JP2010195342A - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP2010195342A
JP2010195342A JP2009045285A JP2009045285A JP2010195342A JP 2010195342 A JP2010195342 A JP 2010195342A JP 2009045285 A JP2009045285 A JP 2009045285A JP 2009045285 A JP2009045285 A JP 2009045285A JP 2010195342 A JP2010195342 A JP 2010195342A
Authority
JP
Japan
Prior art keywords
current
correction coefficient
value
multiplying
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009045285A
Other languages
English (en)
Other versions
JP5265413B2 (ja
Inventor
Hideyuki Murakami
秀幸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009045285A priority Critical patent/JP5265413B2/ja
Application filed by Showa Corp filed Critical Showa Corp
Priority to EP11185402A priority patent/EP2409898B1/en
Priority to EP11185401.4A priority patent/EP2409897B1/en
Priority to AT09170991T priority patent/ATE535431T1/de
Priority to EP09170991A priority patent/EP2221235B1/en
Priority to US12/565,271 priority patent/US8260500B2/en
Publication of JP2010195342A publication Critical patent/JP2010195342A/ja
Priority to US13/561,246 priority patent/US20120290176A1/en
Priority to US13/561,239 priority patent/US8818636B2/en
Application granted granted Critical
Publication of JP5265413B2 publication Critical patent/JP5265413B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】システムの安定性に影響を与えることなく実電流の応答性を向上させることができる技術を提供する。
【解決手段】電動モータ110へ実際に供給される実電流を検出するモータ電流検出部33と、電動モータ110への目標電流を設定する目標電流算出部20と、目標電流算出部20が設定した目標電流とモータ電流検出部33が検出した実電流との電流偏差に対して比例ゲインを乗算する比例動作を行うと共に補正係数αを乗算することにより比例動作の効果を高める比例制御部42と、電流偏差の積分値に対して積分ゲインを乗算する積分制御部43と、モータ電流検出部33が検出した実電流に対して補正係数αから1を減算した値に比例ゲインを乗算した値を乗算する乗算部50と、比例制御部42、積分制御部43、乗算部50からの出力値を加算して電動モータ110への指令値を出力する加算部44とを備える。
【選択図】図4

Description

本発明は、電動パワーステアリング装置に関する。
近年、車両のステアリング系に電動モータを備え、電動モータの動力にてドライバの操舵力をアシストする電動パワーステアリング装置が提案されている。
この電動パワーステアリング装置は、制御装置にて制御される。制御装置は、電動モータの駆動を制御するために、先ず、操舵トルクや車速などに応じて電動モータに供給する目標電流を設定する。そして、設定した目標電流と実際に電動モータに流れる実電流とを一致させるべく、目標電流と実電流との偏差がゼロになるように、フィードバック制御を行う。
例えば、特許文献1に記載の電動パワーステアリング装置においては、目標電流と実電流との電流偏差に対して比例ゲインKpを乗算する比例動作と、電流偏差を積分することにより得られる積分値に対して積分ゲインKiを乗算する積分動作とを行う。
特開2001−315657号公報
ここで、目標電流と実電流との電流偏差に基づいてフィードバック制御を行うシステムの特性は、目標電流に対する実電流の伝達関数の特性で定まる。例えば、伝達関数の分母でシステムの安定性が定まり、伝達関数の分子で実電流の応答性が定まる。そして、比例ゲインKpと積分ゲインKiとを用いてフィードバック制御を行うシステムにおいては、比例ゲインKpと積分ゲインKiとをどのように変化させても、伝達関数の分母又は分子のいずれか一方のみを変化させることはできない。言い換えれば、システムの安定性と実電流の応答性とを独立して設定することができない。
そこで、本発明は、システムの安定性に影響を与えることなく実電流の応答性を向上させることを目的とする。
かかる目的のもと、本発明は、ステアリングホイールの操舵トルクを検出する操舵トルク検出手段と、前記ステアリングホイールに操舵補助力を与える電動モータと、前記電動モータへ実際に供給される実電流を検出する電流検出手段と、前記操舵トルク検出手段が検出した操舵トルクに基づいて前記電動モータへの目標電流を設定する目標電流設定手段と、前記目標電流設定手段が設定した目標電流と前記電流検出手段が検出した実電流との電流偏差に応じた値に対して比例ゲインを乗算する比例動作を行う比例制御手段と、前記電流偏差に応じた値を積分することにより得られる積分値に対して積分ゲインを乗算する積分動作を行う積分制御手段と、前記比例制御手段からの出力値と前記積分制御手段からの出力値とを加算して前記電動モータへの指令値を出力する加算手段と、を備え、前記比例制御手段および前記積分制御手段の少なくともいずれかは、補正係数を乗算することにより前記比例動作又は前記積分動作の効果を高める補正手段を有し、前記目標電流設定手段が設定した目標電流を入力、前記電動モータへ実際に供給される実電流を出力とした場合の伝達関数の分母が前記補正係数の値に関わらず等しくなるように調整する調整手段をさらに備えることを特徴とする電動パワーステアリング装置である。
ここで、前記比例制御手段は、前記補正係数を乗算することにより前記比例動作の効果を高める補正手段を有し、前記調整手段は、前記電流検出手段が検出した実電流に対して前記補正係数に依存する係数を乗算してその結果を出力し、前記加算手段は、前記調整手段からの出力をも加算して前記電動モータへの指令値を出力することが好適である。
そして、前記補正係数に依存する係数は、前記補正係数から1を減算した値に前記比例ゲインを乗算した値であることが好適である。
また、前記積分制御手段は、前記補正係数を乗算することにより前記積分動作の効果を高める補正手段を有し、前記調整手段は、前記電流検出手段が検出した実電流の値を積分することにより得られる積分値に対して前記補正係数に依存する係数を乗算してその結果を出力し、前記加算手段は、前記調整手段からの出力をも加算して前記電動モータへの指令値を出力することが好適である。
そして、前記補正係数に依存する係数は、前記補正係数から1を減算した値に前記積分ゲインを乗算した値であることが好適である。
また、前記補正係数は、少なくともこの電動パワーステアリング装置を搭載する車両の車速あるいは前記操舵トルク検出手段が検出する操舵トルクの変化量のいずれかに応じて変化することが好適である。
また、他の観点から捉えると、本発明は、ステアリングホイールの操舵トルクを検出する操舵トルク検出手段と、前記ステアリングホイールに操舵補助力を与える電動モータと、前記電動モータへ実際に供給される実電流を検出する電流検出手段と、前記操舵トルク検出手段が検出した操舵トルクに基づいて前記電動モータへの目標電流を設定する目標電流設定手段と、前記目標電流設定手段が設定した目標電流と前記電流検出手段が検出した実電流との電流偏差に応じた値に対して比例ゲインを乗算する比例動作を行うと共に補正係数を乗算することにより当該比例動作の効果を高める第1の比例制御手段と、当該電流偏差に応じた値を積分することにより得られる積分値に対して積分ゲインを乗算する積分動作を行う第1の積分制御手段と、前記電流検出手段が検出した実電流に対して当該補正係数に依存する係数を乗算する第1の乗算手段とを有し、当該第1の比例制御手段からの出力値と当該第1の積分制御手段からの出力値と当該第1の乗算手段からの出力値とを加算して前記電動モータへの指令値を出力する第1のモータ駆動制御手段と、前記電流偏差に応じた値に対して前記比例ゲインを乗算する比例動作を行う第2の比例制御手段と、当該電流偏差に応じた値を積分することにより得られる積分値に対して前記積分ゲインを乗算する積分動作を行うと共に補正係数を乗算することにより当該積分動作の効果を高める第2の積分制御手段と、前記電流検出手段が検出した実電流の値を積分することにより得られる積分値に対して当該補正係数に依存する係数を乗算する第2の乗算手段とを有し、当該第2の比例制御手段からの出力値と当該第2の積分制御手段からの出力値と当該第2の乗算手段からの出力値とを加算して前記電動モータへの指令値を出力する第2のモータ駆動制御手段と、前記第1のモータ駆動制御手段又は前記第2のモータ駆動制御手段にて前記電動モータへの指令値を出力するかを切り替える切替手段と、を備えることを特徴とする電動パワーステアリング装置である。
ここで、前記切替手段は、少なくともこの電動パワーステアリング装置を搭載する車両の車速あるいは前記操舵トルク検出手段が検出する操舵トルクのいずれかに応じて切り替えることが好適である。
本発明によれば、システムの安定性に影響を与えることなく実電流の応答性を向上させることができる。
第1の実施形態に係る電動パワーステアリング装置の概略構成を示す図である。 電動パワーステアリング装置の制御装置の概略構成図である。 目標電流算出部の概略構成図である。 制御部の概略構成図である。 補正係数αと車速との関係を示す図である。 制御部の簡易的なブロック線図である。 実施形態のシステムと比較するシステムの簡易的なブロック線図である。 補正係数αとステアリングホイールのトルク変化量との関係を示す図である。 第2の実施形態に係る制御部の概略構成図である。 第2の実施形態に係る制御部の簡易的なブロック線図である。 第3の実施形態に係る制御部の概略構成図である。 第4の実施形態に係る制御部の概略構成図である。 第4の実施形態に係る制御部の簡易的なブロック線図である。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<第1の実施形態>
図1は、第1の実施形態に係る電動パワーステアリング装置100の概略構成を示す図である。
電動パワーステアリング装置100(以下、単に「ステアリング装置100」と称する場合もある。)は、乗り物の進行方向を任意に変えるためのかじ取り装置であり、本実施の形態においては自動車に適用した構成を例示している。
ステアリング装置100は、ドライバが操作する車輪(ホイール)状のステアリングホイール(ハンドル)101と、ステアリングホイール101に一体的に設けられたステアリングシャフト102とを備えている。ステアリングシャフト102と上部連結シャフト103とが自在継手103aを介して連結されており、上部連結シャフト103と下部連結シャフト108とが自在継手103bを介して連結されている。
また、ステアリング装置100は、転動輪としての左右の前輪150のそれぞれに連結されたタイロッド104と、タイロッド104に連結されたラック軸105とを備えている。また、ステアリング装置100は、ラック軸105に形成されたラック歯105aとともにラック・ピニオン機構を構成するピニオン106aを備えている。ピニオン106aは、ピニオンシャフト106の下端部に形成されている。
また、ステアリング装置100は、ピニオンシャフト106を収納するステアリングギアボックス107を有している。ピニオンシャフト106は、ステアリングギアボックス107にてトーションバー(不図示)を介して下部連結シャフト108と連結されている。ステアリングギアボックス107の内部には、下部連結シャフト108とピニオンシャフト106との相対角度に基づいてステアリングホイール101の操舵トルクを検出する操舵トルク検出手段の一例としてのトルクセンサ109が設けられている。
また、ステアリング装置100は、ステアリングギアボックス107に支持された電動モータ110と、電動モータ110の駆動力を減速してピニオンシャフト106に伝達する減速機構111とを有している。
また、ステアリング装置100は、電動モータ110に実際に流れる実電流の大きさおよび方向を検出する電流検出手段の一例としてのモータ電流検出部33(図4参照)と、電動モータ110の端子間電圧を検出するモータ電圧検出部160を有している。
そして、ステアリング装置100は、電動モータ110の作動を制御する制御装置10を備えている。制御装置10には、上述したトルクセンサ109の出力値、自動車の車速を検出する車速センサ170の出力値、モータ電流検出部33の出力値、モータ電圧検出部160の出力値が入力される。
以上のように構成された電動パワーステアリング装置100は、ステアリングホイール101に加えられた操舵トルクをトルクセンサ109にて検出し、その検出トルクに応じて電動モータ110を駆動し、電動モータ110の発生トルクをピニオンシャフト106に伝達する。これにより、電動モータ110の発生トルクが、ステアリングホイール101に加える運転者の操舵力をアシストする。
次に、制御装置10について説明する。
制御装置10は、CPU、ROM、RAM、バックアップRAM等からなる算術論理演算回路である。
図2は、電動パワーステアリング装置100の制御装置10の概略構成図である。
制御装置10には、上述したトルクセンサ109にて検出された操舵トルクが出力信号に変換されたトルク信号Tdと、車速センサ170にて検出された車速が出力信号に変換された車速信号vとが入力される。
また、制御装置10には、モータ電流検出部33にて検出された実電流が出力信号に変換されたモータ電流信号Imと、モータ電圧検出部160にて検出された電圧が出力信号に変換されたモータ端子間電圧信号Vmとが入力される。
なお、制御装置10は、トルクセンサ109などからの検出信号がアナログ信号として入力されるので、図示しないA/D変換部によりアナログ信号をデジタル信号に変換し、CPUに取り込んでいる。
そして、制御装置10は、トルク信号Tdに基づいて目標補助トルクを算出し、この目標補助トルクを電動モータ110が供給するのに必要となる目標電流を算出する目標電流算出部20と、目標電流算出部20が算出した目標電流に基づいてフィードバック制御などを行う制御部30とを有している。
次に、目標電流算出部20について詳述する。図3は、目標電流算出部20の概略構成図である。
目標電流算出部20は、目標電流を設定する上で基準となるベース電流を算出するベース電流算出部21と、電動モータ110の慣性モーメントを打ち消すための電流を算出するイナーシャ補償電流算出部22とを備えている。また、目標電流算出部20は、モータの回転を制限する電流を算出するダンパー補償電流算出部23と、モータ電流信号Imおよびモータ端子間電圧信号Vmに基づいて電動モータ110の回転速度を算出するモータ回転速度算出部24とを備えている。また、目標電流算出部20は、ベース電流算出部21、イナーシャ補償電流算出部22、ダンパー補償電流算出部23などからの出力に基づいて最終的な目標電流を決定する最終目標電流決定部25を備えている。
ベース電流算出部21は、位相補償部26にてトルク信号Tdが位相補償されたトルク信号Tsと、車速センサ170からの車速信号vとに基づいてベース電流を算出し、このベース電流の情報を含むベース電流信号Imsを出力する。なお、ベース電流算出部21は、例えば、予め経験則に基づいて作成しROMに記憶しておいた、トルク信号Tsおよび車速信号vとベース電流との対応を示すマップに、トルク信号Tsおよび車速信号vを代入することによりベース電流を算出する。
イナーシャ補償電流算出部22は、トルク信号Tdと車速信号vとに基づいて電動モータ110およびシステムの慣性モーメントを打ち消すためのイナーシャ補償電流を算出し、この電流の情報を含むイナーシャ補償電流信号Isを出力する。なお、イナーシャ補償電流算出部22は、例えば、予め経験則に基づいて作成しROMに記憶しておいた、トルク信号Tdおよび車速信号vとイナーシャ補償電流との対応を示すマップに、トルク信号Tdおよび車速信号vを代入することによりイナーシャ補償電流を算出する。
ダンパー補償電流算出部23は、トルク信号Tdと、車速信号vと、電動モータ110の回転速度信号Nmとに基づいて、電動モータ110の回転を制限するダンパー補償電流を算出し、この電流の情報を含むダンパー補償電流信号Idを出力する。なお、ダンパー補償電流算出部23は、例えば、予め経験則に基づいて作成しROMに記憶しておいた、トルク信号Td、車速信号vおよび回転速度信号Nmと、ダンパー補償電流との対応を示すマップに、トルク信号Tdと車速信号vと回転速度信号Nmとを代入することによりダンパー補償電流を算出する。
最終目標電流決定部25は、ベース電流算出部21から出力されたベース電流信号Ims、イナーシャ補償電流算出部22から出力されたイナーシャ補償電流信号Isおよびダンパー補償電流算出部23から出力されたダンパー補償電流信号Idに基づいて最終的な目標電流を決定し、この電流の情報を含む目標電流信号ITを出力する。最終目標電流決定部25は、例えば、ベース電流に、イナーシャ補償電流を加算するとともにダンパー補償電流を減算して得た補償電流を、予め経験則に基づいて作成しROMに記憶しておいた、補償電流と最終的な目標電流との対応を示すマップに代入することにより最終的な目標電流を算出する。
このように、目標電流算出部20は、トルクセンサ109が検出した操舵トルクに基づいて電動モータ110に供給する目標電流を設定する目標電流設定手段の一例として機能する。
次に、制御部30について詳述する。図4は、制御部30の概略構成図である。
制御部30は、電動モータ110の作動を制御するモータ駆動制御部31と、電動モータ110を駆動させるモータ駆動部32と、電動モータ110に実際に流れる実電流を検出するモータ電流検出部33とを有している。
モータ駆動制御部31は、目標電流算出部20にて算出された目標電流と、モータ電流検出部33にて検出された電動モータ110へ供給される実電流との偏差に基づいてフィードバック制御を行うフィードバック(F/B)制御部40を有している。また、モータ駆動制御部31は、モータ電流検出部33にて検出された実電流に対して係数を乗算する乗算部50を有している。フィードバック(F/B)制御部40および乗算部50については後で詳述する。
さらに、モータ駆動制御部31は、電動モータ110をPWM駆動するためのPWM(パルス幅変調)信号を生成するPWM信号生成部60を有している。PWM信号生成部60は、フィードバック制御部40からの出力値に基づいてPWM信号60aを生成し、生成したPWM信号60aをモータ駆動部32に出力する。
モータ駆動部32は、4個の電力用電界効果トランジスタをH型ブリッジ回路の構成で接続したモータ駆動回路70と、4個の中から選択した2個の電界効果トランジスタのゲートを駆動してこれらの電界効果トランジスタをスイッチング動作させるゲート駆動回路部80とを有している。ゲート駆動回路部80は、PWM信号生成部60から出力された駆動制御信号(PWM信号)60aに基づいて、ステアリングホイール101の操舵方向に応じて2個の電界効果トランジスタを選択し、選択した2個の電界効果トランジスタをスイッチング動作させる。
モータ電流検出部33は、モータ駆動回路70に直列に接続されたシャント抵抗71の両端に生じる電圧から電動モータ110に流れるモータ電流(電機子電流)の値を検出してモータ電流信号Imを出力する。
次に、フィードバック制御部40と乗算部50について説明する。
フィードバック制御部40は、目標電流算出部20にて算出された目標電流とモータ電流検出部33にて検出された実電流との偏差を求める偏差演算部41を有している。また、フィードバック制御部40は、偏差演算部41が算出した電流偏差に対して比例動作を行う比例制御部42と、偏差演算部41が算出した電流偏差に対して積分動作を行う積分制御部43と、比例制御部42からの出力値と積分制御部43からの出力値とを加算する加算部44とを有している。
偏差演算部41は、目標電流算出部20からの出力値ITとモータ電流検出部33からの出力値Imとの偏差の値を出力する。
比例制御部42は、比例制御手段の一例として機能し、目標電流算出部20からの出力値ITとモータ電流検出部33からの出力値Imとの偏差に対して比例ゲインKpを乗算する比例動作要素421を有している。また、比例制御部42は、比例動作要素421からの出力値に対して補正係数αを乗算する補正手段の一例としての補正部422と、補正部422にて処理を行う際に用いる補正係数αを設定する補正係数設定部423とを有する。
補正係数設定部423は、例えば、車速信号vに基づいて補正係数αを算出する。図5は、補正係数αと車速との関係を示す図である。予め経験則に基づいて車速に応じた最適な補正係数αを図5に示すように導き出しておく。そして、補正係数設定部423は、予め作成しROMに記憶しておいた、車速信号vと補正係数αとの対応を示すマップ、あるいは車速信号vと補正係数αとの関係式に、車速信号vを代入することにより補正係数αを算出し、設定する。なお、図5に示すように、補正係数αは、車速がゼロのときには1.2であり、車速が大きくなるにつれて1まで減少し、車速がある速度以上である場合には1であることが好適である。
補正係数設定部423が補正係数αを1以上の値に設定することにより、補正部422は、比例動作要素421からの出力値に対して補正係数αを乗算することにより比例動作要素421にて行われる比例動作の効果を高める。
積分制御部43は、積分制御手段の一例として機能し、目標電流算出部20からの出力値ITとモータ電流検出部33からの出力値Imとの偏差を積分することにより得られる積分値に対して積分ゲインKiを乗算する積分動作を行う積分動作要素431からなる。
加算部44は、比例制御部42からの出力値と、積分制御部43からの出力値と、乗算部50からの出力値とを加算し、その結果を出力する加算手段の一例として機能する。加算部44からの出力値は、電動モータ110への指令値の基となり、PWM信号生成部60は加算部44からの出力値に基づいてPWM信号60aを生成し、生成したPWM信号60aをモータ駆動部32に出力する。
乗算部50は、補正係数設定部423が設定した補正係数αに基づいて比例係数βを算出し、モータ電流検出部33にて検出された実電流に比例ゲインKpとこの比例係数βを乗算し、その結果を出力する。比例係数βは、補正係数αに依存する係数であり、補正係数αから1を減算した値、つまりα−1である。ゆえに、乗算部50は、モータ電流検出部33にて検出された実電流に「Kp×(α−1)」を乗算し、その結果を出力する。
乗算部50は、目標電流算出部20が設定した目標電流を入力、電動モータ110へ実際に供給される実電流を出力とした場合の伝達関数の分母が補正係数αの値に関わらず等しくなるように調整する調整手段として機能する。かかる点は以下に示す式(1)により証明される。
図6は、制御部30の簡易的なブロック線図である。図6に示すように、目標電流算出部20(図4参照)からの出力値ITのラプラス変換をIT(s)、モータ電流検出部33の出力値Imのラプラス変換をIm(s)とし、PWM信号生成部60、モータ駆動部32および電動モータ110の伝達関数を簡易的にP(s)とする。
IT(s)からIm(s)までの伝達関数H(s)は、式(1)で表される。
Figure 2010195342
式(1)に示されるように、伝達関数H(s)の分母は、補正係数αの影響を受けない。
図7は、実施形態のシステムと比較するシステムの簡易的なブロック線図である。本実施形態のシステムと比較するシステムとして、本実施形態に係るモータ駆動制御部31から補正部422と乗算部50とを排除したシステムを例示する。図7は、その比較システムのブロック線図である。図6と同様に、目標電流算出部20からの出力値ITのラプラス変換をIT(s)、モータ電流検出部33の出力値Imのラプラス変換をIm(s)とし、PWM信号生成部60、モータ駆動部32および電動モータ110の伝達関数を簡易的にP(s)とする。
かかる場合の、IT(s)からIm(s)までの伝達関数G(s)は、式(2)で表される。
Figure 2010195342
入力をIT(s)、出力をIm(s)とした伝達関数の分子は、目標電流に対する実電流の応答性を示すことから、式(1),(2)により、本実施形態に係るモータ駆動制御部31は、比較システムよりも、補正部422にて比例動作要素421による比例動作の効果を高めている分、応答性が向上する。
また、伝達関数の分母は、システムの安定性を示すが、式(1),(2)により、H(s)とG(s)の分母は同一であることから、本実施形態に係るモータ駆動制御部31は、αの値に関わらず比較システムと同じ安定性を確保している。
それゆえ、本実施形態にモータ駆動制御部31のように、比例制御部42の一部に、比例動作要素421にて行われる比例動作の効果を高める補正部422を設けるとともに、加算部44は、比例制御部42および積分制御部43からの出力値に加えてImに比例ゲインKpと比例係数β(=α−1)を乗算した値をも加算することにより、システムの安定性に影響を与えることなく、応答性を向上させることができる。これにより、電動パワーステアリング装置100の安定性に影響を及ぼすことなくステアリングフィールを向上させることができる。また、補正係数αを、例えば車速に応じて変更することでよりきめ細かい制御を行うことができる。
そして、既存のシステムが比較システムである場合には、本実施形態に係るモータ駆動制御部31のように改良することで、既存のシステムと同じ方法で比例ゲインKp、積分ゲインKiを設定してシステムの安定性を確保した後に、補正係数αを調整することで目標電流に対する実電流の応答性を改善することができる。
なお、補正係数設定部423は、操舵トルクに基づいて補正係数αを算出してもよい。図8は、補正係数αとステアリングホイール101のトルク変化量との関係を示す図である。例えば、予め経験則に基づいてステアリングホイール101のトルク変化量に応じた最適な補正係数αを図8に示すように導き出しておく。そして、補正係数設定部423は、予め作成しROMに記憶しておいた、ステアリングホイール101のトルク変化量と補正係数αとの対応を示すマップに、トルク信号Tdから導き出したトルク変化量を代入することにより補正係数αを算出する。あるいは、予め作成したトルク変化量と補正係数αとの関係式にトルク変化量を代入することにより補正係数αを算出してもよい。
また、補正係数設定部423は、車速および操舵トルクに基づいて補正係数αを算出することも好適である。例えば、予め経験則に基づいて車速信号vおよびステアリングホイール101のトルク変化量と最適な補正係数αとの関係を導き出しておく。そしてこれらの対応関係を示すマップを予め作成しROMに記憶しておき、補正係数設定部423は、このマップに、車速信号vおよびトルク変化量を代入することにより補正係数αを算出する。あるいは、予め作成した車速信号vおよびトルク変化量と補正係数αとの関係式に車速信号vおよびトルク変化量を代入することにより補正係数αを算出してもよい。
そして、このように、補正係数αを、車速および/またはトルク信号Tdに基づいて変更することでよりきめ細かい制御を行うことができる。
<第2の実施形態>
図9は、第2の実施形態に係る制御部200の概略構成図である。
以下では、第1の実施形態との差異点について述べ、同じ構成要素については同一の符号を付してその詳細な説明は省略する。
第2の実施形態に係る制御部200のモータ駆動制御部210のフィードバック制御部211は、第1の実施形態に係る制御部30と同様に、比例制御部220と積分制御部230とを有している。そして、比例制御部220および積分制御部230が以下のように構成されている点に特徴がある。すなわち、第2の実施形態に係る比例制御部220は、目標電流算出部20からの出力値ITとモータ電流検出部33からの出力値Imとの偏差に対して比例ゲインKpを乗算する比例動作要素221からなる。積分制御部230は、ITとImとの偏差を積分することにより得られる積分値に対して積分ゲインKiを乗算する積分動作を行う積分動作要素231と、積分動作要素231からの出力値に対して補正係数γを乗算する補正手段の一例としての補正部232と、補正部232にて処理を行う際に用いる補正係数γを設定する補正係数設定部233とを有する。
また、第2の実施形態に係る制御部200のモータ駆動制御部210は、モータ電流検出部33にて検出された実電流の値を積分することにより得られる積分値に対して係数を乗算する乗算部250を有している点に特徴がある。
補正係数設定部233は、例えば、車速に基づいて補正係数γを算出する。例えば、予め経験則に基づいて車速に応じた最適な補正係数γを図5に示すように導き出しておく。そして、補正係数設定部233は、予め作成しROMに記憶しておいた、車速信号vと補正係数γとの対応を示すマップ、あるいは車速信号vと補正係数γとの関係式に、車速信号vを代入することにより補正係数γを算出し、設定する。なお、図5に示すように、補正係数γは、車速がゼロのときには1.2であり、車速が大きくなるにつれて1まで減少し、車速がある速度以上である場合には1であることが好適である。
補正係数設定部233が補正係数γを1以上の値に設定することにより、補正部232は、積分動作要素231からの出力値に対して補正係数γを乗算することにより積分動作要素231にて行われる積分動作の効果を高める。
乗算部250は、補正係数設定部233が設定した補正係数γに基づいて比例係数δを算出し、モータ電流検出部33にて検出された実電流の値を積分することにより得られる積分値に対して積分ゲインKiとこの比例係数δを乗算し、その結果を出力する。比例係数δは、補正係数γに依存する係数であり、補正係数γから1を減算した値、つまりγ−1である。ゆえに、乗算部250は、モータ電流検出部33にて検出された実電流の値を積分することにより得られる積分値に「Ki×(γ−1)」を乗算し、その結果を出力する。
加算部240は、比例制御部220からの出力値と、積分制御部230からの出力値と、乗算部250からの出力値とを加算し、その結果を出力する加算手段の一例として機能する。加算部240からの出力値は、電動モータ110への指令値の基となり、PWM信号生成部60は加算部240からの出力値に基づいてPWM信号60aを生成し、生成したPWM信号60aを出力する。
以上のように構成された第2の実施形態に係るモータ駆動制御部210において、乗算部250は、目標電流算出部20が設定した目標電流を入力、電動モータ110へ実際に供給される実電流を出力とした場合の伝達関数の分母が補正係数γの値に関わらず等しくなるように調整する調整手段として機能する。かかる点は以下に示す式(3)により証明される。
図10は、第2の実施形態に係る制御部200の簡易的なブロック線図である。図10では、図6と同様に、目標電流算出部20(図4参照)からの出力値ITのラプラス変換をIT(s)、モータ電流検出部33の出力値Imのラプラス変換をIm(s)とし、PWM信号生成部60、モータ駆動部32および電動モータ110の伝達関数を簡易的にP(s)とする。
かかる場合の、IT(s)からIm(s)までの伝達関数F(s)は、式(3)で表される。
Figure 2010195342
式(3)に示されるように、伝達関数F(s)の分母は、補正係数γの影響を受けない。
入力をIT(s)、出力をIm(s)とした伝達関数の分子は、目標電流に対する実電流の応答性を示すことから、式(2),(3)により、本実施形態に係るモータ駆動制御部210は、比較システムよりも、補正部232にて積分動作要素231による積分動作の効果を高めている分、応答性が向上する。
また、伝達関数の分母は、システムの安定性を示すが、式(2),(3)により、F(s)とG(s)の分母は同一であることから、本実施形態に係るモータ駆動制御部210は、γの値に関わらず比較システムと同じ安定性を確保している。
それゆえ、本実施形態にモータ駆動制御部210のように、積分制御部230の一部に、積分動作要素231にて行われる積分動作の効果を高める補正部232を設けるとともに、加算部240は、比例制御部220および積分制御部230からの出力値に加えてImを積分することにより得られる積分値に対して積分ゲインKiと比例係数δ(=γ−1)を乗算した値をも加算することにより、システムの安定性に影響を与えることなく、応答性を向上させることができる。これにより、電動パワーステアリング装置100の安定性に影響を及ぼすことなくステアリングフィールを向上させることができる。また、補正係数γを、例えば車速に応じて変更することでよりきめ細かい制御を行うことができる。
そして、既存のシステムが比較システムである場合には、本実施形態に係るモータ駆動制御部210のように改良することで、既存のシステムと同じ方法で比例ゲインKp、積分ゲインKiを設定してシステムの安定性を確保した後に、補正係数γを調整することで目標電流に対する実電流の応答性を改善することができる。
なお、補正係数設定部233は、操舵トルクに基づいて補正係数γを算出してもよいことは第1の実施形態の項で述べた通りである。また、補正係数設定部233は、車速および操舵トルクに基づいて補正係数γを算出してもよいことも第1の実施形態の項で述べた通りである。
このように、補正係数γを、車速および/または操舵トルクに基づいて変更することでよりきめ細かい制御を行うことができる。
<第3の実施形態>
図11は、第3の実施形態に係る制御部300の概略構成図である。
以下では、第1又は第2の実施形態との差異点について述べ、同じ構成要素については同一の符号を付してその詳細な説明は省略する。
第3の実施形態に係る制御部300は、第1のモータ駆動制御部311と、第2のモータ駆動制御部312と、状況に応じて、目標電流算出部20(図4参照)からの出力値ITを第1のモータ駆動制御部311又は第2のモータ駆動制御部312のいずれのモータ駆動制御部にてPWM信号生成部60への指令値を出力するかを切り替える切替部310とを有する点に特徴がある。
そして、図11に示すように、第1のモータ駆動制御部311は、第1の実施形態に係るモータ駆動制御部31と同じ構成・機能を有し、第2のモータ駆動制御部312は、第2の実施形態に係るモータ駆動制御部210と同じ構成・機能を有する。
そして、切替部310は、状況に応じて、第1のモータ駆動制御部311又は第2のモータ駆動制御部312のいずれか一方を選択する。
ここで、切替部310が第1のモータ駆動制御部311を選択した場合の、IT(s)からIm(s)までの伝達関数は、式(1)で表されるH(s)となり、切替部310が第2のモータ駆動制御部312を選択した場合の、IT(s)からIm(s)までの伝達関数は、式(3)で表されるF(s)となる。
H(s)とF(s)の特性により、切替部310が第1のモータ駆動制御部311を選択した場合には、第2のモータ駆動制御部312を選択した場合に比べてより速く実電流が目標電流に到達する。一方、切替部310が第2のモータ駆動制御部312を選択した場合には、第1のモータ駆動制御部311を選択した場合に比べてより速く実電流が目標電流に収束する。
そこで、切替部310は、車速が小さい場合には実電流を目標電流により速く到達させ、車速が大きい場合には車速に応じた振動を抑制するべく実電流を目標電流により速く収束させるように、車速に応じてモータ駆動制御部を切り替えることが好適である。すなわち、切替部310は、車速センサ170にて検出された車速が閾値以下である場合には第1のモータ駆動制御部311を選択し、閾値より大きい場合には第2のモータ駆動制御部312を選択するように切り替えることが好適である。
これにより、よりきめ細かく電動モータ110を制御することができ、電動パワーステアリング装置100の安定性に影響を及ぼすことなくステアリングフィールをより向上させることができる。
また、切替部310は、トルクセンサ109にて検出された操舵トルクをも加味して切り替えることが好適である。例えば、予め経験則に基づいて車速および操舵トルクと最適なモータ駆動制御部との関係を導き出しておく。そしてこれらの対応関係を示すマップを予め作成しROMに記憶しておき、切替部310は、このマップに、車速信号vおよびトルク信号Tdを代入することによりいずれかのモータ駆動制御部を選択する。これにより、よりきめ細かく電動モータ110を制御することができる。
<第4の実施形態>
図12は、第4の実施形態に係る制御部400の概略構成図である。
以下では、第1の実施形態との差異点について述べ、同じ構成要素については同一の符号を付してその詳細な説明は省略する。
第4の実施形態に係る制御部400のモータ駆動制御部410のフィードバック制御部440は、第1の実施形態に係るモータ駆動制御部31の比例制御部42と、第2の実施形態に係るモータ駆動制御部210の積分制御部230とを有している。
また、モータ駆動制御部410は、モータ電流検出部33にて検出された実電流に対して係数を乗算する第1の乗算部451と、モータ電流検出部33にて検出された実電流の値を積分することにより得られる積分値に対して係数を乗算する第2の乗算部452とを有している。
第1の乗算部451は、第1の実施形態に係るモータ駆動制御部31の乗算部50と同じく、モータ電流検出部33にて検出された実電流に「Kp×(α−1)」を乗算し、その結果を出力する。また、第2の乗算部452は、第2の実施形態に係るモータ駆動制御部210の乗算部250と同じく、モータ電流検出部33にて検出された実電流の値を積分することにより得られる積分値に「Ki×(γ−1)」を乗算し、その結果を出力する。
また、モータ駆動制御部410は、比例制御部42からの出力値と、積分制御部230からの出力値と、第1の乗算部451からの出力値と、第2の乗算部452からの出力値とを加算し、その結果を出力する加算手段の一例としての加算部441を有している。加算部441からの出力値は、電動モータ110への指令値の基となり、PWM信号生成部60は加算部441からの出力値に基づいてPWM信号60aを生成し、生成したPWM信号60aをモータ駆動部32に出力する。
以上のように構成された第4の実施形態に係るモータ駆動制御部410において、第1の乗算部451および第2の乗算部452は、目標電流算出部20が設定した目標電流を入力、電動モータ110へ実際に供給される実電流を出力とした場合の伝達関数の分母が補正係数αおよびγの値に関わらず等しくなるように調整する調整手段として機能する。かかる点は以下に示す式(4)により証明される。
図13は、第4の実施形態に係る制御部400の簡易的なブロック線図である。図13では、図6と同様に、目標電流算出部20からの出力値ITのラプラス変換をIT(s)、モータ電流検出部33の出力値Imのラプラス変換をIm(s)とし、PWM信号生成部60、モータ駆動部32および電動モータ110の伝達関数を簡易的にP(s)とする。
かかる場合の、IT(s)からIm(s)までの伝達関数D(s)は、式(4)で表される。
Figure 2010195342
式(4)に示されるように、伝達関数D(s)の分母は、補正係数αおよびγの影響を受けない。
入力をIT(s)、出力をIm(s)とした伝達関数の分子は、目標電流に対する実電流の応答性を示すことから、式(2),(4)により、本実施形態に係るモータ駆動制御部410は、比較システムよりも、補正部422にて比例動作要素421による比例動作の効果を高めるとともに補正部232にて積分動作要素231による積分動作の効果を高めている分、応答性が向上する。
また、伝達関数の分母は、システムの安定性を示すが、式(2),(4)により、D(s)とG(s)の分母は同一であることから、本実施形態に係るモータ駆動制御部410は、補正係数αおよびγの値に関わらず比較システムと同じ安定性を確保している。
それゆえ、本実施形態にモータ駆動制御部410のように、比例制御部42の一部に比例動作要素421にて行われる比例動作の効果を高める補正部422を設け、積分制御部230の一部に積分動作要素231にて行われる積分動作の効果を高める補正部232を設けるとともに、加算部441は、比例制御部42および積分制御部230からの出力値に加えてImに「Kp×(α−1)」を乗算した値およびImを積分することにより得られる積分値に対して「Ki×(γ−1)」を乗算した値をも加算することにより、システムの安定性に影響を与えることなく、応答性を向上させることができる。これにより、電動パワーステアリング装置100の安定性に影響を及ぼすことなくステアリングフィールを向上させることができる。また、補正係数αおよび/またはγを、車速および/または操舵トルクに応じて変更することでよりきめ細かい制御を行うことができる。
そして、既存のシステムが比較システムである場合には、本実施形態に係るモータ駆動制御部410のように改良することで、既存のシステムと同じ方法で比例ゲインKp、積分ゲインKiを設定してシステムの安定性を確保した後に、補正係数αおよびγを調整することで目標電流に対する実電流の応答性を改善することができる。
10…制御装置、20…目標電流算出部、30,200,300,400…制御部、31,210,410…モータ駆動制御部、33…モータ電流検出部、40,211,440…フィードバック制御部、41…偏差演算部、42,220…比例制御部、43,230…積分制御部、44,240,441…加算部、50,250…乗算部、100…電動パワーステアリング装置、101…ステアリングホイール、102…ステアリングシャフト、109…トルクセンサ、110…電動モータ、160…モータ電圧検出部、170…車速センサ、221,421…比例動作要素、231,431…積分動作要素、232,422…補正部、233,423…補正係数設定部、311…第1のモータ駆動制御部、312…第2のモータ駆動制御部、451…第1の乗算部、452…第2の乗算部

Claims (8)

  1. ステアリングホイールの操舵トルクを検出する操舵トルク検出手段と、
    前記ステアリングホイールに操舵補助力を与える電動モータと、
    前記電動モータへ実際に供給される実電流を検出する電流検出手段と、
    前記操舵トルク検出手段が検出した操舵トルクに基づいて前記電動モータへの目標電流を設定する目標電流設定手段と、
    前記目標電流設定手段が設定した目標電流と前記電流検出手段が検出した実電流との電流偏差に応じた値に対して比例ゲインを乗算する比例動作を行う比例制御手段と、
    前記電流偏差に応じた値を積分することにより得られる積分値に対して積分ゲインを乗算する積分動作を行う積分制御手段と、
    前記比例制御手段からの出力値と前記積分制御手段からの出力値とを加算して前記電動モータへの指令値を出力する加算手段と、
    を備え、
    前記比例制御手段および前記積分制御手段の少なくともいずれかは、補正係数を乗算することにより前記比例動作又は前記積分動作の効果を高める補正手段を有し、
    前記目標電流設定手段が設定した目標電流を入力、前記電動モータへ実際に供給される実電流を出力とした場合の伝達関数の分母が前記補正係数の値に関わらず等しくなるように調整する調整手段をさらに備えることを特徴とする電動パワーステアリング装置。
  2. 前記比例制御手段は、前記補正係数を乗算することにより前記比例動作の効果を高める補正手段を有し、
    前記調整手段は、前記電流検出手段が検出した実電流に対して前記補正係数に依存する係数を乗算してその結果を出力し、
    前記加算手段は、前記調整手段からの出力をも加算して前記電動モータへの指令値を出力することを特徴とする請求項1に記載の電動パワーステアリング装置。
  3. 前記補正係数に依存する係数は、前記補正係数から1を減算した値に前記比例ゲインを乗算した値であることを特徴とする請求項2に記載の電動パワーステアリング装置。
  4. 前記積分制御手段は、前記補正係数を乗算することにより前記積分動作の効果を高める補正手段を有し、
    前記調整手段は、前記電流検出手段が検出した実電流の値を積分することにより得られる積分値に対して前記補正係数に依存する係数を乗算してその結果を出力し、
    前記加算手段は、前記調整手段からの出力をも加算して前記電動モータへの指令値を出力することを特徴とする請求項1に記載の電動パワーステアリング装置。
  5. 前記補正係数に依存する係数は、前記補正係数から1を減算した値に前記積分ゲインを乗算した値であることを特徴とする請求項4に記載の電動パワーステアリング装置。
  6. 前記補正係数は、少なくともこの電動パワーステアリング装置を搭載する車両の車速あるいは前記操舵トルク検出手段が検出する操舵トルクの変化量のいずれかに応じて変化することを特徴とする請求項1から5のいずれか1項に記載の電動パワーステアリング装置。
  7. ステアリングホイールの操舵トルクを検出する操舵トルク検出手段と、
    前記ステアリングホイールに操舵補助力を与える電動モータと、
    前記電動モータへ実際に供給される実電流を検出する電流検出手段と、
    前記操舵トルク検出手段が検出した操舵トルクに基づいて前記電動モータへの目標電流を設定する目標電流設定手段と、
    前記目標電流設定手段が設定した目標電流と前記電流検出手段が検出した実電流との電流偏差に応じた値に対して比例ゲインを乗算する比例動作を行うと共に補正係数を乗算することにより当該比例動作の効果を高める第1の比例制御手段と、当該電流偏差に応じた値を積分することにより得られる積分値に対して積分ゲインを乗算する積分動作を行う第1の積分制御手段と、前記電流検出手段が検出した実電流に対して当該補正係数に依存する係数を乗算する第1の乗算手段とを有し、当該第1の比例制御手段からの出力値と当該第1の積分制御手段からの出力値と当該第1の乗算手段からの出力値とを加算して前記電動モータへの指令値を出力する第1のモータ駆動制御手段と、
    前記電流偏差に応じた値に対して前記比例ゲインを乗算する比例動作を行う第2の比例制御手段と、当該電流偏差に応じた値を積分することにより得られる積分値に対して前記積分ゲインを乗算する積分動作を行うと共に補正係数を乗算することにより当該積分動作の効果を高める第2の積分制御手段と、前記電流検出手段が検出した実電流の値を積分することにより得られる積分値に対して当該補正係数に依存する係数を乗算する第2の乗算手段とを有し、当該第2の比例制御手段からの出力値と当該第2の積分制御手段からの出力値と当該第2の乗算手段からの出力値とを加算して前記電動モータへの指令値を出力する第2のモータ駆動制御手段と、
    前記第1のモータ駆動制御手段又は前記第2のモータ駆動制御手段にて前記電動モータへの指令値を出力するかを切り替える切替手段と、
    を備えることを特徴とする電動パワーステアリング装置。
  8. 前記切替手段は、少なくともこの電動パワーステアリング装置を搭載する車両の車速あるいは前記操舵トルク検出手段が検出する操舵トルクのいずれかに応じて切り替えることを特徴とする請求項7に記載の電動パワーステアリング装置。
JP2009045285A 2009-02-23 2009-02-27 電動パワーステアリング装置 Expired - Fee Related JP5265413B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009045285A JP5265413B2 (ja) 2009-02-27 2009-02-27 電動パワーステアリング装置
EP11185401.4A EP2409897B1 (en) 2009-02-23 2009-09-22 Electric Power Steering Apparatus and Control Method thereof
AT09170991T ATE535431T1 (de) 2009-02-23 2009-09-22 Elektrische servolenkvorrichtung, steuerungsverfahren dafür und programm
EP09170991A EP2221235B1 (en) 2009-02-23 2009-09-22 Electric power steering apparatus, control method thereof and program
EP11185402A EP2409898B1 (en) 2009-02-23 2009-09-22 Electric power steering apparatus
US12/565,271 US8260500B2 (en) 2009-02-23 2009-09-23 Electric power steering apparatus, control method thereof and computer readable medium
US13/561,246 US20120290176A1 (en) 2009-02-23 2012-07-30 Electric power steering apparatus, control method thereof and computer readable medium
US13/561,239 US8818636B2 (en) 2009-02-23 2012-07-30 Electric power steering apparatus, control method thereof and computer readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045285A JP5265413B2 (ja) 2009-02-27 2009-02-27 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2010195342A true JP2010195342A (ja) 2010-09-09
JP5265413B2 JP5265413B2 (ja) 2013-08-14

Family

ID=42820524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045285A Expired - Fee Related JP5265413B2 (ja) 2009-02-23 2009-02-27 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP5265413B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715243A (zh) * 2014-09-12 2017-05-24 三菱电机株式会社 转向控制装置
CN111034025A (zh) * 2017-08-31 2020-04-17 日本电产东测有限公司 马达的控制装置和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332969A (ja) * 1995-06-07 1996-12-17 Honda Motor Co Ltd 電動パワーステアリング装置
JPH1178919A (ja) * 1997-09-01 1999-03-23 Honda Motor Co Ltd 電動パワーステアリング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332969A (ja) * 1995-06-07 1996-12-17 Honda Motor Co Ltd 電動パワーステアリング装置
JPH1178919A (ja) * 1997-09-01 1999-03-23 Honda Motor Co Ltd 電動パワーステアリング装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715243A (zh) * 2014-09-12 2017-05-24 三菱电机株式会社 转向控制装置
CN106715243B (zh) * 2014-09-12 2018-12-14 三菱电机株式会社 转向控制装置
CN111034025A (zh) * 2017-08-31 2020-04-17 日本电产东测有限公司 马达的控制装置和存储介质
CN111034025B (zh) * 2017-08-31 2023-02-17 日本电产东测有限公司 马达的控制装置和存储介质

Also Published As

Publication number Publication date
JP5265413B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
EP2700564B1 (en) Electric power steering system
JP5687166B2 (ja) 電動パワーステアリング装置
JP6291314B2 (ja) 電動パワーステアリング装置、プログラム
JP5265413B2 (ja) 電動パワーステアリング装置
JP2013212715A (ja) 電動パワーステアリング装置
JP5265436B2 (ja) 電動パワーステアリング装置およびその制御方法
JP5467852B2 (ja) 電動パワーステアリング装置、電動パワーステアリング装置の制御方法およびプログラム
JP6222895B2 (ja) 電動パワーステアリング装置
JP5824376B2 (ja) 電動パワーステアリング装置およびプログラム
JP5265410B2 (ja) 電動パワーステアリング装置とその制御方法およびプログラム
JP2008006919A (ja) 電動パワーステアリング装置
JP2013173444A (ja) 電動パワーステアリング装置およびプログラム
JP5323531B2 (ja) 電動パワーステアリング装置とその制御方法およびプログラム
JP2012076538A (ja) 電動パワーステアリング装置
JP5263181B2 (ja) 電動パワーステアリング装置
JP2009227105A (ja) 電動パワーステアリング装置
JP6059063B2 (ja) 電動パワーステアリング装置
JP6291310B2 (ja) 電動パワーステアリング装置、プログラム
JP2014125036A (ja) 電動パワーステアリング装置
JP5875931B2 (ja) 電動パワーステアリング装置
JP2014189096A (ja) 電動パワーステアリング装置
JP2009286350A (ja) 電動パワーステアリング装置の制御装置
JP2005254983A (ja) 電動パワーステアリング装置
JP5979079B2 (ja) 電動パワーステアリング装置
JP2006027412A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5265413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees