これを購入して使用すると、製造コストはクロール法よりも高価となるので、工業的なTi製造法としては成立し得ない。加えて、反応性が強いCaは取り扱いが非常に難しく、このことも、Ca還元によるTi製造方法の工業化を阻害する大きな要因になっている。   However, in the method described in Patent Document 2, the metal Ca powder used as a reducing agent is extremely expensive, and if this is purchased and used, the manufacturing cost is higher than that of the crawl method. It cannot be established as a manufacturing method. In addition, highly reactive Ca is very difficult to handle, and this is also a major factor that hinders industrialization of the Ti production method by Ca reduction.

更に別のTi製造方法としては、特許文献3に、TiCl4を経由せず、TiO2をCaにより直接還元するオルソンの方法が記載されている。この方法は、酸化物直接還元法の一種である。しかし、この方法では高価な高純度のTiO2を使用しなければならない。 As another Ti production method, Patent Document 3 describes Olson's method in which TiO 2 is directly reduced by Ca without passing through TiCl 4 . This method is a kind of direct oxide reduction method. However, this method must use expensive high-purity TiO 2 .

一方、本発明者らは、Ca還元によるTi製造方法を工業的に確立するためには、TiCl4のCaによる還元が不可欠であり、還元反応で消費される溶融塩中のCaを経済的に補充する必要があると考え、溶融CaCl2の電気分解により生成するCaを利用すると共に、このCaを循環使用する方法、即ち「OYIK法(オーイック法)」を提案した(特許文献4、特許文献5参照)。特許文献4では、電気分解によりCaが生成、補充され、Caリッチとなった溶融CaCl2を反応容器に導入し、Ca還元によるTi粒の生成に使用する方法が記載され、特許文献5では、更に、陰極として合金電極(例えば、Mg−Ca合金電極)を用いることにより、電解に伴うバックリアクションを効果的に抑制する方法が示されている。 On the other hand, in order to industrially establish a Ti production method by Ca reduction, the present inventors must reduce TiCl 4 with Ca, and economically reduce Ca in molten salt consumed in the reduction reaction. In consideration of the necessity of replenishment, a method of using Ca generated by electrolysis of molten CaCl 2 and circulating this Ca, that is, “OYIK method (Oic method)” was proposed (Patent Document 4, Patent Document) 5). Patent Document 4 describes a method in which Ca is generated and replenished by electrolysis and Ca-rich molten CaCl 2 is introduced into a reaction vessel and used to generate Ti particles by Ca reduction. Furthermore, a method of effectively suppressing back reaction accompanying electrolysis by using an alloy electrode (for example, Mg—Ca alloy electrode) as a cathode is shown.

米国特許第2205854号明細書US Pat. No. 2,205,854 米国特許第4820339号明細書U.S. Pat. No. 4,820,339 米国特許第2845386号明細書U.S. Pat. No. 2,845,386 特開2005−133195号公報JP 2005-133195 A 特開2005−133196号公報JP 2005-133196 A

前述のとおり、クロール法以外のTi製造方法について、従来多くの研究開発が行われてきた。特に本発明者らが提案した前記OYIK法では、TiCl4の還元反応に伴い溶融塩中のCaが消費されるが、その溶融塩を電気分解すれば溶融塩中にCaが生成し、こうして得られたCaを還元反応に再使用すれば、外部からのCa補充が不要になり、しかも、Caを単独で取り出す必要がないので、経済性が向上する。 As described above, many researches and developments have been made on Ti production methods other than the crawl method. In particular, in the OYIK method proposed by the present inventors, Ca in the molten salt is consumed with the reduction reaction of TiCl 4 , but when the molten salt is electrolyzed, Ca is generated in the molten salt, and thus obtained. If the produced Ca is reused in the reduction reaction, it is not necessary to replenish Ca from the outside, and there is no need to take out Ca alone, thereby improving the economic efficiency.

そこで、本発明者らは、基本的な構成はこのOYIK法に立脚し、更に、工業的規模で、効率よく、安定した操業を行い得る金属Ti又はTi合金の製造プロセスの開発を企図して、製造工程全般に亘り検討を加えた。   Therefore, the inventors of the present invention are based on the OYIK method as a basic configuration, and further intend to develop a manufacturing process of metal Ti or Ti alloy that can be efficiently and stably operated on an industrial scale. The whole manufacturing process was examined.

本発明の目的は、溶融CaCl2の電気分解により生成するCaによってTiCl4、その他の金属塩化物を還元するCa還元による金属Ti又はTi合金の製造において、TiCl4、その他の金属塩化物の還元反応、更には溶融塩の電気分解によるCaの生成を効率よく行わせ、且つ工業的規模で、安定した操業が可能なTi又はTi合金の製造方法、及びそれに用いられる製造装置を提供することにある。 The object of the present invention is to reduce TiCl 4 and other metal chlorides in the production of metal Ti or Ti alloy by Ca reduction in which TiCl 4 and other metal chlorides are reduced by Ca generated by electrolysis of molten CaCl 2. To provide a method for producing Ti or a Ti alloy capable of efficiently performing reaction, and further generating Ca by electrolysis of molten salt, and capable of stable operation on an industrial scale, and a production apparatus used therefor. is there.

上記の課題として挙げたTiCl4、その他の金属塩化物の還元反応、及び溶融塩の電気分解によるCaの生成を効率よく行わせ、且つ、操業の安定化を図るためには、TiCl4を還元する反応容器内に投入するCaCl2含有溶融塩中のCaの高濃度化と、濃度の変動抑制、並びに反応容器外へ抜き出され、電解槽へ導入される溶融塩中のCaの除去(回収)が重要である。また、工業的規模でのTiの製造を可能とするためには、反応容器へのCaの供給速度の増大(換言すれば、電解工程における大量のCaCl2含有溶融塩の連続処理)が必要である。 In order to efficiently perform the reduction reaction of TiCl 4 and other metal chlorides mentioned above as well as the production of Ca by electrolysis of molten salt, and to stabilize the operation, TiCl 4 is reduced. Concentration of CaCl 2 in the molten salt contained in the reaction vessel to be introduced, suppression of concentration fluctuations, and removal of Ca in the molten salt drawn out of the reaction vessel and introduced into the electrolytic cell (recovery) )is important. Moreover, in order to enable production of Ti on an industrial scale, it is necessary to increase the supply rate of Ca to the reaction vessel (in other words, continuous treatment of a large amount of molten salt containing CaCl 2 in the electrolysis process). is there.

反応容器に投入する溶融塩のCa濃度が低すぎる場合は、未反応のTiCl4ガスが槽外へ排出される。更に、TiCl3、TiCl2等の低級塩化チタンのガスが生成して溶融塩に溶け込み、電解槽内で電気分解により生成するCaとの反応によりTiが生成し、陰極表面に析出して操業に支障を来すおそれがある。また、TiのC汚染の原因となるTiCの発生なども危惧される。 When the Ca concentration of the molten salt charged into the reaction vessel is too low, unreacted TiCl 4 gas is discharged out of the tank. Further, a gas of lower titanium chloride such as TiCl 3 and TiCl 2 is generated and dissolved in the molten salt, Ti is generated by reaction with Ca generated by electrolysis in the electrolytic cell, and is deposited on the cathode surface for operation. May cause trouble. In addition, the occurrence of TiC that causes C contamination of Ti is also a concern.

一方、溶融塩のCa濃度が高すぎる場合は、反応容器から抜き出される溶融塩中に多量のCaが含まれ、分離工程でCaが蒸発し、損失となる。   On the other hand, when the Ca concentration of the molten salt is too high, a large amount of Ca is contained in the molten salt withdrawn from the reaction vessel, and Ca is evaporated in the separation step, resulting in a loss.

また、分離工程でTiが分離された後の溶融塩を電解槽へ戻したときに、溶融塩中のCaと電気分解により生成した塩素が反応する、いわゆるバックリアクションが起こり、電流効率が低下するが、溶融塩中のCa濃度が高いとバックリアクションによる電流効率の低下も大きい。更に、バックリアクションに伴う反応熱により電解槽内の溶融塩(浴塩)の温度の均一性が乱され、浴塩の温度制御に支障を来すおそれもある。   In addition, when the molten salt after Ti is separated in the separation step is returned to the electrolytic cell, so-called back reaction occurs in which Ca in the molten salt reacts with chlorine generated by electrolysis, resulting in a decrease in current efficiency. However, when the Ca concentration in the molten salt is high, the current efficiency is greatly lowered due to the back reaction. Furthermore, the reaction heat accompanying the back reaction may disturb the temperature uniformity of the molten salt (bath salt) in the electrolytic cell, which may hinder the temperature control of the bath salt.

そこで、本発明者らは、反応容器に投入する溶融塩のCa濃度の変動を抑制し、且つ高濃度に維持すると共に、電解槽へ送られる溶融塩中のCaを速やかに回収してCaを除去し、バックリアクションを抑制するために種々検討を重ねた。   Therefore, the present inventors suppress fluctuations in the Ca concentration of the molten salt charged into the reaction vessel and maintain it at a high concentration, and quickly recover the Ca in the molten salt sent to the electrolytic cell to obtain the Ca. Various studies were made to eliminate this and suppress back reaction.

その結果、電解槽へ送られる溶融塩を、Caを含む溶融合金(溶融Mg−Ca合金)に接触させつつ、溶融合金側の電極棒が−極、溶融塩側の電極棒が+極となるように電圧を印加し、しかもその印加電圧をCaCl2の分解電圧未満とすることにより、溶融塩中に溶解しているCaを溶融合金に速やかに吸収させ、回収できることを見出した。これによって、電解槽へ送られる溶融塩中のCa濃度を低下させ、溶融塩の電気分解時におけるバックリアクションを抑制し、Caの生成を効率よく行わせることができる。 As a result, while the molten salt sent to the electrolytic cell is brought into contact with a molten alloy containing Ca (molten Mg—Ca alloy), the electrode rod on the molten alloy side becomes the negative electrode and the electrode rod on the molten salt side becomes the positive electrode. It was found that by applying a voltage in this manner and making the applied voltage less than the decomposition voltage of CaCl 2 , Ca dissolved in the molten salt can be quickly absorbed and recovered by the molten alloy. Thereby, the Ca concentration in the molten salt sent to the electrolytic cell can be reduced, the back reaction at the time of electrolysis of the molten salt can be suppressed, and Ca can be generated efficiently.

また、前記の極性を逆にして、溶融合金側の電極棒が+極、溶融塩側の電極棒が−極となるようにCaCl2の分解電圧未満の電圧を印加するとCaが溶融合金側から溶融塩側へ移行するので、溶融合金を共通の構成要素として一体とし、溶融塩をこの溶融合金に接触させつつ、一方の溶融塩側の電極棒が+極となり、他方の溶融塩側の電極棒が−極となるように電圧(CaCl2の分解電圧未満の電圧)を印加したところ、前記一方の溶融塩中に溶解しているCaの溶融合金による吸収と、溶融合金側から他方の溶融塩側へのCaの移行を同時に行えることが判明した。即ち、一方の溶融塩に溶解しているCaの除去と、他方の溶融塩に溶解しているCaの高濃度化を所定の電圧を印加することにより同時に且つ迅速に進行させることができる。 Also, when the polarity is reversed and a voltage lower than the decomposition voltage of CaCl 2 is applied so that the electrode rod on the molten alloy side becomes a positive electrode and the electrode rod on the molten salt side becomes a negative electrode, Ca is released from the molten alloy side. Since it moves to the molten salt side, the molten alloy is integrated as a common component, and the molten salt is brought into contact with the molten alloy, while one molten salt side electrode rod becomes a positive electrode, and the other molten salt side electrode When a voltage (voltage less than the decomposition voltage of CaCl 2 ) was applied so that the rod became a negative pole, absorption by the molten alloy of Ca dissolved in the one molten salt, and melting of the other from the molten alloy side It was found that Ca can be transferred to the salt side simultaneously. That is, removal of Ca dissolved in one molten salt and high concentration of Ca dissolved in the other molten salt can be simultaneously and rapidly advanced by applying a predetermined voltage.

一方、反応容器に投入する溶融塩のCa濃度の変動を抑制し、高濃度に維持するためには、電解槽と反応容器の間にCa供給源を備える調整槽を設置し、電気分解によりCaを生成させてCa濃度を高めた溶融塩を調整槽に導入してCa濃度を一定とした後、還元に用いるのが効果的であることを知見した。これにより溶融塩のCa濃度を常に一定の高濃度に維持し、還元反応を効率よく進行させることができる。また、溶融塩に電圧を印加してCaを吸収させ、Ca濃度が高められた溶融合金を調整槽のCa供給源として使用できることも判明した。   On the other hand, in order to suppress the fluctuation of the Ca concentration of the molten salt charged into the reaction vessel and maintain it at a high concentration, an adjustment vessel equipped with a Ca supply source is installed between the electrolytic vessel and the reaction vessel, and Ca is obtained by electrolysis. It was found that it is effective to use it for reduction after introducing molten salt with increased Ca concentration into the adjustment tank to make the Ca concentration constant. Thereby, Ca concentration of molten salt can always be maintained at a constant high concentration, and the reduction reaction can proceed efficiently. It has also been found that a molten alloy in which a voltage is applied to the molten salt to absorb Ca and the Ca concentration is increased can be used as a Ca supply source of the adjustment tank.

更に、本発明者らは、主電解槽の電解槽容器の形状、電極形状、電解条件、極間距離等について詳細な検討を行った結果、溶融塩を陰極表面近傍で一方向に流しつつ電気分解して電解槽の出側でCa濃度が高まった溶融塩を回収することにより、バックリアクションを抑制して高電流効率を維持すると共に、Caが濃化した溶融塩のみを効果的に取り出すことができ、しかも、大量のCaCl2含有溶融塩の連続処理が可能で、反応容器へのCaの供給速度を増大させ得ることを知見した。 Furthermore, as a result of detailed investigations on the shape of the electrolytic cell container of the main electrolytic cell, the electrode shape, the electrolysis conditions, the distance between the electrodes, etc., the inventors have found that the molten salt flows in one direction near the cathode surface while flowing electricity. By recovering the molten salt that has decomposed and increased the Ca concentration on the outlet side of the electrolytic cell, the back reaction is suppressed and high current efficiency is maintained, and only the molten salt enriched in Ca is effectively taken out. In addition, it has been found that a large amount of CaCl 2 -containing molten salt can be continuously processed, and the rate of Ca supply to the reaction vessel can be increased.

本発明はこれらの知見に基づいてなされたもので、その要旨は、下記(1)又は(2)のTi又はTi合金の製造方法、及び(3)又は(4)の製造装置にある。   The present invention has been made based on these findings, and the gist of the present invention is the following (1) or (2) Ti or Ti alloy production method and (3) or (4) production apparatus.

(1)CaCl2を含み且つCaが溶解した溶融塩を反応容器内に保持し、その溶融塩中のCaにTiCl4を含む金属塩化物を反応させて前記溶融塩中にTi粒又はTi合金粒を生成させる還元工程と、前記反応容器内又は反応容器外で前記Ti粒又はTi合金粒を溶融塩から分離する分離工程と、前記反応容器外へ抜き出された溶融塩を電気分解してCaを生成させることにより、溶融塩のCa濃度を高める電解工程と、前記電気分解により生成されたCaを単独又は溶融塩と共に前記反応容器内へ導入する戻し工程と、前記分離工程で分離され前記電解工程へ送られる溶融塩を、CaとMgを含む溶融合金に接触させつつ、溶融合金側の電極棒が−極、溶融塩側の電極棒が+極となるようにCaCl2の分解電圧未満の電圧を印加することにより溶融塩中に溶解しているCaを溶融合金に吸収させ、Ca濃度が低下した溶融塩を電解工程へ送るCa回収工程を含むTi又はTi合金の製造方法。 (1) A molten salt containing CaCl 2 and dissolved in Ca is held in a reaction vessel, and a metal chloride containing TiCl 4 is reacted with Ca in the molten salt to cause Ti particles or Ti alloy in the molten salt. A reduction step for generating particles, a separation step for separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside the reaction vessel, and electrolyzing the molten salt extracted outside the reaction vessel. An electrolysis step for increasing the Ca concentration of the molten salt by generating Ca, a return step for introducing Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and the separation step and the separation step. Less than the decomposition voltage of CaCl 2 so that the molten salt sent to the electrolysis process is in contact with a molten alloy containing Ca and Mg, so that the electrode rod on the molten alloy side becomes the negative electrode and the electrode rod on the molten salt side becomes the positive electrode Apply a voltage of Method for producing Ti or Ti alloy of Ca dissolved in the molten salt is taken up in the molten alloy, containing Ca recovery step of sending a molten salt Ca concentration was reduced to electrolysis step by.

(2)CaCl2を含み且つCaが溶解した溶融塩を反応容器内に保持し、その溶融塩中のCaにTiCl4を含む金属塩化物を反応させて前記溶融塩中にTi粒又はTi合金粒を生成させる還元工程と、前記反応容器内又は反応容器外で前記Ti粒又はTi合金粒を溶融塩から分離する分離工程と、前記反応容器外へ抜き出された溶融塩を電気分解してCaを生成させることにより、溶融塩のCa濃度を高める電解工程と、前記電気分解により生成されたCaを単独又は溶融塩と共に前記反応容器内へ導入する戻し工程と、前記分離工程で分離され前記電解工程へ送られる溶融塩を保持するCa除去領域内の溶融塩側の電極板が、この領域と隔てられ、前記還元工程へ送られる溶融塩を保持するCa濃縮領域内の溶融塩側の電極板に対して+極となるようにCaCl2の分解電圧未満の電圧を印加することにより、Caの濃度が低下したCa除去領域内の溶融塩を電解工程へ送り、Caが高濃度化されたCa濃縮領域内の溶融塩を還元工程へ送るCa除去濃縮工程を含むTi又はTi合金の製造方法。 (2) A molten salt containing CaCl 2 and dissolved in Ca is held in a reaction vessel, and a metal chloride containing TiCl 4 is reacted with Ca in the molten salt to cause Ti particles or Ti alloy in the molten salt. A reduction step for generating particles, a separation step for separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside the reaction vessel, and electrolyzing the molten salt extracted outside the reaction vessel. An electrolysis step for increasing the Ca concentration of the molten salt by generating Ca, a return step for introducing Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and the separation step and the separation step. The molten salt side electrode plate in the Ca removal region in the Ca removal region holding the molten salt sent to the electrolysis step is separated from this region, and the molten salt side electrode in the Ca concentration region holding the molten salt sent to the reduction step + Against the plate By applying a voltage lower than the decomposition voltage of CaCl 2 so as to be a pole, the molten salt in the Ca removal region where the Ca concentration is reduced is sent to the electrolysis process, and the Ca concentration in the Ca concentration region where the Ca concentration is increased A method for producing Ti or a Ti alloy including a Ca removal concentration step of sending molten salt to a reduction step.

ここで、「CaCl2を含む溶融塩」とは、溶融CaCl2のみ、又は、溶融CaCl2に、融点の低下、粘性等の調整のためにCaF2等を加えた溶融塩である。以下、単に「溶融塩」、「溶融CaCl2」ともいう。 Here, the “molten salt containing CaCl 2 ” is a molten salt containing only molten CaCl 2 or a molten salt obtained by adding CaF 2 or the like to the molten CaCl 2 in order to lower the melting point or adjust the viscosity. Hereinafter, it is also simply referred to as “molten salt” or “molten CaCl 2 ”.

「TiCl4を含む金属塩化物」とは、TiCl4のみ、又は、TiCl4と、V、Al、Cr等、Tiに合金成分として加えようとする他の金属の塩化物との混合物をいう。他の金属塩化物もTiCl4の還元と同時にCaにより還元されるので、TiCl4を含む金属塩化物を原料として使用することにより、Ti合金の製造ができる。 By "metal chloride containing TiCl 4", only TiCl 4, or, say TiCl 4, V, Al, Cr or the like, a mixture of chlorides of other metals to be added as an alloying element Ti. The other metal chlorides are also reduced by the simultaneous Ca and reduction of TiCl 4, by the use of metal chlorides comprising TiCl 4 as raw materials, can be produced in Ti alloy.

なお、電圧を印加するための電極を、前記のように「−極」、「+極」としたのは、浴塩(ここでは、溶融塩)の電気分解を前提として用いられる「陽極(アノード)」、「陰極(カソード)」との混同を避けるためである。   In addition, the electrode for applying a voltage is set to “−electrode” and “+ electrode” as described above, which is used on the premise of electrolysis of a bath salt (here, molten salt). ) "And" cathode (cathode) "to avoid confusion.

この(1)又は(2)のTi又はTi合金の製造方法において、印加する電圧が3.2V未満であれば(これらの実施の態様を、それぞれ「実施形態1a」、「実施形態1b」という)、印加する電圧を具体的な数値で管理して、CaCl2を分解させることなくCaCl2中に溶解したCaを溶融合金に速やかに吸収させることができる。 In the manufacturing method of Ti or Ti alloy of (1) or (2), if the applied voltage is less than 3.2 V (these embodiments are referred to as “embodiment 1a” and “embodiment 1b”, respectively). ), and manages the voltage applied by the specific numerical values, the Ca dissolved in CaCl 2 without decomposing CaCl 2 can be rapidly absorbed into the molten alloy.

これら(1)又は(2)のTi又はTi合金の製造方法(それぞれ実施形態1a、1bを含む)において、電解工程でCa濃度を高めた溶融塩を、Ca供給源を有する調整槽に導入して溶融塩をCa供給源に接触させることにより溶融塩のCa濃度を一定とした後、還元工程へ送ることとすれば(これらを、それぞれ「実施形態2a」、「実施形態2b」という)、反応容器内へ導入する溶融塩のCa濃度を常に一定の高濃度に維持して還元反応を効率よく進行させることができるので、望ましい。   In these (1) or (2) Ti or Ti alloy production methods (including Embodiments 1a and 1b, respectively), a molten salt whose Ca concentration has been increased in the electrolysis step is introduced into an adjustment tank having a Ca supply source. If the molten salt is brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant and then sent to the reduction step (these are referred to as “embodiment 2a” and “embodiment 2b”, respectively) This is desirable because the Ca concentration of the molten salt introduced into the reaction vessel can always be maintained at a constant high concentration and the reduction reaction can proceed efficiently.

前記の実施形態2aの製造方法において、前記のCa回収工程でCaを吸収してCa濃度が高められた前記溶融合金を、前記調整槽のCa供給源又はその一部として用いることとすれば(これを、「実施形態3」という)、バックリアクションを抑制するために除去したCaを有効に利用することができ、望ましい。   In the manufacturing method of the embodiment 2a, if the molten alloy in which the Ca concentration is increased by absorbing Ca in the Ca recovery step is used as a Ca supply source or a part of the adjustment tank ( This is referred to as “Embodiment 3”, and it is desirable that Ca removed in order to suppress back reaction can be used effectively.

(3)CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を含む金属塩化物を前記Caと反応させてTi粒又はTi合金粒を生成させるための反応容器と、前記溶融塩中に生成されたTi粒又はTi合金粒を溶融塩から分離するための分離手段と、前記Ti粒又はTi合金粒が分離された後の溶融塩を保持し、陽極と陰極を備え、該溶融塩中で電気分解を行って陰極側にCaを生成させるための電解槽と、前記電気分解により生成されたCaを単独又は溶融塩と共に前記反応容器内へ導入する戻し手段と、前記分離手段で分離され前記電解槽へ送られる溶融塩を、CaとMgを含む溶融合金に接触させつつ、溶融合金側の電極棒が−極、溶融塩側の電極棒が+極となるようにCaCl2の分解電圧未満の電圧を印加して溶融塩中に溶解しているCaを溶融合金に吸収させ、Ca濃度が低下した溶融塩を電解槽へ送るCa回収手段とを有するTi又はTi合金の製造装置。 (3) To hold a molten salt containing CaCl 2 and in which Ca is dissolved, and reacting a metal chloride containing TiCl 4 supplied into the molten salt with the Ca to generate Ti grains or Ti alloy grains. Holding the molten salt after the Ti particles or Ti alloy particles are separated, the separation means for separating the Ti particles or Ti alloy particles generated in the molten salt from the molten salt, An electrolytic cell comprising an anode and a cathode, for electrolysis in the molten salt to generate Ca on the cathode side, and Ca produced by the electrolysis alone or together with the molten salt is introduced into the reaction vessel While the molten salt separated by the return means and sent to the electrolytic cell is brought into contact with the molten alloy containing Ca and Mg, the electrode rod on the molten alloy side is negative and the electrode rod on the molten salt side is + electrode and so as to lower than the decomposition voltage of CaCl 2 Voltage is applied to thereby absorb the Ca dissolved in the molten salt in the molten alloy, apparatus for producing Ti or Ti alloy and a Ca recovery means for sending a molten salt Ca concentration was reduced to the electrolytic cell.

(4)CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を含む金属塩化物を前記Caと反応させてTi粒又はTi合金粒を生成させるための反応容器と、前記溶融塩中に生成されたTi粒又はTi合金粒を溶融塩から分離するための分離手段と、前記Ti粒又はTi合金粒が分離された後の溶融塩を保持し、陽極と陰極を備え、該溶融塩中で電気分解を行って陰極側にCaを生成させるための電解槽と、前記電気分解により生成されたCaを単独又は溶融塩と共に前記反応容器内へ導入する戻し手段と、前記分離工程で分離され前記電解工程へ送られる溶融塩を保持するCa除去領域と、この領域と隔てられ、前記還元工程へ送られる溶融塩を保持するCa濃縮領域を有し、Ca濃縮領域内の溶融塩側の電極板に対してCa除去領域内の溶融塩側の電極板が+極となるようにCaCl2の分解電圧未満の電圧を印加することによりCaの濃度が低下したCa除去領域内の溶融塩を電解工程へ送り、Caが高濃度化されたCa濃縮領域内の溶融塩を還元工程へ送るCa除去濃縮装置を有するTi又はTi合金の製造装置。 (4) To hold a molten salt containing CaCl 2 and dissolved in Ca, and reacting a metal chloride containing TiCl 4 supplied into the molten salt with the Ca to generate Ti grains or Ti alloy grains. Holding the molten salt after the Ti particles or Ti alloy particles are separated, the separation means for separating the Ti particles or Ti alloy particles generated in the molten salt from the molten salt, An electrolytic cell comprising an anode and a cathode, for electrolysis in the molten salt to generate Ca on the cathode side, and Ca produced by the electrolysis alone or together with the molten salt is introduced into the reaction vessel A return means, a Ca removal region that holds the molten salt separated in the separation step and sent to the electrolysis step, a Ca concentration region that is separated from this region and holds the molten salt sent to the reduction step, Molten salt in the Ca concentration region Melting in the Ca removal region where the concentration of Ca is reduced by applying a voltage less than the decomposition voltage of CaCl 2 so that the molten salt side electrode plate in the Ca removal region becomes a positive electrode with respect to the electrode plate on the side. An apparatus for producing Ti or a Ti alloy having a Ca removing and concentrating device for sending salt to an electrolysis process and sending molten salt in a Ca concentration region where Ca is concentrated to the reduction process.

これら(3)又は(4)のTi又はTi合金の製造装置が、更に、Ca供給源を備え、前記電解槽内の溶融塩を導入してCa供給源と接触させることにより当該溶融塩のCa濃度を一定とした後、その溶融塩を前記反応容器へ投入するための調整槽を有するものであれば(これらを、それぞれ「実施形態4a」、「実施形態4b」という)、前記実施形態2a、実施形態2bの製造方法の実施に好適に使用できる。   These (3) or (4) Ti or Ti alloy production apparatus further includes a Ca supply source, and introduces the molten salt in the electrolytic cell to bring it into contact with the Ca supply source. If the concentration tank is made constant and an adjustment tank for introducing the molten salt into the reaction vessel is provided (these are referred to as “embodiment 4a” and “embodiment 4b”, respectively), the embodiment 2a , And can be suitably used for carrying out the production method of Embodiment 2b.

また、前記の実施形態4aの製造装置において、前記調整槽のCa供給源又はその一部として、前記Ca回収手段でCa濃度が高められた溶融合金が用いられるものであれば(これを、「実施形態5」という)、前記実施形態3の製造方法の実施に好適である。   Moreover, in the manufacturing apparatus of the said Embodiment 4a, if the molten alloy by which Ca density | concentration was raised by the said Ca collection | recovery means is used as a Ca supply source of the said adjustment tank, or its part (this is " Embodiment 5 ”) is suitable for carrying out the manufacturing method of Embodiment 3.

本発明のTi又はTi合金の製造方法によれば、溶融塩中に溶解しているCaを速やかに除去(回収)し、溶融塩の電気分解時におけるバックリアクションを抑制してCa生成の高効率化を図ることができる。更に、Caを除去(回収)すると同時に、還元工程へ送る溶融塩のCa濃度を高め、Ca生成の高効率化に加え、TiCl4の還元反応の効率化に寄与することができる。 According to the method for producing Ti or Ti alloy of the present invention, Ca dissolved in the molten salt is quickly removed (recovered), and the back reaction at the time of electrolysis of the molten salt is suppressed, and the Ca generation is highly efficient. Can be achieved. Furthermore, at the same time that Ca is removed (recovered), the Ca concentration of the molten salt sent to the reduction step can be increased to contribute to the efficiency of the reduction reaction of TiCl 4 in addition to the increase in the efficiency of Ca generation.

また、Ca供給源を備える調整槽を用いて反応容器に投入する溶融塩のCa濃度の変動を抑制し、且つ高濃度に維持して、TiCl4の還元反応を効率よく行わせることができ、更に、電解工程において大量のCaCl2含有溶融塩を連続処理して、反応容器へのCaの供給速度を増大させることが可能である。 Further, to suppress the fluctuation of Ca concentration of molten salt charged to the reaction vessel using an adjusting tank having a Ca supply source and to maintain a high concentration, it is possible to perform efficiently the reduction reaction of TiCl 4, Furthermore, it is possible to continuously process a large amount of the CaCl 2 -containing molten salt in the electrolysis process to increase the supply rate of Ca to the reaction vessel.

従って、本発明のTi又はTi合金の製造方法によれば、工業的規模で、効率の良い、安定した操業が可能になる。また、この方法は、本発明の製造装置により容易に且つ好適に実施することができる。   Therefore, according to the method for producing Ti or Ti alloy of the present invention, efficient and stable operation is possible on an industrial scale. Moreover, this method can be easily and suitably implemented by the production apparatus of the present invention.

最初に、前記(1)に記載のTi又はTi合金の製造方法、及び(3)に記載の製造装置について、図面を参照して具体的に説明する。なお、説明では、原料としてTiCl4のみを用いた場合について述べる。 First, the Ti or Ti alloy manufacturing method described in (1) and the manufacturing apparatus described in (3) will be specifically described with reference to the drawings. In the description, the case where only TiCl 4 is used as a raw material will be described.

図1は、前記(1)に記載のTi又はTi合金の製造方法を実施する際に用いられる装置の概略構成例を示す図である。   FIG. 1 is a diagram illustrating a schematic configuration example of an apparatus used when the Ti or Ti alloy manufacturing method described in (1) is performed.

図1に示すように、この装置は、CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を前記Caと反応させてTi粒を生成させるための反応容器1と、前記溶融塩中に生成されたTi粒を溶融塩から分離するための分離手段2と、前記Ti粒が分離された後の溶融塩を電気分解して陰極側にCaを生成させるための電解槽3と、電気分解により生成されたCaを前記反応容器1内へ導入する戻し手段4と、前記分離手段で分離され前記電解槽へ送られる溶融塩中に溶解しているCaを除去するためのCa回収手段5とを有している。 As shown in FIG. 1, this apparatus holds a molten salt containing CaCl 2 and dissolved in Ca, and reacts TiCl 4 supplied in the molten salt with the Ca to generate Ti grains. Reaction vessel 1, separation means 2 for separating Ti particles generated in the molten salt from the molten salt, and electrolysis of the molten salt after the Ti particles are separated to generate Ca on the cathode side An electrolytic cell 3 to be dissolved, a return unit 4 for introducing Ca generated by electrolysis into the reaction vessel 1, and a Ca dissolved in a molten salt separated by the separating unit and sent to the electrolytic cell And Ca recovery means 5 for removing.

図1に例示したCa回収手段5はその要部を示したもので、Ca回収槽6に前記分離手段2で分離された溶融塩7が導入され、その上にCaとMgを含む溶融合金(「溶融Mg−Ca合金」、又は単に「溶融合金」ともいう)8が保持されている。溶融塩7に挿入された電極棒9は+極を、溶融Mg−Ca合金8に挿入された電極棒10は−極を構成している。   The Ca recovery means 5 illustrated in FIG. 1 shows the main part thereof, and a molten salt 7 separated by the separation means 2 is introduced into a Ca recovery tank 6, and a molten alloy containing Ca and Mg thereon ( (Molten Mg—Ca alloy) or simply “molten alloy”) 8 is held. The electrode rod 9 inserted into the molten salt 7 constitutes a positive electrode, and the electrode rod 10 inserted into the molten Mg—Ca alloy 8 constitutes a negative electrode.

電解槽3は、CaCl2を含有する溶融塩を保持する一方向に長い配管(円筒)形状の電解槽容器3aと、前記電解槽容器3aの長手方向に沿って当該容器3a内に配置された同じく円筒形状の陽極11、及び円柱状の陰極12を有し、前記電解槽容器3aの長手方向の一方の端部(底盤13)に溶融塩供給口14が設けられ、他方の端部(上蓋15)には溶融塩抜き出し口16が設けられている。陽極11表面と陰極12表面が対向して略垂直方向に配置され、更に、陽極11と陰極12の間に、溶融塩の電解で生成したCaの通過を抑制するための隔膜17が設けられている。また、陽極11の外面には冷却器18が取り付けられている。 The electrolytic cell 3 is disposed in the vessel 3a along a longitudinal direction of the electrolytic cell vessel 3a, which is a pipe (cylindrical) shape that is long in one direction holding a molten salt containing CaCl 2 . Similarly, a cylindrical anode 11 and a columnar cathode 12 are provided, and a molten salt supply port 14 is provided at one end (bottom plate 13) in the longitudinal direction of the electrolytic cell container 3a, and the other end (upper cover). 15) is provided with a molten salt outlet 16. The surface of the anode 11 and the surface of the cathode 12 face each other in a substantially vertical direction, and a diaphragm 17 is provided between the anode 11 and the cathode 12 for suppressing the passage of Ca generated by electrolysis of the molten salt. Yes. A cooler 18 is attached to the outer surface of the anode 11.

また、分離手段2として、図1に示した装置では、デカンター型遠心沈降機(高温デカンター)19及び分離槽20が用いられている。   Further, in the apparatus shown in FIG. 1, a decanter type centrifugal sedimentator (high temperature decanter) 19 and a separation tank 20 are used as the separation means 2.

図1に示した装置を使用して前記(1)に記載のTi又はTi合金の製造方法を実施するには、先ず、電解槽3から戻し手段4を介して供給される溶融塩を、反応容器1内に保持し、その溶融塩中のCaに、TiCl4供給口21から供給したTiCl4を反応させ、前記溶融塩中にTi粒を生成させる。即ち、「還元工程」である。 In order to carry out the method for producing Ti or Ti alloy described in the above (1) using the apparatus shown in FIG. 1, first, the molten salt supplied from the electrolytic cell 3 through the return means 4 is reacted. held in the container 1, the Ca in the molten salt, by reacting TiCl 4 was supplied from the TiCl 4 feed port 21, to produce the Ti particles in the molten salt. That is, the “reduction process”.

この還元工程では、溶融塩は反応容器1内に静止した状態で保持されるのではなく、反応容器1の上方から下方へ徐々に流下しつつ保持され、その間に、原料であるTiCl4が溶融塩中のCaにより還元されてTi粒が生成する。なお、原料としてTiCl4を含む金属塩化物(例えば、V、Al、Cr等の塩化物)を用いた場合は、前述したように、それらの金属塩化物もCaにより還元されるので、TiCl4に予め所定量の金属塩化物を加えておくことによりTi合金粒を生成させ、最終的にTi合金を製造することができる。 In this reduction step, the molten salt is not held in the reaction vessel 1 in a stationary state, but is held while gradually flowing down from the upper side of the reaction vessel 1, while TiCl 4 as a raw material is melted. Ti particles are produced by reduction by Ca in the salt. When metal chlorides containing TiCl 4 (for example, chlorides of V, Al, Cr, etc.) are used as raw materials, these metal chlorides are also reduced by Ca as described above, so TiCl 4 Ti alloy grains can be produced by adding a predetermined amount of metal chloride in advance to finally produce a Ti alloy.

前記還元工程で生成したTi粒は、「分離工程」で溶融塩から分離される。   Ti particles generated in the reduction step are separated from the molten salt in a “separation step”.

Ti粒の溶融塩からの分離は、適切な反応容器を用いることによって反応容器内でも行うことができるが、その場合はバッチ方式となる。従って、生産性を高めるためには、例えば、前記図1に示した型式の反応容器を用いてCaが溶解した溶融塩を連続的に供給し、生成するTi粒を反応容器外へ抜き取って容器外で溶融塩からの分離を行うのがよい。   Separation of the Ti particles from the molten salt can be performed in the reaction vessel by using an appropriate reaction vessel, but in that case, a batch system is used. Therefore, in order to increase the productivity, for example, a molten salt in which Ca is dissolved is continuously supplied using the reaction vessel of the type shown in FIG. 1, and the generated Ti particles are extracted out of the reaction vessel. Separation from the molten salt is preferably performed outside.

分離工程では、図1に示した装置による場合、最初、高温デカンター19でTi粒を溶融塩から分離回収し、次いで分離槽20でTi粒に付着している溶融塩を除去する。   In the separation step, when the apparatus shown in FIG. 1 is used, first, the Ti particles are separated and recovered from the molten salt by the high-temperature decanter 19, and then the molten salt adhering to the Ti particles is removed by the separation tank 20.

デカンター型遠心沈降機は回転円筒を高速回転させることにより懸濁物質を遠心沈降させるタイプの遠心分離機で、高速処理が可能で、かつ高い脱水性能を有している。高温処理が可能なタイプのものも開発されており、この分離工程で高温デカンター19として適用することが可能である。   The decanter type centrifugal settling machine is a type of centrifugal separator in which suspended substances are centrifuged by rotating a rotating cylinder at a high speed, which enables high speed processing and high dehydration performance. A type capable of high temperature treatment has also been developed, and can be applied as a high temperature decanter 19 in this separation step.

高温デカンター19から抜き出されたTi粒は、分離槽20でプラズマトーチ22から照射されるプラズマにより加熱溶融され、鋳型23に流し込まれ、Tiインゴット24となる。   The Ti particles extracted from the high-temperature decanter 19 are heated and melted by the plasma irradiated from the plasma torch 22 in the separation tank 20, poured into the mold 23, and become a Ti ingot 24.

一方、Ti粒から分離された溶融塩(これを、「付着溶融塩」という)には、Tiの微粒子が混入している恐れがある。そのため、この付着溶融塩を電解工程へ戻すと問題が生じる可能性があるので、図1に示すように、反応容器1内へ戻すのが望ましい。加えて、付着溶融塩にはCaがある程度残存しているため、Caの有効活用の面からも反応容器1内へ戻すことが合理的である。   On the other hand, there is a possibility that fine particles of Ti are mixed in the molten salt separated from the Ti particles (this is referred to as “adhesive molten salt”). For this reason, there is a possibility that a problem may occur when the adhering molten salt is returned to the electrolysis process. Therefore, as shown in FIG. In addition, since Ca remains in the adhering molten salt to some extent, it is reasonable to return it to the reaction vessel 1 from the viewpoint of effective utilization of Ca.

前記高温デカンター19で分離されたCa濃度の低下した溶融塩は、「Ca回収工程」へ送られる。即ち、前記溶融塩をCa回収槽6に導入し、溶融Mg−Ca合金8に接触させつつ、溶融合金側の電極棒が−極、溶融塩側の電極棒が+極となるように電圧を印加する。このときの印加電圧は、CaCl2の分解電圧未満とする。これによって、CaCl2を分解させずに、CaCl2に溶解しているCaを速やかに溶融合金に吸収させ、Ca濃度が低下した溶融塩を迅速に電解工程へ送ることが可能となる。溶融塩中のCa濃度が低下しているので、バックリアクションは抑制される。 The molten salt having a reduced Ca concentration separated by the high temperature decanter 19 is sent to the “Ca recovery step”. That is, while the molten salt is introduced into the Ca recovery tank 6 and brought into contact with the molten Mg—Ca alloy 8, the voltage is set so that the electrode rod on the molten alloy side becomes the negative electrode and the electrode rod on the molten salt side becomes the positive electrode. Apply. The applied voltage at this time is less than the decomposition voltage of CaCl 2 . Thus, without disassembling the CaCl 2, to absorb the Ca dissolved in CaCl 2 promptly molten alloy, Ca concentration becomes possible to send to the rapid electrolysis step the molten salt decreased. Since the Ca concentration in the molten salt is reduced, back reaction is suppressed.

前記の電圧を印加するための電極としては、−極は鉄等の金属、+極は黒鉛電極等の不溶性電極を用いるのがよい。   As an electrode for applying the voltage, it is preferable to use a metal such as iron for the negative electrode and an insoluble electrode such as a graphite electrode for the positive electrode.

図2は、本発明者らの実験による検討結果で、前記の溶融合金及び溶融塩の間に印加する電圧と両極間に流れる電流との関係を模式的に示す図である。(a)はCaCl2にCaが含まれていない場合(Ca添加前)、(b)は含まれている場合(Ca添加後)である。 FIG. 2 is a diagram schematically showing the relationship between the voltage applied between the molten alloy and the molten salt and the current flowing between the two electrodes, as a result of examination by the inventors. (A) is a case where Ca is not contained in CaCl 2 (before addition of Ca), and (b) is a case where Ca is contained (after addition of Ca).

図示するように、Caが含まれていない場合は、印加電圧を上げていっても電流は流れない(図2(a)参照)。しかし、Caを添加すると、僅かの電圧を加えただけで微小の電流が流れ始め、印加電圧がCaCl2の分解電圧Vb(3.2V)の近傍に達するまでほぼ一定の電流(これを、「限界電流」という)が流れる。更に電圧を上げていくと、CaCl2が電気分解されるため電流値は急激に増大する(図2(b))。 As shown in the figure, when Ca is not included, no current flows even when the applied voltage is increased (see FIG. 2A). However, when Ca is added, a minute current starts to flow even if a slight voltage is applied, and a substantially constant current (this is expressed as “a” which is applied until the applied voltage reaches near the decomposition voltage Vb (3.2 V) of CaCl 2. Current)). When the voltage is further increased, the current value increases rapidly because CaCl 2 is electrolyzed (FIG. 2B).

前記の限界電流は、Caが溶融塩側(+極側)から溶融合金側(−極側)へ移行する(つまり、CaCl2に溶解しているCaが溶融合金により吸収される)ことによるもので、その大きさはCaCl2に溶解しているCaの濃度に依存し、Ca濃度が低下するほど限界電流は小さくなる。 The limit current is due to the transition of Ca from the molten salt side (+ pole side) to the molten alloy side (− pole side) (that is, Ca dissolved in CaCl 2 is absorbed by the molten alloy). The magnitude depends on the concentration of Ca dissolved in CaCl 2 , and the limit current decreases as the Ca concentration decreases.

本発明者らの検討結果によると、限界電流密度が0.14A/cm2のとき、Ca濃度は0.01質量%程度であった。 According to the examination results of the present inventors, when the limiting current density was 0.14 A / cm 2 , the Ca concentration was about 0.01% by mass.

前述のように、限界電流は溶融塩のCa濃度が低下するほど小さくなるので、Ca濃度を迅速に低下させ、Caの除去(回収)効率を高めためには、Ca回収槽を大型化して溶融塩7と溶融Mg−Ca合金8の接触面積を大きくすることが望ましい。   As described above, the limit current decreases as the Ca concentration of the molten salt decreases, so in order to rapidly decrease the Ca concentration and increase the Ca removal (recovery) efficiency, the Ca recovery tank is enlarged and melted. It is desirable to increase the contact area between the salt 7 and the molten Mg—Ca alloy 8.

前記の実施形態1aの製造方法は、前記(1)に記載の本発明のTi又はTi合金の製造方法において、『印加する電圧を3.2V未満(つまり、CaCl2の分解電圧よりも低い電圧)』としてCaを除去する方法である。印加電圧を具体的な数値で管理し、CaCl2を分解させることなく、溶融塩側の電極棒と溶融合金側の電極棒の間に電位差を与えてCaを溶融合金へ速やかに吸収させることができる。印加電圧は僅かであってもCaの除去効果があるので、その下限は限定しない。しかし、効果的にCaを除去するためには、印加電圧を0.01V以上とすることが望ましい。 The manufacturing method of the embodiment 1a is the same as the manufacturing method of the Ti or Ti alloy of the present invention described in the above (1), wherein “the applied voltage is less than 3.2 V (that is, a voltage lower than the decomposition voltage of CaCl 2 ). )] Is a method of removing Ca. The applied voltage is managed with specific numerical values, and without causing decomposition of CaCl 2 , a potential difference is applied between the molten salt side electrode rod and the molten alloy side electrode rod to quickly absorb Ca into the molten alloy. it can. Even if the applied voltage is small, there is an effect of removing Ca, so the lower limit is not limited. However, in order to effectively remove Ca, it is desirable that the applied voltage be 0.01 V or more.

Ca回収工程でCa濃度が低下した溶融塩は「電解工程」へ送られ、電気分解されてCaが生成され、溶融塩のCa濃度が高められる。   The molten salt in which the Ca concentration is reduced in the Ca recovery step is sent to the “electrolysis step”, electrolyzed to generate Ca, and the Ca concentration of the molten salt is increased.

即ち、図1に示すように、先ず、溶融塩を電解槽3の陰極12と隔膜17の間に投入し、保持する。電解槽3は一方向に長い形状(図示した例では、垂直方向に細長い配管(円筒)形状)を有しているので、溶融塩を電解槽3の一端から陽極11と陰極12の間に連続的または断続的に供給することにより、陰極12表面近傍の溶融塩に一方向の流速を与え、溶融塩を陰極12表面近傍で一方向に流すことが可能となる。溶融塩の供給は、通常は連続的に行うが、後工程等との関係で、断続的に、つまり溶融塩の供給を一次停止したり、再度続けたりしてもよい。   That is, as shown in FIG. 1, first, molten salt is put between the cathode 12 and the diaphragm 17 of the electrolytic cell 3 and held. Since the electrolytic cell 3 has a shape that is long in one direction (in the illustrated example, a vertically elongated pipe (cylindrical shape)), the molten salt is continuously provided between the anode 11 and the cathode 12 from one end of the electrolytic cell 3. By supplying periodically or intermittently, a flow rate in one direction is given to the molten salt near the surface of the cathode 12, and the molten salt can flow in one direction near the surface of the cathode 12. Although the supply of the molten salt is normally performed continuously, the supply of the molten salt may be intermittently stopped, that is, the supply of the molten salt may be temporarily stopped or continued again.

続いて、溶融塩を電気分解する。溶融塩を陰極12表面近傍で一方向に流しつつ電気分解して陰極表面でCaを生成させるのであるが、電解槽3は一方向に長い形状を有しており、更に、図1に示した例では、電解電圧を低く抑えるために陽極11と陰極12間の距離を比較的狭くしているので、Ca濃度が低い溶融塩供給口14付近の溶融塩と電解によりCa濃度が高まった溶融塩抜き出し口16付近の溶融塩との混合を防止して、Caが濃化した溶融塩のみを効果的に抜き出すことができる。   Subsequently, the molten salt is electrolyzed. The molten salt is electrolyzed while flowing in the vicinity of the surface of the cathode 12 to generate Ca on the surface of the cathode. The electrolytic cell 3 has a long shape in one direction, and is further shown in FIG. In the example, since the distance between the anode 11 and the cathode 12 is made relatively small in order to keep the electrolysis voltage low, the molten salt in the vicinity of the molten salt supply port 14 with a low Ca concentration and the molten salt with an increased Ca concentration by electrolysis are used. Mixing with the molten salt in the vicinity of the extraction port 16 can be prevented, and only the molten salt enriched with Ca can be effectively extracted.

なお、図1に例示した電解槽では、CaCl2を電解槽3の下方から槽3内に供給し、上方から抜き出す方式を採っているが、逆に、電解槽3の上方から供給し、下方から抜き出す方式を採用することも可能である。 In addition, in the electrolytic cell illustrated in FIG. 1, CaCl 2 is supplied into the tank 3 from below the electrolytic cell 3 and extracted from above, but conversely, it is supplied from above the electrolytic cell 3 and below. It is also possible to adopt a method of extracting from the.

この方法で用いる電解槽では、陽極表面及び陰極表面が対向して略垂直方向に配置されており、一方、陰極表面近傍の溶融塩には一方向の流速が与えられているので、その溶融塩の流れ方向は縦方向であり、陽極側で発生する塩素ガスは容易に浮上するので回収しやすい。   In the electrolytic cell used in this method, the anode surface and the cathode surface face each other in a substantially vertical direction, while the molten salt in the vicinity of the cathode surface is given a flow rate in one direction. The flow direction is vertical, and the chlorine gas generated on the anode side floats easily and is easy to recover.

この電解槽を用いて溶融塩の電気分解を実施するに際しては、大量の溶融塩を連続して処理するので、電解槽では抜熱を効果的に行うことが望ましい。具体的には、例えば、陰極の中心部に冷却器を設置して、反応熱を陰極内部から抜熱することが望ましい。冷却器としては、例えばチューブ状の熱交換器が好適である。   When electrolyzing the molten salt using this electrolytic cell, a large amount of molten salt is continuously processed, so it is desirable to effectively remove heat in the electrolytic cell. Specifically, for example, it is desirable to install a cooler in the center of the cathode and extract the reaction heat from the inside of the cathode. As the cooler, for example, a tubular heat exchanger is suitable.

陽極側にも冷却器(熱交換器)を設置すると抜熱効率は更に高くなる。前記図1に示した電解槽において、陽極11を取り巻くように設置した冷却器18はこの例である。   If a cooler (heat exchanger) is also installed on the anode side, the heat removal efficiency is further increased. In the electrolytic cell shown in FIG. 1, the cooler 18 installed so as to surround the anode 11 is this example.

電解工程で電気分解により生成されたCaは、単独又は溶融塩と共に「戻し工程」を経て前記反応容器内へ導入される。   Ca produced by electrolysis in the electrolysis step is introduced into the reaction vessel alone or together with the molten salt through a “returning step”.

図1に示した装置を用いる場合は、電解槽でCa濃度が高められた溶融塩が得られるので、Caは溶融塩と共に戻し工程を経て反応容器内へ導入される。   When the apparatus shown in FIG. 1 is used, a molten salt with an increased Ca concentration is obtained in the electrolytic cell, so Ca is introduced into the reaction vessel through a returning step together with the molten salt.

しかし、溶融塩を電気分解して生成させるCaをそのまま、つまり、Ca単独で(但し、Caに極僅かの溶融塩が混在した状態を含む)回収することができる構成を備えた電解槽を用いれば、前記(1)のTi又はTi合金の製造方法において、電気分解により生成されたCaを溶融塩に溶解させて反応容器内へ導入する実施形態を採ることが可能である。即ち、戻し工程で、Caの移送媒体として溶融塩を利用せずに、生成させたCaをそのまま反応容器の近傍まで移送し、そこで別に準備した溶融塩に溶解させ、反応容器内へ導入する方式で、移送に要するコストの低減が期待できる。   However, an electrolytic cell having a configuration capable of recovering Ca generated by electrolyzing the molten salt as it is, that is, including Ca alone (including a state where a very small amount of molten salt is mixed in Ca) is used. For example, in the method for producing Ti or Ti alloy of (1), it is possible to adopt an embodiment in which Ca generated by electrolysis is dissolved in a molten salt and introduced into a reaction vessel. That is, in the returning step, without using molten salt as a Ca transfer medium, the generated Ca is transferred as it is to the vicinity of the reaction vessel, and is then dissolved in a separately prepared molten salt and introduced into the reaction vessel. Therefore, reduction of the cost required for transfer can be expected.

更に、生成させたCaをそのまま反応容器内に投入してTiCl4と反応させることが可能な反応容器を使用すれば、Caを単独で反応容器内へ導入する実施形態を採用することも可能である。 Furthermore, if a reaction vessel capable of allowing the produced Ca to enter the reaction vessel as it is and reacting with TiCl 4 is used, an embodiment in which Ca is introduced into the reaction vessel alone can be employed. is there.

図3は、前記(1)に記載のTi又はTi合金の製造方法における実施形態2a又は実施形態3の方法を実施する際に用いられる装置の概略構成例を示す図である。   FIG. 3 is a diagram illustrating a schematic configuration example of an apparatus used when performing the method of Embodiment 2a or Embodiment 3 in the method of manufacturing Ti or Ti alloy described in (1).

この装置は、前記図1に示した装置において、更に、電解槽3内の溶融塩を導入してCa供給源と接触させることにより該溶融塩のCa濃度を一定とした後、その溶融塩を前記反応容器1へ投入するための調整槽25が設けられている装置である。   In this apparatus shown in FIG. 1, the molten salt in the electrolytic cell 3 is further introduced and brought into contact with a Ca supply source to make the Ca concentration of the molten salt constant. It is an apparatus provided with an adjustment tank 25 for charging into the reaction vessel 1.

実施形態2aの製造方法は、前述した(1)に記載の本発明のTi又はTi合金の製造方法(実施形態1aを含む)において、『電解工程でCa濃度を高めた溶融塩を、Ca供給源を有する調整槽に導入して溶融塩をCa供給源に接触させることにより溶融塩のCa濃度を一定とした後、還元工程へ送る』方法である。   The manufacturing method of Embodiment 2a is the same as the manufacturing method of Ti or Ti alloy according to the present invention described in (1) (including Embodiment 1a). The molten salt is introduced into an adjustment tank having a source and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant and then sent to the reduction step.

前記図3に示した装置を使用すれば、電解槽3から抜き出されたCaが濃化した溶融塩を調整槽25に導入してCa供給源26と接触させることにより該溶融塩27のCa濃度を一定とした後、反応容器1内へ投入することができる。即ち、戻し工程に調整槽25での処理を組み込んだ方法である。   If the apparatus shown in FIG. 3 is used, the molten salt enriched in Ca extracted from the electrolytic cell 3 is introduced into the adjusting tank 25 and brought into contact with the Ca supply source 26, whereby the Ca of the molten salt 27 is obtained. After making the concentration constant, the reaction vessel 1 can be charged. That is, it is a method in which the processing in the adjustment tank 25 is incorporated in the return process.

電解工程でCaが濃化された溶融塩のCa濃度は、電解槽3での電解条件の若干の変動に伴い変動する。そのため、電解槽3で電解処理を施した溶融塩を直接反応容器1に投入すると、Ca濃度が必ずしも常時一定には維持されないので、前述したように、低級塩化チタンの生成、バックリアクションによる電流効率の低下などが生じることがあり、また、TiCl4の還元反応の効率を低下させ、安定した操業ができにくくなる場合がある。 The Ca concentration of the molten salt in which Ca is concentrated in the electrolysis process varies with slight variations in the electrolysis conditions in the electrolytic cell 3. For this reason, when the molten salt subjected to the electrolytic treatment in the electrolytic cell 3 is directly charged into the reaction vessel 1, the Ca concentration is not always kept constant. Therefore, as described above, the current efficiency due to the generation of lower titanium chloride and the back reaction. May occur, and the efficiency of the reduction reaction of TiCl 4 may be reduced, making it difficult to perform stable operation.

そこで、前記電解工程で電解槽3を用いてCa濃度を高めた溶融塩を、Ca供給源26を有する調整槽25に導入して該Ca供給源26に接触させることにより前記溶融塩のCa濃度を一定とした後、還元工程でTiCl4の還元に用いるのである。 Therefore, by introducing the molten salt whose Ca concentration is increased using the electrolytic cell 3 in the electrolysis step into the adjustment tank 25 having the Ca supply source 26 and bringing it into contact with the Ca supply source 26, the Ca concentration of the molten salt Then, it is used for the reduction of TiCl 4 in the reduction step.

なお、分離槽20でTi粒から分離された付着溶融塩は、流量が電解槽3から調整槽25を経て反応容器1へ導入される溶融塩の流量と比較して極僅かであるため、前述したように、直接反応容器1内へ戻してもよい。しかし、図3に示すように、一旦調整槽25に導入してCa濃度を一定にした後に反応容器1へ導入するのが望ましい。   In addition, since the adhesion molten salt separated from the Ti particles in the separation tank 20 is very small compared to the flow rate of the molten salt introduced from the electrolytic tank 3 to the reaction vessel 1 through the adjustment tank 25, the above-mentioned As described above, the reaction vessel 1 may be directly returned. However, as shown in FIG. 3, it is desirable to introduce the reaction vessel 1 after introducing it into the adjustment tank 25 to make the Ca concentration constant.

Ca供給源26としては、溶融金属Caや、溶融Mg−Ca合金のようなCaを比較的高い含有率で含む溶融合金を使用することができる。   As the Ca supply source 26, a molten alloy containing a relatively high content of Ca such as molten metal Ca or molten Mg-Ca alloy can be used.

即ち、前記のCa濃度が高められ、調整槽25に導入された溶融塩27の上に溶融金属Ca又は溶融Mg−Ca合金等を浮遊させ、これらCa供給源26と溶融塩27とを接触させておく。これにより、溶融塩27のCa濃度がその飽和溶解度未満であれば、Ca供給源26からCaが溶融塩27へ供給されて、Ca濃度を飽和溶解度近傍の濃度に維持することができる。また、溶融塩27のCa濃度がその飽和溶解度であって、析出した金属Caも混在している場合は、調整槽25内で比重差により金属Caが浮上分離し、Ca濃度を飽和溶解度近傍の濃度に保つことができる。更に、調整槽25から抜き出す際の溶融塩27の温度を一定に制御すれば、Ca濃度をその温度における飽和溶解度近傍の一定濃度に制御することが可能となる。   That is, the Ca concentration is increased, and molten metal Ca or molten Mg—Ca alloy or the like is suspended on the molten salt 27 introduced into the adjustment tank 25, and the Ca supply source 26 and the molten salt 27 are brought into contact with each other. Keep it. Thereby, if the Ca concentration of the molten salt 27 is less than its saturation solubility, Ca can be supplied from the Ca supply source 26 to the molten salt 27 and the Ca concentration can be maintained at a concentration near the saturation solubility. Further, when the Ca concentration of the molten salt 27 is the saturation solubility and the precipitated metal Ca is also present, the metal Ca floats and separates due to the specific gravity difference in the adjustment tank 25, and the Ca concentration is near the saturation solubility. The concentration can be kept. Furthermore, if the temperature of the molten salt 27 at the time of extracting from the adjustment tank 25 is controlled to be constant, the Ca concentration can be controlled to a constant concentration near the saturation solubility at that temperature.

従って、電解槽3でCaが濃化した溶融塩のCa濃度が飽和溶解度であるか、それ未満であるかを問わず、調整槽25を設置してそれに電解槽3から抜き出された溶融塩を導入することにより、Ca濃度をその飽和溶解度近傍の一定濃度とした溶融塩を反応容器1に投入し、TiCl4の還元反応を効率よく行わせ、安定した操業をすることができる。 Therefore, regardless of whether the Ca concentration of the molten salt in which Ca is concentrated in the electrolytic cell 3 is the saturation solubility or less, the molten salt extracted from the electrolytic cell 3 by installing the adjusting tank 25. By introducing the molten salt, a molten salt having a Ca concentration in the vicinity of its saturation solubility is charged into the reaction vessel 1 so that the reduction reaction of TiCl 4 can be performed efficiently and stable operation can be performed.

但し、電解槽3でCa濃度が飽和溶解度を超えるまで電解すると、電解槽3の内部で金属Caが析出し、電解槽の閉塞などのトラブルの原因となるおそれがある。従って、電解槽3でCa濃度を高める際には、飽和溶解度を超えず、その直前までCa濃度を高めるように制御しつつ電解し、Caが高濃度ではあるが飽和溶解度未満の溶融塩を調整槽25に導入してCa供給源26に接触させ、Ca濃度を飽和溶解度近傍の一定濃度とするような操業を行うことが望ましい。   However, if electrolysis is performed in the electrolytic cell 3 until the Ca concentration exceeds the saturation solubility, the metallic Ca is deposited inside the electrolytic cell 3 and may cause troubles such as blockage of the electrolytic cell. Therefore, when increasing the Ca concentration in the electrolytic cell 3, electrolysis is performed while controlling to increase the Ca concentration until immediately before the saturation solubility, and a molten salt having a high concentration of Ca but less than the saturation solubility is adjusted. It is desirable to perform an operation that is introduced into the tank 25 and brought into contact with the Ca supply source 26 so that the Ca concentration is a constant concentration in the vicinity of the saturation solubility.

前記の実施形態3の製造方法は、前記実施形態2aの方法で使用する調整槽のCa供給源を規定する方法で、『Ca回収工程でCaを吸収してCa濃度が高められた溶融合金を、調整槽のCa供給源又はその一部として用いる』方法である。   The manufacturing method of the third embodiment is a method of defining the Ca supply source of the adjustment tank used in the method of the second embodiment, and “a molten alloy in which the Ca concentration is increased by absorbing Ca in the Ca recovery step. , Used as a Ca supply source of the adjustment tank or a part thereof.

即ち、前記図3に示すように、Ca回収工程(Ca回収手段5)でCaを吸収してCa濃度が高められた溶融合金8を、調整槽25へ移送し、Ca供給源26として用いる。前記Ca供給源26の全部をCa回収工程から移送した溶融合金としてもよいし、量的に少ない場合は、Ca供給源26の一部に用いてもよい。いずれにしても、高温デカンター19で分離され、電解工程へ送られる溶融塩から、バックリアクションを抑制するために除去したCaを有効に利用することができる。   That is, as shown in FIG. 3, the molten alloy 8 in which the Ca concentration is increased by absorbing Ca in the Ca recovery step (Ca recovery means 5) is transferred to the adjustment tank 25 and used as the Ca supply source 26. The whole of the Ca supply source 26 may be a molten alloy transferred from the Ca recovery process, or may be used as a part of the Ca supply source 26 when the amount is small. In any case, the Ca removed from the molten salt separated by the high-temperature decanter 19 and sent to the electrolysis process to suppress back reaction can be used effectively.

なお、これら実施形態2a及び実施形態3の製造方法においても、前述した電気分解により生成されたCaを溶融塩に溶解させて反応容器内へ導入する実施形態や、Caを単独で反応容器内へ導入する実施形態を採ることができる。   In the production methods of Embodiment 2a and Embodiment 3 as well, an embodiment in which Ca generated by the above-described electrolysis is dissolved in a molten salt and introduced into the reaction vessel, or Ca alone is introduced into the reaction vessel. The embodiment to introduce can be taken.

前記(3)に記載のTi又はTi合金の製造装置は、前述した(1)に記載のTi又はTi合金の製造方法を実施する際に用いられる装置で、その概略の構成は前記図1に示したとおりである。各部の作用も前述のとおりで、この装置を用いれば、前記(1)に記載のTi又はTi合金の製造方法(実施形態1aを含む)を好適に実施することができる。   The Ti or Ti alloy manufacturing apparatus described in (3) is an apparatus used when the Ti or Ti alloy manufacturing method described in (1) is performed, and the schematic configuration thereof is shown in FIG. As shown. The operation of each part is also as described above, and if this apparatus is used, the Ti or Ti alloy manufacturing method (including Embodiment 1a) described in (1) above can be suitably implemented.

前記の実施形態4a及び実施形態5の製造装置は、前記(3)に記載の製造装置の他の実施形態で、図3に示すように、戻し工程に調整槽を備えた装置である。この装置は、前述のとおり、実施形態2a、実施形態3に係るTi又はTi合金の製造方法の実施に好適である。   The manufacturing apparatus of the said Embodiment 4a and Embodiment 5 is another embodiment of the manufacturing apparatus as described in said (3), and is an apparatus provided with the adjustment tank in the return process, as shown in FIG. As described above, this apparatus is suitable for carrying out the Ti or Ti alloy manufacturing method according to Embodiments 2a and 3.

次に、前記(2)に記載のTi又はTi合金の製造方法、及び(4)に記載の製造装置について説明する。なお、ここでも、原料としてTiCl4のみを用いた場合について述べる。 Next, the Ti or Ti alloy manufacturing method described in (2) and the manufacturing apparatus described in (4) will be described. Here, the case where only TiCl 4 is used as a raw material will be described.

図4は、前記(2)に記載のTi又はTi合金の製造方法を実施する際に用いられる装置の概略構成を示す図である。   FIG. 4 is a diagram showing a schematic configuration of an apparatus used when the Ti or Ti alloy manufacturing method described in (2) is performed.

この装置は、前記図1に示した装置において、Ca回収手段に替えてCa除去濃縮装置を設置し、それに伴い溶融塩の移送経路を変更した装置である。   This apparatus is an apparatus in which a Ca removal and concentration apparatus is installed in place of the Ca recovery means in the apparatus shown in FIG. 1, and the transfer path of the molten salt is changed accordingly.

即ち、図4に示すように、CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を前記Caと反応させてTi粒を生成させるための反応容器1と、前記溶融塩中に生成されたTi粒を溶融塩から分離するための分離手段2と、前記Ti粒が分離された後の溶融塩を電気分解して陰極側にCaを生成させるための電解槽3と、電気分解により生成されたCaを前記反応容器1内へ導入する戻し手段4と、分離手段(高温デカンター)で分離され前記電解槽3へ送られる溶融塩中に溶解しているCaを除去すると同時に、分離手段(分離槽)で分離され前記反応容器1へ導入される溶融塩中に溶解しているCaを高濃度化するためのCa除去濃縮装置28とを有している。 That is, as shown in FIG. 4, a reaction vessel for holding a molten salt containing CaCl 2 and dissolving Ca and reacting TiCl 4 supplied into the molten salt with the Ca to produce Ti particles. 1, separation means 2 for separating Ti particles generated in the molten salt from the molten salt, and electrolysis of the molten salt after the Ti particles are separated to generate Ca on the cathode side The electrolytic cell 3, the return means 4 for introducing Ca generated by electrolysis into the reaction vessel 1, and the molten salt separated by the separating means (high temperature decanter) and sent to the electrolytic cell 3 And a Ca removing and concentrating device 28 for increasing the concentration of Ca dissolved in the molten salt separated by a separating means (separating tank) and introduced into the reaction vessel 1 at the same time. Yes.

前記のCa除去濃縮装置28はその要部を示したもので、Ca除去濃縮槽28aを有し、この槽28a内には、溶融CaCl2が隔壁31によりCa濃縮領域29とCa除去領域30に隔てられた状態で保持され、その上に、Ca濃縮領域29及びCa除去領域30に保持された溶融塩と接触した状態で溶融Mg−Ca合金32が保持されている。 The Ca removal / concentration device 28 is shown in its main part, and has a Ca removal / concentration tank 28a. In this tank 28a, molten CaCl 2 is divided into a Ca concentration area 29 and a Ca removal area 30 by a partition wall 31. The molten Mg—Ca alloy 32 is held in contact with the molten salt held in the Ca concentration region 29 and the Ca removal region 30.

更に、前記Ca除去領域30の底部には、CaCl2の分解電圧未満の電圧を印加するための電極板33がCa濃縮領域29内の溶融塩側の電極板34に対して+極となるように設けられている。なお、図示した例では、Ca濃縮領域29とCa除去領域30が隔壁31により隔てられているが、必ずしもこれに限定されない。例えば、個々に取り外し可能な別々の槽により両領域を隔てることとしてもよい。 Furthermore, an electrode plate 33 for applying a voltage lower than the decomposition voltage of CaCl 2 is a positive electrode at the bottom of the Ca removal region 30 with respect to the molten salt side electrode plate 34 in the Ca concentration region 29. Is provided. In the illustrated example, the Ca enrichment region 29 and the Ca removal region 30 are separated by the partition wall 31, but are not necessarily limited thereto. For example, both regions may be separated by separate tanks that can be individually removed.

図4に示した装置を使用して前記(2)に記載のTi又はTi合金の製造方法を実施するに際し、「還元工程」、「分離工程」、「電解工程」及び「戻し工程」における操作は、基本的には前記図1に示した装置を使用して前記(1)に記載の製造方法を実施する場合と同じである。原料としてTiCl4を含む金属塩化物を用いれば、最終的にはTi合金を製造することができることに関しても同様である。 When performing the manufacturing method of Ti or Ti alloy according to (2) using the apparatus shown in FIG. 4, operations in the “reduction process”, “separation process”, “electrolysis process”, and “return process” Is basically the same as the case where the manufacturing method described in (1) above is carried out using the apparatus shown in FIG. The same applies to the fact that if a metal chloride containing TiCl 4 is used as a raw material, a Ti alloy can be finally produced.

前記図1に示した装置を使用する場合と異なるのは、分離工程でTi粒から分離された溶融塩の移送先と、そこでの処理である。即ち、前記高温デカンター19で分離されたCa濃度の低下した溶融塩は、図4に示すように、経路Laを経てCa除去濃縮装置28に設けられているCa除去濃縮槽28aのCa除去領域30へ送られ、一方、分離槽22でTi粒から分離された付着溶融塩は、経路Lbを経てCa除去濃縮槽28aのCa濃縮領域29へ送られる。   What is different from the case of using the apparatus shown in FIG. 1 is the destination of the molten salt separated from the Ti grains in the separation step and the treatment there. That is, as shown in FIG. 4, the molten salt having a reduced Ca concentration separated by the high temperature decanter 19 passes through the route La, and the Ca removal region 30 of the Ca removal concentration tank 28a provided in the Ca removal concentration tank 28 is provided. On the other hand, the adhering molten salt separated from the Ti grains in the separation tank 22 is sent to the Ca concentration region 29 of the Ca removal concentration tank 28a via the path Lb.

ここでは、前記Ca除去領域30内の溶融塩側に設けられた電極板33がCa濃縮領域29内の溶融塩側に設けられた電極板34に対して+極となるように、電極板33及び電極板34を介してCaCl2の分解電圧未満の電圧を印加する。 Here, the electrode plate 33 is arranged so that the electrode plate 33 provided on the molten salt side in the Ca removal region 30 becomes a positive electrode with respect to the electrode plate 34 provided on the molten salt side in the Ca concentration region 29. A voltage lower than the decomposition voltage of CaCl 2 is applied through the electrode plate 34.

この電圧の印加により、Ca除去領域30内の溶融塩との接触部近傍に存在する溶融Mg−Ca合金32はCa除去領域30内の溶融塩側(+極側)に対して相対的には−極として機能するので、溶解しているCaは、図4のCa除去濃縮槽28a内に矢印を付して示したように、溶融Mg−Ca合金32側へ移行し、吸収される。その結果、Ca除去領域30内の溶解Caが除去され、Mg−Ca合金32のCa濃度が高くなる。   By applying this voltage, the molten Mg—Ca alloy 32 existing in the vicinity of the contact portion with the molten salt in the Ca removal region 30 is relatively in relation to the molten salt side (+ polar side) in the Ca removal region 30. -Since it functions as a pole, dissolved Ca moves to the molten Mg-Ca alloy 32 side and is absorbed as indicated by an arrow in the Ca removal and concentration tank 28a of FIG. As a result, the dissolved Ca in the Ca removal region 30 is removed, and the Ca concentration of the Mg—Ca alloy 32 increases.

一方、Ca濃縮領域29内の溶融塩との接触部近傍の溶融Mg−Ca合金32はCa濃縮領域29内の溶融塩側(−極側)に対して相対的には+極として機能する。従って、溶融Mg−Ca合金32のCaはCa濃縮領域29内の溶融塩側へ移行し、Ca濃縮領域29内のCa濃度が高くなる。   On the other hand, the molten Mg—Ca alloy 32 in the vicinity of the contact portion with the molten salt in the Ca concentrated region 29 functions as a positive electrode relative to the molten salt side (−polar side) in the Ca concentrated region 29. Therefore, Ca in the molten Mg—Ca alloy 32 moves to the molten salt side in the Ca concentrated region 29 and the Ca concentration in the Ca concentrated region 29 increases.

このように、Ca除去濃縮槽28a内の電極板33にCaCl2の分解電圧未満の電圧を印加することによって、Ca除去領域30内の溶解Caを除去すると同時に、Ca濃縮領域29内の溶解Caの濃度を高めることができる。しかも、図4に示した要部構成を有するCa除去濃縮装置28を用いれば、この同時処理を、形状、構成のいずれに関しても極めて簡素な装置を用いて容易に実施することができる。 Thus, by applying a voltage lower than the decomposition voltage of CaCl 2 to the electrode plate 33 in the Ca removal and concentration tank 28a, the dissolved Ca in the Ca removal region 30 is removed and at the same time, the dissolved Ca in the Ca concentration region 29 is removed. The concentration of can be increased. In addition, if the Ca removing and concentrating device 28 having the main configuration shown in FIG. 4 is used, this simultaneous processing can be easily performed using a very simple device with respect to any shape and configuration.

前記印加する電圧をCaCl2の分解電圧未満とするのは、CaCl2の分解によるCaの生成を回避するためである。 The reason why the applied voltage is less than the decomposition voltage of CaCl 2 is to avoid the generation of Ca due to decomposition of CaCl 2 .

前記の電圧を印加するための電極としては、前述したCa回収槽6(図1、図3)に取り付ける電極棒の場合と同様に、−極は鉄等の金属、+極は黒鉛電極等の不溶性電極を用いるのがよい。   As the electrode for applying the voltage, as in the case of the electrode rod attached to the Ca recovery tank 6 (FIGS. 1 and 3) described above, the negative electrode is a metal such as iron, and the positive electrode is a graphite electrode or the like. It is preferable to use an insoluble electrode.

Ca除去濃縮装置28では、このようにしてCaの除去と濃縮処理が行われ、Ca除去領域30内の溶融塩に溶解しているCaは除去され、Ca濃縮領域29内の溶融塩のCa濃度が上昇する。   In the Ca removal and concentration device 28, the Ca removal and concentration process is performed in this manner, Ca dissolved in the molten salt in the Ca removal region 30 is removed, and the Ca concentration of the molten salt in the Ca concentration region 29 is removed. Rises.

なお、経路Laと経路Lbの間に設けられている経路Lcは、Ca除去領域30内の溶融塩とCa濃縮領域29内の溶融塩の量的バランスをとるための経路である。即ち、高温デカンター19で分離された溶融塩の量は分離槽22で分離された付着溶融塩の量に比べて圧倒的に多いので、経路Laと経路LbによるのみではCa除去領域30内の溶融塩量とCa濃縮領域29内の溶融塩量のバランスがとれず、Ca除去濃縮装置1でCaの除去及び濃縮処理を連続的に行うことができない。そのため、高温デカンター19で分離された溶融塩の一部を経路Lcを通してCa濃縮領域29へ送り、前記処理を連続的に行うのである。   The path Lc provided between the path La and the path Lb is a path for achieving a quantitative balance between the molten salt in the Ca removal region 30 and the molten salt in the Ca concentration region 29. That is, the amount of the molten salt separated by the high-temperature decanter 19 is overwhelmingly larger than the amount of the adhered molten salt separated by the separation tank 22, so that the melting in the Ca removal region 30 is performed only by the route La and the route Lb. The balance between the amount of salt and the amount of molten salt in the Ca concentration region 29 cannot be achieved, and the Ca removal and concentration apparatus 1 cannot continuously perform the removal and concentration of Ca. Therefore, a part of the molten salt separated by the high temperature decanter 19 is sent to the Ca concentration region 29 through the path Lc, and the process is continuously performed.

Ca除去濃縮装置1でCaが除去された溶融塩は「電解工程」へ送られるが、Caが除去されているので、溶融塩中のCaと電気分解により生成した塩素が反応するいわゆるバックリアクションが抑制され、電気分解によるCaの生成を効率よく行わせることができる。   The molten salt from which Ca has been removed by the Ca removing and concentrating device 1 is sent to the “electrolysis step”. However, since Ca has been removed, so-called back reaction occurs in which Ca in the molten salt reacts with chlorine generated by electrolysis. It is suppressed and Ca can be generated efficiently by electrolysis.

また、Ca濃縮領域29内の溶融塩は還元工程へ戻されるが、付着溶融塩に残存しているCaは高濃度化され、Ca濃度が高められているので、TiCl4の還元反応の効率アップに有効である。 In addition, the molten salt in the Ca concentration region 29 is returned to the reduction process, but the Ca remaining in the adhered molten salt is increased in concentration and the Ca concentration is increased, so that the efficiency of the TiCl 4 reduction reaction is increased. It is effective for.

電解工程で電気分解により生成されたCaは、単独又は溶融塩と共に「戻し工程」を経て前記反応容器内へ導入される。   Ca produced by electrolysis in the electrolysis step is introduced into the reaction vessel alone or together with the molten salt through a “returning step”.

前記の実施形態1bの製造方法は、前記(2)に記載のTi又はTi合金の製造方法において、Ca除去濃縮装置1で、『印加する電圧を3.2V未満(つまり、CaCl2の分解電圧よりも低い電圧)』としてCa除去領域30内の溶解Caを除去すると同時に、Ca濃縮領域29内の溶解Caの濃度を高める方法である。実施形態1aの製造方法の場合と同様に、印加電圧の下限は限定しない。しかし、効果的にCaを除去するためには、印加電圧を0.01V以上とすることが望ましい。 The manufacturing method of the embodiment 1b is the same as the manufacturing method of Ti or Ti alloy described in (2), except that the applied voltage is less than 3.2 V (that is, the decomposition voltage of CaCl 2 ). This is a method of increasing the concentration of dissolved Ca in the Ca enriched region 29 at the same time as removing dissolved Ca in the Ca removed region 30. As in the case of the manufacturing method of Embodiment 1a, the lower limit of the applied voltage is not limited. However, in order to effectively remove Ca, it is desirable that the applied voltage be 0.01 V or more.

図5は、前記(2)に記載のTi又はTi合金の製造方法における実施形態2bの方法を実施する際に用いられる装置の概略構成例を示す図である。   FIG. 5 is a diagram showing a schematic configuration example of an apparatus used when performing the method of Embodiment 2b in the method of manufacturing Ti or Ti alloy described in (2).

この装置は、前記図4に示した装置において、更に、電解槽3内の溶融塩を導入してCa供給源と接触させることにより該溶融塩のCa濃度を一定とした後、その溶融塩を前記反応容器1へ投入するための調整槽25が設けられている装置である。   In this apparatus shown in FIG. 4, the molten salt in the electrolytic cell 3 is further introduced and brought into contact with a Ca supply source to make the Ca concentration of the molten salt constant. It is an apparatus provided with an adjustment tank 25 for charging into the reaction vessel 1.

実施形態2bの製造方法は、前述した(2)に記載のTi又はTi合金の製造方法(実施形態1bを含む)において、『電解工程でCa濃度を高めた溶融塩を、Ca供給源を有する調整槽に導入して溶融塩をCa供給源に接触させることにより溶融塩のCa濃度を一定とした後、還元工程へ送る』方法である。   The manufacturing method of Embodiment 2b is the same as the manufacturing method of Ti or Ti alloy described in (2) (including Embodiment 1b), “The molten salt having a Ca concentration increased in the electrolysis step has a Ca supply source. This is a method in which the molten salt is brought into contact with a Ca supply source after being introduced into a regulating tank, and the Ca concentration of the molten salt is made constant and then sent to the reduction step.

この実施形態2bの製造方法は、実施形態2aの製造方法について図3を参照して説明したように、図5に示した装置を使用することによって容易に実施することができる。   The manufacturing method of Embodiment 2b can be easily implemented by using the apparatus shown in FIG. 5 as described with reference to FIG. 3 for the manufacturing method of Embodiment 2a.

なお、前記(2)に記載のTi又はTi合金の製造方法(実施形態1bを含む)及び実施形態2bの製造方法においても、前述した(1)に記載の製造方法の場合と同様に、電気分解により生成されたCaを溶融塩に溶解させて反応容器内へ導入する実施形態や、Caを単独で反応容器内へ導入する実施形態を採ることができる。   In addition, in the manufacturing method of Ti or Ti alloy described in (2) (including Embodiment 1b) and the manufacturing method of Embodiment 2b, as in the case of the manufacturing method described in (1) above, An embodiment in which Ca produced by decomposition is dissolved in a molten salt and introduced into the reaction vessel, or an embodiment in which Ca is introduced alone into the reaction vessel can be employed.

前記(4)に記載のTi又はTi合金の製造装置は、前述した(2)に記載のTi又はTi合金の製造方法を実施する際に用いられる装置で、その概略の構成、各部の作用は前記図4に示したとおりである。この装置を用いれば、前記(2)に記載のTi又はTi合金の製造方法(実施形態1bを含む)を好適に実施することができる。   The Ti or Ti alloy production apparatus described in (4) above is an apparatus used when the Ti or Ti alloy production method described in (2) above is carried out. This is as shown in FIG. If this apparatus is used, the manufacturing method (including Embodiment 1b) of Ti or Ti alloy described in the above (2) can be suitably carried out.

前記の実施形態4bの製造装置は、(4)に記載の製造装置の他の実施形態で、図5に示すように、戻し工程に調整槽を備えた装置である。この装置は、前述のとおり、実施形態2bに係るTi又はTi合金の製造方法の実施に好適である。   The manufacturing apparatus of the embodiment 4b is another embodiment of the manufacturing apparatus described in (4), and includes an adjustment tank in the return process as shown in FIG. As described above, this apparatus is suitable for implementing the Ti or Ti alloy manufacturing method according to Embodiment 2b.

以上説明したTi又はTi合金の製造方法(実施形態1a、1b、2a、2b及び3を含む)を実施するに際し、塩化工程を付加し、生成されるTiCl4を原料として反応容器内でのTiの生成反応に使用する実施形態を採ることができる。 When the Ti or Ti alloy production method described above (including Embodiments 1a, 1b, 2a, 2b and 3) is carried out, a chlorination step is added, and TiCl 4 produced in the reaction vessel is used as a raw material. The embodiment used for the production reaction of can be taken.

即ち、前述した電解工程では、溶融塩の電気分解に伴って陽極側に塩素(Cl2)が副生するが、このCl2は酸化チタン(TiO2)と反応してTiCl4を生成するので、前記(1)又は(2)のTi又はTi合金の製造方法において、溶融塩の電気分解に伴って陽極側に生成するCl2をチタン鉱石に反応させてTiCl4を生成させ、蒸留精製後、このTiCl4を原料として使用する。Ti合金を製造する場合には、前記塩化工程で、TiO2と、Tiに合金成分として加えようとする金属の酸化物との混合物に前記陽極側に生成するCl2を反応させてTiCl4を含む金属塩化物を生成させ、これを原料として用いればよい。 That is, in the electrolysis process described above, chlorine (Cl 2 ) is by-produced on the anode side as the molten salt is electrolyzed, but this Cl 2 reacts with titanium oxide (TiO 2 ) to produce TiCl 4 . , (1) or in the method for producing Ti or Ti alloy (2), the Cl 2 to generate the anode side with the electrolysis of the molten salt by reacting a titaniferous ore to produce a TiCl 4, after purification by distillation This TiCl 4 is used as a raw material. When manufacturing a Ti alloy, in the chlorination step, and TiO 2, and a Cl 2 to generate the anode side to a mixture of oxides of the metal to be added as an alloying element reacted Ti to TiCl 4 What is necessary is just to produce | generate the metal chloride containing and use this as a raw material.

このような実施形態を採用すれば、溶融塩の電気分解に伴って副生するCl2を有効に利用し、製造プロセスにおいて、Cl2の循環使用が可能である。 By adopting such an embodiment, by effectively utilizing the Cl 2 formed as a by-product with the electrolysis of the molten salt, in the manufacturing process, it is possible to circulate the use of Cl 2.

本発明のTi又はTi合金の製造方法によれば、電解槽へ送られる溶融塩中に溶解しているCaを速やかに除去(回収)し、溶融塩の電気分解時におけるCa生成の高効率化を図ることができる。また、Caを除去(回収)すると同時に反応容器へ送られる溶融塩のCa濃度を高め、前記Ca生成の高効率化に加え、TiCl4の還元反応の効率化に寄与することができ、調整槽を用いれば、反応容器に投入する溶融塩のCa濃度の変動を抑制し、高濃度に維持することができる。更に、電解工程において大量のCaCl2含有溶融塩を連続処理して、反応容器へのCaの供給速度を増大させることができ、これにより、溶融塩の電気分解時におけるCa生成、TiCl4の還元を効率よく行わせ、工業的規模での安定した操業が可能となる。 According to the manufacturing method of Ti or Ti alloy of the present invention, Ca dissolved in the molten salt sent to the electrolytic cell is quickly removed (recovered), and Ca generation at the time of electrolysis of the molten salt is improved. Can be achieved. Moreover, the Ca concentration of the molten salt sent to the reaction vessel is increased simultaneously with the removal (recovery) of Ca, and in addition to the high efficiency of the Ca generation, it can contribute to the efficiency of the TiCl 4 reduction reaction, Can suppress the fluctuation | variation of Ca density | concentration of molten salt thrown into reaction container, and can maintain it at high concentration. Furthermore, it is possible to continuously process a large amount of CaCl 2 -containing molten salt in the electrolysis process to increase the supply rate of Ca to the reaction vessel, thereby generating Ca during electrolysis of the molten salt and reducing TiCl 4 . Can be performed efficiently, and stable operation on an industrial scale becomes possible.

従って、本発明のTi又はTi合金の製造方法、及びこの方法を容易に且つ好適に実施することができる本発明の製造装置は、Ca還元によるTi又はTi合金の製造に有効に利用することができる。   Therefore, the manufacturing method of Ti or Ti alloy of the present invention and the manufacturing apparatus of the present invention capable of easily and suitably carrying out this method can be effectively used for manufacturing Ti or Ti alloy by Ca reduction. it can.

本発明のTi又はTi合金の製造装置の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the manufacturing apparatus of Ti or Ti alloy of this invention. 本発明で使用するCa回収槽の溶融合金及び溶融塩の間に印加する電圧とそのとき両極間に流れる電流との関係を模式的に示す図である。It is a figure which shows typically the relationship between the voltage applied between the molten alloy and molten salt of the Ca collection | recovery tank used by this invention, and the electric current which flows between both poles then. 本発明のTi又はTi合金の製造装置の他の概略構成例を示す図である。It is a figure which shows the other schematic structural example of the manufacturing apparatus of Ti or Ti alloy of this invention. 本発明のTi又はTi合金の製造装置の更に他の概略構成例を示す図である。It is a figure which shows the further another schematic structural example of the manufacturing apparatus of Ti or Ti alloy of this invention. 本発明のTi又はTi合金の製造装置の更に他の概略構成例を示す図である。It is a figure which shows the further another schematic structural example of the manufacturing apparatus of Ti or Ti alloy of this invention.

符号の説明Explanation of symbols

1:反応容器
2:分離手段
3:電解槽
3a:電解槽容器
4:戻し手段
5:Ca回収手段
6:Ca回収槽
7:溶融塩
8:CaとMgを含む溶融合金(溶融Mg−Ca合金)
9、10:電極棒
11:陽極
12:陰極
13:底盤
14:溶融塩供給口
15:上蓋
16:溶融塩抜き出し口
17:隔膜
18:冷却器
19:デカンター型遠心沈降機(高温デカンター)
20:分離槽
21:TiCl4供給口
22:プラズマトーチ
23:鋳型
24:Tiインゴット
25:調整槽
26:Ca供給源
27:溶融塩
28:Ca除去濃縮装置
28a:Ca除去濃縮槽
29:Ca濃縮領域
30:Ca除去領域
31:隔壁
32:溶融Mg−Ca合金
33、34:電極板
DESCRIPTION OF SYMBOLS 1: Reaction container 2: Separation means 3: Electrolysis tank 3a: Electrolysis tank container 4: Return means 5: Ca collection means 6: Ca collection tank 7: Molten salt 8: Molten alloy containing Ca and Mg (molten Mg-Ca alloy) )
9, 10: electrode rod 11: anode 12: cathode
13: Bottom plate 14: Molten salt supply port 15: Upper lid 16: Molten salt outlet
17: Diaphragm 18: Cooler 19: Decanter type centrifugal sedimentator (high temperature decanter)
20: Separation tank 21: TiCl 4 supply port 22: Plasma torch 23: Mold 24: Ti ingot 25: Adjustment tank 26: Ca supply source 27: Molten salt 28: Ca removal concentration apparatus 28a: Ca removal concentration tank 29: Ca concentration Region 30: Ca removal region 31: Partition 32: Molten Mg-Ca alloy 33, 34: Electrode plate

Claims (9)

CaCl2を含み且つCaが溶解した溶融塩を反応容器内に保持し、その溶融塩中のCaにTiCl4を含む金属塩化物を反応させて前記溶融塩中にTi粒又はTi合金粒を生成させる還元工程と、前記反応容器内又は反応容器外で前記Ti粒又はTi合金粒を溶融塩から分離する分離工程と、前記反応容器外へ抜き出された溶融塩を電気分解してCaを生成させることにより、溶融塩のCa濃度を高める電解工程と、前記電気分解により生成されたCaを単独又は溶融塩と共に前記反応容器内へ導入する戻し工程と、前記分離工程で分離され前記電解工程へ送られる溶融塩を、CaとMgを含む溶融合金に接触させつつ、溶融合金側の電極棒が−極、溶融塩側の電極棒が+極となるようにCaCl2の分解電圧未満の電圧を印加することにより溶融塩中に溶解しているCaを溶融合金に吸収させ、Ca濃度が低下した溶融塩を電解工程へ送るCa回収工程を含むことを特徴とするTi又はTi合金の製造方法。 A molten salt containing CaCl 2 and dissolved in Ca is held in a reaction vessel, and a metal chloride containing TiCl 4 is reacted with Ca in the molten salt to produce Ti grains or Ti alloy grains in the molten salt. Reducing step, separating step of separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside of the reaction vessel, and electrolyzing the molten salt drawn out of the reaction vessel to produce Ca By performing an electrolysis step for increasing the Ca concentration of the molten salt, a return step for introducing Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and the separation step to the electrolysis step. While the molten salt to be fed is brought into contact with a molten alloy containing Ca and Mg, a voltage lower than the decomposition voltage of CaCl 2 is applied so that the electrode rod on the molten alloy side becomes the negative electrode and the electrode rod on the molten salt side becomes the positive electrode. By applying The Ca dissolved in the molten salt is taken up in the molten alloy, a manufacturing method of the Ti or Ti alloy, characterized in that it comprises a Ca recovery step of sending a molten salt Ca concentration was reduced to electrolysis step. CaCl2を含み且つCaが溶解した溶融塩を反応容器内に保持し、その溶融塩中のCaにTiCl4を含む金属塩化物を反応させて前記溶融塩中にTi粒又はTi合金粒を生成させる還元工程と、前記反応容器内又は反応容器外で前記Ti粒又はTi合金粒を溶融塩から分離する分離工程と、前記反応容器外へ抜き出された溶融塩を電気分解してCaを生成させることにより、溶融塩のCa濃度を高める電解工程と、前記電気分解により生成されたCaを単独又は溶融塩と共に前記反応容器内へ導入する戻し工程と、前記分離工程で分離され前記電解工程へ送られる溶融塩を保持するCa除去領域内の溶融塩側の電極板が、この領域と隔てられ、前記還元工程へ送られる溶融塩を保持するCa濃縮領域内の溶融塩側の電極板に対して+極となるようにCaCl2の分解電圧未満の電圧を印加することにより、Caの濃度が低下したCa除去領域内の溶融塩を電解工程へ送り、Caが高濃度化されたCa濃縮領域内の溶融塩を還元工程へ送るCa除去濃縮工程を含むことを特徴とするTi又はTi合金の製造方法。 A molten salt containing CaCl 2 and dissolved in Ca is held in a reaction vessel, and a metal chloride containing TiCl 4 is reacted with Ca in the molten salt to produce Ti grains or Ti alloy grains in the molten salt. Reducing step, separating step of separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside of the reaction vessel, and electrolyzing the molten salt drawn out of the reaction vessel to produce Ca By performing an electrolysis step for increasing the Ca concentration of the molten salt, a return step for introducing Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and the separation step to the electrolysis step. The molten salt side electrode plate in the Ca removal region holding the molten salt to be sent is separated from this region, and the molten salt side electrode plate in the Ca concentration region holding the molten salt sent to the reduction step + Thus, by applying a voltage lower than the decomposition voltage of CaCl 2 , the molten salt in the Ca removal region where the Ca concentration is reduced is sent to the electrolysis process, and the molten salt in the Ca concentration region where the Ca concentration is increased. The manufacturing method of Ti or Ti alloy characterized by including the Ca removal concentration process which sends A to a reduction process. 印加する電圧が3.2V未満であることを特徴とする請求項1又は2に記載のTi又はTi合金の製造方法。   The method for producing Ti or a Ti alloy according to claim 1 or 2, wherein the applied voltage is less than 3.2V. 前記電解工程でCa濃度を高めた溶融塩を、Ca供給源を有する調整槽に導入して溶融塩をCa供給源に接触させることにより溶融塩のCa濃度を一定とした後、還元工程へ送ることを特徴とする請求項1〜3のいずれかに記載のTi又はTi合金の製造方法。   The molten salt whose Ca concentration has been increased in the electrolysis step is introduced into an adjustment tank having a Ca supply source, and the molten salt is brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then sent to the reduction step. The manufacturing method of Ti or Ti alloy in any one of Claims 1-3 characterized by the above-mentioned. 前記Ca回収工程でCaを吸収してCa濃度が高められた前記溶融合金を、Ca供給源を備え、前記電解槽内の溶融塩を導入してCa供給源と接触させることにより該溶融塩のCa濃度を一定とした後、その溶融塩を前記反応容器へ投入するための調整槽のCa供給源又はその一部として用いることを特徴とする請求項1に記載のTi又はTi合金の製造方法。   The molten alloy in which the Ca concentration is increased by absorbing Ca in the Ca recovery step is provided with a Ca supply source, and the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source. 2. The method for producing Ti or Ti alloy according to claim 1, wherein the molten salt is used as a Ca supply source or a part thereof in an adjustment tank for charging the molten salt into the reaction vessel after the Ca concentration is constant. . CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を含む金属塩化物を前記Caと反応させてTi粒又はTi合金粒を生成させるための反応容器と、前記溶融塩中に生成されたTi粒又はTi合金粒を溶融塩から分離するための分離手段と、前記Ti粒又はTi合金粒が分離された後の溶融塩を保持し、陽極と陰極を備え、該溶融塩中で電気分解を行って陰極側にCaを生成させるための電解槽と、前記電気分解により生成されたCaを単独又は溶融塩と共に前記反応容器内へ導入する戻し手段と、前記分離手段で分離され前記電解槽へ送られる溶融塩を、CaとMgを含む溶融合金に接触させつつ、溶融合金側の電極棒が−極、溶融塩側の電極棒が+極となるようにCaCl2の分解電圧未満の電圧を印加して溶融塩中に溶解しているCaを溶融合金に吸収させ、Ca濃度が低下した溶融塩を電解槽へ送るCa回収手段とを有することを特徴とするTi又はTi合金の製造装置。 A reaction vessel for holding a molten salt containing CaCl 2 and dissolving Ca, and reacting a metal chloride containing TiCl 4 supplied into the molten salt with the Ca to produce Ti particles or Ti alloy particles Separating means for separating the Ti particles or Ti alloy particles generated in the molten salt from the molten salt; and holding the molten salt after the Ti particles or Ti alloy particles are separated; An electrolytic cell for performing electrolysis in the molten salt to generate Ca on the cathode side, and a return means for introducing Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel While the molten salt separated by the separating means and sent to the electrolytic cell is brought into contact with a molten alloy containing Ca and Mg, the electrode rod on the molten alloy side becomes the negative electrode, and the electrode rod on the molten salt side becomes the positive electrode. CaCl 2 decomposition voltage lower than the voltage so Applying the Ca dissolved in the molten salt is taken into the molten alloy, apparatus for producing Ti or Ti alloy and having a Ca recovery means for sending a molten salt Ca concentration was reduced to the electrolytic cell. CaCl2を含み且つCaが溶解した溶融塩を保持し、前記溶融塩中に供給されるTiCl4を含む金属塩化物を前記Caと反応させてTi粒又はTi合金粒を生成させるための反応容器と、前記溶融塩中に生成されたTi粒又はTi合金粒を溶融塩から分離するための分離手段と、前記Ti粒又はTi合金粒が分離された後の溶融塩を保持し、陽極と陰極を備え、該溶融塩中で電気分解を行って陰極側にCaを生成させるための電解槽と、前記電気分解により生成されたCaを単独又は溶融塩と共に前記反応容器内へ導入する戻し手段と、前記分離工程で分離され前記電解工程へ送られる溶融塩を保持するCa除去領域と、この領域と隔てられ、前記還元工程へ送られる溶融塩を保持するCa濃縮領域を有し、Ca濃縮領域内の溶融塩側の電極板に対してCa除去領域内の溶融塩側の電極板が+極となるようにCaCl2の分解電圧未満の電圧を印加することによりCaの濃度が低下したCa除去領域内の溶融塩を電解工程へ送り、Caが高濃度化されたCa濃縮領域内の溶融塩を還元工程へ送るCa除去濃縮装置を有することを特徴とするTi又はTi合金の製造装置。 A reaction vessel for holding a molten salt containing CaCl 2 and dissolving Ca, and reacting a metal chloride containing TiCl 4 supplied into the molten salt with the Ca to produce Ti particles or Ti alloy particles Separating means for separating the Ti particles or Ti alloy particles generated in the molten salt from the molten salt; and holding the molten salt after the Ti particles or Ti alloy particles are separated; An electrolytic cell for performing electrolysis in the molten salt to generate Ca on the cathode side, and a return means for introducing Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel A Ca removal region that holds the molten salt separated in the separation step and sent to the electrolysis step, and a Ca concentration region that is separated from this region and holds the molten salt sent to the reduction step, and is a Ca concentration region Electricity on the molten salt side The molten salt in the Ca removal region having a reduced Ca concentration by applying a voltage lower than the decomposition voltage of CaCl 2 so that the electrode plate on the molten salt side in the Ca removal region becomes a positive electrode with respect to the electrode plate. An apparatus for producing Ti or a Ti alloy, characterized in that it has a Ca removal and concentration apparatus that sends the molten salt in the Ca concentration region where Ca is concentrated to the reduction process. 更に、Ca供給源を備え、前記電解槽内の溶融塩を導入してCa供給源と接触させることにより該溶融塩のCa濃度を一定とした後、その溶融塩を前記反応容器へ投入するための調整槽を有することを特徴とする請求項6又は7に記載のTi又はTi合金の製造装置。   Further, a Ca supply source is provided, and the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then the molten salt is charged into the reaction vessel. An apparatus for producing Ti or a Ti alloy according to claim 6 or 7, characterized in that said adjustment tank is provided. 更に、Ca供給源を備え、前記電解槽内の溶融塩を導入してCa供給源と接触させることにより該溶融塩のCa濃度を一定とした後、その溶融塩を前記反応容器へ投入するための調整槽を有し、前記調整槽のCa供給源又はその一部として、前記Ca回収手段でCa濃度が高められた前記溶融合金が用いられることを特徴とする請求項6に記載のTi又はTi合金の製造装置。
Further, a Ca supply source is provided, and the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then the molten salt is charged into the reaction vessel. The molten alloy having a Ca concentration increased by the Ca recovery means is used as a Ca supply source or a part thereof in the adjustment tank. Ti alloy production equipment.
JP2006065838A 2006-03-10 2006-03-10 Manufacturing method and apparatus for Ti or Ti alloy Expired - Fee Related JP4510769B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2006065838A JP4510769B2 (en) 2006-03-10 2006-03-10 Manufacturing method and apparatus for Ti or Ti alloy
PCT/JP2007/054633 WO2007105616A1 (en) 2006-03-10 2007-03-09 METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE
US12/224,843 US20090114546A1 (en) 2006-03-10 2007-03-09 Method for Removing/Concentrating Metal-Fog-Forming Metal Present in Molten Salt, Apparatus Thereof, and Process and Apparatus for Producing Ti or Ti Alloy by use of them
CNA2007800085741A CN101400829A (en) 2006-03-10 2007-03-09 Method of removing/concentrating metal-fog-forming metal present in molten salt, apparatus therefor, and process and apparatus for producing ti or ti alloy with these
AU2007225815A AU2007225815A1 (en) 2006-03-10 2007-03-09 Method of removing/concentrating metal-fog-forming metal present in molten salt, apparatus therefor, and process and apparatus for producing Ti or Ti alloy by use of them
EA200870343A EA200870343A1 (en) 2006-03-10 2007-03-09 METHOD OF REMOVAL / CONCENTRATION OF METAL FORMING METAL MIST IN A SALT MELAY, A DEVICE FOR ITS IMPLEMENTATION, AND A PROCESS AND DEVICE FOR THE PRODUCTION OF Ti OR Ti-GO ALLOY WITH THEIR APPLICATION
CA002645103A CA2645103A1 (en) 2006-03-10 2007-03-09 Method of removing/concentrating metal-fog-forming metal present in molten salt, apparatus therefor, and process and apparatus for producing ti or ti alloy by use of them
EP07738118A EP1995353A1 (en) 2006-03-10 2007-03-09 METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY BY USE OF THEM
NO20083515A NO20083515L (en) 2006-03-10 2008-08-13 Process for removing / concentrating metal roofing metal present in salt melt, apparatus therefor, and process and apparatus for preparing Ti alloy using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065838A JP4510769B2 (en) 2006-03-10 2006-03-10 Manufacturing method and apparatus for Ti or Ti alloy

Publications (2)

Publication Number Publication Date
JP2007239065A JP2007239065A (en) 2007-09-20
JP4510769B2 true JP4510769B2 (en) 2010-07-28

Family

ID=38584886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065838A Expired - Fee Related JP4510769B2 (en) 2006-03-10 2006-03-10 Manufacturing method and apparatus for Ti or Ti alloy

Country Status (2)

Country Link
JP (1) JP4510769B2 (en)
CN (1) CN101400829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546964A (en) * 2018-05-29 2018-09-18 钢研晟华科技股份有限公司 A kind of preparation facilities and preparation method of Titanium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290433B (en) * 2013-06-26 2016-01-20 石嘴山市天和铁合金有限公司 Device and the technique thereof of pure titanium are prepared in a kind of pair of electrolyzer fused salt electrolysis
CN105220182B (en) * 2015-10-29 2017-10-31 攀钢集团攀枝花钢铁研究院有限公司 A kind of method for preparing porous titanium valve
CN113430578B (en) * 2021-07-15 2022-10-04 浙江睿曦绿业新材料科技有限公司 Sodium and lithium removing device and method for aluminum electrolysis electrolyte
CN114672850B (en) * 2022-05-07 2023-08-29 华北理工大学 Method for preparing metallic titanium by separating titanium-aluminum alloy through molten salt electrolytic deoxidation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133196A (en) * 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133196A (en) * 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546964A (en) * 2018-05-29 2018-09-18 钢研晟华科技股份有限公司 A kind of preparation facilities and preparation method of Titanium
CN108546964B (en) * 2018-05-29 2019-12-24 钢研晟华科技股份有限公司 Preparation device and preparation method of metallic titanium

Also Published As

Publication number Publication date
JP2007239065A (en) 2007-09-20
CN101400829A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
TW201042089A (en) Primary production of elements
JP4510769B2 (en) Manufacturing method and apparatus for Ti or Ti alloy
EP1724376A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION
EP1942210A1 (en) METHOD FOR ELECTROLYSIS OF MOLTEN SALT, ELECTROLYTIC CELL, AND PROCESS FOR PRODUCING Ti USING SAID METHOD
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
US2864749A (en) Process for the production of titanium metal
JP2008190024A (en) Method for producing titanium sponge
WO2007105616A1 (en) METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE
JP2005264320A (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
JP2004052003A (en) Method and apparatus for producing niobium powder or tantalum powder
JP2009019250A (en) Method and apparatus for producing metal
WO2009150961A2 (en) Metal manufacturing method
JPH10176296A (en) Electrolytic formation of neodymium without being companied with perfluorocarbon compound in waste gas
US2831802A (en) Production of subdivided metals
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
JP2008308738A (en) METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY
WO2005035806A1 (en) METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP2007239073A (en) Method for removing and concentrating metal-fog-forming metal in molten salt, and apparatus therefor
Murphy et al. Recovery of Lead from Galena by a Leach Electrolysis Procedure
JP5829843B2 (en) Polycrystalline silicon manufacturing method and reduction / electrolysis furnace used in polycrystalline silicon manufacturing method
EP1876248A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS
JP4227113B2 (en) Pull-up electrolysis method
JP4249685B2 (en) Method for producing Ti by Ca reduction
JP2005133196A (en) METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees